Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

Coevolution of Supermassive Black Holes and Their Host Galaxies

Abstract

The role of black holes in galaxy evolution has come under intense scrutiny since it was discovered that every galaxy in the local universe contains a supermassive black hole (SMBH) at its nucleus. The existence of scaling relations between the SMBH and its host galaxy show that their presence is not coincidental, but rather that SMBHs and their hosts have a shared evolution. The nature of this coevolution is still debated with some proposing it to be a natural result of hierarchical merging models, while others invoke SMBH feedback mechanisms that couple BH growth with that of the host galaxy. In this dissertation, I examine different regimes of SMBH activity and host galaxy properties. I investigate a sample of post-starburst galaxies to gain insight into the morphological and spectrophotometric evolution of galaxies through galaxy interactions and mergers. I plot detailed comparisons of the galaxy kinematics as measured from different stellar populations. I also investigate post-starburst galaxies that simultaneously host an AGN. I develop a technique to study the properties of both the host galaxy and the SMBH in these objects, directly investigating the scaling relation between the two. I describe analysis performed on red quasars in another study that directly probes the scaling relations in the non-local universe. Lastly, I conduct SED fitting of quasars to illuminate the differences between two major spectral types, and investigate host galaxy properties including star formation. All of these projects focus on the relationship between the SMBH and host galaxy. I show that a range of galaxy interactions can lead to black hole growth and are part of galaxy evolution over cosmic time.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View