Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions

Published Web Location

http://www.sciencedirect.com/science/article/pii/S1096717616302269
No data is associated with this publication.
Abstract

Microbial fermentation conditions are dynamic, due to transcriptional induction, nutrient consumption, or changes to incubation conditions. In this study, 13C-metabolic flux analysis was used to characterize two violacein-producing E. coli strains with vastly different productivities, and to profile their metabolic adjustments resulting from external perturbations during fermentation. The two strains were first grown at 37°C in stage 1, and then the temperature was transitioned to 20°C in stage 2 for the optimal expression of the violacein synthesis pathway. After induction, violacein production was minimal in stage 3, but accelerated in stage 4 (early production phase) and 5 (late production phase) in the high producing strain, reaching a final concentration of 1.5mmol/L. On the contrary, ~0.02mmol/L of violacein was obtained from the low producing strain. To have a snapshot of the temporal metabolic changes in each stage, we performed 13C-MFA via isotopomer analysis of fast-turnover free metabolites. The results indicate strikingly stable flux ratios in the central metabolism throughout the early growth stages. In the late stages, however, the high producer rewired its flux distribution significantly, which featured an upregulated pentose phosphate pathway and TCA cycle, reflux from acetate utilization, negligible anabolic fluxes, and elevated maintenance loss, to compensate for nutrient depletion and drainage of some building blocks due to violacein overproduction. The low producer with stronger promoters shifted its relative fluxes in stage 5 by enhancing the flux through the TCA cycle and acetate overflow, while exhibiting a reduced biomass growth and a minimal flux towards violacein synthesis. Interestingly, the addition of the violacein precursor (tryptophan) in the medium inhibited high producer but enhanced low producer's productivity, leading to hypotheses of unknown pathway regulations (such as metabolite channeling).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item