
UC Berkeley
Research Reports

Title
Travel Times on Changeable Message Signs: Pilot Project

Permalink
https://escholarship.org/uc/item/2wp2p0m6

Author
Chen, Chao

Publication Date
2004-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wp2p0m6
https://escholarship.org
http://www.cdlib.org/


ISSN 1055-1425

March 2004

This work was performed as part of the California PATH Program of the 
University of California, in cooperation with the State of California Business, 
Transportation, and Housing Agency, Department of Transportation; and the 
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible 
for the facts and the accuracy of the data presented herein. The contents do not 
necessarily reflect the official views or policies of the State of California. This 
report does not constitute a standard, specification, or regulation.

Final Report for Task Order 4306

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Travel Times on Changeable  
Message Signs: Pilot Project

UCB-ITS-PRR-2004-5
California PATH Research Report

Chao Chen

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS



Travel Times On Changeable Message Signs: Pilot Project

Chao Chen
PeMS Development Group

University of California, Berkeley

December 19, 2003



Contents

1 Executive Summary 6

2 Introduction 7

2.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Travel time measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Travel time prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Message generation and delivery. . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Site selection and benefit analysis. . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Development of CMS content. . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Interface between PeMS and CMS. . . . . . . . . . . . . . . . . . . . . . 10

2.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Travel Time Prediction On A Freeway Route 11

3.1 Problem description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Real time measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Linear regression prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Discussion: time lag of prediction. . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Calculating actual travel time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.1 Interpolating speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Fitting model parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.7 Application to the CMS problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



CONTENTS 2

4 Potential Benefits 16

4.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Route Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Route Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Average Travel Time Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Buffer Time Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6 More Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Performance Validation 24

5.1 CMS Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 I-80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 I-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Implementation 31

6.1 Destinations, routes, and freeways. . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Segment travel times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Segment prediction coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Travel Time Prediction Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.5 Message Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.6 System Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.7 Testing under operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Conclusion and recommendations 36

7.1 Follow-up project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



List of Figures

3.1 Linearity of travel times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 San Diego: two alternate routes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Travel times on routes 1 and 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Decision based on predicted travel time.. . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Average travel times using three strategies.. . . . . . . . . . . . . . . . . . . . . . 21

4.5 Travel time using prediction vs. using historical median only.. . . . . . . . . . . . 22

4.6 Ninety percent buffer times.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Map of I-80 corridor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Data quality, I-80E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 CMS locations on I-5 in orange county, District 12.. . . . . . . . . . . . . . . . . 27

6.1 Configuration tables: CMS, routes, and segments.. . . . . . . . . . . . . . . . . . 32

6.2 CMS application system and networking.. . . . . . . . . . . . . . . . . . . . . . 33

6.3 CMS type 1: single destination, multiple routes.. . . . . . . . . . . . . . . . . . . 34

6.4 CMS type 2: single freeway, multiple destinations.. . . . . . . . . . . . . . . . . 34

3



List of Tables

4.1 Description of routes, San Diego test case. . . . . . . . . . . . . . . . . . . . . . 17

4.2 Benefit summary for five origin-destination pairs.. . . . . . . . . . . . . . . . . . 23

5.1 Tach measurements on I-80.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Summary statistics from probe measurements.. . . . . . . . . . . . . . . . . . . . 30

5.3 Travel time measurements and estimates on I-5.. . . . . . . . . . . . . . . . . . . 30

6.1 CMS and destinations on Interstate 80 in Bay Area.. . . . . . . . . . . . . . . . . 35

4



Acknowledgement 5

Acknowledgment

This project was made possible by Caltrans. We thank the cooperation of Caltrans District employ-
ees in Districts 4, 7, 11, and 12 for their input on the system design and evaluation. We especially
thank Kane Wong and Alan Chow of District 4 and Paul King of District 12 for measuring travel
times for the ground truth comparison. We also thank Caltrans Headquarters for devoting resources
for automating CMS message delivery and guiding the development the CMS message content for-
mat.



Chapter 1

Executive Summary

We describe a system to display real time travel times on Changeable Message Signs (CMS) in
California. CMS’s show dynamic information and allow the Traffic Management Center (TMC)
to communicate to drivers information about traffic diversion, incidents, and delays. This type of
service is deployed in other parts of the country and world and has been shown to be useful. For
this project, we implemented a system that uses existing algorithms for travel time estimation and
prediction.

The system that we designed uses real time information to compute expected travel times
at the current time on selected routes originating from the CMS location. The data come from the
Freeway Performance Measurement System (PeMS) database. PeMS collects 30-second data from
most California urban freeways. Travel time predictions are computed using an existing algorithm
that is implemented in Perl. The prediction engine is shown to be functional, reliable, and scalable.

We evaluated the potential benefit of real time prediction on historical data from several
California routes. The analysis shows that routing choice based on real time information reduces
average travel time and improves its predictability. However, the accuracy of the system relies on
good data quality. We found the current data quality needs to be improved in some locations.

We have proven the technical feasibility of displaying travel times on CMS’s using avail-
able data in California. The calculation of trave time estimates are based on real time data or a
combination of real time and historical information using algorithms. But the project was canceled
before we could deploy it and study consumer reactions and actual benefits.
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Chapter 2

Introduction

Changeable message signs (CMS’s) along freeways can display dynamic information to help drivers
choose the best route and plan for delays. Currently, operators in the Traffic Management Center
(TMC) type messages about incidents, road conditions, and events onto the signs. More recently,
CMS’s are also used to display automatically generated travel time information. Such services exist
in Europe and in US cities including Houston, San Antonio, and Atlanta. Real time traffic data and
computer algorithms are used to generate and display the CMS content.

This report describes the implementation of an automated CMS service in California. The
goal of this pilot project is to display predicted travel times from the message sign to several des-
tinations along the route. A computer program processes real time data from loop detectors and
calculates the predicted travel times. The predictions are sent to the TMC, where another program
displays them onto the message signs.

2.1 Background

Many state Departments of Transportation (DOTs) provide real time traffic information. In Wash-
ington state, a network of loop detectors measures link speeds. These data are used to calculate
instantaneous travel times, which are posted on the Central Puget Sound Travel Times web site (1).
Changeable message signs deliver traffic information directly to drivers on many freeways. Often,
traffic operators type messages onto the signs from the TMC, alerting drivers of lane closures or ac-
cidents ahead. Users of the TransGuide system in San Antonio “consider the [changeable message
signs] to be more useful and reliable than radio or other sources of traffic information because of
the signs proximity to traffic congestion and their higher level of accuracy” (2).

Increasingly, changeable message signs are displaying automatically generated travel time
information. The Georgia Navigator is a network of detectors and message signs built for the 1996
Atlanta Olympic games (3). It computes link travel times using video traffic detectors and publishes
route travel times on CMS’s as well as on a web page. The Houston Transtar system (4) uses Au-
tomatic Vehicle Identification (AVI) technology to measure travel times and posts them on CMS’s.
AVIs measure travel times directly, so it has an advantage over loop-based travel time estimates.

7



CHAPTER 2. INTRODUCTION 8

But AVI tags and readers are installed in only a few places, whereas loop detectors are much more
common traffic sensors. Loop detector data are the only data widely available in California. Since
our travel time estimates are not directly measured they need to be verified with ground truth. The
WSDOT observed good agreement between loop detector-based and probe vehicle travel times (1).
The validity of loop-based travel time estimates are also supported by Coifman (5) and van Lint (6).
Our own probe measurements show that accuracy of loop data-based estimates is good given good
data quality.

The providers of the aforementioned CMS traveler information services do not have defini-
tive social studies on their impact, or quantifying benefits to consumers or highway management.
But their continued operation indicates widespread acceptance by the public. As part of this study,
we planned to survey drivers’ opinion on the effectiveness of CMS travel times, as well as measure
any impact the messages have on traffic patterns. Since the system was not deployed, this part of
the project was not done. We recommend that it be a part of a follow-up project.

2.2 Technologies

Delivering travel time information on message signs requires measurement of current traffic con-
ditions, prediction of future travel times, and delivery of the message content onto the electronic
signs.

2.2.1 Travel time measurement

Inductive loop detectors provide most of the traffic data available in California. There are also
some micorwave and magnetic sensors. All of these sensors provide spot measurements of some
combination of vehicle count, occupancy, and speed. But they do not directly measure travel time.
Therefore, we need to estimate travel time from these measurements using an algorithm. We use the
PeMS database which contains real time and historical data from most California urban freeways.
Note that with any method, we can estimate travel times only for completed trips, because travel
times of uncompleted trips depend on future speeds.

2.2.2 Travel time prediction

Most CMS traveler information systems, including the ones mentioned above, show past travel
times. For example, the Houston Transtar system shows travel times of vehicles that have just tra-
versed a route. But the travel time of someone just beginning on the same route may be different,
especially if travel times are changing quickly. What we want is to estimate thefuture travel time,
which requires prediction. Van Zwet (7) showed that prediction that takes into account both histor-
ical trends and real time information performs much better than that using current measurements
alone. We implemented van Zwet’s algorithm and demonstrate its benefit.
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2.2.3 Message generation and delivery

We built an application that generates travel time predictions on designated routes periodically.
This application runs continuously in the background and wakes up every five minutes to compute
the prediction for each route given current conditions. The results are formatted appropriately and
stored in a file at PeMS. In the Caltrans TMC, another process periodically queries PeMS for the
current travel time predictions on all routes. The TMC process retrieves the newest predictions and
displays them onto the appropriate CMS’s.

2.3 Tasks

The project proposal described these tasks:

1. Site selection

2. Develop CMS content

3. Interface CMS software with PeMS content

4. Deploy and monitor pilot program

5. Evaluate effectiveness of CMS

6. Final report

Tasks 1 and 2 have been completed. Task 3 is completed on PeMS’s end according to Caltrans
specifications, but the TMC process is not yet finished. Tasks 4 and 5 are not completed because
Caltrans did not give the permission to deploy. Task 6 is this report.

2.3.1 Site selection and benefit analysis

Travel time information is most valuable on routes that have highly variable travel times, and origin-
destination pairs that have several alternate routes. Of course, the sites we select must have func-
tioning CMS installed and good measurements from detectors. We chose several CMS locations
and corresponding destinations to find the potential benefits of travel time prediction to drivers on
these routes. Using real data and our algorithms, we found that drivers potentially save time and
reduce uncertainty at all locations.

Two locations were selected for deployment, one in District 4 and one in District 12. The
selection was based on the Districts’ preferences. Extensive evaluations on both prediction accuracy
and estimation accuracy were carried out on in District 4; some verification was also performed in
District 12.
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2.3.2 Development of CMS content

The CMS contents, or travel time predictions, are generated using technologies outlined in sec-
tions2.2.1through2.2.3. The process is implemented in Perl. and completely automated. Currently
the process generates travel times on the designated deployment routes; more CMS locations and
routes can be added easily.

2.3.3 Interface between PeMS and CMS

The CMS’s are controlled by software in the TMC. Using the HTTP protocol and the Internet,
PeMS generates the CMS content and makes it available to the TMC on the Web as a text file.
This file is refreshed every five minutes with the current predictions. The content is formatted
according to Caltrans specifications and can contain messages for multiple CMS’s. TMC side of the
communications is not completed. But since it simply has to display the messages without applying
any logic, this part should be easy.

2.4 Results

Although we did not deploy the system and were not able to evaluate its performance as perceived
by the public, we implemented an operational system that can be deployed quickly when executive
decisions are made. We were able to evaluate its performance using historical data, and quantify the
travel time estimation accuracy, potential benefits, and reliability of the software package.

The validity of the travel time estimation and prediction algorithms have been established
in research literature. We also found them to be accurate when applied to our data. We quantified
the overall effectiveness of the system using several months of historical data from several test
locations. It showed large potential savings in average travel time when competitive alternate routes
are available, and large reductions in travel time uncertainty in all cases. The implemented system is
reliable and stayed up for one week without errors. Because the real time portion of the prediction
mechanism is simple, this system does not require intense computations and is easily scalable to
more CMS locations.

The most significant technical hurdle that remain is the lack of reliable data. Currently, the
system can be implemented only at locations where the data quality is good. On the other hand,
the calibration process reveals the location of malfunctioning detectors and may be used as a tool in
targeted detector maintenance.



Chapter 3

Travel Time Prediction On A Freeway
Route

3.1 Problem description

We need to predict the travel time on a route between a given CMS location on the freeway to some
destination in the freeway network, for a starting timet. For example, suppose the current time is
4:53 PM. We may display this message on the southbound CMS sign just upstream of the I-5/I-805
split in San Diego:

DOWNTOWN SD
I-805 25-28 MIN
I-5 35-37 MIN

This message shows the predicted travel time to downtown San Diego on these two routes for drivers
who are at the CMS location at the current time – 4:53 PM. Suppose the time of the most recent
measurement is 4:50 PM, and call the time of the most recent measurementt0. Our problem is to
predict the travel time departing att, given measurements made att0, wheret ≥ t0.

3.2 Real time measurement

Travel time predictions can be derived from measurements of current speeds and a model of travel
time behavior. Most urban freeways in California are equipped with loop detectors or other station-
ary sensors that measure speed directly or indirectly.1 The detectors are about one third to one half
mile apart on average. They have an update rate of every 30 seconds. PeMS computes five-minute

1Some detectors, such as double loop installations and radars, measure speed directly. There are also many single
loop installations that measure volume and occupancy, which are then used to estimate speed. PeMS obtains accurate
speed estimates from single loops using an algorithm described in a paper by Jia (8).
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CHAPTER 3. TRAVEL TIME PREDICTION ON A FREEWAY ROUTE 12

average speed from every location in real time.2 Suppose we have a route that isy miles long and
hasn detector locations at milesx1, . . . , xn from the start of the route. From each detectori and at
time tj , we have speed measurementsv̂(xi, tj), which represents the average speed of all vehicles
who crossed pointxi during the time interval betweentj andtj −30 seconds. If we divide the route
into n links where theith link is the part of the route that is closest in distance to theith detector, a
naive estimate of travel time departing at timet0 is the sum of the current link travel times:

T ∗(t0) =
n∑

i=1

li
v̂(xi, t0)

. (3.1)

However, this is not the actual travel time for departure att0 because the actual travel time depends
on speeds after the departure, i.e. for timest >= t0. Equation (3.1) implicitly assumes that speeds
in the future on all the links will be the same as the current speeds. This is why we need to do
prediction.

3.3 Linear regression prediction

There is much research on how to predict travel times on freeways. The best method seems to be to
use a combination of real time and historical knowledge about the route. We choose an algorithm
developed by van Zwet (7) which uses linear regression. In this method, actual travel times for
departure at timet is modeled as a linear function ofT ∗(t0):

T (t) = T (t) + (T ∗(t0)− T ∗(t0))λ(t0, t) + ε(t0, t), (3.2)

where

T (t)
def
= travel time departing att

T (t)
def
= historical average travel time for departing at time of dayt

T ∗(t0)
def
= historical average ofT ∗ at time of dayt0

λ(t0, t)
def
= parameter indexed by botht0 andt

ε(t0, t)
def
= Gaussian noise.

This model has been verified on real data and found to be a good fit. It is very simple to implement
because it requires only one parameter,λ(t0, t). Actually,λ depends on both the time of day of the
measurementt0 and departure timet. Therefore the number of parameters is really the number of
distinct combinations of(t0, t) we care to have. We choose to have a five-minute resolution in both
departure and measurement times, and we can realistically compute lags of up to 60-90 minutes.
The lag is the difference between the departure and measurement times,t − t0. If the lag is very
large, then the measurements made att0 is not very meaningful att. Since there are 288 five-minute
periods in a day, and 18 five-minutes in 90 minutes, the number of parameters we need to compute
is 288× 18 = 5184. The details of how these parameters are computed is found in Section3.6and
in van Zwet (7).

2The five minute interval is a convenient aggregation level which represents ten 30-second raw samples. This update
rate should be adequate for travel time prediction applications.
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3.4 Discussion: time lag of prediction

The above travel time model allows for a delay between departure timet and measurement time
t0. In some applications this is necessary, for example, when we want to predict the travel time of
departing an hour from now. While the CMS application only needs to predict for current departure
time, having the ability to predict future travel times means we can take care of the case when
measurement falls behind real time. For example, there can be delays of several minutes in the
data path, from the moment measurements are made to the time when five-minute aggregates are
computed. The ability to handle departure times that are different from measurement times smoothly
compensates for any delays between measurement time and when the data become available for
calculations.

3.5 Calculating actual travel time

In order to calculate the parametersλ(t0, t) for prediction, we need historical measurements of real
travel timesT (t). But actual travel time measurements are generally not available. On the other
hand, we have measured speedsv(xi, tj) from detectorsi at every 30 secondsti, so we should
use these measurements to compute travel time. Sincev(xi, tj) are spot measurements at discrete
locationsxi and aggregated over timestj , and travel time is a function of all locations0 < x < y and
times between the departure time and the arrival time, what we can compute from measured speeds
are only estimates of the true travel times. Research has shown that with intelligent interpolation
between the measurement locations and times, we can obtain accurate estimates of the true travel
time (5, 6).

We use an iterative method to calculate travel time from speed measurements using a
method first developed by Oda (9). Starting at times0 and locationz0, we interpolate the speed
at the current location and time and hold this speed for∆ seconds to find the next location,z1. Then
we repeat with process withs1 = s0 + ∆ andz1, until the destination,z∗, is reached.

zk+1 = zk + ṽ(zk, sk)∆ (3.3)

We use an iteration interval of∆ = 10 seconds. The sequences ofsk andzk represent the trajectory;
the estimated travel time is

T (s0) = ∆ ∗min {k : zk > z∗} seconds. (3.4)

3.5.1 Interpolating speed

The above iteration method requires knowledge of speed at any given location and time. Since
measurements are obtained from discrete locations and times, speed for an off-grid point has to
be interpolated. Letv(xi, tj) be the measured speeds. We actually interpolate theinverseof the
measured speeds as follows:

ṽ(s, z) =
[
linear(

1
v(xi, tj)

)
]−1

(3.5)
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where linear(•) linearily interpolates(s, z) from the four closest grid points(xi, tj).

3.6 Fitting model parameter

Once we have historical values ofT ∗(t) andT (t), we can easily compute parametersλ(t0, t) for
each combination of(t0, t). Givent0 andt, we can compute historical valuesT ∗(d, t) andT (d, t)
using equations (3.1) and (3.4). Here, we use the indexd to indicate the day andt to indicate the
time of day.

This prediction model assumes travel times of different days to be independent and iden-
tically distributed for a given time of day. In other words,T (d, t) is iid given t. This is suggested
by the scatter plot in Figure3.1, which shows a remarkably linear relationship betweenT (t) and
T ∗(t0).

Figure 3.1 T (t) vs. T ∗(t0) for a segment in Los Angeles, wheret0 = t = 8 AM. The relation-
ship is linear.

The parameterλ(t0, t) can be found by finding the slope of the straight line in Figure3.1.
We use a robust least-squares method. Suppose we have the following data:

• Td ≡ T (d, t): travel time estimates for daysd = 1, 2, . . . , n at time of dayt;

• T ∗
d ≡ T ∗(d, t0): T ∗ for daysd and measurement timet0.
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Compute the sample meansT̄ andT ∗ and standard deviationsσ andσ∗. Remove the outlier travel
times: keep daysd in D:

D
def
=

{
d : Td < T̄ + 3σ; T ∗

d < T ∗ + 3σ∗
}

. (3.6)

Recompute the means̄T andT ∗ using the reduced setD. Then, minimize least squared error to find
λ:

λ̂ = argmin
λ

∑
d∈D

[
Td − T̄ − λ(T ∗

d − T ∗)
]2

. (3.7)

This procedure is repeated for each combination oft0 andt. See Section6.3for the implementation
in Matlab.

3.7 Application to the CMS problem

After prediction parameterλ(t0, t) and travel time statisticsT (t) andT ∗(t) are computed, real time
prediction is simple. At the current timet, suppose the most recent measurements were made at
t0 < t. The instaneous travel timeT ∗(t0) can be computed from the measured speedsv(xi, t0).
Apply the equation in (3.2) to estimate the travel time:

T̂ (t) = T (t) +
(
T ∗(t0)− T ∗(t0)

)
λ̂(t0, t). (3.8)



Chapter 4

Potential Benefits

4.1 Problem Formulation

Changeable message signs are ideal for delivering real time information to drivers. If there are two
alternate routes to the same destination, displaying their predicted travel times enables the driver to
choose the quicker one; if travel time is abnormally high, the driver may decide to delay his trip
and do something else instead. We quantify the benefit of real time travel time on several freeway
routes. The benefits include average travel time savings and the reduction in uncertainty.

Suppose there aren alternate routes between a given origin-destination pair. LetXi(d, t)
be the travel time on theith route on dayd and time of dayt. ModelXi(d, t) as a random variable
whose distribution depends oni andt but is independent and identically distributed (iid) ind. At
any time(d, t), we can make a prediction ofXi(d, t), call thisX̂i(d, t). Notice that we don’t know
the actual value ofXi(d, t) until some time after(d, t), the departure time. The CMS displays the
predictionX̂i(d, t) for each routei.

We compare two strategies. The first chooses the route with historically the lowest average
travel time; the second chooses the route with the lowest predicted travel time. We assume that the
actual travel time on either route is not affected by the driver’s decision, discounting the possibility
that route guidance itself alters the congestion patterns. LetT0, T1 be the actual travel time realized
following the two strategies. We hypothesize that the second strategy is better because it uses more
information. The travel time realized isT1, the actual travel time of the route with the shortest
predicted travel time, where

T1(d, t) = Xk(d, t), k such thatX̂k(d, t) ≤ X̂i(d, t) for all i ≤ n (4.1)

In the first strategy, drivers only know the historical average travel time at each time of dayt, which
is their “prediction” of the current travel time since no other information is available. Thus,

X̂ ′
i(t) = E[Xi(1, t)] for all i ≤ n, for all d (4.2)

is the predicted travel time on each route. Then

T0(d, t) = Xk(d, t), k such thatX̂ ′
k(t) ≤ X̂ ′

i(t) for all i ≤ n (4.3)

16
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Route Length Detector Stations Daily Volume
I-5 SB 14.61 12 90,174
I-805 to I-163 14.05 13 86,129/67,769

Table 4.1 Description of routes, San Diego test case. Volumes are daily averages in August,
2003.

From historical data, we can find̂Xi(d, t) andX̂ ′
i(t) and estimateT0, T1 and their distributions.

For a thorough comparison, we introduce a third, hypothetical travel timeT2, which is the
travel time on the actual fastest route,

T2(d, t) = min {Xi(d, t) : i ≤ n} . (4.4)

T2 is the lower bound of travel time of any routing strategy.

4.2 Route Description

The performance of these route selection strategies is evaluated using data from San Diego freeways.
There are two alternate routes between the I-5/I-805 interchange and the I-5/I-163 interchange. One
can stay on I-5 SB for the entire trip or take I-805 SB and then I-163 SB. We number the routes
1 and 2 respectively. They have similar traffic characteristics. See Table4.1 and Figure4.1. We
compute travel timesXi(d, t), wherei = 1, 2, for departure times between 5:00 AM and 10:00
PM on 8/1/2002 through 8/31/2002. There are 22 weekdays included in the study. Travel times are
computed for 1320 departure times over the study period at every 17 minutes. For each departure
time, we calculate a trajectory in space and time that satisfies the measured speeds by “walking”
through the speed surface in time and space. For more details on the calculation of historical travel
times see the SYSTEM IMPLEMENTATION section, Chen (10), or Oda (9).

The scatter plot of route 1 and route 2 travel times is shown in Figure4.2. Each point
represents travel times on the two routes with the same departure time; there are 1320 points. Travel
times on the two routes are comparable, suggesting that they are realistic alternatives. However, for
any given departure time, either route may have the shorter travel time.

4.3 Route Selection

Let R0(t) ∈ {1, 2} be the route taken based on strategy 0, i.e.

R0(d, t) = argmin
r

E [Xr(1, t)] .

R0(d, t) is fixed for each time of dayt and does not depend ond because it uses only historical
information. LetR1(t) to be the choice based on real time prediction, i.e.

R1(d, t) = argmin
r

X̂r(d, t).
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Figure 4.1 San Diego: two alternate routes between I-5/I-805 split and I-5/SR-163 interchange.

This is a random variable that depends ont but is assumed to be iid ind. Similarly, the route choice
under full knowledge is

R2(d, t) = argmin
r

Xr(d, t).

R0 does not depend on real time data and therefore depends only ont, the time of day. But
R1 depends on the current information, therefore it depends on bothd andt. Figure4.3shows for
each time of day, the probability that route 1 is chosen based on strategy 1. Recall that strategy
1 chooses the route with the minimum predicted travel time based on current information. Route
choice is clearly affected by the real time information. On average, during the morning, route 1 is
chosen on most days; during the afternoon peak at 18:00, about 40% of the time route 1 is chosen,
and the other 60% of the time route 2 is chosen.

We now compare the performance of real time route selection versus route choice based
only on historical knowledge. We calculate the reduction in average travel time and buffer time,
a measure of uncertainty. The use of real time information also successfully avoids routes with



CHAPTER 4. POTENTIAL BENEFITS 19

15 20 25 30 35 40 45 50

15

20

25

30

35

40

45

50
Travel times on two alternate routes

minutes

m
in

ut
es

Figure 4.2 Travel times on routes 1 and 2.

abnormally high delays.

4.4 Average Travel Time Reduction

Real time travel time predictionŝXi on routesi = 1, 2 are computed for every departure time. The
details of travel time prediction is given in the SYSTEM IMPLEMENTATION section. We also
computeT0, T1, andT2 – the achieved travel times of the three route decision strategies. Figure4.4
shows the average travel times for each departure time of day during the test period. The quicker
route according to CMS takes about 2 minutes less than the historically quicker route during the
afternoon peak period, or about 9% of the average. The achieved CMS travel times are very close
to the minimum possible travel time shown by the dotted line. This shows that CMS almost always
picks the route with minimum travel time.

The improvement in average travel time may seem moderate because CMS reduces travel
time only when the historically quicker route is the slower one on a given day. But individual trip
savings can be great. Figure4.5shows the scatter plot ofT1(d, t) vs. T0(d, t) for all 1320 departure
times(d, t). There are 60 departures per day over 22 days, representing one point every 17 minutes
on each day and 1320 total points. For(d, t) whenR0(d, t) = R1(d, t), T0(d, t) = T1(d, t) as
well and the points fall on the diagonal. This is the case when the decisions based on historical and
current information are the same. Most of the trips fall on the diagonal. But there are also many
trips withT1 < T0. On these trips, using real time information leads to a shorter travel time. There
are also a few trips that haveT1 > T0: on these trips, the predicted travel times do not identify
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Figure 4.3 Decision based on predicted travel time.

the shortest route,andhistorical prediction makes the correct decision. But even on these trips, the
difference in the achieved travel times is small compared to the difference in the other cases. These
results show that almost all trips would have been shorter using the CMS predictions.

4.5 Buffer Time Reduction

Even when no alternate route is available, accurate prediction of travel time reduces uncertainty and
allows people to better plan activities that depend on their arrival time. Studies have found that
drivers place a cost on the variability of travel time (11) and value the ability to make informed de-
cisions even if no alternate routes are available (2). Therefore, the reduction of uncertainty through
accurate prediction of travel time provides a useful service in itself.

The cost of uncertainty in travel time is quantified by buffer time. This is the total time
that must be budgeted in order to arrive on-time with a certain probability, and can be much larger
than average travel time. The Texas Transportation Institute’s Mobility Study uses 95% level as the
buffer time (12); we use 90% here because our data set is small.

When only historical information is available, the 90% buffer time is the90th percentile of
historical travel time, which depends on time of day. When real time information is used, the buffer
time depends also on current measurements. The 90% buffer timey90(s, t) given predicted travel
time t and departure times is estimated from historical data. Givenn historical trips, letsi be the
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Figure 4.4 Mean travel times using the three strategies. Solid line =T0, dashed =T1, dotted =
T2. T1 and T2 are almost on top of each other.

departure time of theith trip, Ti be its actual travel time, andti be the predicted travel time. The
ith prediction error isεi = Ti − ti. We estimatey90(s, t) using the weighted 90th percentile ofεi,
where the weights are given by

wi(s, t) = k1(s− si)k2(t− ti), (4.5)

andk1 andk2 are Gaussian kernels with mean zero and variancesσ1 = 2 minutes andsigma2 = 5
minutes. These values are chosen to make the function appear smooth ins andt. The weighted
(100p)th percentile of a sorted set{xi : i = 1, 2, . . . , n, xi ≤ xi + 1 for all i} with weightswi is

y =

{
1
2(xi + xi+1) if

∑i
j=1 wj = pW

xi+1 if
∑i

j=1 wj < pW <
∑i+1

j=1 wj
(4.6)

whereW =
∑n

i=1 wi is the sum of the weights. The interpretation ofy90(s, t) is that given the
predicted travel time ats is t, the prediction error is less thany90(s, t) with 90% probability.

The buffer time given a time of days and travel time predictiont is the sum of the 90th
percentile error and the predicted travel time:

T 90(s, t) = y90(s, t) + t. (4.7)

Figure4.6 shows the average buffer times at different times of day. The first plot shows the buffer
times when only route 1 is available. During the afternoon peak, the 90% buffer time when using
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Figure 4.5 Travel time using prediction vs. using historical median only.

real time information is five minutes less than that using only historical information, a saving of
17%. The second plot shows the savings when only route 2 is available, with similar results. This
means that even when no alternate routes exist, prediction using real time information is worthwhile
by significantly reducing the buffer time. The third plot in this series shows the effect of combining
route selection with real time prediction. The saving in this case is slightly larger, about seven
minutes at the peak.

4.6 More Results

Similar studies are carried out on four other origin-destination pairs. In each case, the benefits
of using real time information are shown in terms of mean travel time and 90% buffer time in
Table4.2. The peak average travel time is computed by first calculating the average travel time
by time of day over the test period of one month, and then taking the peak value over all times of
day. The reduction in average travel time is similarly computed and represents the peak hour. For
most O-D pairs, the average travel time reduction information is small, because often there are few
competitive alternative routes available. But in most cases, using real time information results in a
large reduction in buffer time. This reduction is between 7% and 31% for the five locations studied.
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Figure 4.6 Ninety percent buffer times on both routes and using route selection.

Origin and Number Peak avg. Travel time Peak 90% Buffer time
destination of routes travel time reduction buffer time reduction

I-10 WB at White Ave.
to downtown LA 3 41.7 2.9% 75.2 18%
I-5 SB at Terra Bella St.
to downtown LA 2 29.8 17.1% 47.7 31%
I-15 SB at I-5
to downtown San Diego 2 22.9 8.7% 29.9 20.7%
I-5 NB at El Toro
to Buena Park (I-5 & SR-91) 5 32.9 1.7% 41.8 11%
I-5 NB at El Toro
to Seal Beach (I-405 & SR-22) 2 34.2 4.7% 43.5 7%

Table 4.2 Benefit summary for five origin-destination pairs.
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Performance Validation

5.1 CMS Locations

Because direct measurements of travel times are scarce, and loop detector data are abundant, we use
point speed measurements to estimate historical travel times. Variants of this method are described
by Coifman (5) and van Lint (6), who showed good agreement between loop-based estimates and
measured and simulated segment travel times. We also measured travel times with probe vehicles
and compared the measurements to estimates based on loop speeds.

Probe vehicle measurements were carried out on two routes. One is on Interstate 80 between
the Carquinez Bridge and the Bay Bridge in the San Francisco Bay Area, a section of about 20 miles;
the other is on I-5 between El Toro and Buena Park in Orange County, also about 20 miles long.
Travel times estimates on I-5 agree with probe measurements, but travel times on I-80 are often
affected by missing and bad data. Below is a detailed analysis of each route.

5.2 I-80

There are 135 Vehicle Detector Stations (VDS) in the two directions on I-80, where a VDS contains
one detector per lane at that location. There is one VDS for each direction at the same location.
There are a total of 690 detectors, of which only 284 provided good data. These detectors are
double loops which measured speed directly. Probe travel times were measured with tach vehicles,
which are equipped with wheel counters to record the number of revolutions of the wheel every
second. After calibrating for the wheel size, this gives us the total travel time as well as a detailed
trajectory of the vehicle. We made about 74 probe trips between Monday, April 21 and Friday, April
25, 2003.

Using loop detector data from the same period, we computed the travel time estimates for
each five minute period. Table5.1shows the probe measurements and estimated travel times for the
same departure times. The errors are large on 4/22 and 4/23 AM and 4/22 PM, but they are good on
other dates such as 4/24 AM. An examination of the data quality revealed many missing samples,

24
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Figure 5.1 I-80 corridor between Carquinez Bridge and Bay Bridge. CMS messages will be
displayed on CMS090 and CMS078 only.

especially during Tuesday and Wednesday. The cause of the missing data has since been found and
the problem corrected, but the missing data from the test period cannot be recovered. The summary
statistics of the travel time errors are shown in Table5.2. After the trips with many missing samples
are removed, the root-mean-squared error is 10%.
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5.2.1 Data Quality

A closer look at the data quality reveals that although there is good detector coverage on the
route, many of the detector stations are not functioning properly. Using an algorithm developed
in PeMS (13), we diagnosed the data quality from each location and lane in both directions. Most
of the bad loops are easily detected because they either give no data or give all zero values. A view
of data quality is shown in Figure5.2, which illustrates graphically the location of the bad loops,
based on data from 8/27/2003. We see that although there is at least a detector station every mile,

Figure 5.2 Data quality on I-80 eastbound on 8/27. Circles show good detectors, asterisks
show bad ones.

only about half of all stations are working. This means there are long stretches where there is no
detection, such as between miles 15 and 17, where there are five consecutive bad stations. The loss
of data from these locations seriously degrades the accuracy of travel time estimates.
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5.3 I-5

The route on I-5 in Orange County is shown in figure5.3. There is a CMS in the northbound
direction in El Toro at postmile 18.9, and a CMS in the southbound at Artesia, postmile 43.99.
There are 120 VDS in both directions. The data quality here is better than on I-80. Travel time

Figure 5.3 CMS locations on I-5 in orange county, District 12.

measurements were made by District 12 personnel, first using manaul data collection and later
using tach vehicles. We analyzed the results of only the manually recorded travel times becase we
have not yet completed the analysis of tach travel times. In the manual data collection, the driver
of an ordinary vehicle phoned in the times at which he crossed certain designated checkpoints, and
the times were recorded by his partner in the office. Fourteen such probe runs were made. Table
5.3 shows the comparison between probe travel times and loop travel times. Most of the probe
measurements matches detector estimates very well. The exceptions are three trips on 5/14 SB.
There was a severe accident in the afternoon of this day which was noted by the driver. This may
have caused the large error for the point at 2 PM. The other two points in the morning cannot be
similarly explained. They may have been the result of gaps in the data coverage. We have scheduled
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tach measurements for this route, which will provide more detailed data to allow us to diagnose the
exact cause of these discrepancies.

The RMS error is about 14%. See Table5.2. It is not clear why the probe travel times are
always higher than loop-based estimates in these comparisons.
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Eastbound Westbound
Departure Probe Estimate Abs BadDeparture Probe Estimate Abs Bad

Time (min) (min) Error data Time (min) (min) Error data
4/216:57 AM 15.9 16.5 4% 6:57 AM 26.6 20.3 24%

7:26 AM 15.8 16.0 1% 7:26 AM 31.7 26.7 16%
8:09 AM 17.6 16.5 6% 7:55 AM 31.2 23.5 25%
8:38 AM 16.1 17.7 10% 8:24 AM 28.9 22.2 23%
2:38 PM 17.4 18.2 4% 9:07 AM 20.0 18.8 6%
3:07 PM 18.7 18.7 0% 2:52 PM 20.6 20.0 3%
3:36 PM 31.9 31.8 0% 3:36 PM 17.7 18.7 5%
4:04 PM 29.1 34.8 20% 4:04 PM 17.3 18.3 6%

4/226:57 AM 16.8 18.5 10% * 6:57 AM 33.5 18.0 46% *
7:40 AM 15.4 21.5 40% * 7:26 AM 43.7 15.3 65% *
8:09 AM 16.1 22.7 41% * 7:55 AM 42.0 15.5 63% *
8:38 AM 15.3 27.0 76% * 8:38 AM 34.0 31.0 9% *
2:24 PM 16.1 16.8 5% * 9:07 AM 26.1 16.0 39% *
2:52 PM 17.6 16.8 4% * 2:52 PM 17.9 17.0 5% *
3:36 PM 19.6 17.2 12% * 3:36 PM 18.9 16.5 13% *
4:04 PM 19.6 17.2 12% * 4:04 PM 27.3 17.3 37% *

4:33 PM 25.4 18.8 26% *
4/236:57 AM 16.8 17.5 4% * 6:57 AM 30.6 17.8 42% *

7:26 AM 15.5 15.3 1% * 7:26 AM 38.6 17.7 54% *
8:09 AM 16.2 27.2 68% * 7:55 AM 38.8 18.7 52% *
8:38 AM 15.7 16.0 2% * 8:38 AM 36.8 32.5 12% *
2:38 PM 16.4 17.3 6% 8:52 AM 30.8 28.0 9% *
3:36 PM 20.0 22.8 14% 3:07 PM 18.2 19.5 7%

4:04 PM 20.4 21.5 5%
4/246:57 AM 17.6 18.0 2% 7:26 AM 44.5 40.5 9%

7:12 AM 17.9 18.2 1% 7:40 AM 49.4 44.0 11%
8:09 AM 17.3 18.0 4% 8:24 AM 51.8 45.3 12%
8:52 AM 17.2 17.2 0% 8:38 AM 51.2 43.5 15%
2:38 PM 17.6 18.3 4% 9:07 AM 41.1 35.3 14%
3:07 PM 18.0 19.3 7% 2:52 PM 16.7 17.8 7%
3:36 PM 20.5 21.0 2% 3:36 PM 16.7 17.7 6%
4:04 PM 21.1 21.8 3% 4:04 PM 16.3 17.0 4%

4:33 PM 16.9 16.3 3%
4/256:57 AM 16.2 16.2 0% 7:12 AM 20.5 21.3 4%

7:40 AM 16.1 16.3 1% 7:26 AM 21.3 19.5 8%
8:09 AM 16.8 16.5 2% 7:55 AM 19.8 18.3 7%
3:07 PM 21.1 19.0 10% 8:24 AM 18.8 18.8 0%
4:04 PM 22.3 18.0 19%

Table 5.1 Tach measurements on I-80.
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Freeway Mean err. Mean absolute err. RMS err.
I-80 -5% 16% 24%
I-80 (removed) -2% 7% 10%
I-5 -11.5% 11.5% 14.1%

Table 5.2 Summary statistics from probe measurements.

Date Dir Probe Estimate Error Incident
5/138:09 AM S 36.5 30.5 16%

2:24 PM S 22.0 21.0 5%
2:38 PM S 23.0 21.0 9%
7:40 AM N 28.0 24.2 14%
1:55 PM N 22.0 21.8 1%
3:07 PM N 28.0 23.8 15%

5/146:28 AM S 31.0 27.7 11%
7:12 AM S 40.0 30.0 25%
2:09 PM S 38.0 26.7 30% *
6:43 AM N 21.5 20.5 5%
7:12 AM N 24.5 20.7 16%
1:55 PM N 22.5 21.7 4%

5/151:55 PM S 22.6 20.8 8%
1:55 PM N 22.5 21.5 4%

Table 5.3 Travel time measurements and estimates on I-5.
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Implementation

6.1 Destinations, routes, and freeways

Conceptually, we have some CMS locations on freeways. On each CMS, we would like to display
the travel times to several destinations; for each destination, we may display the travel times on
several alternate routes. Aroute is made up of one or more freeway segments, where a segment is
described by its freeway ID, direction, and postmile limits.

Information about CMS’s, destinations, and routes are stored tables in the PeMS database.
Each CMS is associated with a list of destination-route pairs in the CMSROUTES table. For
example, the CMS at Appian way on westbound I-80 in Contra Costa county may show travel
times to several destinations along I-80, such as Hilltop Drive, University of California, and the
Bay Bridge. They each have a corresponding route ID. The CMSROUTE DEF table stores the
association between routes and segments. Each route ID is associated with a list of segment IDs.
In the ROUTINGSEGMENTS table, each segment is described by its freeway ID, direction, and
postmile limits.

The segment is the basic unit in travel time calculations. Travel times are predicted for each
segment first, and segment travel times are combined to give the estimate for an entire route. This
modular approach means we can first compute travel time prediction coefficients for each segment
off line, and be able to predict travel times on any route that can be made up of segments. When we
calculate route travel time, we offset the travel time on each successive segment instead of summing
the segment travel times for the same departure. For example, suppose routeA is made up of
segments 1 and 2. To calculate the prediction for departing att1, we first calculate the prediction for
segment 1 att1, call thisT1(t1). Then, we calculate the prediction for segment 2, but at departure
time t1 + T1(t1), call thisT2(t1 + T1(t1)). The route travel time isT1(t1) + T2(t1 + T1(t1)). In the
following sections we describe how to predict segment travel times.

31
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6.2 Segment travel times

A Matlab script calledcalc segtt computes segment travel times from historical data. It implements
the algorithm in Section3.5 for each segment, which computesTi(t), the travel time for segment
i and departuret. The algorithm uses speed measurements stored in the VDS5MIN SUMMARY
table in the PeMS database. When runningcalc segtt, the user specifies the time period, and the
script calculates travel time for every segment in the database at every five minute starting times,
and stores the results in the SEGTRAVEL TIME table. This script also computesT ∗

i (t) for each
five minute period. BothTi(t) andT ∗

i (t) are needed for fitting the prediction model.

6.3 Segment prediction coefficients

We compute segment prediction coefficients using another Matlab script calledtt coeffs, which im-
plements the algorithm described in Section3.6. TakingTi(t) andT ∗

i (t) from the SEGTRAVEL TIME
table, mentioned above,tt coeffscomputes the prediction coefficient,λi(t0, t), for each segmenti,
measurement timet0, and departure timet, at five minute intervals. The coefficientsλi(t0, t) are
stored in the SEGCOEFFS table, and statisticsT (t) andT ∗(t) are stored in SEGSTATISTICS.
The database tables and their relationships are shown in Figure6.1.

Figure 6.1 Configuration tables: CMS, routes, and segments.
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Figure 6.2 CMS application system and networking.

To account for seasonal changes in travel time patterns, prediction coefficientsλ and travel
time statisticsT , T ∗ should be refreshed periodically, such as on a weekly basis. The data used
should contain enough days for the regression, but should be restricted to the most recent weeks or
months in order to track the seasonal changes in travel time.

6.4 Travel Time Prediction Module

Real time prediction is implemented as a Perl program calledcms, which runs in the background and
wakes up every five minutes. Every time it wakes up, it fetches the list of CMS’s and their associated
routes and destinations. For each route, it predicts the travel time for departing at the current time
by predicting the travel times on each segment in an iterative process. Leti = 1, 2, . . . , n be the
segments that make up routeR. The route travel time is computed by

T̂R = T̂1(t0, t) + T̂2(t0, t + T̂1(t0, t)) + · · · (6.1)

In words, we first predict the travel time on the first segment, then take the arrival time as the de-
parture time for the second segment, and so on. The measurement time for each segment prediction
remainst0.

The prediction on each segment,T̂i(t0, t), is done as in (3.8). For each segmenti, measure-
ment timet0, and departure timet, the program retrievesλ(t0, t), T (t), T ∗(t0) from the SEGCOEFFS
and SEGSTATISTICS tables, computesT ∗(t0) from real time data, and apply (3.8) to calculate
T̂i(t0, t).

6.5 Message Format

CMS’s normally can display three lines of sixteen characters each. The messages can have a normal
and a bold font; they can be flashing. Longer messages can be displayed as two pages that are
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rotated periodically.

We devoted some thought to the message format that most effectively conveys information
to the drivers. The messages need to have a balance of information content, simplicity, and utility.
There can be two types of CMS messages. One type shows the travel times from the CMS location to
a single destination via alternate routes. For example, the San Diego CMS at the I-5/I-805 junction
presented in Section4.2 would show travel times to the I-5/SR-163 junction via I-5 and via I-805.
The other type of message shows travel times to different destinations along the same freeway. This
is the case in the Bay Area study (Section5.1) on Interstate-80. This corridor runs between the
Carquinez Bridge and the Bay Bridge. The message signs in either directions show travel times
from the CMS to three destinations each. These two types of messages are shown in figures6.3
and6.4.

DOWNTOWN SD
I-5 25-27MIN
I-805 42-49MIN

Figure 6.3 CMS type 1: single destina-
tion, multiple routes.

UNIVERSITY 6MIN
POWELL 12MIN
TOLL PL 19MIN

Figure 6.4 CMS type 2: single freeway,
multiple destinations.

6.6 System Architecture

There are two parts of the CMS system – calculation and display. The calculations are performed
on a computer at UC Berkeley, where the PeMS database also resides. The system that displays
messages on CMS’s is in the Caltrans District TMC. The way these systems communicate is very
simple. The Berkeley component computes travel time predictions for each CMS in its database
and stores the formatted messages in a text file that is accessible by a TMC computer program.
The access is via HTTP. This file contains a string for each CMS ID; each string contains up to
three lines to be displayed on the signs themselves. For example, they can be travel times for up to
three alternate routes to the same destination, or up to three different destinations reachable from
the current CMS location.

Figure6.2 shows the major components of the system. On the Berkeley side, the three
drum-shaped objects represent database tables. The box labeled “Travel time prediction” represents
the Perl script that performs the predictions every five minutes. It produces a text file that can be
accessed through the Web. On the TMC end, the software responsible for displaying messages on
CMS’s is called Satellite Operation Center Command System (SOCCS). SOCCS communicates
with CMS’s via telephone lines. A simple interface program fetches the CMS messages from PeMS
periodically and tells SOCCS to display them on the appropriate signs. Notice that this report only
describes what happens on the PeMS side; the TMC side is handled by Caltrans.
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6.7 Testing under operating conditions

The Perl travel time prediction program was tested for several weeks. It last ran for one week
between 10/21/2003 and 10/28/2003 without failing. The program currently calculates travel time
predictions for two CMS’s each containing three destinations. This is shown in Table6.1. The

CMS location Line number Destination (distance)
I-80 EB at University Ave. 1 Hilltop Dr. (6.2 mi)

2 SR-4 (10.3)
3 Carquinez Br. (14.4)

I-80 WB at Appian Way 1 University Ave. (7.8)
2 Powell St. (11.9)
3 Toll Plaza (13.7)

Table 6.1 CMS and destinations on Interstate 80 in Bay Area.

program wakes up every five minutes to compute the travel times on each of the six routes. This
takes about 30 seconds each time on a 2.8GHz Pentium 4 PC running Linux, with 1GB of memory.
This figure extrapolates to about 20 CMS’s at five-minute update intervals. Note, however, that this
system can be optimized further to accommodate more calculations. We do not expect computation
to be a limiting factor because the calculations to predict travel times are simple operations.
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Conclusion and recommendations

We designed and tested a system to display real time travel times on Changeable Message Signs
(CMS). CMS’s are effective for displaying real time traveler information because their content has
great relevance to their audiences. The most important things for a driver to know are travel times
and alternate routes. We demonstrated that such information can be displayed on existing CMS’s.

We also demonstrated that route travel times can be accurately estimated using data from
existing traffic detector stations. These are the components of a travel time prediction system: data
collection, data processing, travel time estimation, and travel time prediction. We leverage the
developments of the Freeway Performance Measurement System (PeMS), which already collects
and cleans Caltrans detector data. We implemented a system that uses existing algorithms for travel
time estimation and prediction.

The potential benefits of travel time prediction on CMS’s are reduced average travel times
and more predictable travel times. Using historical data from several freeway routes with CMS’s,
we evaluated the improvement in travel time if route choice was based on real time travel time
predictions. We found potential reductions of 1% - 17% in average travel times. While our predic-
tions have errors, they are much more accurate than predictions based on historical data alone. This
reduction in uncertainty produces large reductions in the buffer time, a more realistic measure of
travel cost. This reduction is between 10% and 30%.

The travel time prediction system is implemented in Matlab and Perl and is integrated into
PeMS. CMS locations and routes are defined in database tables. An automated process computes
travel times and formats CMS messages for each CMS in the database every five minutes. The
formatted messages are made available in a text file, which is accessed by the Caltrans TMC to be
displayed on the appropriate signs. The process on PeMS’s side is fully functional and has been
shown to be reliable.

36
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7.1 Follow-up project

This system was not deployed as planned. We recommend a follow-up project that builds on the
work done here and deploys the system. Several tasks remain; chief among them is data quality. We
found that many detector stations are not working, causing travel time estimates to be inaccurate
during some periods. We can identify the location of these detectors, but it is up to the appropriate
authorities to fix them.

The process to display the formatted messages onto CMS’s is in the real of Caltrans TMC.
This process has not been completed and needs to be built and tested. This shouldn’t be too hard.

The calculation of prediction coefficients can be made more automatic. Currently, some
manual steps are needed to update them weekly or monthly.

Travel time prediction on CMS’s allows drivers to make informed decisions. It is a valuable
service, and is available in many areas in the country and world. We implemented a functional CMS
system for California. This system uses existing detection capabilities and demonstrates quantifiable
benefits to drivers. However, data quality need to be improved for it to realize its full potential.
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