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Abstract

A simple model for a string of vehicles is constructed. The model explicitly accounts for the

possibility of repeated collisions between the vehicles in the string. Based on the model a notion of

safety is formulated for the string. Necessary and su�cient conditions are presented that specify

when a string of vehicles is safe while performing a simple emergency deceleration maneuver where

all vehicles start decelerating at a �xed rate after some delay. The conditions are interpreted in

terms of their implications for the safety of platoons of vehicles.

1 Introduction

Hybrid systems have attracted the attention of both computer theorists and control engineers. Our

work ultimately aims at a rapprochement of these two perspectives. Here we use a combination of

techniques from the two areas to address a speci�c problem in transportation. This is the problem

of the safety of a collection of vehicles traveling one behind the other in a single lane; we refer to

such a collection as a string of vehicles. The problem is hybrid as it involves both continuous vehicle

motion and (possibly) collisions, which in our setting are treated as discrete velocity changes. We

try to establish conditions under which a string of vehicles will be safe while executing a particular

maneuver.

We start by developing a detailed model for the system in the Hybrid Input/Output Au-

tomaton modeling framework (Section 3). Modest extensions of the original framework of [1] are

needed to capture all the phenomena of interest for this problem. Then, in Section 4 we introduce

the emergency deceleration maneuver, whose safety analysis is the primary focus of this paper. We

give some necessary and some su�cient conditions under which the safety of the maneuver can

be guaranteed. Finally, in Section 7, we discuss the implications of our results in the context of

platooning of vehicles.

�Research supported by the PATH program, Institute of Transportation Studies, University of California, Berkeley,

under MOU-238, MOU-310, MOU-312 and MOU-319.
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We believe our work is potentially of both theoretical and practical importance. On the

theoretical side we hope that the results presented here will be extended to a general methodology

for dealing with hybrid systems, one where continuous and discrete techniques are combined in a

coherent framework. The practical implications of our work are more immediate. Our results indicate

that the design of specialized emergency maneuvers may be crucial to the success of an automated

highway system that allows for the formation of platoons.

2 Modeling Formalism and De�nitions

The vehicles will be modeled in the Hybrid Input-Output Automaton (HIOA) framework of [1]. In

this section we give a brief overview of this modeling formalism. We also specify some special classes

of automata that will be used in subsequent sections.

2.1 Notation

Let dom(f) and range(f) denote respectively the domain and range of the function f . Functions

are denoted by f : dom(f) ! range(f). If f is a function and X a set, then we write fdX for the

restriction of f to X, i.e. the function g with dom(g) = dom(f) \X satisfying g(x) = f(x), for all

x 2 dom(g). We say that two functions f and g are compatible if fddom(g) = gddom(f). If f and g

are compatible functions, then we write f[g for the function h with dom(h) = dom(f)[dom(g) such

that h(x) = f(x), if x 2 dom(f), and h(x) = g(x), otherwise, for all x 2 dom(h). If f is a function

whose range consists of a set of functions and X is a set, then we write f # X for the restriction

of the functions in range(f) to the set X, i.e. the function g with dom(g) = dom(f) de�ned by

g(x)
�
= f(x)dX, for all x 2 dom(g).

We �x the time axis, T , to be the set of real numbers, R1 . Let T�0 = ft 2 T j t � 0g. For

T 0 � T and t 2 T , we de�ne T 0+t
�
= ft0+t j t0 2 T 0g. For a function f with domain T 0, we de�ne f+t

to be the function with domain T 0+t satisfying (f+t)(t0) = f(t0�t), for all t0 2 T 0+t. An interval, TI ,

is a non-empty convex subset of T . As usual, intervals are denoted by [t1; t2] = ft 2 T j t1 � t � t2g,

[t1; t2) = ft 2 T j t1 � t < t2g etc. An interval is right-open (left-open), if it does not have a maximal

(minimal) element, and right-closed (left-closed), otherwise. We write max(TI) and min(TI) for the

maximal and the minimal elements, respectively, of the interval TI (if they exist), and sup(TI) and

inf(TI) for the supremum and in�mum, respectively, of the interval TI in T [ f�1;1g.

We assume a universal set V of typed variables. The type of a variable, denoted by type(v),

indicates the set over which the variable takes values. Let Z � V. A valuation of Z is a function

that associates to each variable v of Z a value in type(v). We write Z for the set of valuations of Z.

Often, valuations will be referred to as states.

A trajectory over a set of variables Z is a function w : TI ! Z, where TI is a left-closed

interval of T with min(TI) = 0. Let traj(Z) denote the collection of all trajectories over Z. For

w 2 traj(Z), we de�ne the limit time of w by ltime(w)
�
= sup(dom(w)). A trajectory w is �nite

if ltime(w) 6= 1. We de�ne the �rst state of a trajectory w, by fstate(w)
�
= w(0). If the domain

of a trajectory w is right-closed, then we de�ne the last state of w by lstate(w)
�
= w(ltime(w)). If

TI is a left-closed interval with min(TI) 2 dom(w), then we de�ne the curtailment of w to TI by

w y TI
�
= (wdTI ) � min(TI). A trajectory with domain [0; 0] is called a point trajectory. If s is a

state, then we de�ne }(s) to be the point trajectory that maps 0 to s. If w is a �nite trajectory with

domain TI , w
0 is a trajectory with domain T 0I , and TI right-closed implies lstate(w) = fstate(w0),

1For the HIOA de�nitions, T can in fact be any subgroup of (R; +).
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we de�ne the concatenation of w and w0 to be the trajectory w_w0 �
= w [ (w0 + ltime(w)). The

concatenation operator can be extended to an in�nite sequence of �nite trajectories w0w1w2 � � �.

2.2 Hybrid I/O Automata and Composition

A hybrid I/O automaton (HIOA), A = (U;X; Y;�in;�int;�out;�;D;W), is a collection of:

� Three disjoint sets U , X, and Y of variables, called input, internal, and output variables,

respectively. We write V
�
= U [ X [ Y and let s, u, and w denote elements of V, U, and

traj(V ), respectively.

� Three disjoint sets �in, �int, and �out of actions, called input, internal, and output actions,

respectively. We assume that �in contains a special element e, the environment action, which

represents the occurrence of a discrete transition outside the system that is unobservable, except

(possibly) through its e�ect on the input variables. We write �
�
= �in [ �int [ �out and let a

range over �.

� A non-empty set � � V of initial states satisfying:

Init (initial states closed under change of input variables)

s 2 �) 9s0 2 � : s0dU = u ^ s0dY = sdY

� A set D � V� ��V of discrete transitions satisfying:

D1 (input action enabling)

a 2 �in ) 9s0 2 V : s a
�! s0

D2 (environment actions that do not change inputs do not a�ect the state)

s e
�! s0 ^ sdU = s0dU ) s = s0

D3 (discrete transitions do not depend on input variable changes)

s a
�! s0 ) 9s00 2 V : s a

�! s00 ^ s00dU = u ^ s00dY = s0dY

s a
�! s0 is a shorthand for (s; a; s0) 2 D.

� A set W of trajectories over V satisfying:

T1 (existence of point trajectories)

}(s) 2 W

T2 (closure under subintervals)

w 2 W ^ (TI left-closed subinterval of dom(w))) w y TI 2 W

T3 (completeness)

(8t 2 T�0 : w y [0; t] 2 W)) w 2 W

The intuition behind Axioms Init and D1-3 is that a HIOA is responsible for performing

locally controlled actions and for modifying the values of its local variables, whereas the environment

of a HIOA is responsible for performing input actions and modifying the values of the input variables.

Axiom Init says that a system may not constrain the initial values of its input variables. Axiom D1

says that a HIOA should accept all input actions in all states. Axiom D2 postulates that an

environment action that does not a�ect the input variables can not be \detected" by the automaton

and, therefore, leaves the state unchanged. Axiom D3 states that there is no functional dependence

between the input and the output variables of a HIOA during a transition; that is, a HIOA can not
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react instantaneously to an input variable change. This is done to avoid cyclic constraints during the

interaction of two systems. Under these conditions one can show that the composition of two HIOA

is still input enabled and that the environment can never block the output actions of a system.

Axioms T1-3 state some natural conditions on the set of transitions: existence of point

trajectories, closure under subintervals, and the fact that a full trajectory is in W if and only if all

its pre�xes are in W.

Given a collection of hybrid automata the above de�nitions and axioms allow one to form

new automata by appropriate operations. To ensure that the resulting automaton again satis�es the

axioms we need to impose a compatibility requirement. Two HIOA, Ai = (Ui;Xi; Yi;�
in
i ;�

int
i ;�out

i ;�i;Di;Wi),

i 2 f1; 2g, are compatible if, for i; j 2 f1; 2g; i 6= j,

Xi \ Vj = Yi \ Yj = �int
i \ �j = �out

i \ �out
j = ;:

Let s a
��!

Ai
s0 be a shorthand for (s; a; s0) 2 Di. The composition, A1�A2, of two compatible HIOA

A1 and A2 is the tuple A = (U;X; Y;�in;�int;�out;�;D;W) given by:

� U = (U1 [ U2) n (Y1 [ Y2), X = X1 [X2, Y = Y1 [ Y2

� �in = (�in
1 [ �in

2 ) n (�
out
1 [ �out

2 ), �int = �int
1 [ �int

2 , �out = �out
1 [ �out

2

� � = fs 2 V j sdV1 2 �1 ^ sdV2 2 �2g

� For i 2 f1; 2g, de�ne the projection function �Ai : � ! �i by �Ai(a)
�
= a, if a 2 �i, and

�Ai(a)
�
= e, otherwise. Then D is the subset of V � ��V given by:

(s; a; s0) 2 D , sdV1
�A1 (a)

��!
A1

s0dV1 ^ sdV2
�A2(a)

��!
A2

s0dV2

� W is the set of trajectories over V given by:

w 2 W , w # V1 2W1 ^ w # V2 2W2

The projection notation �Ai , for i 2 f1; 2g, can be extended to states, trajectories and discrete

actions. It can be shown that [1]:

Proposition 1 If A1 and A2 are compatible HIOA, then their composition A1 �A2 is a HIOA.

2.3 Executions, Reachable States & System Properties

A hybrid execution fragment, �, of a HIOA A is a �nite or in�nite alternating sequence � =

w0a1w1a2w2 � � �, where:

� Each wi is a trajectory in W and each ai is an action in �.

� If � is a �nite sequence then it ends with a trajectory.

� If wi is not the last trajectory in � then its domain is a right-closed interval and it is the case

that lstate(wi)
ai+1
��! fstate(wi+1).

Similar to trajectories, if � = w0a1w1a2w2 � � � is a hybrid execution fragment, then we

de�ne the limit time of � by ltime(�)
�
=
P

i ltime(wi) and the �rst state of � by fstate(�)
�
=

fstate(w0). A hybrid execution fragment, �, is called an execution if fstate(�) 2 � and is called

�nite if � is a �nite sequence and the domain of its �nal trajectory is a right-closed interval. If
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� = w0a1w1 � � � anwn is a �nite hybrid execution fragment then we de�ne the last state of � by

lstate(�)
�
= lstate(wn). A �nite hybrid execution fragment � = w0a1w1a2w2 � � � anwn and a hybrid

execution fragment �0 = w0
0a

0
1w

0
1a

0
2w

0
2 � � � of A can be concatenated if wn_w0

0 is de�ned and belongs

to W. In this case, the concatenation �_�0 is the hybrid execution fragment de�ned by:

�_�0
�
= w0a1w1a2w2 � � � an(wn_w0

0)a
0
1w

0
1a

0
2w

0
2 � � �

A state s0 of an automaton A is reachable from a state s of A if there exists a �nite execution fragment

� of A with fstate(�) = s and lstate(�) = s0. A state s0 is reachable by A if it is reachable from

some s 2 �.

Consider an HIOA, A, with variables V . A derived variable of A is a function, f , with

dom(f) = V. Derived variables will be useful in analyzing the executions of A. A property, P , of A

is a boolean derived variable of A. If P (s) is true for a state s 2 V we write s j= P and say that \s

satis�es property P". For a subset S � V we write S j= P if s j= P for all s 2 S. Let PA denote the

set of all properties of A.

De�nition 1 A property P of A is invariant if for all states s reachable by A, s j= P . P is stable

if s reachable by A and s j= P imply that for all s0 reachable from s, s0 j= P .

Lemma 1 Consider an automaton A and assume that for all reachable states s, s j= P implies that

s0 j= P for all s0 such that:

� 9w 2 W with dom(w) right closed, fstate(w) = s and lstate(w) = s0, or,

� 9a 2 � with s a
�! s0.

Then P is a stable property of A. If further � j= P , then P is an invariant property of A.

Proof: Consider an arbitrary reachable state, s, of A such that s j= P . By de�nition, for all

sn reachable from s there exists a �nite hybrid execution fragment � = w0a1w1a2w2 � � � anwn with

fstate(�) = s and lstate(�) = sn. We show sn j= P by induction on the length of �.

s j= P , therefore, by the lemma assumptions s0
�
= lstate(w0) j= P . For k 2 f0; 1; : : : ; ng,

let sk = lstate(wk) and for k 2 f1; : : : ; ng, let s0k = fstate(wk). All sk are reachable by A, as

they are reachable from s by the �nite hybrid execution fragment �k = w0a1 � � �wk. Likewise,

all s0k are reachable by A as they are reachable from s by the �nite hybrid execution fragment

�0k = w0a1 � � � ak}(s
0
k). Assume sk j= P . Then, by the lemma assumptions s0k+1 j= P , as sk

ak+1
�! s0k+1.

Likewise, by the lemma assumptions sk+1 j= P , as wk+1 is right closed, fstate(wk+1) = s0k+1 and

lstate(wk+1) = sk+1. The claim follows by induction. By the same argument, if in addition � j= P ,

then P is an invariant property of A.

Note that the proof of the lemma does not require axioms Init and D3. Therefore the conclusion

of the lemma holds even if these axioms are violated. The system A, however, will no longer be an

HIOA.

3 Vehicle String Model

Consider a string of N vehicles (Figure 1) moving one behind the other in a single lane, with vehicle

0 coming �rst. We will be interested in investigating the safety of this string. For this purpose we

try to develop a simple yet general model for its dynamics. Our primary consideration is that the

modeling framework should impose as few intrinsic limitations as possible while keeping the predicted

evolution realistic.
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∆ xi

0 i-1 N-1

v0 vi-1 vi N-1v

. . . . . . . .i

Figure 1: A string of vehicles

3.1 Notation

The overall model will be the composition of a number of HCS (Figure 2). The plant will be a hybrid

automaton containing the dynamics of all the vehicles in the string. Its evolution will be captured by

2N real valued internal variables (x), N real valued input variables (u) and 3N real valued output

variables (yp). The plant automaton does not have input or output actions but has internal actions

re
ecting collisions, vehicles touching at zero relative velocity, etc. Each vehicle, i, is equipped with

sensors. The sensor automaton Si reads the values of the plant output variables as inputs and

produces mi real valued output variables (ysi ). The sensors may have internal variables and actions

and will in general contain delay bu�ers. Finally, each vehicle is equipped with a controller. The

controller automaton, Ci, reads the corresponding sensor output variables, ysi , as inputs and uses

them to generate the input variable ui of the plant. The controller automaton may also have internal

variables and actions and will in general contain delay bu�ers.

We start by developing a model for the plant. The plant is modeled by a HCS P =

(UP ;XP ; YP ;�
in
P ;�

int
P ;�out

P ;�P ;DP ;WP ). P has no input and no output actions, hence �in
P =

�out
P = ;. Here we are only interested in answering questions of \safety", encoded in terms of

possible collisions among the vehicles of the string. The answers to these questions will depend on

the relative spacing and the velocities of the vehicles, but not their absolute position on the road.

Let �xi denote the spacing between vehicle i and i�1, vi the speed of vehicle i, acci its acceleration

and ui its commanded acceleration2 and de�ne:

xi =

"
�xi
vi

#
2 R

2 ; x =

2
64

x0
...

xN�1

3
75 2 R

2N ; acc =

2
64

acc0
...

accN�1

3
75 2 R

N ; u =

2
64

u0
...

uN�1

3
75 2 R

N

Also let Touching = fTouching0; : : :TouchingNg be a collection of boolean variables and de�ne

XP = fx; acc;Touchingg and UP = fug. Finally, let:

y
p
i =

2
64 y

p
i1

y
p
i2

y
p
i3

3
75 2 R

3 ; yp =

2
64

y
p
0
...

y
p
N�1

3
75 2 R

3N

and de�ne YP = fypg.

It remains to specify the set of internal actions �int
P , the corresponding transitions, DP ,

the set of initial conditions, �P , and the set of trajectories, WP . The �rst two will be speci�ed in

Section 3.2 while the last two in Section 3.3. Section 3.4 contains some discussion suggesting that

2As discussed in Section 3.3, the commanded and actual acceleration may di�er when vehicles are touching and

pushing each other.
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C1

CN-1

S1

yp

ys

1

ys

N-1

. . . . . .

. . .

N-1S

Plant

u
1

u
N-1

Figure 2: System modules

the resulting model is consistent with physical intuition. The pseudo-code for the plant model is

given in Appendix A.

The role of the sensors and controllers is discussed in Section 3.5. Finally, Section 3.6

introduces the notion of safety we consider for this model.

3.2 Plant: Discrete Dynamics

The continuous system evolution can be interrupted by three classes of internal actions: colli-

sions, vehicles touching at zero relative velocity (and subsequently \pushing" against one another)

and vehicles moving apart (after having touched). Let Collision = fCollision1; : : : ;CollisionN�1g,

Touch = fTouch1; : : : ;TouchN�1g and Separate = fSeparate1; : : : ;SeparateN�1g denote the three

classes of actions and de�ne �int
P = fCollision;Touch;Separateg. All actions are forced, i.e. we

assume that the continuous evolution stops as soon as the precondition of an action becomes true,

to allow the action to take place.

3.2.1 Collisions

Consider �rst the case of collisions. Let Collisioni be an internal action that takes place whenever

vehicle i collides with vehicle i� 1. The precondition for Collisioni is:

(�xi = 0) ^ (vi > vi�1) (1)

To determine the e�ect of the action we use a simple collision model. After the collision �x0j = �xj
for all j and v0j = vj for all j 62 fi; i � 1g. To determine vi and vi�1 we solve a pair of equations:

Miv
0
i +Mi�1v

0
i�1 = Mivi +Mi�1vi�1 (2)

v0i�1 � v0i = (vi � vi�1)�i (3)

where Mi is the mass of vehicle i while �i is the coe�cient of restitution, a measure of the energy

lost in the collision. Equation (2) is the conservation of momentum equation while Equation (3) is
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referred to as the restitution equation. This collision model for a pair of vehicles is fairly accurate

[2]. It has the advantage that a solution for x0 always exists and can be found analytically. By

appropriate choice of � (possibly as a function of the speeds) this collision model can capture a wide

range of collision scenarios. To maintain a certain level of generality in the subsequent discussion we

will typically assume that the coe�cient of restitution is a function of the relative velocity vi�1 � vi
at impact and will denote it by �i(�). To ensure that the model is realistic we impose the following

assumption:

Assumption 1 For all i, Mi > 0 and �i(v) 2 [0; 1] for all v > 0.

Multiple instantaneous collisions are also possible in this model. These are situations

where there exist N1 and N2 with 0 � N1 < N2 < N such that �xN1
6= 0, �xN2+1 6= 0 (if any) and

for all i with N1 < i � N2, �xi = 0 and vi > vi�1. The value, x0, of the state after the collision

again satis�es �x0i = �xi for all i and v0i = vi for all i < N1 or i > N2. To determine the values of

vi for N1 � i � N2 we propose to resolve the multiple collision as a sequence of pairwise collisions,

according to equations (2) and (3). The pairwise resolutions will keep taking place as long as there

exists a j with N1 < j � N2 such that vj > vj�1. When this condition is violated we will say that

the multiple collision has been resolved. The motivation behind this convention is that multiple

instantaneous collisions are more of a mathematical necessity than a realistic concern. In \most"

practical situations collisions will take place close to one another in time but not instantaneously.

We would like the resolution convention to be \consistent" in this case. Our multiple collision

arrangement reduces to a pairwise collision if N1 = N2 � 1.

3.2.2 Vehicles Touching

Now consider what happens when vehicles touch at zero relative velocity. This situation may arise

because the continuous dynamics bring the vehicles together at zero speed, or after a collisions with

� = 0. Let Touchi be an internal action that takes place whenever vehicle i touches vehicle i � 1

with zero relative velocity. The precondition for Touchi is:

(Touchingi = False) ^ (�xi = 0) ^ (vi = vi�1) ^ (acci � acci�1) (4)

The e�ect of Touchi is simply to declare the two vehicles as touching. In the usual notation:

Touching
0
i = True

The value of Touchingi will be used in Section 3.3 to determine the acceleration, acci of vehicle i.

3.2.3 Vehicles Separating

Finally, consider what happens when vehicles that are touching start moving away from one another.

Let Separatei be an internal action that takes place whenever vehicle i is already touching vehicle

i� 1 and starts to move away. The precondition for Separatei is:

(Touchingi = True) ^ [(acci < acci�1) _ (vi < vi�1)] (5)

The e�ect of Separatei is simply to declare the two vehicles as no longer touching. In the usual

notation:

Touching
0
i = False

Note that, vehicles are declared as no longer touching as soon as they start moving apart, either

because of a di�erence in deceleration or because of a di�erence in velocity (in case of a collision).
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3.3 Plant: Continuous Dynamics

3.3.1 Initial Condition and Input Constraints

First we introduce some assumptions that will help ensure the system evolution remains realistic.

We impose the following constraint on the initial conditions:

Assumption 2 For all i = 0; : : : ; N�1, �xi(0) � 0, vi(0) � 0. Touchingi(0) = False. TouchingN (0) =

False.

Physical limitations constrain the valuations of the input variables to lie in a rectangular compact

set, i.e. ui(t) 2 [amin
i ; amax

i ] for all i and for all t. The values of amin
i and amax

i are determined by the

vehicle characteristics (engine, brakes, tires, etc.). To ensure that the model is realistic we impose

the following assumption:

Assumption 3 For all i, amin
i < 0 < amax

i .

If needed at a later stage, the requirement on amin
i and amax

i can be relaxed to allow for \brakes on"

(amax
i < 0) and \brakes o�" (possibly amin

i > 0) failures.

3.3.2 Dynamical Equations

The set of trajectories WP will be generated by a pair of functions (f; h). Assume there are no

vehicles ahead of the string and set �x0 � 1. Then, for i = 1; : : : ; N � 1 the laws of motion imply

that:

_�xi(t) = vi�1(t)� vi(t)

_vi(t) = acci(t)

or, in standard vector notation:

_x(t) =

2
66666666666664

0

0

v0(t)� v1(t)

0

v1(t)� v2(t)
...

vN�2(t)� vN�1(t)

0

3
77777777777775
+

2
66666666666664

0

acc0(t)

0

acc1(t)

0
...

0

accN�1(t)

3
77777777777775

�
= f(x(t); acc(t)) (6)

The value of the actual acceleration, acci, of vehicle i depends on the acceleration com-

manded by the controller of that vehicle, ui, and on whether the vehicle is touching vehicle i� 1 or

vehicle i + 1. In the case when the vehicles are not touching we simply set the actual acceleration

equal to the commanded acceleration, i.e.:

(Touchingi = False) ^ (Touchingi+1 = False) =) acci = ui (7)

As long as the vehicles are not touching, f is a linear map in x and u and therefore is globally

Lipschitz.

The case where vehicles are touching is more complicated. The reason is that when vehicles

are pushing against one another, there are forces exerted from one vehicle to the other. Therefore,

the actual acceleration of a vehicle depends not only on the acceleration commanded by its own

9



controller, but also on the accelerations commanded by the controllers of the neighboring vehicles that

are pushing against it. We �rst motivate the proposed solution informally for two touching vehicles.

We assume that when a vehicle, say i, is by itself (i.e. (Touchingi = False) ^ (Touchingi+1 = False))

its acceleration is the result of a force Fi =Miui exerted by the road to the vehicle through the tires.

In the case where two vehicles, say i and i�1 are touching, i.e. (Touchingi = True)^ (Touchingi+1 =

False) ^ (Touchingi�1 = False), we assume that the road still exerts forces Fi and Fi�1 to these two

vehicles. However, if ui � ui�1, a force, F , is also exerted from one vehicle to the other. In this case,

the vehicles remain touching and accelerate at the same rate, therefore:

Miacci = Fi � F

Mi�1acci�1 = Fi+1 + F

acci = acci�1

9>=
>; =) acci = acci�1 =

Miui +Mi�1ui�1

Mi +Mi�1

The vehicles separate as soon as ui < ui�1.

3.3.3 Multiple Touching Vehicles

We try to extend this two vehicle construction to an arbitrary number of touching vehicles. We �rst

introduce some abstract de�nitions and then show how they apply to the vehicle problem. Consider

a nonempty �nite subset of the natural numbers S � N and let min(S) and max(S) denote its

minimum and maximum element respectively. S is a segment if it consists of consecutive numbers.

A subsegment of a segment S is any subset of S that is also a segment. For segments S1 and S2
with max(S1) = min(S2)�1 we de�ne their concatenation simply by S1[S2. Whenever de�ned, the

concatenation of two segments is also a segment; we denote this segment by S1S2.

A weighted average function on S is any function a : 2S ! R such that for all L;R

subsegments of S:

minfa(L); a(R)g � a(LR) � maxfa(L); a(R)g (8)

whenever the concatenation LR is de�ned. Given a weighted average function on a segment, all

subsegments naturally inherit a weighted average. A segment S with a weighted average function a

is unsplitable if:

S = LR) a(L) � a(R)

Proposition 2 If A and B are two unsplitable subsegments of S and A \B 6= ;, then A [ B is an

unsplitable subsegment of S.

Proposition 3 If A and B are two unsplitable subsegments of S, AB is de�ned and a(A) � a(B),

then AB is an unsplitable subsegment of S.

A partition of S is a �nite collection S1; : : : ; Sn where S = [nk=1Sk and for all k, Sk is a

segment and Sk \ Sl = ; for l 6= k. Without loss of generality assume that min(S) = min(S1) and

for all 1 < k � n, min(Sk) = max(Sk�1) + 1 and write S = S1S2 : : : Sn. A partition of S1 : : : Sn of S

is called a maximal partition if:

1. for all k = 1; : : : ; n, Sk is unsplitable,

2. either n = 1 or for all k = 2; : : : ; n, a(Sk�1) > a(Sk).

Proposition 4 If S1 : : : Sn is a maximal partition of S, 1 � l � k � n and Ŝlk = [km=lSm then

a(Ŝlk) � a(Sk).

10
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Figure 3: Maximal Partition

Theorem 1 For every segment, S, and every weighted average function, a, on S there exists a

unique maximal partition.

Proof: For existence, let S denote the set of all unsplitable subsegments of S. Let fS1; S2; : : : ; Sng

denote a collection of distinct maximal elements of S (i.e. for all k = 1; : : : ; n, Sk 6= Sl for l 6= k

and Sk � S0 2 S implies that Sk = S0) that covers S. Such a collection exists, as for all i 2 S,

fig is vacuously an unsplitable segment; therefore, each i 2 S belongs to a maximal subset of S.

We claim that fS1; S2; : : : ; Sng is a maximal partition of S. First note that Sk \ Sl = ; for all

k 6= l. Otherwise, Sk [ Sl 2 S, as Sk and Sl are unsplitable and therefore, by Proposition 2, Sk [ Sl
is also unsplitable. As Sk and Sl are both maximal this implies that Sk = Sl = Sk [ Sl which

contradicts the assumption that Sk and Sl are distinct. Further, Sk 2 S, therefore by de�nition Sk
is unsplitable, for all k = 1; : : : ; n. Finally, without loss of generality, assume S = S1S2 : : : Sn and

show a(Sk�1) > a(Sk). If n = 1 the claim follows. If n > 1 and a(Sk�1) � a(Sk), Sk�1Sk 2 S, as

Sk�1 and Sk are both unsplitable and therefore, by Proposition 3, Sk�1Sk is also unsplitable. This

contradicts the maximality of Sk and Sk�1.

To show uniqueness, assume, for the sake of contradiction that two di�erent maximal

partitions, S1 : : : Sn and S01 : : : S
0
m, exist. Consider the �rst segment for which the two partition

di�er Sl 6= S0l. Without loss of generality assume that Sl � S0l. De�ne k as the segment for which

Sk+1 \ S
0
l = ; and Sk \ S

0
l 6= ;. It is easy to see that the number k is well de�ned. Moreover, k > l

as Sl � S0l and Sl 6= S0l imply that Sl+1 \ S
0
l 6= ; (refer to Figure 3). De�ne:

L =
k�1[
m=l

Sm R = Sk \ S
0
l

As S1 : : : Sn is assumed to be maximal, a(L) � a(Sk�1) by proposition 4. Further, Sk unsplitable

implies that a(R) � a(Sk), by de�nition of weighted average. Overall, the maximality of S1 : : : Sn
implies that the partition S0l = LR satis�es a(L) � a(Sk�1) > a(Sk) � a(R), which contradicts the

maximality of S01 : : : S
0
m.

An algorithm for calculating the unique maximal partition of a segment is given in Appendix B.

Returning to our vehicle example, assume there exist i; j satisfying 0 < i < j < N such that vehicles

i to j are touching each other, i.e.:

(Touchingi = False) ^ (Touchingj+1 = False) ^

0
@ j^
k=i+1

Touchingk = True

1
A

De�ne the segment S = fi; : : : ; jg and for every subset S0 � S consider the function:

a(S0) =

P
k2S0 MkukP
k2S0 Mk

(9)
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Proposition 5 a is a weighted average function on S.

To determine the acceleration of the vehicles in this collection at a given instant, let

S1 : : : Sn be the maximal partition of S at that instant and for all k = 1; : : : ; n set:

accl = a(Sk) for all l 2 Sk (10)

The weighted average a is a linear function of the commanded acceleration u. Therefore, as long as

the partition does not change, the vector �eld f generating the vehicle dynamics will be linear in

both x and u, and hence globally Lipschitz. If the partition changes, some of the Separate actions

will take place, splitting S into smaller segments.

3.3.4 Output Map

It remains to specify the outputs. We assume that in principle all the internal variables can be made

available to the controllers. Limitations imposed by current sensing and communication technology

should be incorporated in the sensor automata. We therefore set:

y
p
i (t) =

"
xi(t)

acci(t)

#
=) yp(t) = h(x(t); acc(t))

As before, h is a linear map as long as Touchingi remain constant and therefore it is globally Lipschitz.

3.4 Plant: Consistency & Limitations

The pairwise collisions that will be used to resolve a given multiple collision can be ordered in a

number of di�erent ways. One would hope the outcome of the resolution will depend only on the

arrangement (velocities, masses and restitution) and not on the order of resolution.

Proposition 6 If �i � 1 and Mi = Mj for all N1 � i; j � N2 then all possible orders of pairwise

resolution lead to v0N1
= vN2

, v0N1+1
= vN2�1, . . . , v

0
N2

= vN1
(i.e. the order of the velocities is

reversed).

Unfortunately this statement is not true in general:

Proposition 7 If �i < 1 or Mi 6= Mj for some i; j 2 [N1; N2], the state after the collision is

resolved, x0 , may depend on the order in which the collisions are resolved.

This ambiguity is rather disturbing. To ensure that any theorems we prove remain valid we will have

to show that they hold for any possible ordering in the resolution of multiple collisions. In other

words, we allow our model to exhibit nondeterminism with respect to multiple collision resolution

and prove that all claims hold for any nondeterministic choice.

To ensure that the proposed plant model agrees with physical intuition we show the

following lemma:

Lemma 2 Under Assumptions 1, 2 and 3, the plant automaton is such that:

1. For every segment S of touching vehicles mini2S(ui) � a(S) � maxi2S(ui).

2. Immediately after Collisioni, vi � vi�1.

12



3. Let Ei be the total energy of vehicles i and i� 1 before Collisioni occurs:

Ei =
1

2
Miv

2
i +

1

2
Mi�1v

2
i�1 (11)

The energy, E0
i, after Collisioni satis�es E

0
i � Ei.

4. (Touching0 = False) ^ (TouchingN = False) is an invariant property of the plant.

5. ^
N�1
i=1 [(Touchingi = True)) (�xi = 0)] is an invariant property of the plant.

6. ^
N�1
i=1 [(�xi > 0)) (Touchingi = False)] is an invariant property of the plant.

7. ^
N�1
i=0 [�xi � 0] is an invariant property of the plant.

Proof: Part 1 follows from

P
k2S

Mkmini2S(ui)P
k2S

Mk
�

P
k2S

MkukP
k2S

Mk
�

P
i2S

Mkmaxi2S(ui)P
i2S

Mk
.

Part 2 follows from equations (1) and (3) as �i � 0 by Assumption 1.

For Part 3 we explicitly solve the pairwise collision equations (2) and (3). Without loss of

generality set i = 2 and let � = �2 and M =M2=M1. Some algebra leads to:

v01 =
(1� �M)v1 +M(1 + �)v2

1 +M
; v02 =

(1 + �)v1 + (M � �)v2

1 +M
(12)

Substituting into the formula for the energy and after some manipulation one gets:

E0
i =

M1

2

 
(1 + �2M)v21 +M(M + �2)v22 + 2M(1 � �2)v1v2

M + 1

!

) Ei �E0
i =

M1

2

 
M(1� �2)(v21 + v22 � 2v1v2)

M + 1

!

) Ei �E0
i =

M1M2(1� �2)(v1 � v2)
2

2(M1 +M2)
(13)

By assumption 1, Mi > 0 and �i 2 [0; 1], therefore the right hand side of equation (13) is always

non-negative.

Part 4 is trivial, as Touching0 and TouchingN are set to False by Assumption 2 and are

una�ected by both trajectories and actions.

For Part 5, note that Touchingi is initially False for all i by Assumption 2. Therefore

the property is initially true. Consider an arbitrary element of the conjunction, say (Touchingi =

True)) (�xi = 0). Consider �rst the discrete transitions. Assume (Touchingi = True)) (�xi = 0)

is true at the pre-state of Collisionj for some j 2 f1; : : : ; N�1g. Then (Touchingi = True)) (�xi =

0) is also true at the post-state, as both Touchingi and �xi0 are una�ected by the action.

Assume (Touchingi = True) ) (�xi = 0) is true at the pre-state of Touchj for some

j 2 f1; : : : ; N � 1g. If j 6= i (Touchingi = True) ) (�xi = 0) is also true at the post-state, as

Touchingi and �xi = 0 are una�ected by the action. If i = j, (Touchingi = False)^ (�xi = 0) must

be true at the pre-state. Therefore, (Touchingi = True) ^ (�xi = 0) will be true at the post-state,

as �xi is una�ected by the action.

Assume (Touchingi = True) ) (�xi = 0) is true at the pre-state of Separatej for some

j 2 f1; : : : ; N � 1g. If j 6= i (Touchingi = True) ) (�xi = 0) is also true at the post-state, as

Touchingi and �xi = 0 are una�ected by the action. If i = j, Touchingi = False at the post-state,

therefore (Touchingi = True)) (�xi = 0) will again be true.
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Now consider the continuous evolution. Assume that (Touchingi = True)) (�xi = 0) is

true at some state, s, and consider all trajectories that start at s. Distinguish two cases. If Touchingi
is false at s, then it will also be false at the �nal state of the trajectory, as, by de�nition of WP , the

value of Touchingi remains constant along trajectories. Therefore, (Touchingi = True)) (�xi = 0)

will be true at the �nal state.

If Touchingi is true at s, then (�xi = 0) must also be true. If at this point (acci <

acci�1)_(vi < vi�1) is true the precondition of action Separatei is satis�ed. If at this point (vi > vi�1)

is true, the precondition of action Collisioni is satis�ed. In either case the trajectory terminates (by

de�nition of WP ) while (Touchingi = True)) (�xi = 0) is still true. If (acci � acci�1)^ (vi = vi�1)

is true the system proceeds along the continuous trajectory3. acci and acci�1 are determined by the

maximal partition of a collection of touching vehicles (which may include more than vehicles i and

i� 1). By construction of the maximal partition, acci � acci�1 (acci < acci�1 if i is the �rst vehicle

of an element of the partition and acci = acci�1 otherwise). Overall, continuous evolution proceeds

as long as (acci � acci�1)^ (vi = vi�1)^ (acci � acci�1), i.e. as long as (acci = acci�1)^ (vi = vi�1).

In this case, _�xi = vi�1 � vi = 0 and ��xi = acci�1 � acci = 0 and therefore �xi = 0 at the last

state of the trajectory, as �xi = 0 at s. Overall, (Touchingi = True) ) (�xi = 0) is preserved by

continuous evolution. Part 5 follows by Lemma 1.

For Part 6, note again that Touchingi is initially False for all i by Assumption 2. Therefore

the property is initially true. Consider an arbitrary element of the conjunction, say (�xi > 0) )

(Touchingi = False). Consider �rst the discrete transitions. Assume (�xi > 0) ) (Touchingi =

False) is true at the pre-state of Collisionj for some j 2 f1; : : : ; N � 1g. Then, the property will also

be true at the post-state, as both Touchingi and �xi are una�ected by the action.

Assume (�xi > 0) ) (Touchingi = False) is true at the pre-state of Touchj for some

j 2 f1; : : : ; N � 1g. If j 6= i, the property will also be true at the post-state, as Touchingi and �xi
are una�ected by the action. If i = j, (Touchingi = False)^ (�xi = 0) must be true at the pre-state.

Therefore, (Touchingi = True)^ (�xi = 0) will be true at the post-state, as �xi is una�ected by the

action. Hence, (�xi > 0)) (Touchingi = False) is again true at the post-state.

Assume (�xi > 0) ) (Touchingi = False) is true at the pre-state of Separatej for some

j 2 f1; : : : ; N � 1g. If j 6= i, the property will also be true at the post-state, as Touchingi and

�xi = 0 are una�ected by the action. If i = j, Touchingi = True at the pre-state, therefore �xi = 0

at the pre-state, by Part 5. Therefore, (�xi > 0) ) (Touchingi = False) will again be true at the

post-state, as �xi is una�ected by the action.

The proof that (�xi > 0) ) (Touchingi = False) is preserved by continuous evolution is

identical to the same proof for Part 5. Part 6 follows by Lemma 1.

Finally, for Part 7, note that the property is true at the initial state, by Assumption 2.

The property is preserved by discrete transitions, as they all leave the �xi una�ected. The proof for

the continuous evolution follows by the argument given for Part 5.

Part 3 shows that the proposed collision model can simulate a wide range of energy loss

situations, from perfectly elastic (no energy loss, �i = 1) to plastic (vehicles do not bounce at all,

�i = 0). Note that no claim is made about the vehicles not moving backwards. From equation (12),

v02 may in fact be negative, if, for example, v1 = 0, M < 1 and � = 1 (i.e., a light vehicle hits a

stopped heavy vehicle elastically). Therefore, collisions may force vehicles to go backwards.

The main limitation of our model is that is does not account for the lateral motion of the

vehicles. We assume that all vehicles e�ectively move along a straight line. This assumption may

be unrealistic, especially in the presence of collisions when large forces and moments can be exerted

3Touchi can not take place as Touchingi is true.
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Figure 4: Sensor module Si

from one vehicle to another. The situation will be even worse when the vehicles move along a curved

road.

3.5 Sensors and Controllers

The sensors provide the controllers with information about the plant variables. The sensors of each

vehicle can be modeled by an automaton Si = (USi ;XSi ; YSi ;�
in
Si
;�int

Si
;�out

Si
;�Si ;DSi ;WSi). Here

we only impose minimal limitations on the sensing arrangement. In particular we only require that

yp 2 USi and de�ne YSi = fysi g. For the trajectory set, WSi , we only assume that each piece of

information (plant output variable) can be made available to the controller with some delay. We

assume that the delay depends only on the relative position of the vehicles in the string. This

assumption can easily be relaxed, at the expense of complicating the notation. A typical sensor in

this case is shown in Figure 4. dSij is the sensing delay, i.e. the time it takes for information about

vehicle j to reach vehicle i.

The heart of the sensing arrangement is now encoded by the HCS Ŝi. The automaton can

in general be very complicated: it may contain additional input variables (to model sensing noise

for example), internal variables (to model data �ltering or sensor fusion), internal actions (to model

fault detection), etc. In subsequent sections we will only consider very simple sensors, whose output

variable values are the same as the (delayed) values of some of their input variables. In this case Ŝi
can be described by a projection map:

hi : R
3N

� R
N

�! R
mi

ŷp �! ysi

The controller for vehicle i uses the readings of the corresponding sensors, ysi , to calculate

at each time instant the value of the control ui. The controller of each vehicle is modeled by an

automaton Ci = (UCi ; XCi ; YCi ;�
in
Ci
;�int

Ci
;�out

Ci
;�Ci ;DCi ;WCi). We again try to impose minimal

limitations on the controller arrangement. We only require that ysi 2 UCi and that ui 2 YCi . For the

trajectory set, WCi , we only assume that the controller can in
uence the plant after some delay. A

typical controller is then shown in Figure 5. dAi is the actuation delay, i.e. the time it takes for the

control calculated by controller i to be implemented by vehicle i.

The heart of the controller is encoded by the HCS Ĉi. This automaton can again be very

complicated in general. It may contain additional input variables (to model actuation uncertainty

for example), internal variables (to model dynamic controllers), internal actions, etc. Moreover,
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the controller and sensing automata may contain additional input/output variables or actions to

coordinate with one another (to facilitate fault detection for example). Here we will only make use

of very simple controller automata that can be encoded by a map:

gi : R
mi �! [amin

i ; amax
i ]

ysi (t) 7�! ûi(t)

To ensure that the model is realistic we impose the following assumption:

Assumption 4 For all i; j, dSij � 0, dAi � 0 and ysi is independent of ui in hi.

The bound on the delays is imposed to ensure that the sensor/controller composition is causal,

i.e. it does not produce inputs for the plant that depend on future values of the plant state. The

independence of ysi from ui is to avoid the possibility of ill-posed compositions between the sensors,

the controllers and the plant in the case where all the delays are zero. This last assumption is a

minor technicality, ui is anyway already available to the controller Ci that calculates it and therefore

there is not need for the sensor Si to include it in the ysi information. It is easy to see that under

Assumption 4:

Lemma 3 P , Ci and Si for i = 0; : : : ; N � 1 are compatible.

3.6 System Parameters and Measures of Safety

The discussion so far has speci�ed a class of models. The class is parameterized by a relatively small

number of parameters. For each i; j = 0; : : : ; N � 1 these parameters are:

� the actuation delay: dAi 2 R+

� the sensing delays: dSij 2 R+ ,

� the mass: Mi > 0,

� the acceleration bounds, amin
i ; amax

i 2 R,

� the restitution, �i : R+ ! [0; 1].

Overall this gives 4N + N2 real parameters and the restitution functions. The class of models is

further parameterized by:

� the initial conditions (including those for the delay bu�ers),
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� the sensing structure Ŝi, i = 0; : : : ; N � 1,

� the control structure Ĉi, i = 0; : : : ; N � 1.

A string instance (or simply a string) is a HCS obtained by specifying all the above elements, i.e.

assigning values to all parameters, �xing initial conditions, and giving HCS models for the sensors

and controllers.

The executions of a string may involve collisions among the vehicles. The string is said to

generate a sequence of collisions:

C = f(ik;�vk; Tk)g
K
k=1 (14)

with ik 2 f1; : : : ; N � 1g, �vk > 0, Tk � Tk�1 � 0, if there exists an execution such that for all k,

(ik;�vk; Tk) 2 C if and only if Collisionik occurs at time Tk in the execution with relative velocity

�vk. For multiple collisions, all pairs of colliding vehicles appear individually. Note that, because of

nondeterminism in the order of resolution for multiple collisions many di�erent C's can be generated

by the same string.

We are interested in de�ning the system performance in terms of the severity of the

collisions experienced by the vehicles. Following [3], the relative velocity at impact is used as a

measure of collision severity4. The performance measure can now be thought of as a function,

Safety, mapping the system executions (in particular the collision sequence C) to a real number.

One possible choice for this function is:

Safety : C 7�! max
k
f�vkg (15)

If K = 0 de�ne Safety(C) = 05. We would like to keep the relative velocity of all collisions below a

certain threshold, vA � 0, i.e. guarantee that for all sequences C generated by the string Safety(C) �

vA. A commonly used threshold is vA = 3ms�1 [3].

The requirement for safety, stated above in terms of the system executions, can also be

cast in the form of an invariant for the string.

De�nition 2 A string is safe if
VN�1
i=1 [(�xi = 0)) (vi � vi�1 + vA)] is an invariant property. Oth-

erwise the string is unsafe.

It is easy to see that:

Proposition 8 A string is safe if and only if Safety(C) � vA for all possible executions.

4 Emergency Deceleration

4.1 Background

We introduce the emergency deceleration maneuver, the scenario we will attempt to analyze in the

remaining of this paper. This is a situation where the �rst vehicle in the string applies maximum

deceleration until it comes to a stop, thus endangering the remaining vehicles of the string. We

would like to determine the conditions under which the remaining vehicles can maintain their safety

despite this \malicious" behavior of the leader.

4If one would like to consider di�erent performance measures, more information may need to be added to the

collision sequence C.
5The proposed function re
ects the severity of the worst collision. Other measures can be de�ned by appropriate

choice of Safety. For example, Safety(C) = K re
ects the total number of collisions, Safety(C) = 1

K

PK

k=1
�vk re
ects

the average relative velocity of collision, etc.
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The safety of general strings of vehicles has been analyzed using a number of techniques.

Most results in the literature start by partly characterizing the string instance by determining \au-

tomata" for the sensors and controllers and then trying to establish the range of initial conditions

and parameters for which the string is safe. This type of analysis has led to conditions under which

pairs of vehicles are guaranteed not to collide [4, 5] or at least experience safe collisions [6, 5, 7, 8]. In

some cases the conditions have also been extended to longer or even in�nite strings [9, 10]. Perhaps

the most challenging problem in this area has been the design of controllers for platoons of vehicles.

A platoon is a string of very tightly spaced vehicles. Typically intra-platoon spacings are of the

order of 1-2 meters. The work of Swaroop [9] has shown that in order to maintain the stability of

the string at such tight spacings each vehicle, i, needs to have access to information about its own

internal variables xi, the internal and input variables of the vehicle ahead y
p
i�1 as well as the internal

and input variables of the �rst vehicle in the string y
p
0 . Under this sensor arrangement, controllers

were designed in [9] to guarantee the safe operation of the platoon under a reasonably wide range of

initial conditions and parameter values.

The safety of the controllers in [9] relies on the assumption that the behavior of the �rst

vehicle is in some sense \reasonable". This means that the controller C0 takes into account the

limitations of the rest of the vehicles in the string when calculating u0. For example, the controllers

of [9] require that u0 be bounded below by a function of amin
i for all i � 0. This requirement is

clearly violated in the case of the emergency deceleration maneuver. It is conjectured [11] that the

platoon is going to be safe even in this case. The justi�cation is that collisions are going to take

place in rapid succession, because the vehicles are all close to one another. Therefore if the speeds

of all vehicles are initially the same, the relative velocity at the time of collision is going to be small.

Here we attempt to establish conditions under which this conjecture is true.

It is assumed that the emergency deceleration of vehicle 0 is caused by some abnormal

condition, such as a mechanical malfunction (e.g. a brakes-on failure) or an obstacle (e.g. debris

spilling over from an accident in an adjacent lane). The emergency deceleration maneuver is an

example of an emergency maneuver; other examples include emergency lane change, emergency

splitting of platoons, etc. The reader is referred to [12] for a more detailed discussion of emergency

maneuvers and their initiation. Even though specialized controllers have been designed for some

emergency maneuvers [13, 14, 15], none of the results available in the literature are su�cient to

guarantee safety under such extreme conditions. We view our analysis of the emergency deceleration

maneuver as a �rst step in this direction.

4.2 Default Deceleration Strategy

To construct strings that undergo emergency deceleration we need to �x the values of all initial

conditions and parameters and to specify automata for all controllers and sensors. The following

de�nitions that can be used to cut down on the number of situations that need to be considered:

De�nition 3 A string is initially at steady state if for all i; j = 0; : : : ; N �1, vi(0) = v for some

v � 0, the internal variable of the actuation delay bu�ers satis�es bAi (0) � 0 and the internal variable

of the delay bu�ers bSji(0) � y
p
i (0).

The emergency deceleration maneuver calls for the �rst vehicle of the string to apply

maximum deceleration until it comes to a stop. This behavior can be implemented in the string

model if we let dS00 = dA0 = 0 and de�ne the sensor and controller of vehicle 0 by the maps:

ys0 = h0(ŷ
p) = v0 (16)
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u0 = g0(y
s
0) =

8><
>:

0 if (ys0 = 0)

amin
0 if (ys0 > 0)

amax
0 if (ys0 < 0)

(17)

The lack of delays implies that there are no delay bu�ers to be initialized for vehicle 0.

The leading vehicle starts decelerating at time t = 0. Assume that it immediately noti�es

the following vehicles of its action. The following vehicles receive the noti�cation after some commu-

nication delay, possibly dependent on their position in the string (modeled here by dSi0). How should

they respond to this action of the leader? The simplest response would be for each vehicle to start

decelerating as hard as possible as soon as it �gures out there is an emergency until it comes to a

stop. We refer to this strategy as the default deceleration strategy. The default deceleration strategy

can be implemented in the string model if we let dSii = dAi = 0 for all i = 1; : : : ; N � 1 and de�ne the

sensor and controller of vehicle i by the functions:

ysi (t) = hi(ŷ
p(t)) =

2
64 u0(t� dSi0)

�xi(t)

vi(t)

3
75 =

2
64 ysi1(t)

ysi2(t)

ysi3(t)

3
75 (18)

ui = gi(y
s
i ) =

8><
>:

0 if (ysi1 = 0) _ (ysi3 = 0)

amin
i if (ysi1 6= 0) ^ (ysi3 > 0)

amax
i if (ysi1 6= 0) ^ (ysi3 < 0)

(19)

Under the default deceleration strategy there is only one delay associated with each i = 1; : : : ; N �1,

namely dSi0. To simplify the notation we use di to denote this delay.

If the string is initially at steady state, equations (16){(19) provide a partial speci�cation.

The string is still parameterized by 5N � 2 real parameters (N � 1 for each of �xi(0), di and a
max
i

6,

N for each of amin
i and Mi and 1 for v) and the N � 1 real valued restitution functions �i. In

subsequent sections we attempt to establish conditions on these parameters under which the string

is safe with the default deceleration strategy.

We can reduce the number of parameters that need to be considered by making additional

assumptions. A string initially at steady state satis�es the uniform spacing assumption if for all

i = 1; : : : N � 1, �xi(0) = F for some F > 0. The uniform spacing assumption reduces the number

of parameters that need to be considered by N � 2. Note that the default deceleration strategy

makes use of amax
i only if a vehicle starts going backwards as a result of a collision. We say that the

default deceleration strategy is brakes only if amax
i = �amin

i for all i = 0; : : : ; N � 1. The brakes only

assumption can be interpreted as saying that even when going backwards a vehicle will use its brakes

rather than its engine to stop (which in this case involves accelerating). The brakes only assumption

cuts down the number of parameters by N � 1. To simplify the notation we will use ai to denote

amin
i whenever the brakes only assumption is in e�ect.

The system description can be further simpli�ed if we assume that a particular communi-

cation architecture is used to transmit the information about u0 among the vehicles (we assume that

xi is sensed by each vehicle i for local use only). One possible choice is hop-by-hop communication,

where the information is passed from one vehicle to the next. In this case the delay di increases

linearly along the string, i.e. di = id for some d � 0. Another possible architecture is broadcast com-

munication where the information is transmitted by the leading vehicle and received simultaneously

by vehicles 1; : : : ; N�1. In this case the delay is di = d for some d � 0 and i = 1; : : : ; N �1 (d0 = 0).

For either architecture the number of parameters is reduced by N � 2.

6In the next section it will be shown that for the emergency deceleration maneuver v0(0) � 0 implies v0(t) � 0 for

all t � 0.

19



4.3 Limits of Safety and Problems of Interest

To motivate the problems that will be addressed in this paper we �rst derive some rough bounds on

the level of safety that can be expected under the default deceleration strategy. It is easy to show

the following:

Lemma 4 Assume di = 0 and amin
i � amin

j for all 0 � i � j � N � 1. Then any string (choice for

the remaining parameters) initially at steady state is safe under the default deceleration strategy for

any vA � 0.

Proof: We show that under the lemma assumptions no collisions are possible; then the string is

trivially safe for all vA � 0. We claim that the property:

Ptrivial = [(vj � vi � 0) for all 0 � i � j � N � 1]

is an invariant property of the string under the lemma assumptions. The string is initially at steady

state, therefore vi = vj = v at t = 0 and the initial states satisfy Ptrivial.

Assume Ptrivial is satis�ed at a given state. Then (vi�vi�1 � 0) for all 1 � i � N�1 and

the precondition for action Collisioni can not be satis�ed. Actions Touchi and Separatei may take

place for some i, however both leave vj una�ected for all j, therefore Ptrivial will again be satis�ed

at the post-state.

For the continuous evolution, consider i � j. Along a trajectory:

d

dt
(vj � vi) = accj � acci

Assume j is part of a segment of touching vehicles Sj and i is part of a segment of touching vehicles

Si. Then, by Part 1 of Lemma 2:

accj � max
k2Sj

amin
k = amin

min(Sj)

acci � min
k2Si

amin
k = amin

max(Si)

If min(Sj) � max(Si) then i and j are part of the same segment and accj = acci. If min(Sj) >

max(Si) then accj � acci. In either case, d
dt
(vj � vi) � 0. Therefore, if Ptrivial is satis�ed at the

�rst state of a trajectory it will also be satis�ed at the last state.

Overall Ptrivial is an invariant property for a string satisfying the lemma assumptions.

Recall that Ptrivial implies vi � vi�1 � 0 and therefore the string is safe.

As there are no collisions in this case, the parameters amax
i , Mi and the functions �i do

not enter the picture. Lemma 4 indicates that if there are no di�erences in deceleration capabilities

and no delays the safety question is trivial. We can relax the assumptions of the lemma by allowing

certain system parameters to lie in ranges. Assume that the brakes only assumption is in e�ect and

consider the case where:

amin
i 2 [a; a] (20)

di 2 [di; di] (21)

Mi 2 [M;M ] (22)

The following provides a limit of what can be expected in this case:
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Lemma 5 Consider a string, initially at steady state, satisfying the uniform spacing assumption.

Set F = 1m, v = 25ms�1 and vA = 3ms�1, �i � 1 and assume that the parameter values are

bounded by a = �9:32ms�2; a = �4:41ms�2 and M = M = 1500Kg. Finally, assume that either

di = di = d for all i > 0 or di = di = id for all i � 0 and let let d = 0:05s. Then there exists a string

satisfying (20){(22) which is unsafe under the default deceleration strategy.

Proof: By numerical examples, see [16].

All the parameter values in Lemma 5 are realistic in terms of current technology. The conditions of

the lemma seem very speci�c; however the same conclusion has been shown to hold for a wide range

of cases. For example, the conclusion of the lemma trivially holds of any di;M and a less than the

quoted values and any di;M and a greater than the quoted values. In the numerical experiments

of [16] a number of alternatives were also considered: the range [a; a] was reduced, d; v and F were

varied and realistic, monotone decreasing functions were used for �i. The conclusions were similar

in all cases.

These limitations suggest a number of problems that can be addressed in this setting. We

list a few below. All problems are parameterized by �xi(0) and v. For simplicity we assume that in

all cases except Problem 1 the brakes only assumption is in e�ect.

Problem 1: Establish conditions on a; a; di and di so that no collisions are possible under the default

deceleration strategy in a string satisfying (20) and (21).

Problem 2: Establish conditions on a; a; di; di;M;M and �i so that, under the default deceleration

strategy, any string satisfying (20){(22) is safe.

Problem 3: Establish conditions on the same parameters so that, under the default deceleration

strategy, there exists a string satisfying (20){(22) which is unsafe.

Problem 4: Establish conditions on the same parameters such that there exists a deceleration

strategy that for which any string satisfying (20){(22) is safe.

Problem 5: Establish conditions on the same parameters so that, under any deceleration strategy,

there exists a string satisfying (20){(22) which is unsafe.

Problem 1 is relatively easy. It can be approached by considering only pairs of adjacent

vehicles. The conditions can be inferred from calculations already available in the literature (as well

as the calculations presented in this paper). Mi and �i do not appear in the statement of Problem

1, as the objective is to avoid collisions altogether.

Problems 2 and 3 are more challenging and are the topic of this paper. The di�culty is

that a collision between vehicle i and i�1 and the resulting change in velocity \couple" the dynamics

of vehicle i + 1 not only with those of i but also with those of i � 1. Therefore the conditions of

problems 2 and 3 will have to involve more than just adjacent vehicle pairs.

Problems 4 and 5 are substantially more di�cult and will be the topic of future research.

Problem 4 may be approached by solving a (very complicated) optimal control problem. Solving

Problem 4 in this way will automatically provide a solution to Problem 5. Alternatively, Problem 5

can be addressed using techniques for proving impossibility results for distributed algorithms [17].

For both problems, important assumptions will have to be made about the information available to

each vehicle; does vehicle i have access to the state of all other vehicles, does it have access to the

bound on its deceleration, amin
i , does it have access to the bounds for other vehicles, etc.
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5 Safety of Strings of Length N = 2

We �rst develop necessary and su�cient conditions for a string of two vehicles to be safe under the

default deceleration strategy. We refer to such a string as a pair. These conditions will form the

basis of safety results for longer strings.

5.1 Basic Properties

Throughput this section we assume that d1 = 0. Then, under the default deceleration strategy the

commanded acceleration of vehicle i = 1; 2 can be written as a function of the vehicle state:

ui =

8><
>:

amin
i if vi > 0

0 if vi = 0

amax
i if vi < 0

Proposition 9 (v0 � 0) is an invariant property of the pair.

Proof: By Assumption 2 v0(0) � 0. If (v0 � 0) when Collision1 occurs then, by equation (3),

v00 � v0 � 0. Moreover, Touch1 and Separate1 do not a�ect v0. Therefore (v0 � 0) is preserved by

all the actions.

For the continuous evolution, assume v0 = 0 at the �rst state of a trajectory. Recall

that _v0 = acc0. If Touching1 = False, acc0 = u0 = 0 under the default deceleration strategy. If

Touching1 = True, acc0 � minfu0; u1g. If v1 > 0 the action Collision1 takes place and the trajectory

stops. If v1 < 0, the action mboxSeparate1 takes place and the trajectory stops. If v1 = 0, u1 = 0,

therefore acc0 = 0.

Proposition 10 (v1 � 0) is a stable property of the pair.

Proof: Assume v1 � 0 when Collision1 occurs. Then, by equation (3), v01 � v1 � 0. Moreover,

Touch1 and Separate1 do not a�ect v1. Therefore (v1 � 0) is preserved by all the actions.

For the continuous evolution, assume v1 = 0 at the �rst state of a trajectory. If Touching1 =

False, then acc1 = u1 = 0 under the default deceleration strategy. If Touching1 = True, acc1 �

maxfu0; u1g. v0 � 0 by Proposition 9. If v0 > 0, the action the action mboxSeparate1 takes place

and the trajectory stops. If v0 = 0, u0 = 0, therefore acc1 = 0.

Proposition 11 If (v1 � 0) the pair is safe (in particular Collision1 cannot occur).

Proof: If (v1 � 0) then v1 � 0 � v0 (by Proposition 9). Therefore, v1 � v0 + vA and the pair is

safe. The precondition of Collision1 will never be satis�ed.

To derive more meaningful safety conditions consider the derived variables:

C1; C2; P1; P2 : R
3
�! R

C1(�x1; v1; v0) = (a1 + a0)v
2
0 � 2a0v0v1 � 2a20�x1 (23)

C2(�x1; v0; v1) =
a1

a0
v0 � v1 (24)

P1(�x1; v0; v1) = (v0 � v1)
2
� 2(a0 � a1)�x1 � v2A (25)

P2(�x1; v0; v1) = v21 �
a1

a0
v20 + 2a1�x1 � v2A (26)
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Proposition 12 (C1(�x1; v1; v0) > 0)) v0 > 0

Proof: By Proposition 9, v0 � 0. Moreover, v0 = 0 implies that C1(�x1; v1; v0) = �2a20�x1 � 0.

To simplify the notation we will explicitly mention the function arguments only when

necessary. We also introduce a derived boolean variable C given by the expression:

C = [(C1 � 0) ^ (a0 � a1)] _ [(C2 � 0) ^ (a0 � a1)] _ [(v0 = 0)] (27)

P1; P2 and C will be used to construct invariants for the pair to encode safety conditions. A collision

can take place either while both vehicles are moving or while while vehicle 1 is moving and vehicle

0 has stopped (by Proposition 11 a collision cannot take place once vehicle 1 stops). The property

(P1 � 0) will encode conditions that guarantee safety if a collision takes place while both vehicles are

still moving. (P2 � 0) will encode conditions that guarantee that either no collision takes place or

a safe collision takes place after vehicle 0 has stopped. The predicate C will be used to distinguish

the two cases.

5.2 Su�cient Conditions for Safety

Lemma 6 (P1 � 0) _ (v1 � 0) is a stable property of the pair.

Proof: Assume (P1 � 0) _ (v1 � 0) is true when Collision1 occurs. By Proposition 11 (v1 � 0)

can not be true in this case. Assume (P1 � 0) is true. Then, P1(�x1; v0; v1) = P1(0; v0; v1) � 0.

Hence, by the restitution equation (3), (v00 � v01)
2 = (v0 � v1)

2�21 � (v0 � v1)
2 � v2A, as �1 2 [0; 1] by

Assumption 1. Therefore, P1(�x
0
1; v

0
0; v

0
1) = P1(0; v

0
0; v

0
1) � 0 and (P1 � 0) _ (v1 � 0) is again true

after Collision1. Moreover, (P1 � 0) _ (v1 � 0) is preserved by Touch1 and Separate1, as both these

actions leave �x1; v0 and v1 una�ected.

Assume at some state, s, (P1 � 0)_ (v1 � 0) is true and consider all trajectories that start

at s. If (v1 � 0) is true at s it will also be true at the last state of the trajectory by Proposition 10.

If (P1 � 0) ^ (v1 > 0) is true at s, consider the variation of P1 along a trajectory:

d

dt
P1 = 2(v0 � v1)(acc0 � acc1)� 2(a0 � a1)(v0 � v1)

=

8><
>:

0 if (v0 > 0) ^ (v1 > 0) ^ :Touching1
2a0v1 if (v0 = 0) ^ (v1 > 0) ^ :Touching1
�2(a0 � a1)(v0 � v1) if Touching1

In the cases where Touching1 = False, _P1 � 0, therefore (P1 � 0) will be true at least until (v1 � 0)

becomes true. If Touching1 = True and v0 < v1 (resp. v0 > v1) action Collision1 (resp. Separate1)

occurs and the trajectory stops. If Touching1 = True and v0 = v1, then _P1 = 0. Overall, (P1 �

0) _ (v1 � 0) will be true at the last state of the trajectory.

Lemma 7 If (P1 � 0) _ (v1 � 0) is true then the pair is safe.

Proof: If (v1 � 0) is true the pair is safe by Proposition 11. If (P1 � 0), at the time when �x1 = 0,

P1(�x1; v0; v1) = P1(0; v0; v1) � 0, therefore (v0 � v1)
2 � v2A. Hence, v1 � v0 + vA and the pair is

safe.

Lemma 7 provides a su�cient condition for a pair of vehicles to be safe. We now seek

situations that violate the condition of the lemma and yet are safe. Consider:

I = [P1 � 0] _ [C ^ (P2 � 0)] (28)
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Lemma 8 I _ (v1 � 0) is a stable property of the pair.

Proof: If (P1 � 0) _ [C ^ (P2 � 0)] _ (v1 � 0) is true at the pre-state of Touch1 or Separate1

it will also be true at the post-state as both actions leave �x1; v0 and v1 una�ected. Assume

(P1 � 0) _ [C ^ (P2 � 0)] _ (v1 � 0) is true when Collision1 occurs. If (P1 � 0) _ (v1 � 0) is true, it

will also be true after Collision1 by Lemma 6. Assume Collision1 occurs while C ^ (P2 � 0) is true.

We distinguish the following cases:

Case 1: (v0 = 0) ^ (P2 � 0) is true. Then, at �x1 = 0,

(v0 = 0) ^ (P2 � 0)) v21 � v2A � 0) v1 = v1 � v0 � vA

Case 2: (C1 � 0) ^ (a0 � a1) ^ (P2 � 0) is true. Then, at �x1 = 0,

(C1 � 0) ^ (a0 � a1 < 0) ) ((a0 + a1)v
2
0 � 2a0v0v1 � 0) ^ (a0 � a1 < 0)

) (
a0 + a1

2a0
v0 � v1) ^ (0 <

a0 + a1

2a0�
� 1)

Therefore, v0 � v1 and this hence (C1 � 0) ^ (a0 � a1) ^ (P2 � 0) cannot be true when Collision1

occurs.

Case 3: (C2 � 0) ^ (a0 � a1) ^ (P2 � 0) is true. Then, at �x1 = 0,

(C2 � 0) ^ (a0 � a1) ^ (P2 � 0) ) (
a1

a0
v0 � v1) ^ (

a1

a0
� 1) ^ (v21 �

a1

a0
v20 � v2A � 0)

) (
a1

a0
� 1) ^

�
(v0 � v1)

2
� v2A � v20 +

a1

a0
v20 � 0

�

) (v0 � v1)
2
� v2A � 0

In all cases 0 < v1 � v0 � vA. Therefore (v0 � v1)
2 � v2A and hence (v00 � v01)

2 � v2A (by equation (3)

and Assumption 1). Therefore, if Collision1 occurs while C ^ (P2 � 0) is true, (P1 � 0) will be true

after the collision. Overall, if (P1 � 0) _ [C ^ (P2 � 0)] _ (v1 � 0) is true when Collision1 occurs it

will also be true afterwards.

Assume at some state, s, (P1 � 0) _ [C ^ (P2 � 0)] _ (v1 � 0) is true and consider the

trajectories that start at this state. If (P1 � 0) _ (v1 � 0) is true at s it will also be true at the last

state of the trajectory, by Lemma 6. If C ^ (P2 � 0) ^ (v1 > 0) is true at s, consider the derivatives

of the functions C1; C2 and P2 along the trajectory:

d

dt
C1 = 2(a0 + a1)v0acc0 � 2a0acc0v1 � 2a0v0acc1 � 2a20(v0 � v1)

=

8><
>:

0 if (v0 > 0) ^ :Touching1
2a20v1 if (v0 = 0) ^ :Touching1
2(a1v0 � a0v1)acc0 � 2a20(v0 � v1) if Touching1

d

dt
C2 =

a1

a0
acc0 � acc1

=

8><
>:

0 if (v0 > 0) ^ :Touching1
�a1 if (v0 = 0) ^ :Touching1�
a1
a0
� 1

�
acc0 if Touching1
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d

dt
P2 = 2v1acc1 � 2

a1

a0
v0acc0 + 2a1(v0 � v1)

=

(
0 if :Touching1
2a0v1�a1v0

a0
acc0 + 2a1(v0 � v1) if Touching1

Consider �rst the variation of P2. If Touching1 = False and as long as v1 > 0, _P2 = 0. Therefore,

if (P2 � 0) is true at s, (P2 � 0) _ (v1 � 0) will be true at the last state of the trajectory. If

Touching1 = True and v1 6= v0 the trajectory stops (as the precondition of either Collision1 or

Separate1 is satis�ed). If Touching1 = True and v1 = v0 then _P2 = 2(a0 � a1)v0acc0=a0. If a0 > a1
the trajectory stops and action Separate1 occurs. Otherwise,

_P2 � 0, therefore (P2 � 0) will be true

at the last state of the trajectory.

Now consider the variation of C. Recall that C ^ (v1 > 0) is assumed to be true at s.

Distinguish two cases:

Case 1: (C1 � 0) ^ (a0 � a1) is true at s. If Touching1 = False and as long as v1 > 0 and

v0 > 0, _C1 = 0. If Touching1 = True and v1 6= v0 the trajectory stops (as the precondition of either

Collision1 or Separate1 is satis�ed). If Touching1 = True and v1 = v0 then _C1 = 2(a1�a0)v0acc0 � 0

as a0 � a1. Overall, [(C1 � 0) ^ (a0 � a1)] _ (v0 = 0) _ (v1 � 0) will be true at the �nal state of the

trajectory.

Case 2: (C2 � 0) ^ (a0 � a1) is true at s. If Touching1 = False and as long as v1 > 0 and

v0 > 0, _C1 = 0. If Touching1 = True and v1 6= v0 the trajectory stops (as the precondition of either

Collision1 or Separate1 is satis�ed). If Touching1 = True and v1 = v0 then _C2 = (a1�a0)acc0=a0 � 0,

as a0 � a1. Therefore, [(C2 � 0) ^ (a0 � a1)] _ (v0 = 0) _ (v1 � 0) will be true at the �nal state of

the trajectory.

Overall, if (P1 � 0) _ [C ^ (P2 � 0)] _ (v1 � 0) is true at the �rst state of a trajectory, it

will also be true at the last state.

Theorem 2 (Su�cient Condition for Pair Safety) If I is initially true the pair is safe.

Proof: I initially true and Lemma 8 imply [P1 � 0] _ [C ^ (P2 � 0)] _ (v1 � 0) is an invariant

property of the pair. If (P1 � 0)_ (v1 � 0) is true safety is guaranteed by Lemma 7. If C ^ (P2 � 0)

is true, the proof of Lemma 8 indicates that at �x1 = 0, v1 � v0 � vA, which again implies safety.

5.3 Necessary Conditions for Safety

Conditions under which the string is unsafe can be obtained in a similar way. The proof of Theorem

2 indicates that if a collision is safe, all subsequent collisions will also be safe. Our conditions must

therefore be such that the �rst collision is unsafe; more unsafe collisions may follow. Consider a

derived boolean variable Collided which is initially false and becomes true when the actions Collision1
occurs. Let:

C 0 = (C1 � 0) (29)

I 0 =
�
:C 0

^ (P1 > 0)
�
_
��
C 0
_ (v0 = 0)

�
^ (P2 > 0)

�
(30)

Lemma 9 I 0 _ (v1 � 0) _ Collided is a stable property of the pair.
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Proof: Assume I 0 _ (v1 � 0)_Collided is true at some state. Consider all trajectories that start at

that state. If Collided is true at the start state of such a trajectory, it will trivially be true at the last

state also. If (v1 � 0) is true at the start state it will also be true at the last state, by Proposition

10. Assume I 0 is true at the start state. We show I 0 remains true until v1 � 0. We distinguish the

following cases:

Case 1: :C 0 ^ (P1 > 0) is true. :C 0 implies that vi > 0 by Proposition 12, hence from the proof of

Lemma 6, _C1 = 0 and _P1 = 0. Therefore, if :C 0 ^ (P1 > 0) is true at the start state of a trajectory

it will be true at least until v1 � 0.

Case 2: By a similar argument and using the calculations of Lemma 8 if (C 0 _ (vi = 0)) ^ (P2 > 0)

is true at the start state of a trajectory, it will continue to be true at least until v1 � 0.

Overall, if I 0 _ (v1 � 0) _ Collided is true at the �rst state of a trajectory it will also be

true at the last state.

Assume I 0_ (v1 � 0)_Collided is true when Collision1 occurs. After the collision Collided

and hence I 0 _ (v1 � 0) _ Collided, will be true.

Theorem 3 (Necessary Condition for Pair Safety) If I 0^ (v1 > 0)^:Collided is true initially

then the pair is unsafe.

Proof: By Lemma 9, if I 0 ^ (v1 > 0)^:Collided is true at the initial states, I 0 _ (v1 � 0)_Collided

is an invariant property of the pair. Therefore, I 0 will remain true at least until either (v1 � 0)

or Collided become true. We show that Collided becomes true before (v1 � 0). First note that if

�x1 = 0 while I 0 is true then (v0 � v1)
2 > v2A. To see this consider the following cases:

Case 1: :C 0 ^ (P1 > 0) is true. Then, at �x1 = 0, P1 > 0) (v0 � v1)
2 � v2A > 0.

Case 2: (C 0 _ (v0 = 0)) ^ (P2 > 0) is true.

Case 2.1: (v0 = 0) ^ (P2 > 0) is true. Then, at �x1 = 0,

(v0 = 0) ^ (P2 > 0)) v21 � v2A > 0) v1 = v1 � v0 > vA

Case 2.2: (C1 � 0) ^ (P2 > 0) is true. Then, at �x1 = 0,

(C1 � 0) ^ (P2 > 0) ) ((a0 + a1)v
2
0 � 2a0v0v1 � 0) ^ (v21 �

a1

a0
v20 � v2A > 0)

) a0(v
2
0 + v21 � 2v0v1)� a0v

2
A < 0

) (v0 � v1)
2
� v2A > 0

Note that sooner or later v1 = 0 will be reached. Here v1 plays the role of a progress

variable. Assume, for the sake of contradiction, that v1 becomes 0 while I 0 is true, before Collided

becomes true. Consider again cases:

Case 1: :C 0 ^ (P1 > 0) is true.

(C1 > 0) ^ (P1 > 0) ) ((a0 + a1)v
2
0 � 2a0v0v1 � 0) ^ ((v0 � v1)

2
� 2(a0 � a1)�x1 � v2A > 0)

) v21 �
a1

a0
v20 + 2a1�x1 � v2A > 0

Note that �x1 < 0 is needed to satisfy the above expression at v1 = 0. Therefore, as v1 ! 0, �x1
must cross 0 from above. This implies that at �x1 = 0, d�x1=dt = v0�v1 � 0. The relative velocity

calculation given above guarantees that at �x1 = 0, jv1 � v0j > vA, hence v0 � v1 is bounded away

from 0. Therefore a collision does happen (�x1 = 0 and v1 > v0), with relative velocity greater than

vA.
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Case 2: (C 0 _ (vi = 0)) ^ (P2 > 0) is true. Then (P2 > 0) ) v21 �
a1
a0
v20 + 2a1�x1 � v2A > 0. The

claim follows by the same argument given above.

Overall, the above calculation indicates that if I 0 ^ (v1 > 0) ^:Collided is true Collision1
will occur. Moreover, at the time when �x1 = 0, v1 > vA+v0. Therefore there exist reachable states

where the property [�xi = 0) v1 � v0 + vA] is violated and the pair is unsafe.

In subsequent proofs the following corollary will also be useful.

Corollary 1 If (P1 > 0) ^ (P2 > 0) ^ (v1 > 0) initially then the pair is unsafe.

Proof: As C 0 _ [:C 0 _ (vi = 0)] is true, (P1 > 0) ^ (P2 > 0) ) I 0. The conclusion follows from

Theorem 3.

6 Safety of Strings of Length N > 2

6.1 Su�cient Conditions

Next, we derive a very simple su�cient condition for a string of arbitrary length to be safe. Even

though the condition is conservative, interesting conclusions about the safety of platoons of vehicles

can be derived from it (see Section 7). Unless otherwise stated we assume that di = di = 0.

De�nition 4 A string undergoing emergency deceleration under the default deceleration strategy is

near uniform mass if �i(v) � � is constant and �Mk�1 �Mk �Mk�1=�.

A near uniform mass string is such that the masses of all its vehicles are close to one another. This

allows us to put some bounds on the change of speed that a collision can induce. For example, it

can be shown that the vehicles of a near uniform mass string will never go backwards.

Proposition 13
VN�1
i=0 (vi � 0) is an invariant property of a near uniform mass string.

Proof: Let Q =
VN�1
i=0 (vi � 0). By Assumption 2, vi(0) � 0 for all i, therefore the initial states

satisfy property Q. Assume Q is satis�ed at some state. Consider all trajectories that start at that

state. Consider an arbitrary vehicle i and assume that it is part of a segment of touching vehicles

Si. If there exists j 2 Si with vj 6= vi the precondition of at least one Collisionk or Separatek action

with k 2 Si will be sati�ed and the trajectory will stop. If vj = vi = 0, acci � minj2Si(uj) = 0 under

the default deceleration strategy. Therefore, if Q is true at the �rst state of a trajectory is will also

be true at the last state.

Q is trivially preserved by Touchj and Separatej for all j > 0, as these actions do not

a�ect the vi's. Assume Q is true when Collisionj occurs for some j > 0. Let v0i denote the velocity

of vehicle i after Collisionj. If i 62 fj; j � 1g, v0i = vi, therefore (vi � 0) implies (v0i � 0). If i = j � 1,

v0i � vi by the restitution equation (3), therefore (vi � 0) implies (v0i � 0). Finally, if i = j, solving

the conservation of momentum and restitution equations (2) and (3) leads to:

v0i =
Mi�1(1 + �)vi�1 + (Mi �Mi�1�)vi

Mi +Mi�1
�
Mi�1(1 + �)vi�1

Mi +Mi�1

Therefore, (vi�1 � 0) implies (v0i � 0). Overall, for any j > 0, if Q is true when Collisionj occurs, Q

will also be true after the collision.

We now construct invariant properties that allow us to characterize the safety of such a

string. De�ne �xij for 0 � i < j � N � 1, âmin and âmax by:

�xij =

jX
k=i+1

�xk; âmin = min
0�k<N

ak; âmax = max
0�k<N

ak
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For any pair of vehicles i < j, consider the function:

P (�xij; vi; vj) = vj �
âmax

âmin

vi � vA (31)

Proposition 14 (P (�xij ; vi; vj) = 0) ^ (vi > 0)) (vj > 0) for a near uniform mass string.

Proof: (P (�xij; vi; vj) = 0) implies that vj =
âmax
âmin

vi� vA. âmin � âmax < 0 by Assumption 3 and

vA � 0 by de�nition, therefore if vi > 0 then vj > 0.

Lemma 10 The property

�VN�2
i=0

VN�1
j=i+1(P (�xij ; vi; vj) � 0)

�
is stable for a near uniform mass

string.

Proof: Assume
VN�2
i=0

VN�1
j=i+1(P (�xij ; vi; vj) � 0) is true at some state. Consider �rst all trajec-

tories that start at that state. For one of the P (�xij ; vi; vj) to become greater than zero along the

trajectory, (P (�xij ; vi; vj) = 0) must be true �rst. In this case:

d

dt
P =

8><
>:

aj �
âmax
âmin

ai if vi > 0 ^ vj > 0

aj if vi = 0 ^ vj > 0

0 if vi = 0 ^ vj = 0

Recall that, vi; vj � 0 by Proposition 13 and (vi > 0)^ (vj = 0) can not be true if P (�xij; vi; vj) = 0

by Proposition 14. As âmax � aj and âmin � ai, _P � 0 in all cases. Therefore, if (P (�xij ; vi; vj) � 0)

at the �rst state of a trajectory it will also be true at the last state.

Assume
VN�2
i=0

VN�1
j=i+1(P (�xij ; vi; vj) � 0) is true when Collisionl occurs. Let v0k denote

the velocity of vehicle k after Collisionl. Consider each P (�xij ; vi; vj) independently. If l 62 fi; i +

1; j; j + 1g v0i = vi and v0j = vj . Therefore P (�xij ; vi; vj) � 0 implies P (�xij; v
0
i; v

0
j) � 0. We treat

the remaining four cases one at a time:

Case 1: l = i. Assume v0i � vi�1. Then, P (�xij ; vi�i; vj) � 0 implies P (�xij ; v
0
i; vj) � 0.

Case 2: l = i+ 1. v0i � vi. Therefore, P (�xij ; vi; vj) � 0 implies P (�xij ; v
0
i; vj) � 0.

Case 3: l = j. v0j � vj . Therefore P (�xij ; vi; vj) � 0 implies P (�xij; vi; v
0
j) � 0.

Case 4: l = j + 1. Assume v0j � vj+1. Then, P (�xij; vi; vj+1) � 0 implies P (�xij ; vi; v
0
j) � 0.

It remains to show that v0j � vj+1 in case of Collisionj+1 and v
0
i � vi�1 in case of Collisioni.

Solving the conservation of momentum and restitution equations reveals that the �rst condition is

satis�ed if Mj � �Mj+1 � 0 while the second if Mi � �Mi�1 � 0. Both these conditions are met by

a near uniform mass string.

Theorem 4 (Su�cient Condition for String Safety) A near uniform mass string of N vehicles

is safe if P (�xij(0); vi(0); vj(0)) � 0 for all i; j with 0 � i < j � N � 1.

Proof: Lemma 10 and the theorem assumptions imply that (P (�xij; vi; vj) � 0) is an invariant

property of the near uniform mass string. As âmin � âmax, this implies that vj � vi � vA and hence

the string is safe.

The following corollaries follow directly from Theorem 4:

Corollary 2 Consider a string of N vehicles for which P (�xij(0); vi(0); vj(0)) � 0 for all i; j with

0 � i < j � N � 1. If di = di = d and M = M the string is safe under the default deceleration

strategy.

Corollary 3 A near uniform mass string, initially at steady state with velocity v (vi = v for all i),

consisting of vehicles satisfying (20){(22) is safe if

�
1� a

a

�
v � vA � 0.

28



vi

i . . . .i+2i+1 j-1 j

ε

vi+1 v vj-1 vi+2 j

Figure 6: Final con�guration for theorem proof

6.2 Necessary Conditions

Now consider a string of N vehicles. We seek necessary conditions such that any platoon formed by

a collection of vehicles satisfying (20)-(22) is guaranteed to be safe. Start with the case:

di = di = 0 and �i(v) � 1 (32)

i.e. no delay (di = 0 for all i) and elastic collisions. Assume that the string is initially moving at

steady state with velocity v, i.e.:

xi(0) =

"
�xi(0)

v

#
(33)

Theorem 5 (Necessary Condition for String Safety) All strings of N vehicles satisfying

(20)-(22) and (32)-(33) are guaranteed to be safe under the default deceleration strategy only if

(P1(�xij(0); v; v) � 0)_ (P2(�xij(0); v; v) � 0) is true for all i; j with 0 � i < j � N � 1 and for all

ai; aj 2 [a; a].

The de�nitions of the derived variables P1 and P2 are given in equations (25) and (26). The proof

is constructive: we show that, if the above condition is violated, one can construct a platoon that

satis�es all the theorem conditions and yet, under the default deceleration strategy, exhibits collisions

at relative velocities above vA. The idea of the construction is to bring the vehicles from their

initial arrangement to the �nal arrangement of Figure 6 without any collisions taking place. The

construction will be such that after resolving the multiple collision between vehicles i+ 1; : : : ; j the

velocity of vehicle i+ 1 will be the same as the velocity of vehicle j before the collision. For � small

enough, the next collision will be between vehicles i+1 and i and the relative velocity will be � close

to the relative velocity with which vehicles j and i would have collided if vehicles i+1; : : : ; j�1 were

not there. By Corollary 1 this velocity is greater than vA. The multiple collision is used only to make

the calculation simpler. During the proof it will become apparent that (using Proposition 6) the

e�ect is the same if the collisions take place pairwise with some arbitrary order. Before presenting

the proof of the theorem we introduce the following proposition (the proof is given in the appendix).

Proposition 15 Assume there exist i; j with 0 � i < j � N � 1 and ai; aj 2 [a; a] such that

(P1(�xij(0); v; v) > 0) ^ (P2(�xij(0); v; v) > 0) is true. Then for � > 0 su�ciently small there exist

ak 2 [a; a] for i < k < j and a time T > 0 such that no collisions have occurred in [0; T ) and

�xi+1(T ) = � and �xk(T ) = 0 for all i+ 1 < k � j.

Proof: (of Theorem 5) Assume for the sake of contradiction that there exist 0 � i < j � N � 1

and ai; aj 2 [a; a] such that (P1(�xij(0); v; v) > 0)^ (P2(�xij(0); v; v) > 0). We construct a platoon

satisfying (20)-(22) and (32)-(33) (i.e. pick ak 2 [a; a]; k 6= i; j and Mk 2 [M;M ] for all k) that will

exhibit collisions at relative velocities greater than vA under the default deceleration strategy.
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Without loss of generality, for all k < i (if any) choose ak � ai and for all k > j (if any)

choose ak � aj that satisfy the theorem condition. This is always possible as ai; aj 2 [a; a]. Also, for

all k choose Mk =M for any M 2 [M;M ]. The choice of ak ensures that the vehicles ahead of i and

behind j do not interfere with our calculation. The choice of Mk is valid and makes the calculations

considerably easier.

If j = i + 1 the conclusion of the theorem follows by contradiction, using Corollary 1. If

j > i+ 1, choose ak for i < k < j according to Proposition 15. Then, at time T a multiple collision

takes place between vehicles i + 1; : : : ; j. By Proposition 6, the velocity of vehicle i + 1 after the

collision will be the same as the velocity of vehicle j before the collision. For � small enough, the

next collision will be � seconds later, between vehicles i+ 1 and i, where � satis�es:

ai � ai+1

2
�2 + (vi(T

�)� vj(T
�))� + � = 0 if C1(�xij(0); v; v) � 0

�
ai+1

2
�2 � vj(T

�)� + � = 0 if C1(�xij(0); v; v) < 0

At the time of impact T + �:

vi(T + �) � vi+1(T + �) =

(
vi(T

�)� vj(T
�) + �(ai � ai+1) if C1(�xij(0); v; v) � 0

�vj(T
�)� �ai+1 if C1(�xij(0); v; v) < 0

In either case the root of interest � ! 0 as � ! 0. As a consequence, as � ! 0 the relative velocity

at impact between vehicles i + 1 and i tends to vi(T ) � vj(T ) which in turn tends to the relative

velocity of collision between vehicles j and i if vehicles i+1; : : : ; j � 1 were not there. This quantity

is greater than vA by Corollary 1, therefore there exists an � small enough for which the relative

velocity of collision between vehicles i and i + 1 is greater than vA. The conclusion of the theorem

follows by contradiction.

Corollary 4 The conditions of Theorem 5 are necessary as long as \
N�1
j=0 [dj ; dj ] 6= ;.

Proof: For all i and some d 2 \N�1
j=0 [dj ; dj ], choose di = d. The construction of Theorem 5 trivially

generalizes.

7 Implications for Platooning

7.1 Bounds on the System Parameters for Safe Platooning

We start with the su�cient condition of Section 6.1. Consider a near uniform mass string and let

a� a = �. Then, according to Corollary 3 all strings whose vehicles satisfy (20){(22) are guaranteed

to be safe under the default deceleration strategy if:�
1�

a

a

�
v � vA � 0) � � �

avA

v
(34)

Substituting \typical" values of a = �9ms�2 and vA = 3ms�1 leads to � � 1:08 for v = 25ms�1 and

� � 0:9 for v = 30ms�1.

To make use of the necessary conditions of Section 6.2, note that:

@P1

@ai
= �2�xij � 0;

@P1

@aj
= 2�xij � 0;

@P2

@ai
=
aj

a2i
v2i � 0;

@P2

@aj
= �

v2i
ai

+ 2�xij � 0
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N � (ms�2)

v = 25ms�1, F = 1m v = 30ms�1, F = 1m v = 25ms�1, F = 2m

2 4.5 4.5 2.25

3 2.25 2.25 1.125

4 1.5 1.5 1.125

5 1.125 1.125 1.125

� 6 1.125 0.9 1.125

Table 1: Maximum allowable di�erence in deceleration capability

Therefore, the condition (P1(�xij(0); v; v) � 0)_(P2(�xij(0); v; v) � 0) for all ai; aj 2 [a; a] is equiv-

alent to (P1(�xij(0); v; v) � 0) _ (P2(�xij(0); v; v) � 0) for ai = a and aj = a or equivalently:

(�2(a� a)�xij � v2A � 0) _

�
(1�

a

a
)v2 + 2a�xij � v2A � 0

�

To further simplify the calculation assume that at steady state the string (platoon) satis�es the

uniform spacing assumption, i.e. �xi = F for all i. Then the necessary condition for string safety

requires that for all i � j:

(2�(j � i)F � v2A � 0) _

�
�
�

a
v2 + 2a(j � i)F � v2A � 0

�

) � � max

(
v2A

2(j � i)F
;
2(j � i)a2F � av2A
v2 � 2(j � i)aF

)

This condition should hold for all i � j, therefore, for a platoon of size N to be safe we need:

� � min
j�i=1;:::;N�1

max

(
v2A

2(j � i)F
;
2(j � i)a2F � av2A
v2 � 2(j � i)aF

)
(35)

Table 1 shows the necessary condition for the variation in deceleration capability for a = �9ms�2 and

vA = 3ms�1. The numbers indicate that the su�cient condition is conservative for small platoon sizes

but approaches the necessary condition as the platoon size increases7. Based on the characteristics

of vehicles on current highways the bound on � is reasonable for N = 2 but rather restrictive for

higher platoon sizes (even under perfect road conditions). Note also that the calculation saturates

after the �rst few followers; a similar observation was made in [9] about the increase in deceleration

e�ort required along a platoon for \string stability".

7.2 Ways to Improve Safety

The above calculations indicate that the safety of the platooning system under emergency braking

can only be guaranteed under rather limited conditions, in particular for small platoons consisting

of vehicles of similar deceleration capabilities. A number of alternatives can be considered in an

attempt to improve on these restrictions as much as possible.

7Using Lemma 7 it is easy to verify that for N = 2 the values of Table 1 are both necessary and su�cient.
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7.2.1 Modify the Parameters

Taking partials of equations (34) and (35) with respect to a, v and vA indicates that the conditions

become easier to satisfy as a and v decrease and vA increases. The value of a is lower bounded by the

limitations of the tires and brakes; the value of �9ms�2 is already rather optimistic for most vehicles

and driving conditions. Likewise, reducing the value of v reduces the highway throughput; the value

v = 25ms�1 is already considered low. Finally, increasing vA is unacceptable from the point of view

of safety; vA = 3ms�1 is already considered high. Taking partials of (35) with respect to F indicates

that the �rst term becomes easier to satisfy as F decreases while the second term becomes easier to

satisfy as F increases. In the numerical examples the �rst term dominates for platoon sizes up to

N = 6. It is therefore likely that a reduction in the following distance can lead to improvement in

safety; however, the value F = 1m is already rather low for the current technology.

E�ect of d is small. M and M have no e�ect, the necessary condition needs to hold even

for identical masses. Try to reduce �i. Tradeo�: �(0) = 1, therefore need some relatively bad

collisions to absorb energy.

7.2.2 Non-spontaneous Platooning

Assume vehicles can estimate their own deceleration capability and decide to join a platoon only if

a su�cient condition is satis�ed. For example, order platoons by increasing deceleration capability.

Safety in this case is guaranteed by Lemma 4. Safety will be sensitive to estimate of deceleration

capability. Problems:

1. Estimate di�cult to obtain on line, has to be inferred by ABS measurements and may be

inaccurate until maximum deceleration is applied. Large safety margins likely to be needed.

2. Deceleration capability changes on line. In a slow time scale due to brake and tire ware and

in a fast time scale due to variation in driving conditions (weather and terrain), brake heating

etc. Platoon may cease to be safe at some point. Situation seems hopeless for inconsistent

terrain, e.g. ice patches.

3. Average platoon size no longer arbitrary. Probability distribution for deceleration capability

and queuing argument can be used to obtain expected platoon size. Relatively simple if platoon

ordered in increasing deceleration capability can be very complicated if more elaborate su�cient

condition is used.

7.2.3 Better Emergency Controllers

Try to solve problems 4 and 5.
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A Hybrid Automata Pseudo-Code

A.1 Plant Automaton Code

Variables:

Input:

ui 2 [amin
i ; amax

i ], for all i 2 f0; : : : ; N � 1g

Internal:

�xi 2 R, for all i 2 f0; : : : ; N � 1g, initially � 0

vi 2 R, for all i 2 f0; : : : ; N � 1g, initially � 0

Touchingi 2 Bool, for all i 2 f0; : : : ; Ng, initially False

Output:

y
p
i 2 R

3 , for all i 2 f0; : : : ; N � 1g

Derived:

acci 2 R, for all i 2 f0; : : : ; N � 1g

(see text)

Actions:

Input:

e, the environment action

Internal:

Collisioni, for i 2 f1; : : : ; N � 1g

Touchi, for i 2 f1; : : : ; N � 1g

Separatei, for i 2 f1; : : : ; N � 1g

Discrete Transitions:

e:

E�ect: arbitrarily reset the input variables

Collisioni:

Precondition:

(�xi = 0) ^ (vi > vi�1)

E�ect:

Reset vi and vi�1 to v
0
i and v0i�1 so that:

Miv
0
i +Mi�1v

0
i�1 =Mivi +Mi�1vi�1

v0i�1 � v0i = (vi � vi�1)�i
Touchi:

Precondition:

(Touchingi = False) ^ (�xi = 0) ^ (vi = vi�1) ^ (acci � acci�1)

E�ect:

Touchingi := True

Separatei:

Precondition:

(Touchingi = True) ^ [(acci < acci�1) _ (vi < vi�1)]

E�ect:

Touchingi := False

Trajectories:
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Input variables follow arbitrary trajectories

For all i 2 f0; : : : ; N � 1g and for all t � 0:
_�xi(t) = vi�1(t)� vi(t)

_vi(t) = acci(t)

Touchingi(t) = Touchingi(0)

y
p
i (t) = [�xi(t) vi(t) acci(t)]

T

Trajectories stop once the precondition of an action becomes true
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B Construction of Maximal Partitions

Consider a segment S with a weighted average function a. Assume without loss of generality that

S = f1; : : : ; ng. The following algorithm attempts to construct the maximal partition of S. The

algorithm maintains a state, consisting of a candidate partition of S, S = fS1; : : : ; Skg, where k may

change along the algorithm execution.

Initialization: Set k = n, S = ff1g; f2g; : : : ; fngg.

While k > 1 and 9i 2 f1; : : : ; k � 1g such that a(Si�1) � a(Si)

Do

Si�1 = Si�1Si
Sj = Sj+1 for j 2 fi; : : : ; k � 1g.

k = k � 1

oD

Proposition 16 The following properties are invariant for the algorithm:

1. S is a partition of S.

2. Si 2 S are unsplitable.

Proof: S is initially a partition (a trivial one). Each step of the algorithm can join two adjacent

elements of S into a single element. The result is again a partition and part 1 follows.

S1; S2; : : : ; Sn are initially unsplitable (vacuously). At each step of the algorithm Si and

Si�1 may be joined if and only if a(Si�1) � a(Si). By Proposition 3, the resulting segment is also

unsplitable.

Lemma 11 The algorithm terminates in a �nite number of steps. Upon termination S is a maximal

partition of S.

Proof: k is monotone decreasing, is initially equal to n and is bounded below by 1. Hence the

algorithm is guaranteed to terminate.

The algorithm terminates if either k = 1 or a(Si�1) > a(Si) for all i 2 f1; : : : ; k � 1g.

Moreover, the Si are unsplitable by Proposition 16. Therefore, S is a maximal partition.
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C Additional Proofs

Proposition 10 If A and B are two unsplittable subsegments of S and A \ B 6= ;, then A [ B is

an unsplittable subsegment of S.

Proof: If A and B are subsegments of S and A\B 6= ;, A[B is also a subsegment of S. Assume,

without loss of generality that min(A) � min(B). If A � B (A � B) then A [B = B (A [ B = A)

and hence unsplittable. Otherwise, as A and B are unsplittable:

a(A n (A \B)) � a(A \B) � a(B n (A \B))

By the properties of the weighted average function this implies that:

a(A n (A \B)) � a(A) � a(A \B) � a(B) � a(B n (A \B))

Assume that A[B = LR for some segments L;R. Note that either L � A or R � B. We would like

to show that a(L) � a(R). Assume �rst that L � A. As A is unsplittable a(L) � a(AnL), therefore,

by de�nition of weighted average, a(L) � a(A) � a(A nL). But R = (A nL)(B n (A\B)), therefore:

a(R) � minfa(A n L); a(B n (A \B))g � a(A)

It follows that a(L) � a(R). The proof is similar if R � B.

Proposition 11 If A and B are two unsplittable subsegments of S, AB is de�ned and a(A) � a(B),

then AB is an unsplittable subsegment of S.

Proof: Clearly, AB is a subsegment of S. As before, let AB = LR for some subsegments L and

R and assume �rst that L � A. As A is unsplittable a(L) � a(A n L), therefore, by de�nition of

weighted average, a(L) � a(A) � a(A n L). Moreover, a(A) � a(B) implies that:

a(R) = a((A n L)B) � minfa(A n L); a(B)g � a(A)

The conclusion follows. The proof is similar in the case R � B.

Proposition 12 If S1 : : : Sn is a maximal partition of S, 1 � l � k � n and Ŝlk = [km=lSm then

a(Ŝlk) � a(Sk).

Proof: For all l proceed by induction on k. If k = l, Ŝlk = Sl = Sk and the claim holds. Assume

a(Ŝlk) � a(Sk) holds for some k � l and show that it holds for k + 1. By the de�ning property of a

weighted average function:

a(Ŝl(k+1)) � minfa(Ŝlk); a(Sk+1)g

But a(Ŝlk) � a(Sk) > a(Sk+1) (by induction hypothesis and maximality). Therefore, a(Ŝl(k+1)) �

a(Sk+1).

Proposition 13 a is a weighted average function on S.
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Proof: Let L and R be two subsegments of S such that LR is de�ned. Assume a(L) � a(R). We

would like to show that a(L) � a(LR) � a(R). Indeed:

a(L) � a(LR) ,

P
l2LMlulP
l2LMl

�

P
l2LRMlulP
l2LRMl

,

0
@X
l2L

Mlul
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0
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0
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l2R
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1
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0
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, a(L) � a(R)

The proofs for a(LR) � a(R) and in the case when a(R) � a(L) are similar.

Proposition 14 If �i � 1 and Mi = Mj for all N1 � i; j � N2 then all possible orders of pairwise

resolution lead to v0N1
= vN2

, v0N1+1
= vN2�1, . . . , v

0
N2

= vN1
(i.e. the order of the velocities is

reversed).

Proof: Assume that the multiple collision is resolved by pairwise collisions and let V (k) =

fv
(k)
N1
; : : : ; v

(k)
N2
g denote the velocities of vehicles N1; : : : ; N2 after the k

th pairwise resolution has been

performed. Clearly, V (0) = fvN1
; : : : ; vN2

g. We show that V (k) = V (0) (up to reordering of the

elements).

Proceed by induction. Assume that after k pairwise resolutions V (k) is a permutation of

V (0). If further resolutions are needed, there exist (possibly many) j 2 (N1; N2] such that vj > vj�1.

Pick any such j and resolve the con
ict between j and j � 1. For all i 2 [N1; N2] with i 62 fj; j � 1g,

v
(k+1)
i = v

(k)
i . Under the proposition assumptions v

(k+1)
j and v

(k+1)
j�1 satisfy:

Mjv
(k+1)
j +Mj�1v

(k+1)
j�1 =Mjv

(k)
j +Mj�1v

(k)
j�1 ) v

(k+1)
j + v

(k+1)
j�1 = v

(k)
j + v

(k)
j�1

v
(k+1)
j�1 � v

(k+1)
j = (v

(k)
j � v

(k)
j�1)�j ) v

(k+1)
j�1 � v

(k+1)
j = v

(k)
j � v

(k)
j�1

which implies that v
(k+1)
j�1 = v

(k)
j and v

(k+1)
j = v

(k)
j�1. Therefore V (k + 1) is also a permutation of

V (0). Note that the argument is independent of the ordering of the pairwise resolutions.

Resolutions will keep taking place until v
(k)
N1

� v
(k)
N1+1

� : : : � v
(k)
N2

. As initially vN1
<

vN1+1 < : : : < vN2
and V (k) is a permutation of V (0), the claim of the proposition follows.

Proposition 15 If �i < 1 or Mi 6= Mj for some i; j 2 [N1; N2], the state after the collision is

resolved, x0 , may depend on the order in which the collisions are resolved.

Proof: By counter example. Consider a string of 3 vehicles undergoing simultaneous collisions.

Assume the velocities at impact are v0 = 0, v1 = 4 and v2 = 8. First let M0 = M1 = M2 and
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�1 = �2 = 0:5. The multiple collision can be resolved pairwise in two di�erent orders:

v0 = 0

v1 = 4

v2 = 8

1! 0

v0 = 3

v1 = 1

v2 = 8

2! 1

v0 = 3

v1 = 6:25

v2 = 2:75

1! 0

v0 = 5:4375

v1 = 3:8125

v2 = 2:75

v0 = 0

v1 = 4

v2 = 8

2! 1

v0 = 0

v1 = 7

v2 = 5

1! 0

v0 = 5:25

v1 = 1:75

v2 = 5

2! 1

v0 = 5:25

v1 = 4:1875

v2 = 2:5625

Now let �1 = �2 = 1 and M0 =M1=2 =M2=3. Collisions can again be resolved in two ways:

v0 = 0

v1 = 4

v2 = 8

1! 0

v0 = 16=3

v1 = 4=3

v2 = 8

2! 1

v0 = 16=3

v1 = 28=3

v2 = 8=3

1! 0

v0 = 32=3

v1 = 20=3

v2 = 8=3

v0 = 0

v1 = 4

v2 = 8

2! 1

v0 = 0

v1 = 44=5

v2 = 24=5

1! 0

v0 = 176=15

v1 = 44=15

v2 = 24=5

2! 1

v0 = 880=75

v1 = 388=75

v2 = 248=75

Total momentum is conserved in all cases.

Proposition 17 Assume there exist i; j with 0 � i < j � N � 1 and ai; aj 2 [a; a] such that

(P1(�xij(0); v; v) > 0) ^ (P2(�xij(0); v; v) > 0) is true. Then for � > 0 su�ciently small there exist

ak 2 [a; a] for i < k < j and a time T > 0 such that no collisions have occurred in [0; T ) and

�xi+1(T ) = � and �xk(T ) = 0 for all i+ 1 < k � j.

Proof: The easiest way to prove the claim is by a \geometric" argument (it can also be proved

algebraically). First note that, as vi(0) = vj(0) = v and �xij � 0, P1(�xij(0); v; v) > 0 implies that

ai < aj. Moreover, by Corollary 1, (P1(�xij(0); v; v) > 0) ^ (P2(�xij(0); v; v) > 0) implies that if i

and j were the only vehicles in the string they would have collided. Therefore, for every � < �xij(0)

there exists a T > 0 such that at �xij(T ) = � (again if vehicles i and j were the only vehicles in the

string).

Figure 7 shows the velocities of vehicles i and j as a function of time, under the default

deceleration strategy. Case (a) corresponds to C1 � 0 (refer to equation (23) where the vehicles

collide while they are still moving) while case (b) corresponds to C1 < 0 where the vehicles collide

after vehicle i has stopped. The slopes of the two lines are equal to ai and aj respectively and the

area of the shaded region is equal to �xij(0) � � while the area of the hashed region is equal to �.

More generally, for any pair of vehicles k and l with i � k < l � j and ak � al de�ne Akl(t) to be

the area of the shaded region in Figure 7, case (c). Note that, as long as there are no collisions 8.

�xkl(t) = �xkl(0) �Akl(t)

Choosing ak to satisfy the proposition involves choosing the slopes of the vk(t). The

procedure is inductive. We start by choosing ai+1 such that Ai(i+1)(T ) = �xi+1(0) � �. Assume

that after k � i steps Aik(T ) = �xik(0) � � and choose ak+1 to make Ak(k+1)(T ) = �xk+1(0). By

construction ai � ai+1 � : : : � aj�1 � aj as �xk(0) � 0 and therefore ak 2 [a; a] for all k. If i is

still moving at time T the areas Ak(k+1)(t) are monotonically increasing with time. Therefore, as

Ak(k+1)(T ) = �xk+1(0), no collisions can occur in [0; T ). In the case where vehicle i is stopped at

time T , some of the other vehicles may also have to stop touching each other. Still no collisions take

place in [0; T ), as the relative velocity at which they touch is zero.

8Recall that by the de�nition of a collision vehicles are allowed to touch at zero relative velocity.

39



t

v (t)
l

v (t)
k

A  (t)
kl

v

Projected
 Collision
   Time

T

v (t)
j

v (t)
i

a
j

v

Projected
 Collision
   Time

T

v (t)
j

v (t)
i

a
j

v

(a) (b) (c)

Figure 7: The de�nition of T and Akl(t)
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