
UC Berkeley
Research Reports

Title
Longitudinal State Estimation For A Four-vehicle Platoon

Permalink
https://escholarship.org/uc/item/32j7n9s1

Author
Merz, A. W.

Publication Date
1995

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32j7n9s1
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Longitudinal State Estimation
for a Four-Vehicle Platoon

A.W. Merz

California PATH Research Report
UCB-ITS-PRR-9527

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

August 1995

ISSN 10551425

LONGITUDINAL STATE ESTIMATION

FOR A FOUR-VEHICLE PLATOON

A. W. Merz

Lockheed Missiles and Space Co.
Palo Alto, CA 94208

July 1,1994

This work was performed as part of the California PATH Program of
the University of California, in cooperation with the State of
California Business, Transportation, and Housing Agency,
Department of Transportation; and the United States Department of
Transportation, Federal Highway Administration.

The contents of this report reflect the views of the author who is
responsible for the facts and the accuracy of the data presented
herein. The contents do not necessarily reflect the official views or
policies of the State of California. This report does not consitute a
standard, specification or regulation.

ACKNOWLEDGMENTS

The author of this report was assisted by U. C. Berkeley Ph.D. candidates V. Garg and D.
V. A. Swaroop, who were contributors to the PATH report by K. Hedrick, et al., cited in
the references. Lockheed Missiles and Space, Inc. personnel L, Gordon and H. Peiiafiel
were helpful with respect to the C-code program provided to the author by U. C. Berkeley,
and consultant D. Johnson developed computer graphics to illustrate the numerical results.

ii

ABSTRACT

Longitudinal State Estimation for a Four-Vehicle Platoon

A. W. Merz

The estimation of longitudinal states in a four-vehicle platoon is derived, disc us sed and illustrated
numerically. The general procedure in the process is the use of dynamic equations and data, for
finding the estimates and root mean squared errors in the estimates of the states for each vehicle.
Both dynamics and data are influenced by additive noise. The data can be any or all of the states,
including the position and velocity relative to the preceding and lead vehicles. The nonlinear dy-
namics of the platoon are those in the computer code developed by U. C. Berkeley. Several addi-
tional parameters require numerical specification, including data and process noise levels. The
control algorithm is applied to the estimates rather than to the actual states in the four-vehicle
platoon.

The motivation for the filter is that its output includes estimates and root mean squared errors. The
presence of a significant vehicle failure can be detected by data which is statistically far from its
predicted value, as measured by a multiple of the root mean squared error. The prior estimates and
their covariances change during a brief transient to the steady-state values, which depend on the
data and its root mean squared errors. These errors are in addition to the dynamic errors which are
present during the interval between successive data. The estimation error can be significant, both
before and during the steady-state. The Kalman filter gives estimates which are both consistent and
accurate, for use in the control algorithms, and for use in failure detection. The filter results are
illustrated in a number of example cases.

Keywords: Automatic Braking, Brakes, Collision Avoidance Systems, Control Systems, Data
Communication, Ranging Sensors, Traffic Platooning, Vehicle Dynamics

EXECUTIVE SUMMARY

Representative studies of the Intelligent Vehicle Highway System as a high-dimensional
control problem usually acknowledge the difficulty of the problem. This difficulty is due to both
the complexity and the nonlinearity of an individual vehicle, and to the control aspects of the multi-
vehicle platooning concept. Earlier work by various researchers indicates that platooning is
feasible, but these conclusions vary quantitatively upon the dynamic and control models assumed.
At present there is little parametric data describing the individual vehicles and sensors, so there may
be significant errors present in some the component values assumed. Because good control
performance and failure identification require accurate estimates of the states, it is essential that the
relationhip between the data and its estimates be found, and this is the purpose of the Kalman filter.

The study begins by reviewing the statistics of automobile accidents, for which a large
amount of data are available. These data show that only a small percentage of accidents are due to
mechanical failure. The work here is then focused on the analysis of the existing simulation code
for purposes of adding a filter. The control algorithm used for maintaining speed and separation
between vehicles requires the combining of distances, velocities and accelerations to develop
command brake and accelerator displacements. Up to the present, exact values of these states have
been used in the control law simulations. These will not be available in practice, and the reduction
in performance due to the errors in the estimates must be found.

The Kalman filter requires an extraordinary amount of computation, because the equations
of motion are given in terms of tabular data, and because of various other nonlinear effects. The
linearization needed for the integration of the matrix covariance equation implies recomputation of
the transition matrix for each vehicle at each data time. The filter development for the longitudinal
motion of the platoon has been concluded, and numerical results concerning several topics are
shown. Extension to higher-ordered dynamic models will be relatively straightforward, if not
easy.

Any emergency condition caused by a vehicle component failure generates data sequences
which are beyond statistically credible bounds; e.g., three-sigma limits. When this condition
occurs for a vehicle, a component failure has changed its dynamic characteristics. The intent of
this research was the specification of maneuvers in emergency conditions. But the complexity of
the dynamic model and the calendar constraints restricted the study to the development of the
optimal filter. Identification of the emergency condition requires use of a computer program
equivalent to that developed here.

iv

TABLE OF CONTENTS

Acknowledgments
Abstract
Executive Summary

1. Failure Modes
1.1 Introduction
1.2 Statistics of Highway Vehicle Incidents
1.3 IVHS Vehicle Failures
1.4 Detecting Vehicle Failures

2. Kalman Filter Development
2.1 Introduction
2.2 Longitudinal Dynamic Equations
2.3 System Matrix Computation
2.4 Revision to Simulation Program
2.5 Platoon Dynamics

3. Simulation of Dynamic Model Transient
3.1 Introduction
3.2 Functions Needed for Filter Implementation
3.3 Control Gains
3.4 Filter Gain Variations
3.5 Representative Filter Code Results

4. Conclusions

Appendix 1 - Sources of Automobile Collision and Breakdown Data
Appendix 2 - Listings of New C-Programs
Appendix 3 - Estimated Dynamic Parameters from Computer Code

Page
ii

. . .111
iv

7
7
8

15
17
18

20
20
20
21
22
23

31

33
34
55

References 57

LONGITUDINAL STATE ESTIMATION

FOR A FOUR-VEHICLE PLATOON

A. W. Merz
Lockheed Missiles and Space Co.

Palo Alto, CA 94803
July 1, 1994

1. FAILURE MODES

1.1 Introduction
Over the past several decades, the automobile and the system of highways of this country

have been the subject of many statistical studies. The failures of automobiles and their drivers, and
the loss of property and life caused by these failures, have been studied by a variety of agencies,
including insurance companies, manufacturers of automobiles, and those concerned with public
safety. The Intelligent Vehicle Highway System (IVHS) is a logical extension of the manually-
controlled automobile system, which has been developed to alleviate traffic congestion problems in
and near civic centers. This system has the potential of greatly increasing the traffic density on our
freeways, by combining high-speeds and the sensors and other system components which make
up the inter-vehicle control system. It is important that all sources of potential failure in these
components of the IVHS be considered, so that realistic estimates of the probabilities of success
are possible, because many of the sensors, controllers and algorithms are new and as yet untested.

Automobile drivers in the United States concede that these vehicles have reached a level of
mechanical reliability which is nearly perfect, in that vehicle breakdowns represent a very small
fraction of the total abount of vehicle traffic. For this reason, the great majority of automobile
accidents are due not to mechanical failure, but to the driver and his control inputs Since the
platooning of vehicles as envisioned in the IVHS implementation involves a combination of vehicle
and control system dynamics, present knowledge suggests that any failures or breakdowns will be
mainly due to failures in the component features devised for these systems. A tabulation of such
candidate failures will be given in Section 1.3.

1.2 Statistics of Highway Vehicle Incidents

Appendix 1 is a listing of a number of agencies concerned with highway and automobile
safety, including sources which have volumes of statistical data on these topics. Treat (1979) is
one of many detailed studies and analyses of highway incidents obtained from one of these
sources. This reference applies to the five years prior to 1977, but while fifteen years old, the
qualitative conclusions of the report ar’ e supported qualitatively by the independent studies of
Finch (1971), Grandel (1985), Hatch et al. (1977) and Schmidt et al. (1974). The principal
finding of these studies is that human error is by far the most frequent cause of vehicle accidents.
Probable cause results are summarized by Treat as human factors 93%, environmental factors 34%
and vehicle factors 13%. In this tabulation, accidents were considered to have more than one
cause. Other probable causes were view obstruction 12%, slick roads lo%, transient hazards 5%,
design problems 5% and control hindrances 4%. Brake systems and tires were probable causes in
5% and 4% of accidents, though “blow-out” corresponded to only .05% (1 occurrence) of the data
base of 2,258 accidents. More frequently, small tread depth (6) and vehicle lights (7) were cited as
subsidiary causes of accidents.

The most important conclusion in these sources is that human factors are the usual cause of
a road accident. This implies that the condition of road or vehicle failures are only very rarely the
cause of an accident, and that the driver should be able to compensate for these faults, the visibility
constraints, automobile limitations, etc., by driving circumspectly. This fact has caused one of the
projected tasks of the present study to be modified, from a ranking of causes of accidents to a
focus on the estimation problem, which precedes the identification of a cause and the associated
control response.

The IVHS study topic allows ignoring the “view obstruction” and “design problems”
causes, but otherwise we have learned that slick roads, brake system failures and tire failures are
the most probable mechanical and environmental causes of accidents. Nevertheless, they amount
to a small minority of the causes, as noted above. Most of the cited references deal with
“accidents,” and the data is not necessarily applicable to automobile “failures.” Such events as an
engine failure which does not produce an accident would not be reported here. But, in fact, the
same failure which does not cause damage in the single-vehicle case, if the driver is able to remain
near the roadway, can cause a multi-vehicle accident in a platoon system. For this and other
reasons, the sources of failure in the IVHS will depend on the new components which are
designed and built for platoon system implementation.

2

1.3 WI-IS Vehicle Failures

The Intelligent Vehicle Highway System has been studied and simulated by many sources
over the past several years. Mechanical components of the system are being analyzed for their
effectiveness in low-order platooning experiments in mid- 1994. At the present time, control laws
are being devised for testing under laboratory conditions, and it is premature to consider effects of
failures on the system performance. But such failures must be examined, and this section of the
report discusses and quantifies these failures.

The IVHS couples a large number of mechanical and computer computer components,
involving both hardware and software. All of these components can deviate excessively from their
hypothetical performance, leading to an unexpected coupling, consequent unacceptable
performance and failure of the system. It is the responsibility of the analyst to determine such
deviations by simulation, and to find the best estimates of the performance under plausible
assumptions regarding the components capable of failure.

The sources of such failures are listed in Table 1, with representative examples. This list
illustrates the general causes of failure, but is not explicit because the final form of the system and
its components have not yet been specified.

Table 1 - Possible Failure Sources in IVHS

1. State sensor (e.g., of r-pm, position, speed) failures
2. Control system component (e.g., brake, steering) failures
3. Algorithm (e.g., excessive simplification) failures
4. Computer (e.g., coding, limitations to speed) failures
5. Environmental modelling (e.g., ice, fog, highway) failures
6. Operational (e.g., fuel, tire, cooling system) failures
7. Dynamic modelling (e.g., order, nonlinearities) failures

The indicated headings may be coupled. For example, a control system failure may be due
to an environmental cause, and a dynamic modelling failure may be due to an operational cause.
These headings merely suggest the large number of sources of failure.

The platooning of automobiles involves many components which have never been used
before in the manner required. Component failure rates are unknown, because they have not yet

3

been built or tested in sufficient quantities. But whatever the failure or cause for emergency control,
estimates of each vehicle’s state are needed. These estimates may have to be as accurate as the data
allow, because intervehicle spacing should be accurately controlled, and because root mean squared
errors are helpful in defining failures. This implies the use of a minimum variance or Kalman filter.

The output of the filter is used for identification of failures by the combined use of esti-
mates and uncertainties. An emergency has occurred when a state takes a value which is sufficiently
different from the current estimate. This difference is measured as a multiple of the root mean
squared uncertainty. That is, since the dynamic equations include all sources of disturbance apart
from such emergency or failure causes, the estimates must imply a nominal data vector and its
uncertainty. When the data sequence is “extremely” far from the expected or predicted value, a
failure is assumed to have occurred, and whether the failure is due to mechanical breakdown or to
a broken sensor is a question which can be answered with enough redundant data. Successive data
of the same kind raise the probability of correct identification of the cause of this failure, but the
definition of failure is in terms of the root mean squared errors. Speed of identification is also an
important characteristic.

For the conjectured platoon configuration, these failures can be grouped under four head-
ings, for motion in two dimensions,

1. Longitudinal data (engine, actuators, sensors, software)
2. Longitudinal control (engine, brake, software)
3. Lateral data (steering, sensors, software)
4. Lateral control (steering, tires, software)

The approach taken here is to develop estimates of states by coupling the dynamic equa-
tions of the estimate in the same way as the actual state components are coupled. For any math-
ematical model of the dynamics, which includes table look-ups, saturations, dead-zones and other
nonlinearities, the Kalman filter is the “best” way of coupling the states and the estimated states
through the data, in that the root mean squared error in the estimate is a minimum. The motivation
for this coupling is that, at any time, the control used is a function of the state estimate. This
estimate depends on the noisy data, which is itself a function of the actual state. The measurement
process introduces noise, so that no state can be precisely known, and the mean-square error in the
estimate is also updated at each data reading, according to the covariances in the data and in the
state estimate.

The important requirement in the development of this filter is that the error in the estimate
of any state must be small enough that a linear equation describes its time variation between data-
updates. The state itself can vary with time in any manner, and the engine, pump, and tire
dynamics include several nonlinear processes. So, the basic dynamic vector equation for the state
x is nonlinear, of the form,

where the control vector is U, and 9 represents random noise inputs. The dynamics of the
estimated state i follow the same equation, but without the random uncorrelated noise q,which is
presumed to have an average value of zero, and so cannot be predicted. The error or difference
between the derivatives of state and its estimate is written as the following linear function or
derivative of dx,

u!i = f(x,u,q) - f(iJ.4) = <$ / dx)u!x + <$f / dq)dq (2)

This is equivalent to a difference equation, corresponding to a sample time dt,

ak(n+l) = F h(n) + G q(n) (3)

where F and G are matrix functions of the current state estimate and the time-step interval. The
covariance equation uses these matrices for the time-update, which means that the dependence of
the error has the small-perturbation format of Eq.(3). The error in the approximation in general can
be determined only numerically, as discussed in Section 2.

1.4 Detecting Vehicle Failures

Because of the short response times characteristic of the operational IVHS, it is obviously
essential that any significant vehicle failure be determined as soon as possible. A significant failure
is a “large” and “rapid” departure of one or more of the vehicle states from the nominal operating
condition. When the effect of a failure is large enough, such a failure is detectable by statistical
means. That is, when an estimated state is “unreasonably” far in value from its predicted value,
relative to the current rms uncertainty, it is because the actual state is inconsistent with the controls
applied to it, and other forces are present in the dynamics. A simple example failure illustrates the
basic approach taken in this study.

5

When a discontinuity occurs in the dynamic equations, indicative of a abrupt departure of
the system from the nominal operating condition, a failure is the likely cause of the discrepancy. If
the estimated engine rate, the rms uncertainty in the estimate and the current commanded accelerator
displacement are inconsistent with each other, because the engine x-pm has dropped by 20% for no
apparent reason, the failure identification algorithm should recognize this failure. The ingredients
of this identification task are the estimated value and its rms uncertainty, both based on the
minimum rms error or Kalman filter output, which couples the control inputs, the dynamic
equations of the estimated state, and the data, with the rms errors in the current estimates and the
data. The dynamic equations have been developed by researchers at U.C. Berkeley, but the
estimated system dynamics and the statistical features of this estimate have not been examined until
now. The following section discusses the Kalman filter, and how it is applied to the failure-
detection problem.

6

2. KALMAN FILTER DEVELOPMENT

2.1 Introduction

The derivation of the Kalman filter will be shown in some detail, for the longitudinal
coupled motion of a four-vehicle platoon. The lead vehicle operates independently of those behind
it, and its perturbations from idealized motion are included in the platoon dynamics. But the lead
vehicle does not use a filter to estimate its state, because its data and control are considered to be
sufficiently accurate, particularly since its speed control system is independent of its spacing from
the other vehicles.

Subsequent vehicles in the platoon have longitudinal motions which depend on the control
accelerations input by accelerator and brake, which depend on the motion of vehicles ahead of it,
and on external inputs due to lead vehicle motion, road slope and surface imperfections, wind, and
other perturbations. The controls depend on the vehicle estimates of the associated state
components. The filter can be expressed in terms of the state components of individual vehicles,
with external noise.

While all of the states of each vehicle are estimated, each vehicle need be concerned only
with its own seventh order state, and the control inputs of both deterministic (feedback
accelerations) and stochastic (zero-mean accelerations). The data for each vehicle can be any
subset of its seven states (i.e., from one to seven quantities each sample time, with appropriate
covariances), augmented by the range and range rate with respect to both the preceding vehicle and
the lead-vehicle. Since vehicle position is a function of all of the other six states of the vehicle
being controlled, its estimate will be improved by any data on the other states.

As many states as possible should be measured, and in the general case, presence or
absence of data can be implied by the rms error in this data, so that when a state is not actually
measured, its data uncertainty in the filter code is set at a large value. This implies that the
associated “data” is worthless, but the simulation code is written as if it were present, for use if and
when the uncertainty is reduced to a useful level.

The state estimates and their rms errors are output by the Kalman filter. The filter has the
purpose of developing minimum-variance estimates from noisy data, while accounting for the
dynamic noise present between data points. The “quality” of the data is implied by the variance in
the data noise, so that, when the data is of high accuracy, relative to that of the prior estimate, the

7

uncertainty is sharply reduced at the time of this data. If driving noise is present, this means that
the next data will have a smaller effect on the uncertainty. On the other hand, if all data associated
with a specific state is either absent or of poor quality, the associated covariance is not affected by
this data. The eventual reduction in uncertainty of this state is then a function of the dynamic
equations linking it to the covariances of the other states. In this way, the velocity can be estimated
from successive position estimates, even when velocity data is absent. Coupling also occurs
among the states in less obvious ways, as implied by the equations of motion.

2.2 Longitudinal Dynamic Equations

The dynamic equations for a single vehicle in the platoon are rather complex, even when
only longitudinal dynamics are considered. A seventh-order system has been defined by Hedrick,
et al. (1994), and the analysis in this Reference is relevant to both the filtering and control
problems. The important assumption made here with respect to the filter development is that the
estimated state and the actual state follow the same nonlinear dynamic equations, with the
difference between them modelled as zero-mean driving noise. The listings in Appendix 2 show
this as sequential calls to the numerical integrator subroutine ruk, in the main program long-sim.c.

The states of a vehicle in the longitudinal degree of freedom are the following:

mair Air mass in intake manifold, kg

weng Engine speed, l/s
velx Longitudinal velocity, m/s

POSX Longitudinal position, m

wwhl wheel speed, l/s

alpha Throttle (accelerator) angle, deg

Tbrk Brake torque, N-m.

The input longitudinal control vector components are effectively those available to the
driver of any vehicle; i.e., the control vector has the components,

alp&
Tbrkc
rgear

Command throttle angle, deg
Command brake torque, N-m
Gear reduction ratio

The third control can take only four discrete values in the Berkeley code, and it has been

8

ignored in the results to follow, because the limited scope of this study means that the speeds of the
vehicles remain in a narrow band, making gear changes unnecessary. On the other hand, the tight
control required over the speed makes the brake and throttle angle commands very nearly
simultaneous. When the time-lags of brake and throttle controls are accounted for, the actual
values of brake pressure and accelerator angle input occur together. This is not a desirable,
efficient, or economical way to control a vehicle, but it is the effect of the tight performance
requirements of the platoon position control system.

The time derivatives of the seven states of any vehicle are coupled, in the following ways:

mair = fI(mainweng,alPha)

weng = .fdmair,weng,wwhi,alpha)

velx = f3(velx,wwhl)

posx = velx

wwhl = fs(weng,velx,wwhl,Tbrk)

alpha = fb(alpha,alphac)

Tbrk = f#brk,Tbrkc)

The command or control inputs are the accelerator deflection and brake torque, alphac and
Tbrkc, which propagate to actual deflection and torque, and which then influence the derivatives of

air-mass, engine speed and wheel speed. The commands are derived from the command
acceleration, which is a linear function of positions, velocities and accelerations of prior vehicles.
The velocity rate changes due to the change in wheel speed, and finally the position rate changes
due to the velocity change. This position rate is modified by four successive integrations of control
changes; i.e., the transfer function relating position to accelerator change is of fourth order. Now
it is necessary to show how the accelerator and brake torque controls depend on the states.

The relative motion of vehicle 1 with respect to the lead vehicle has the order of the control
system, and is modelled by the following longitudinal acceleration (the gain-notation of Chang,
1993, is used here),

9

a(l) = q2 i(I) + q1 g(l) + ka aL + cp[POS, - @car +Dsafe) - p&(l)1

+q3 [vel, - vL2,(1)]+ cf aL , (2)

where
i(l) = pas, - (Lear + Dsafe) - pW1) ,

i(l) = vel, - vi?l,(l) (3)

For the second controlled vehicle, the control is the same as for all succeeding vehicles, and
the control acceleration is the sum of six independent terms. Three are due to the motion of the
preceding vehicle, and three are due to the lead vehicle. This command acceleration for the n*
vehicle is:

ii(n) = q2 (n) k(n) + 41 i? (n) - ka ii(n-1) + cp [pas, - n(Lcar +Dsafe) -PC%, (n)]

(4)
+ 43W, - vWn)l + cfaL ,

and implementation of this control law requires that estimates be available for the distances and
their derivatives. The optimal estimates use all of the data, accounting for coupling between states.

The position transfer function of vehicle n with respect to position of the lead vehicle and
the prior vehicle is

X(s) =
CfS2 + qss + c

D(s)

PX s)+k’LS2+w+4
L(

D(s)

2 q+(s) 3

where the characteristic function in the denominator is quadratic:

D(s) = s2 + (ql + q3)s + (q2 + cp>. (6)

An additional term (44/s) would be added to D(s) if the error integrator were included. The
stability characteristics are not visibly different when this term is included, and it is ignored in the
results to be shown in the following section of this report.

The modifications to the code needed for filtering concern noisy data and the statistical
properties of the estimate. Its time-update is given by the same differential equations describing the

1 0

actual state, and its data update uses the current covariance of the state with that of the data. The
covariance matrix at any time describes the correlation of the error vector dx, which varies with
time according to Eq.(3) of Sec.l.3. This error vector has the expected value of zero. The
covariance matrix is estimated by using the computer code in special ways to be described. The
post-data covariance at any time is used with the mean-square disturbance noise and data noise to
update the covariance at the next data time. The interval between data readings allows the
covariance to grow with time, according to the system dynamic equations, while the data causes a
discontinuous reduction in covariance. The relative magnitudes of the positive and negative
changes over a data cycle may yield an increase or a decrease in the mean-square error, depending
on the current state, data and parameters. The post-data covariance variation will be illustrated
numerically in Sec. 3.5.

The initial value of the covariance need not be accurately known, since it will typically
initiate a brief (5 s to 10 s) transient before settling to a final value, assuming that the dynamic
parameters (equations of motion, driving noise levels, etc.) and data parameters (e.g., sample
interval, data noise levels) are constant. This constant-parameter assumption has been made in the
numerical results to be shown. Since the data components are assumed to be samples of individual
states (rather than nonlinear functions of states) any parameter modification has an apparent effect
on the steady-state covariance. Reducing the time interval between samples must reduce the
covariance, for example, and raising the driving noise level must increase it. Typically, however,
only the sign of the change is known, and an additional use of the simulation is finding the size of
this change due to an assumed parameter variation. This is incidental to the failure-detection
problem.

The time update of the covariance is found numerically, by examining the columns of the
transition matrix F, defied by the discrete state equation,

dx(i+l) = F dx(i) + G du(i) (7)

where uk and du are the differences between actual and estimated state and control vector& The
vectors themselves have the following components

X = [mair weng velx ~0s~ whl a l p h a Tbrld’ ,
(8)

u = [al@% Tbrkc Rgearl’

11

The F and G matrices in Eq.(7) are determined by close examination of the U.C. Berkeley code
named long_sim.c. The equations of motion are complex, and linearization to the form of Eq.(7)

requires that the matrices be estimated numerically at each time. The matrices have the form shown
below, where the asterisk * denotes a nonzero element in the matrix:

F=

r‘* * 0 0 * * 0’

* * o o * * o
o o * o * o o
0 0 * * 0 0 0
o * * o * o *
o o o o o * o
-0 0 0 0 0 0 *

, G =

‘0 0 0
0 0 *
0 0 0
0 0 0
0 0 *
* 0 0

-0 * 0

(9)

These non-zero terms are found by numerical methods. The terminology F(1,2), for
example, is the partial derivative of the first state mair(i+l) with respect to the second state,
weng(i). This is approximated numerically by making a small change in weng(i) and noting the
change given by the transition matrix to the updated value of mair(i+l). The ratio is then an

approximation to the partial derivative,

F(l,2) = dmair(i+l)l&Veng(i) (10)

= b%ir (weq + dw,) - r&wenJ / dw,dt

This computation cannot be performed analytically, since the relation between the states is specified
only in terms of tabular data for a specific vehicle at a specific time. An exception occurs with the
accelerator and brake controls, which are assumed to depend linearly on the command value and
the current value of the accelerator deflection and brake pressure. The corresponding matrix
element is then known analytically.

From an equilibrium condition, a change in command accelerator position has the following
sequential effects, as seem by the non-zero terms of F and G (each step corresponds to an increase
in dynamic system order):

1. alpha-c changes alpha

2. alpha changes mair and weng

12

3. Weng changes WWhl and velx

4. velx changes T&k and posx

The forward velocity dependence on command accelerator position is of third-order, and
the position dependence is of fourth-order. This order is the same as the number of the line on
which the variable first appears; velx first appears on line 3, etc.

The same equation updates the estimated state and the actual state, so that the difference or
error h(i) between actual and estimated state at time i follows the vector equation,

a!x(i+l) = F h(i) + G q(i), (11)

if the transition and control matrices have the same numerical values for both the state and its
estimate. The noise q(i) represents the difference between the commanded and the actual control
inputs, and it can also represent external noise signals not otherwise represented in the equations.
An example is bumps in the highway surface, or wind gusts, both of which cause small deviations
in the speed not present in a simplified dynamic model. It is assumed to have zero mean value in
the analysis (and this assumption can be verified or tested), but its mean-squared value should be
specified as large enough to give a conservative estimate of the performance. The covariance
V(i+lli) is the expected value of the outer product dx dx’ at the time i+l, based on the data to time
i. With E@(11) this is derived as

V(i+lli) = F V(i Ii) F’+ G&G’ (12)

where Q = E[qq’] is the covariance of the driving-noise vector, assumed known. As noted earlier,
the noise vector can have more components than the control vector u. In the present simulation, q
is partly due to differences between actual and commanded deflections in accelerator and brake,
and partly due to external sources; e.g., accelerations induced by road surface and wind The
resulting time-update in Eq.(12) is equivalent to a increased uncertainty between data points, which
will be at least partly reduced again at the next data time.

The data-update of the covariance and of the state makes use of the data as a sequence of

scalars at the same clock time, For each such scalar data, the covariance is reduced according to

13

V(Q) = [I - K(j) h(j)2 V(ilj-1) . (13)

Here, (ilj) abbreviates “at time i due to measurement j.” The filter gain is a function of the prior
accuracy of the covariance V(i) and the mean-square error in the data rr(j);

This is a vector, typically equal to one of the columns of the covariance matrix, since the h vector is
made up of zeros, except for one element equal to 1 or -1.

It is assumed that the data available for controlling the longitudinal position is the nine-
component vector formed of the separation, its rate, and the seven individual states for that vehicle;

.
y=[e e mair weng Posx v e l x wwhl alpha Tbrkl’+ r (13

where, for vehicle i,

e(i) = posdi - 1) - &car + Dsafe) -Posx(i)

e(i) = velx(i -1) - velx(i)

(16)

The data vector here involves the exact states, plus noise, while the control vector in Eq.(2) and (4)
uses estimates for the state. Since the data is a linear process, it can be written as

y=Hx+r ,

where the H matrix is a set of row-vectors denoted h, each having one non-zero element, and the
vector r is the error in the data due to measurement uncertainty. This matrix is independent of the
state, because each component of the data is proportional to a specific state component, and there
are no computations required in determining it. An advantage of the present formulation is that no
matrix inversion is needed in Eq.(14), since the denominator h’Vh + rr is positive; it is the sum of
diagonal elements of the covariance of a state estimate and of a data. The constant elements in the
gain definition are irrelevant, since the data update of the estimate deals with the difference of actual
and predicted data, so the constant terms cancel; i.e.,

Z(ili) = !?(ili - 1) + K(i)[y(i) -j(i)] (19)

14

Here the time index is i, and the optimal gain K(i) is given in Eq.(14) in terms of the covariances
of the state and of the data. This vector-matrix equation is a more compact version of the data-
update, since here the gain matrix has the number of columns equal to the number of independent
data (here assumed to be nine).

Notice that the steady-state condition of the filter may justify constant gains in the data-
reduction process, which would eliminate a large amount of on-line computation in the filter
implementation. Whether this approximation is valid will be examined in Sec. 2.5.

The components of the data vector are not specified in terms of specific sensors, but a
paragraph from p. 57 of Hedrick, et al. (1994) is relevant here:

“Differential vehicle information test data was available using a sonar system
mounted at the centers of the front grills of the vehicles. The sonar system was
capable of determining range . . . Soon to be available are a radar system and an
optical triangulation system. The radar system will provide range, closing rate,
and absolute vehicle speed.”

Earlier PATH reports indicate that bias in the radar data can be significant, but the only apparent
method of correcting for this bias is through use of centerline-sensors used by each vehicle for
lateral data. This data is not simultaneous for the two vehicles and does not appear to be useful for
this purpose. On the other hand, sonar and optical system data characteristics may have more
nearly zero-mean error. If these are also not expensive, either one is suitable.

2.3 System Matrix Computation

The dynamics and control matrices in Eq.(7) of the prior section are updated with time. At
any time, the code with defines the derivatives of the states (Appendix 2) shows that the
acceleration is

velx = Cfnactive - Ca v& - Froll-frict + alon)l~A~S,

where

ftractive = Kt slip

15

slip = 1 - velx l(Hr wwhl) lslipl c= 0.15

Froll-pict = constant = 187 N-m,

and where alon is the longitudinal acceleration bias due to the local slope of the roadway. This
component of local gravity depends on thelocations of the vehicles relatgive to the slope changes in
the highway. Here these changes are specified to occur discontinuously at input positions along
the highway. Winds and road roughness are disturbances to be added to these equations.

Since x(3) = velx and x(5) = wwhl, it follows that two of the elements of the transition

matrix are
F(3,3) = 1 + (&elxdotl&el~dv&t

(2)

F(3,5) = (&elxdotldww~)dt,

and the approximations to the derivatives are found as

. .
F(3,3) = 1 + (velxpert - velx)ldvx dt,

(3)
F(3,5) = (velqert - velx)ldww dt

The individual perturbations are found using modifications to the current states, with the

perturbation corresponding to the individual column of the transition matrix. For example, a
perturbation in vehicle speed occurs in column 3, while column 5 relates to a perturbation in wheel
speed. The perturbations dvx and dww allow computations of the perturbed derivatives of veZx.

This procedure is used for the fist five columns of the matrix. The last two columns describe the

simpler dynamics of the accelerator and brake, and no approximation is needed for the last two
diagonal terms;

F(6,6) = exp(-dtlTAU_THROlTLE)

F(7,7) = exp(-dtlTAU-BRAKE),
(4)

in the notation of the U. C. Berkeley computer program, long-sim.c. The control vector is
accelerator deflection and brake pressure, so the G-matrix gives the effect on the updated state of

16

the current control. As implied by the previous discussion, these elements are

G(6,l) = 1. - exp(-dtlTAU-THROTTLE)
(5)

G(7,2) = 1. - exp(-dtlTAU_BRAKE) ,

where the time constants (TAU) have values 0.011 s and 0.0756 s, respectively. These functions
and all remaining elements of the F matrix are computed in Appendix 2.

2.4 Revision to Simulation Program

The computer program Long-sim.c has been developed by P. Yip in 1993, from earlier
Fortran programs written by others. This is a code of some complexity, which has now been

edited and expanded to include variations in the estimated state and the covariance for each vehicle
in the platoon. The added portions of the code are indicated by the asterisk * in Table 2.

Table 2 - Simulation Program with Kalman Filter

* Read data and driving noise levels, initial state estimates and covariances
Time loop

Vehicle loop
* Data update: Improve estimate and covariance-

Controller: Define controls with state estimate
Simple: Define state time-derivative
Time-update of state: Runge-Kutta integrator

* Simple: Define state estimate derivative
* Time-update of state estimate: Runge-Kutta integrator
* Cov-timeup: Time-update of covariance

End vehicle loop
End time loop

This revision more than doubles the computations needed, because of the statistical aspects
of the problem. Both actual and estimated states must be integrated, and the covariance matrix
diagonals are the mean-square errors in the estimates. The minimum-variance estimate or Kalman
filter combines the imperfect data with the imperfect a priori estimate to yield an estimate which is
“better” than either of its components. The simulated dynamics, estimation and control problem

17

also permits the error in this estimate to be computed, and it should be consistent with the rms
error found from the covariance matrix. The error is never known in actual applications, of
course, so only the covariance can be computed on-line to give an estimate of the error. In our
simulation, for which noise is artificially added to the otherwise “perfect” data, it is important to
verify that the difference between the actual and estimated states be consistent with the rms error or
standard deviation as in Fig. 2.1. Notice that the estimation error in this typical case is everywhere

time = 10.00
eps m - a i r w-eng v-car x-car w-whl A-act T-brk

E$:,’
W21 CM51 dxC61
sW1 dxc31 2iaI sdP1 sd[61 ~#

-0.331 4.461 284.058 25.196 238.681 78.744 45.914 10.713
-0.0032 1.6794 0.2908 0.0339 0.7123 0.2080 -0.3709
0.0138 2.2268 0.1962 0.0204 1.2010 0.4612 2.3151

-0.236 4.606 283.759 24.911 232.445 77.936 53.593 28.325
-0.0080 0.7954 0.0209 -0.0211 0.3068 -0.1409 -1.1904
0.0887 1.9959 0.1962 0.0204 1.2719 0.4612 2.3151

-0.174 4.542 278.895 24.614 226.272 76.818 49.949 45.524
-0.0022 1.2026 -0.1534 0.0346 0.4080 0.4311 0.2975
0.0657 2.0330 0.1962 0.0204 1.2670 0.4612 2.3151

Fig. 2.1 - Actual States, Estimation Errors and Standard Deviations

less than two standard deviations, or 2s, twice the square-root of the diagonal of the covariance.
The filter would not be consistent, if substantial runs of error estimates were much smaller than 1s
or much larger than 3s. Given the large number of numerical descriptors of the IVHS vehicle, the
validity of the filter cannot be verified except by these methods. A certain lack of rigor must be
accepted here, because the system has a number of nonlinear components, while the error in the
estimate is modelled as normally distributed, of zero-mean and linear in its components. These
assumptions are certainly not strictly true, but it is hoped that they are approximately so, because
the on-line accuracy is to be judged through the covariance, as will be shown in Section 3.

2.5 Platoon Dynamics

The platoon dynamics include an intuitively evident feature: Since the motion of a vehicle
depends on the motion of all vehicles ahead of it, and on none of those behind it, the order of the

dynamics of vehicle n is n times the order of the first vehicle. Hence, if the dynamics of engine,
wheels, etc., are ignored and the data are assumed perfect, the acceleration of each vehicle equals

18

its command value. For simplicity, this is here assumed to be a linear combination of position and
velocity error relative to the prior vehicle, or, in the notation of Sec. 2.2,

ax(n) = qitposdn-1) -posx(n)] + q@elJn-1) - velx(n)] , (1)

so the transfer function relating the absolute positions of this vehicle and the one ahead of it is,

fqs) = 42s + q1 (2)
n-1 s2 +q,s+q,

The transfer function of vehicle n position and that of the lead vehicle is just the product of it
consecutive such functions,

(q2s + 41)”

(s2+42s+q,Y
(3)

This function is based on a lower-ordered dynamic model, but it implies an interesting fact.
The repeated poles and zeros correspond to a transient response at t = 0 which has the same
damped sinusoidal components as that of E@.(2), but they are multiplied by P-I. This means that
the transient envelope of a vehicle far from the lead begins small and grows larger, due to F-l, and
ends small, due to the exponential damping implied by the term q2s in the characteristic equation.
But at some intermediate time, this envelope can be “large”. The component magnitudes of the
response depend on the details of the feedback gains which have been abbreviated in Eq.(3) above,
but the “analysis” here may explain the so-called “Slinky” effects observed in multi-vehicle
simulations by a fixed observer. The transients implied by this multiple-root function have been
modelled numerically, but they appear to be of only incidental interest, as far as the estimation
problem is concerned.

19

3. SIMULATION OF DYNAMIC MODEL TRANSIENT

3 .l Introduction

The platoon computer simulation has the potential of refining the design of the control
system in several ways. In the short time it has been operational, it has been used to show that
nearly all of the nominal parameters of the filter reach a steady-state in a few seconds. This may
mean that constant gains can be used in the filter without seriously affecting performance. Other
conclusions can be expected as further use is made of the estimator.

The present version of the code is used in conjunction with several data files. These files
include the initial values of the states, their estimates and the rms uncertainties of the estimates.
Other data relates to the noise levels assumed to be present in the dynamic equations and in the
data. The values used for illustrating the filter have not been verified or discussed with others, but
have been taken from references dealing with MIS parameters. New parameters such as driving
noise levels are given plausible values, but the filter itself has been operational for too short a time
to allow a verification of these input parameters. Hence, this portion of this report concerning
numerical results merely suggests the types of results to be expected from the filter.

3.2 Functions Needed for Filter Implementation

In this Section, a nominal operating condition is chosen to illustrate the forms of the output
from the program, as it combines the estimation function with the control and dynamics functions.
Program long-sim now includes subroutines which initialize the state covariance matrix and the
disturbance noise and data noise covariances. Each run of the simulation requires the following
input parameters, as given in Appendix 2:

1. Integration step, final time, write interval and control interval. Initial values of states
and their estimates. Main program long_sim 41s the data file, four-cardat

2. Noise seed, data matrix, driving noise covariance, initial state covariances for all
vehicles, rms data noise. Function read.c calls initial-data&t

3. Gains for feedback acceleration: prior vehicle acceleration, relative velocity and
relative position, and lead vehicle acceleration, relative velocity and relative position.

20

Function controller.c

4. Values of slopes and locations of slope changes along highway. Function
simple-1ong.c

Here, specific numerical outputs of the simulation code will be shown for a specific profile
of lead-vehicle velocity on a typical segment of highway. The lead vehicle follows a speed profile
which is initially constant, followed by a linear increase to a higher constant value. This higher
level is maintained briefly before decreasing linearly with time to the original value. The departure
by vehicle n from the ideal separation Dsafe is defined by the distance

e(n) = posdn-1) - (Lear + Dsafe) - posdn), (1)

where Lear + Dsafe is the desired value of the separation between the “front bumpers” of vehicles

n-l and n. The lead vehicle here has the index n = 0.

3.3 Control Gains

Each vehicle’s control system applies accelerator and brake inputs according to the linear
combination of positions, velocities and acceleration of own vehicle, prior vehicle and lead vehicle,
as given in Eq.(4) of Sec.2.2. Typical values for the feedback gains needed in this equation are

Cf=2, 43 = .5, cp = 5, 44 = 0, ka = .5, 41 = .5, q2 = .5, (1)

and these (Eq.(6), Sec. 2.2) correspond to a quadratic characteristic equation for which all
coefficients equal 1. The integral controller is ignored here; the natural frequency and damping
ratio are 1 rad/s and 0.5. Higher damping may be required, for example by changing ql to 1 .O
and q3 to 1.5; these changes gives the characteristic equation real roots. Limited tests with these

gain changes showed only that the noise aspects of the control problem are more significant; i.e.,
the gains tabulated above give “good” results with respect to mean-squared departure from nominal
separation; e = 0.

The control of all vehicles depends on both the preceding and the lead vehicles, but the
sensitivity to the preceding vehicle is greater than that of the lead vehicle, as it should be. The six
gains in the control equation multiply signals which are near zero; hence the command acceleration

21

for each vehicle is near zero, on average. When the lead vehicle accelerates or decelerates, the
imbalance in Eq.(2) yields a command acceleration to all of the subsequent vehicles, which is then
processed with time according to the transition matrix. The additional control which may
sometimes be needed, beyond those discussed here and in Finch (1971), is proportional to the
integral of the error. This would control the effects of bias forces due to road slope, wind, or other
cause of acceleration on one vehicle which is not present at the same time on all of the preceding
vehicles. It could be an important contributor to the error, but its significance has not yet been
estimated. It is noted again that control gains could be found so as to minimize a specific error
measure. Answers to other aspects of the control problem solution are more urgently needed at
this time, however. Since the emergency-identification problem deals with state estimates and their
rms errors, rather than the performance resulting from a choice of gains, feedback gain values are
of secondary interest.

3.4 Filter Gain Variations

Numerical results of the implementation of the filter in a nominal four-vehicle configuration
are discussed in the following two sections of the report. The platoon is represented in the
longitudinal dimension as having initial locations (2, -4, -10, -16) m, and with a common initial
speed equal to 24.5 m/s. The typical run of 20 s is sufficient to show several cycles of physical
motion of the vehicles. Here, we are concerned with the filter gain variations during the transient
prior to steady-state operation. As shown in Fig. 3.1, filter gains derived from the output of the
digital code have short-term transients preceding their steady-state values. These values depend on
the dynamic equations, the data equations and all noise-levels.

Nearly all of the filter gains are constant to within 1% after the first 5 seconds of the filter
implementation. But, because the dynamic equations are not generally linear, certain gains vary
over a 20% to 30% range, even after 20 s of transient time. These gains relate to the engine speed
in particular, which is obviously coupled to tire speed, velocity and position. They occur in part
because the tabular engine data includes discontinuities and other nonlinearities encountered in the
braking-accelerating short-headway platoon environment, while the covariance equation assumes
that the dynamics are piecewise linear. In thesefgain matrices, the row is the data component (Eq.
(7) of Sec. 2.3) and the column is the state component (Eq.(2) of Sec. 2.2).

Two significant features are apparent. First, the initial gains are quite different from the
later values, and second, those in column 2 (engine speed dependence on data) vary long after the
others have reached steady-state values, at 5 to 10 s .

22

Time = 0.

mair Weng vel, POSX ‘+‘whl alpha Tbrk

!iE
0:001
0.000
0.000
0.000
0.000
0.001
0.000

0 . 0 0 0 0.000 -.984 0.000
0 .000 -.996 0.000 0.000
0 .000 0.000 0.000 0.000
0.167 0.000 0.000 0.000
0.000 0.000 0.136 0.000
0.000 0.138 0.000 0.000
0.000 0.000 0.000 0.198
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

E-E
0:ooo
0.000
0.000
0.000
0.000
0.854
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.054

. . .

Time = 20.

0.000 -.061 -.264 -.009 -.089 0.000 -.005
0.000 -.OOl -.963 -.OlO -.118 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.069 0.000 0.000 0.013 0.000 -.OOl
0.000 0.009 0.002 0.001 0.009 0.000 0.001
0.000 0.000 0.134 0.001 0.016 0.000 0.000
0.000 0.209 0.003 0.001 0.477 0.000 -.018
0.001 0.000 0.000 0.000 0.000 0.854 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.054

Time= 21,

0.000 -.063 -.264 -.008 -.0894 0.000 -.005
0.000 -.003 -.963 -.OlO -.113 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.05 1 0.000 0.000 0.019 0.000 -.OOl
0.000 0.009 0.002 0.001 0.009 0.000 0.001
0.000 0.000 0.134 0.001 0.016 0.000 0.000
0.000 0.328 0.003 0.001 0.430 0.000 -.018
0.003 0.000 0.000 0.000 0.000 0.854 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.054

Fig. 3.1 - Filter Gain Matrices at Three Times (Vehicle 2)

3.5 Representative Filter Code Results

The velocity variation of the lead-vehicle is shown in Fig. 3.2, over a 20 s time interval.

The subsequent vehicles closely match this speed, as shown in Fig. 3.3, and the corresponding
position errors are as shown in Fig. 3.4. Notice that these position errors are only partly due to the

23

errors in the estimates of the individual terms in Eq.(2) above; i.e., even if the estimates were
perfect, position errors would exist due to limitations of the control system.

30

28

22

20

0 5 10

time, set

15 20

Fig. 3.2 - Velocity Variation of Lead Vehicle

2 4

VELOCITY ERROR RELATIVE TO LEAD VEHICLE.
kits: neters, SeFwxls, cbzg (gains deterrrine #celeratian&mit erral
Separatim=tr initial Speed = 24.5, flutput fife: Lmn~su t .rn.dat
Sains. Relative Separation: Friar Vehicle = -5, Lead Vehicle = .S

Relative +ecl: Rinr VehiElie 3 2., Lead Vehicle = .S
Rccelet-ation: Prior Uehicte = .Sr Lead Vehiole = .S

-O.Mto i01.0

W-WI.

v3-VL
W2-WL

-

6.U 8.0 x2.0 as.0 20.0

Time, seean&

Fig. 3.3 Errors in Velocity for Consecutive Vehicles

25

2 Et-a& Window

DE-PARTURFS FROM MOM1 NAL SPACING - GXKID DATA

llni ts: aeterst secods, deg (gairs determine amelaationAmit error>
!iqxatim=2, initial Speed = 24 .5 , ilwtpwt f i l e : L0rtgdut.iE.dat ~
Gains, Relative -ation: Prior Vehiole = .5. Led Vehicle = .5

Relatiue Speed: Rq- Whicte = 2., Lead V e h i c l e = .5
ikcderatim: Prior Vehicle = -5. Lead V e h i c l e = .5

1.800

i.ooo

o.soo

o.ocm

-O.#x)

-1.om _
w.0 4 . 0 8 . 0 L2.0 16.0 2 0 . 0

line, secmds

Fig. 3.4 - Errors in Position for Consecutive Vehicles

26

Units: neten, SeEDnds, deg f&ins determine aaderatiadmit -1
Sepwation=2. Initial Speed = 24.5, Output file: Longsu t .01.&t
&ins, Relative Separation: Riw Vehicle q .f, Lead Vehicle = .S

ReIatiw Spefd: Rira Wehicfe = 2., Lead Vehicle = .S
hceleratim: Prior Vehicle = .5, Lead Vehicle = .S

-0.02s
0 . 0 4.l-l 8.0 l2.0 16.0 20.0

Fig. 3.5 - Errors in Estimate of Position
Data Errors 10 cm, 20 cm/s, rms

27

Units: netersr smmds, deg <gains deternine xceleratidunit errar
Sepzration=2, initial Speed = 24.5 , Output file: L~_rut.Ol.dat
6aim, Relative Sepxation: Priw Vehicle = .S, had Vehicle = .S

Relative M: Prior kkhtele = 2.. L e a d Vehicle = -5
lkceleration: Priw WGcte = -5, Lead Veh i c l e = .S

0.0 4.0 8.0 l2.0 16.0 20.0

Tine, seconds

Fig. 3.6 - Errors in Estimate of Velocity

28

Sepsatiom2, Initial Speed = 24.5, Output file: Longsut.Ol.dat
Gains. Relatiw Separation: Riw Vehicle = -5, Lead Vehicle q .5

Relatiw sp eed: R iw Wehic te q 2.. Lead Vehicle = .S
kceleratinn: Prior Vehicle = -5, Lead Vehicle = .S

kits: meters, seconds, &g (gains htermine ;rcwlnati&rarit AlpI

1.00

O-SO

O.lXl

-o.so

-LOO

-1.Sa

ape-3

-- _~ ._~~
.O 4.0 8.0

Time, smads

Fig. 3.7 Error Variation with Bad Data

2 9

The errors in the estimates of position and velocity are shown in Figs. 3.5 and 3.6 These
are shown with the smooth curves representing the rms errors in position and velocity, as given by
the diagonals of the covariance matrix. For rms range data errors of 10 cm, the steady-state range
errors are about 1 cm for all of the following vehicles. The position estimation errors happen to be
much less than the position location errors shown in Fig. 3.4, so for these parameters the filter
provides slightly better results than those implied by assuming perfect knowledge of the vehicle
states. Numerical tests show that with plausible values for system noise inputs due to throttle,
brake and road surface, the rms relative position error in the steady state is usually about 10% of
the inter-vehicle radar error. This conclusion implies that filtered data from “inexpensive” sensors
could replace unfiltered data from “expensive” sensors.

As the accuracies of the sensors decrease, the average performance of the system must also
decrease. When the position and velocity errors are increased to 10 cm and 100 cm/s, and all of
the other sensors are given large rms errors (i.e., the corresponding data is absent), the oscillations
become extreme, as illustrated in Fig. 3.7. This illustrates that the control data can be poor, even
when it is filtered optimally.

A comparison test relates to the use of data from the lead vehicle. In Table 3 are shown the
mean and rms displacement errors in m (for two runs), both with and without lead-vehicle data.
The data from the lead vehicle generally has a beneficial effect on the error and its time-variation,
because both mean and rms errors are smaller. The improvement is small, however, and the
question requires further study.

Table 3 - Ermr Dependence on Lead Vehicle Data

With
Lead
Data

Mean Error RMS Error
e(l) -.ll, -.03 .07, .07
@) -.21, -.14 .08, .08
E(3) -.03, -.04 .06, . l l

Without w -.ll, -.15 .08, .09
Lead @) -.12, -.12 .08, .ll
Data E(3) -.23, -. 19 .19, .15

30

4. CONCLUSIONS

Control of any real dynamic system is in terms of its estimated states, because feedback
signals depend on measured output. If the sensor data has errors which are inconsistent with the
need for accurate control, the sensors must be improved or the data must be filtered. When the
parameters of the data and the controller are approximately known, tests with the code derived and
discussed here will help in determining the performance to be expected. If performance is
marginal, in fact, it may be necessary to add this filter capability to that of the operational M-IS
system. In any case, the difference in performance obtained with and without a specific accuracy
of data can be calculated by running the simulation with the filter under two conditions,
corresponding to “good” and “bad” data of the type in question. If the improvement due to good
data is very slight, and the good data is expensive, there is no reason for using it. This sort of
trade-off can be expected in a system as complex as the IVHS, and it is a valid reason for
developing a simulation which incorporates a filter.

The modelling of the dynamics in the U. C. Berkeley IVHS digital code is meant to be
descriptive of both individual vehicles and their sensors and control systems. This is implied by
the tabular data, the level of detail incorporated in the dynamics of the tires, the transmission, etc.,
and the high-order of the equations used to describe the transfer from one condition to another.
Since the IVHS is intended for use with large numbers of vehicles, it will be necessary to evaluate
system performance for vehicles very different from the nominal. It may therefore be possible to
determine lower-ordered near-linear representations of platoon dynamics which are adequate
dynamic models of the actual system. The point here is to acknowledge that the numerical
characteristics of the actual vehicles in a platoon are neither known nor equal from one vehicle to
the next. These variations may justify the use of simpler dynamic models, perhaps with
statistically variable parameters, for design and analysis purposes.

The technical research effort for the present study was originally proposed to take place
over a calendar year, at less than full time. Funding actually began some six-months after it had
been scheduled, and it was required to be concluded on July 1, 1994. The resulting three-month
interval was insufficient for the preliminary analysis, coding to augment the existing C-code
program originated at U.C. Berkeley, debugging and review of the numerical output of the many
programs written, and documentation. The dynamic equations had an unexpected complexity

which required long study before incorporation into the Kalman filter. Many potential study topics
have not yet been examined. For these reasons, the study results after the actual three-month

31

contract interval are fewer than those projected at the time of writing the proposal. But the solution
obtained for the coupled longitudinal motion provides a reference for the overall system simulation,
in that the computer sequence of data, filter, control, time-update has been specified.

The principal product of the work is a computer code which develops filtered estimates of
all of the longitudinal states for each of three vehicles in a four-vehicle platoon, together with rms
errors in these estimates. A plot package has also been developed to transform any of the filter
output parameters to graphical form. Future work with the filter should make use of this
capability.

32

APPENDIX 1 - SOURCES OF AUTOMOBILE COLLISION AND BREAKDOWN DATA

Information concerning automobile collision and breakdown data is obtainable from the
following sources. These agencies represent industry and consumer-interest groups which can
answer a wide range of questions dealing with both quantitative and more general matters.

NAME
AAA San Francisco

Librarian: R. Burke (MWF 8-5)
American Automobile Manufacturing Association
AAMA N. Highway Safety, Seattle, WA
Auto Safety, Washington, DC
Auto Safety Hotline
DOT Bureau of Transportation Statistics Hotline

Sue Anne Connaughton
Towed Passenger Vehicle Accidents

Lee Franklin
Motor Vehicle Defects

Terry Anderson
Tape files, consumer complains
Motor Vehicle Research Safety

Timothy Schaffer
NTSA

National Center for Statistics and Analysis:
Accident Investigation Division
Information Services

Grace Hazzard
Automobile Breakdown (Louann Hart)

National Highway Traffic Safety Association
Hotline: Automatic data transmission

Safety Systems Engineering and Analysis
S.A.E. International, Transportation Statistics
Transportation Safety Board Library, Barbara Post
U.C. Berkeley Library, Catherine Cortleyou
Vehicle Research and Test Center, Ohio

TELEPHONE
415-565-2102
415-565-2300
916-444-3767
206-220-7640
202-366-2850
415-744-3089

g-1-800-853-1351

202-366-5390

202-366-5235

202-366-2768

202-366-9550
202-366-5307

202-366-4820
202-366-4198
202-366-5558
202-366-4198

l-800-424-9393

202-366-4850
412-776-4841
202-334-2990
5 10-642-3604
513-666-4511

33

APPENDIX 2 - LISTINGS OF NEW C-PROGRAMS

Below are given brief descriptions of various C-code programs written to augment the
operational program written by U. C. Berkeley graduate student Patrick Yip, a coauthor of
Hedrick, et al. (1994). The second program is the revision to longsim, which has been expanded
to account for the additional computation required by/ the estimated state components.

1. Transition: Determine transition and control matrices for each vehicle. These are needed
in order to give time-updates to the covariance matrix. The numerical procedure finds the
elements of the F and G matrices by perturbational methods.

2. Simple-long: Highway slope variations with position on highway. These lead to bias
accelerations on the vehicles, which can differ when the platoon traverses a discontinuity.

3. Read: Parameter input values, including sensor matrix, mean-square driving noises,
initial covariances of states for each vehicle, and rms errors in data (equal for all vehicles)

4. Output: Print seven-component state, error in estimate, and rms error as implied by
covariance matrix diagonal elements. A typical segment of this subroutine has been shown
in Fig. 2.1.

5. The main program Longsim initializes the vectors and matrices, and begins a time loop
followed by a vehicle index loop, as in the original version of the code. The principal
addition is the Kalman filter, which essentially supplements the system dynamics with
those of the estimated system and the covariance. Longsim is preceded by data-update
and cov-timeup. Function controller now gives the command controls in terms of the
estimate of the state, rather than the state itself, as originally.

34

/*****************************++*****/
I****************++***+**** mNSI’l”ION *************************/

#include unath.h>
/**** simple longitudinal model based on fortran code by Swaroop */
/*

five state model(ma,w~eng,vel,pos,w~wheel) plus actuator dynamics

input: t - current time in set
x - state vector

ma (mass of air in intake manifold in kg)
w-eng (engine speed in rad/s)
vel-x (car velocity in m/s)
pas-x (car position in m)
w-wheel (wheel speed in rad/s)
alpha (throttle angle)
t-brake (brake torque in Nm)

u - control vector
alpha-c (commanded throttle angle)
t-brake-c (commanded brake torque)
rsear (gear reduction ratio)

output: dxdt - time derivative of state vector

written by P. Patrick Yip 7/93
VDL UC Berkeley
Mod by A. Met-z 6/94

****/
#include “simp1eJong.h” /* defintions for the states and controls for the

simple longitudinal model */
#include “simple-car.h” /* predefined parameters for the car like mass, wheel

inertia, etc. */
#include “car-data.h”
/* macro for bounding function: output=BOUND(input,upper~bound,lower~bound)*/
#define BOUND, y, z> ((4 > (y>) ? (19 : (W < W ? Cd : (4)
extem double F[NUM-STATE!+11 [NUIV-STATE+l];
extem double G[NUM-STATE+l][NUM-CTRL+l];
extem double Gl [NUM-STATE+l];
void transition(dd,t,x,u,xdot)
double dd, t, *x, *u, *xdot;
I
double slip,f_tractive; /* tractive force */
double alon,t-wheel; /* hiway accel and wheel torque */
double t_pump,t-turb; /* torque converter pum and turbine torques */
double r-gear, /* gear speed reduction ratio */
double ma~pert,w~eng_pert,vel~x~pert,slip~pert,t~wheel~pert;
double w~wheel~pert,t_brake~pert,alpha~pert,f_t;
double ma_pert_dot,w_eng_pert_dot,vel_x_pert_dot,w-wheel-pe~-dot;
double alpha~pert_dot,t~pump_pert,t_turb_pert;
double dma,dve,dww,dalf,dvx,dwe,dtb,dt;
double buf; /* temporary storage */
int i;
int j;
void torque-convertero, engine();
double fabs();

35

/* global table lookup data arrays */
extem double **tq-tablel; /* torque converter data */
extem double **tq-table2;
extern int tq-tablel-size;
extern int tq-table2-size;
extem double **tc table; /* throttle characterisitic data */
extem int tc-table&e;
extem double **p-table; P engine map */
extern double **met table
extem double **ma; table-
extem double *we-table;

,
/* data “I

extern int *p-table-size; /* pressure table size for each we data pt */
extem int we-table size;
/* assign gear reduction ratio according to what gear is engaged */
switch ((int) gear-engaged) (
case 1:
rgear = FIRST-GEAR-RATIO;
break,

case 2:
rxear = SECOND_GEAR_RATIO;
break,

case 3:
r-gear = THIRDGEARRATIO;
break,

case 4:
r-gear = FOURTH-GEAR-RATIO;

1
P talc. pump and turbine torque for torque converter */
torque_converter(w_eng,w_wheel,R_DRIVE,r_gear,tq_tablel,tq_table2,

tq-tablelrsize,tq~table2~size,&t_pump,&t~turb);
/* time derivatives of engme states: ma-dot and w-en&dot */
engine(alpha,ma,w-eng,t-pump,

we_table,pTtable,tnet_table,mao-table,
we_table_slze,p_table_size,tc_table,tc_tize,
&ma-dot, &w-engdot);

/* tire forces */
slip = 1.0 - vel-x/(Hr * w-wheel); /* Hr = wheel radius */
if ((buf=fabs((double) slip)) > 0.15) slip = 0.15 * slip/but
f,tractive = Kt * slip; /* linear tractive force model */
hrway(pos_x,&alon);
P time derivative of long states vel (accel) and pos */
vel-x-dot = (f-tractive - Ca * vel-x * vel-x - F-roll-frict + alon)/MASS;
pas-x-dot = vel-x;
/* time derivative of wheel speed (wheel ang. accel) */
t-wheel = Hr * f-tractive + t-brake; /* wheel torque */
w-wheel-dot = (t-turb/(R-DRIVE * r-gear) - t-wheel)/J-WHEEL;
P throttle actuator dynamics */
/* constraint throttle angle command to physical limits */
buf = (BOUND(alpha~c,MAX_THRO’ITLE,MIN~THROITLE) - alpha)nAU-THROTTLE
/* limit throttle rate to +/- MAX-THROTTLERATE */
alpha-dot = BOUND(buf,MAX~THROTI’LERATE,-(MAX~THROlTLERATE));
I* brake dynamics *I
t-brake dot = (t-brake-c - t-brake)/TAU-BRAKE;

/* print@ ma-dot, w-e-dot = %6.3f %6.3f kt”,ma-dot,w-eng-dot);

36

printf(“v-x-dot,xdot = %6.3f %6.3f, \n”,vel-xdot,pos-x-dot);
printf(” w-w-dot,alf_dot,t-b-dot = %6.2f %6.2f %6.2tW,w-wheel-dot,

t-brake-dotalpha-dot); */
dma=.Ol*dd;
dwe=dd;
dww=dd;
dalf=dd;
dvx=dd;
dtb=dd
dt=(double) 0.01;

/* At any time, zero all F, G, Gl matrix elements */
for (i=O,i<= NUM-STATE; i++) (

G 1 [i]=O.O;
for (i=O;j<= NUM-STATE; j++) (
F[i]u] = 0.0;
if(j C= NUM-CTRL) G[i]/j] = 0.0;

I
/*mG;$rstzzof F-matrix (two terms) */

.

F[l][l] = l.+ (ma-pert-dot - ma-dot)/dma*dt;
F[2][1] = (w-eng-pert-dot - w-eng-dot)/dma*dt;

/* printf(“ma-pert-dot, ma-dot = %8.41f %8.41f \n”,ma_pert_dot,ma_dot); */
/* Second column of F-matrix */
w-engpxt = w-eng + dwe;
torque_converter(w_eng_pen,wTwheel,R_DRI,tq_table 1 ,tq_table2,

tq_tablel_size,tq_table2_slze,&t_pump_pert,&t_turb-p~);
/* t-pump changed to t-pump-pert on June 23,94: */

engine(alpha,ma,w~engpert,t~pump~pert,we~table,p~table,met~~ble,mao~~ble,
we_table_size,p-table_size,tc_table,tc_table_size,&ma_pe~-dot,
&w-engpert-dot);

F[1][2] = (ma-pert-dot - ma_dot)/dwe*dt;
F[2][2] = 1. + (w-eng-pert-dot - w-engdot)/dwe*dt;
w-wheel-pert-dot=(t_turb_pert/(R_DRIVE * r-gear) - t-wheel)/J-WHEEL;
F[5][2] = (w-wheel-pert-dot - w-wheel-dot)/dwe*dt;

/* Third column of F-matrix */
vel-x-pert = vel-x + dvx;
slip-pert = 1.0 - vel~x~pert/(Hr*w~wheel);
if ((buf=fabs((double) slip-pert)) > 0.15) slip-pert = O.l5*slip_pert/buf;
f_tractive-pert = Kt * slip-pert;
hrway(pos-x,&alon);
vel-x-pert-dot = (f-tractive-pert - Ca*vel_x_pert*vel_x_pert- F-roll&ict + alon)/MASS;
F[3][3] = 1. + (vel-x-pert-dot - vel-x-dot)/dvx*dt;
F[4] [3] = dt;

t-wheel-pert =Hr*f_tractive_pert + t-brake;
w-wheel-pert-dot = (t-turb/(R-DRIVE * r-gear) - t-wheel-pert)/J-WHEEL,
F[5][3] = (w-wheel-pert-dot - w-wheel-dot)/dvx*dt;

/* Fourth column of F-matrix */

F[4][4] = 1.; /* x(i+l) = F(4,4)x(i) + F(4,3)v(i) */

37

/* Fifth column of F-matrix */
w-wheel-pert = w-wheel + dww;

slip-pert = 1.0 - vel-x/(Hr * w-wheel-pert); /* Hr = wheel radius */
if ((buf=fabs((double) slip-pert)) > 0.15) slip-pert = 0.15 * slip-pert/buf;
f-tractive-pert = Kt * slip-pert; /* linear tractive force model */
torque_converter(w_eng,w_wheel_pert,R_DRlel,tq_table2,

tq_tablel_size,tq_table2_size,&t_pump_pert,&t_turb-pe~);
engine(alpha,ma,w_eng,t_pump_pert,we_table,p-table,tnet_table,mao_table,

we_table_size,p-table_size,tc_table,tc_table_size,&ma_pe~-dot,
&w-engpert-dot);

F[1][5] = (ma-pert-dot - ma-dot)/dww*dt;
F[2][5] = (w-en&pert-dot - w-eng_dot)/dww*dt;
hiway@os-x,&alon);
vel-x-pert-dot = (f-n-active-pert - Ca*vel-x*vel-x - F-roll-f&t + alon)/MASS;
F[3][5] = (vel-x-pert-dot - vel-x-dot)/dww*dt;

w-wheel-pert-dot=(t-turb-pert/(R-DRJVE * r-gear) - t - w h e e l > ;
F[5][5] = 1. + (w-wheel-pert-dot - w-wheeldot)/dww*dt;

/* Sixth column of F-matrix */
alpha_pert=alpha+dal
engine(alpha~pert,ma,w~eng,t~pump,we~table,p~table,tnet~table,mao~table,

we_table_size,p_table_size,tc_table,tc_tt,
&w_engpert-dot);

F[1][6] = (ma-pert-dot - ma-dot)/daPdt;
F[2] [6] = (w-en&pert-dot - w-eng_dot)/dalf*dt;
buf=(BOUND(alpha~c,MAX~THRO’lTLE,MIN~THROTI’LE) - alpha_pert)/TAU_THROTTLE;
alpha_pert_dot=BOUND(buf,MAX~THROTTLJ~RATE,-(MAX_TEIRO’ITLERATE));
F[q[6] = exp(-dt/I’AU~THRO’ITLE);

/* Seventh column of F-matrix */
t-bee-pert = t-brake + dtb;
/* time derivative of wheel speed (wheel ang. accel) */
t-wheel-pert = Hr * f-n-active + t-brake-pert; /* wheel torque */
w-wheel-pert-dot = (t-turb/(R-DRlVE*r-gear) - t-wheel_pert)/J_WHEEL;
F[5][7] = (w-wheel-pert-dot - w-wheel-dot)/dtb*dt;
F[7][7] = exp(-dflAU_BRAKE);
G[6][1] = l.-exp(-dt/TAU~THROTI’LE);
G[7][2] = l.-exp(-dflAUBRAKE);
G1[3] = 1.0;
G1[4] = dt;

1/***~*********~*~~**/
/+rk******+****+++******** SIMPLE_L-JNG *+++*+++********+*W “/
I” five state model(ma,w~eng,vel,pos,w_wheel) plus actuator dynamics

input: t - current time in set
x - state vector

ma (mass of air in intake manifold in kg)
w-q (engine speed in rad/s)
vel-x (car velocity in m/s)
pas-x (car position in m)
w-wheel (wheel speed in rad/s)
alpha (throttle angle)
t-brake (brake torque in Nm)

u - control vector
alpha-c (commanded throttle angle)
t-brake-c (commanded brake torque)
r-gear (gear reduction ratio)

output: dxdt - time derivative of state vector

written by P. Patrick Yip 7/93
VDL UC Berkeley

****/
#include “simp1eJong.h” /* defintions for the states and controls for the

simple longitudinal model */
#include “simple-car.h” /* predefined parameters for the car like mass, wheel

inertia, etc. */
/* #include “car-data.h” */
/* macro for bounding function: output=BOUND(input,upper-bound,lower-bound)*/
#define BOUND, y, 4 ((xl > (y)) ? (y> : ((W < (4) ? (4 : (xl)

/* ******************************~***********~************** */
/* Function: hiway
;z Purpose: This function determines the value *df the slope */

of the road grven the lccatron along the road. */
/* **************************~****+*~*******~**~***~ */
void hiway(pos,alon)

double pos,*alon;
{
double dist[4],slope[4]; /* these are of dimension n-changes */
double grav;
i n t ih,n-changes;
int done;

/* ******** here is hiway slope vs position */
n-changes = 3;
slope[O] = 0.02;
slope[l] = -0.02;
slope[2] = 0.01;
slope[3] = -0.01;
dist[O] = 0.0;
dist[l] = 120.0;
dist[2] = 240.0;
dist[3] = 360.0;
grav = 9.80; /* gravity in m/s**2 */

P determine location of car relative to
locations on highway of slope changes */

done = 0; /* FALSE = 0 */
ih = 3;
while (!done)

1
if ($o; > yt[ih])

= ; /*TRUE=l*/
else

ih--; /* ih=ih+ 1; */

if (ihc0)
(
done = 1; /*** TRUE = 1 ***/

3 9

ih = 0;
I

1

*alon = -grav*slope[ih];
) /* End of function hiway */
/***************************+***********+********~*********~*/
void simple-long(t,x,u,xdot)
double t, *x, *u, *xdot;
{
double slip,f-tractive; /* n-active force */
double t-wheel; /* wheel torque */
double t-pump,t-turb; /* torque converter pum and turbine torques */
double r-gear; /* gear speed reduction ratio */
double buf; /* temporary storage */
int i;
int j;
void torque-convertero, engine();
double fabs();
double alon; /* Acceleration due to longitudinal slope */

/* global table lookup data arrays */
extern double **tq-tablel; /* torque converter data */
extern double **tq-table2;
extern int tq-tablel-size;
extern int tq-table2-size;
extern double **tc table; /* throttle characterisitic data */
extern int tc-table-&e;
extern double **p-table; /* engine map */
extem double **met table
extern double **ma& tab&
extern double *we-table;

,
/* data “I

extern int *p-table-size; /* pressure table size for each we data pt */
extern int we-table-size;

/* assign gear reduction ratio according to what gear is engaged */
switch ((int) gear-engaged) (
case 1:
r-gear = FIRST-GEAR-RATIO,
break;

case 2:
r-gear = SECOND_GEAR-RATIO;
break,

case 3:
x-gear = THIRD~GEARJ3ATI0,
break,

case 4:
r-gear = FOURTH-GEAR-RATIO,

1
/* talc. pump and turbine torque for torque converter */
torque_converter(w_eng,wwheel,R_DRIVE,rglel,tq_table2,

tq~tablel~srze,tq~table2~size,&t~pump,&t~turb);

/* time derivatives of engine states: ma-dot and w-engdot */

4 0

engine(alpha,ma,w-eng,t-pump,
we~table,p~table,tnet_table,mao~table,
we_table_size,ptable_size,tc_table,tc_table_size,
&ma-dot, &w-engdot);

/* tire forces */
slip = 1.0 - vel-x/(Hr * w-wheel); /* Hr = wheel radius */
if ((buf=fabs((double) slip)) > 0.15) slip = 0.15 * slip/buf;
f-tractive = Kt * slip; /* linear tractive force model */

hiway(pos-x,&&on);
vel-x-dot = (f-tractive - Ca * vel-x * vel-x - F-roll-frict + alon)/MASS;
pas-x-dot = vel-x;
/* time derivative of wheel speed (wheel ang. accel) */
t-wheel = Hr * f-tractive + t-brake; /* wheel torque */
w-wheel-dot = (t_turb/(R-DRIVE * r-gear) - t-wheel)/J-WHEEL;

/* throttle actuator dynamics */
/* constraint throttle angle command to physical limits */
buf = (BOUND(alpha~c,MAX~THROTI’LE,MIN~THROTTLE) - alpha)nAU-THROTTLE;
/* limit throttle rate to +/- MAX_THRoTIzE_RATE */
alpha-dot = BOUND(buf,MAX_THRO~E-~~,-(~-~RO~E-~~));
/* brake dynamics */
t-brake-dot = (t-brake-c - t-brake)/TAU-BRAKE;

1/***********************++rk***+*+*+*+******~***********~******~******~~ */
/* *++**+*++****+*+*++** R)Z~COVJ-jATA **************************/
#/include cstdio.h>
#include cmath.h>
#include cstring.h>
#include “nruti1.h”

#include 3tat.h” /* Holds structure for control parameters */

/* lookup table sizes */
#include “car-da&h”

/* global table lookup data arrays */

void Read-cov-data(covariance-pre,std-dev-data,uu,H,seed)
double covariance~pre[NUM~CAR][NUM~STATE+l][NUM~STATE+l];
double std-dev-data[NUM-DATA+l];
double uu[NUM~CTRL+1][NUMCTRL+l];
double H[NUM-DATA+l][NUM-STATE+l];
int *seed;

(
FILE “fp;
int i,j,k /* Generic incrementation variables */
char strholder[lOO]; /* Text throw away string holder */

fp=fopen(“initial-data.dat”,“r”); /* File of initial setting of parameters*/

fscanf(fp,“%d”,seed);
fscanf(fp,“%s\n”,strholder);

41

for(i=l;icNUM_DATA+l;i++)
for(i=l;j<NUM-STATE+l;j++)

fscanf(fp,“%lnt”,&(H[i]Ij]));

fscanf(fp,“%sIn”,strholder);
for(i=l;icNUM_cTRL+l;i++)

for(j=l;jcNUM-CTRL+l;j++)
fscanf(fp,“%lW,&(uu[i]~]));

fscanf(fp,“%s\n”,strholder);
for(i=l;icNUM-CAR+l;i++)

{
for(j=l;jcNUM~STATE+l;j++)

for(k= 1 ;kcNUM-STATE+ 1 ;k++)
fscanf(fp,“%lfV’,&(covariance-pre[i]u][k]));

fscanf(fp,“%sb”,strholder);
1

for(i=l;i<NUM-DATA+l;i++)
fscanf(fp,“%lfV’,&(std-dev-data[i]));

fclose(fp);

) /* end of Read-covdata function */
/**************************************~***~***~****~**~***~**~* */
pa************************* OUTPUT **************************/
/***** output: print out simulation results to file

given the state vector and state derivative vector

written by P. Patrick Yip 7/93
VDL UC Berkeley

#include cstdio.h>
******/

#/include “simple~1ong.h”

void output(car,n,space,length,t,x,dx,std-dev,u,pos,xlead,fp)
double space, length; /* desired spacing between adjacent cars and car

double t;
double *x, *u;

length *I
/* simulation time */

/* state and control vector of current car */

double *dx,*std-dev; /* added for plot purposes */

double *pas, xlead; /* position of cars and position of lead car */
int car, /* current car id number in platoon */
int n; /* total number in platoon (excluding the lead car) */
PILE “fp; /* output file */
1

double xprev,error;
/* if (t==O && car==l) */

if(car==l)
xprev=xlead,

42

else
xprev=pos[car- 11;

error=pos-x - xprev + space + length;
if(car==l) (
fprintf(fp,‘ln time = %6.2f\n”,t);
I
if (car== 1)
{
fprintf(fp,‘ln e p s m - a i r w-eng v - c a r x - c a r w-wh A-ace T-brk\n”);
fprintf(fp,:: dx[l] dx[2] dx[3] dx[4] dx[5] dx[6] dx[7] b”);

$rintf(@
sd[l] sd[2] sd[3] sd[4] sd[5] sd[6] sd[7] Un”);

/* print out spacing error, manifold air mass, throttle, brake
torque, (replace with desired quantity as appropriate) */

fprintf(fp,“%8.3lf %8.31f %8.31f %8.31f %8.31f %8.31f %8.31f %8.31f h”,
~~~~,~~~1,~~~1,~~~1,~~41,~~51,x[61,x[71);

fprintf(fp,” %8.41f %8.41f %8.41f %8.41f %8.41f %8.41f %8.41f \n”,
~~~~1,~~~~1,~~~31,~~41,~[51,~~[~1,d~[71);

fprintf(fp,” %8.41f %8.41f %8.41f %8.41f %8.41f %8.41f %8.41f b”,
std_dev[l],std_dev[2],std-dev[3],std_dev[4],std-dev[5],std-dev[6],std-dev[7]);

fprintf(fp,‘ln”);

1*******x**************~***************************************~ */
/************************** LONG-SIM **********************/
/**** top level template of the modularized path simulation

long_sim: platoon simulation with simple longitudinal model
usage: long-sim [-i init-cond-fde] specify data file for init cond

r-0 outputJile] specify file name for sim. results
****/

*/

#include <stdio.h>
#include <math.h>
#include “nrutil. h”
#define NEW-LARGE (65535 * 32768)
#include “stat.h” /* Holds structure for control parameters
#include “car-data.h”
/* global table lookup data arrays */
double **tq-tablel, **q-table2; /* torque converter data */
int tq-tablel-size, tq-table2-size; /* torque converter table sizes */
int ij;
double **tc table; /* throttle characterisitic data */
int tc-tablesize; /* throttle table size */
double integ[4]; /* integral of error for each vehicle */
double **p- tab le , _**met table,**mao-table; /* engine map */
double *we-table; I* data */
int we-table-size; /* number of we data pt for engine map table */
int *p-table-size; /* pressure table size for each we data pt */
double F[NUM~STATE+1][NUM~STATE+1],G[NUM~STATE+1][NUM~CTRL+1);

43

double Gl[NUMJ3TATE+l];
double ident[NUMJ3TATE+l][NUMSTATE+l];
~tub~~[NvM_~+!IINuM_cTRL+l];. /*
BUCKET values;

Used to nutrate a pseudo-random sequence */

#define ORIG-MODE 0 /* Flag to read our own initial data (dt, tf,
and wrt_freq., ctrl-freq */

extern double dot();
extern double Nran();
/* The following functions are used by main0 *I

void mateq(a,b)
double a[NUM-STATE+l][NUM-STATE+l], b[NUM-STATE+l][NUM-STATE+l];

t
int ij;
for (i=O; i<=NUM-STATE; ++i)
1

for (j=O, jc=NUM-STATE, ++j)
a[i]u] = b[i]u];

1
1

/* ************* PICK ROW i FROM mm H +**+***+**++**++* */
void matrix-row(irow,H,hrow)
int irow;
double H[NUM~DATA+1][NUM~STATE+1],hrow[NUMJ3TATE+1];

t
intj;

for (ia j<=NUM-STATE; j++)
hrowu] = H[irow]lj];

1
;* ***********************++$*+++************************ */

/* ********* DATA UPDATE OF COVARIANCE & ESTIMATE ********* */
/************************+**************************~**************/

v o i d data_update(icar,t,H,ident,std-devdata,x,xhat,cov2_pre,cov2_post)
int icar;
double t;
double

x[NUM_STATE+l],xhat[NUM_STATE+l],ident[NUM_STATE+1][NUM_STATE+l];
2::~ H[NUM-DATA+ 1] [NUMSTATE+ l] ,std-dev-data[NUM-DATA+ 11;

cov2_pre[NUM_STATE+l][~M~STATE+l],cov2~post[~M~STA~+l][~~STA~+l];
t

double fgain[NUM-STATE+l];
double data-noise[NUM-DATA+l], gh[NUM_STATE+l][NUM_sTATE+1];
double vmhrow[NUM-STATE+l],hrow[NUM-STATE+l];

double dx[NUM-STATE+l], egh[NUM-STATE+l][NUM-STATE+l],dy,y,yhat,hvhr;
int i,j,irow;

double xx;
int ii; /* Generic Incrementation Variable */

double iresjres; /* Temp variables used in modified random generator */

44

/* Here are the scalar updates of the state estimates based on relative
goodness of a priori estimate and data */

for(i= 0; i c NUM-STATE+l; i++)
1

fgain[i]= (doub1e)O.O;
I

for (i=l; ic= NUM-DATA, i++) /* data update of xhat with y */
(

irow=i;

matrix-row(irow,H,hrow);
y=dot(hrow,x,NUM-STATE+l);

if (seed c 0)
(
dy = Nran((double)O.O, std-dev-data[irow]);
1

else
1
xx = (double)(-6.0);

for(ii=O,iic 12;ii++)
(
ires = rand();
jres = rand();
xx += ((double)(jres)+((double)(ires)/NEW_LARGE))/NEW-LARGE;
1

dy = std-dev-data[irow]*xx+O.O;
printf(‘ln NOISE = %9.51f \n”,dy);

I
y=y + dy;
yhat=dot(hrow,xhat,NUM-STATE+l); /* current estimated data */
dy=y-yhat;

mat_vec_product(cov2_pre,hrow,vmhrow,~M-STA~+l,NUM_STATE+l);
hvhr-ot(Mlhrow,hrow,NUM_STATE+I)+std_dev_data[irow]*std_dev-data[irow];

for (j = 1; j<=NUM-STATE, j++)
I

fgainu] = vmhrowlj]/hvhr,
dx~]=fgain~]*dy;

1
outer-product(fgain,hrow,gh,NUM-STATE+l);
matsubtract(ident,gh,egh,NUM~STATE+l,NUM-STATE+l);

P data-update of covariance: */
matmultiply(egh,cov2_pre,cov2_post,NUM_S+l,NUM_STATE+l,NUM_STATE

+I);
mateq(cov2_pre,cov2_post);

/* data-update of state estimate, xhat */
vecadd(xhat, dx, xhat, NUM-STATE+l);

1
1/**~****~*******/
/* *************W ‘I’Im UpDAm OF (“VARIANCE ********M** */

void cov-timeup(icar,uu,sig-bump,FF,GG,GGl ,cov2_post,cov2_pre)
double uu[NUM~CTRL+1][NUM~C+l],

FF[NUM-STATE+l][NUM-STATE+l];

4 5

double GG[NUM-STATE+ l] [NUM_cTRL+l],
GGl [NUM-STATE+l];

double sigbump;
double cov2_post[NUM_STATE+l] [NUM-STATE+l],

cov2_pre[NUM_STATE+l][NUM~STATE+l];
int icar;

(
double GT[NUM~CTRL+l][NUM~STATE+l],GlT[NUM~STATE+l];
double glugt[NUM-STATE+l][NUM-STATE+l];
double

FT[NUM~STATE+l][NUM~STATE+l],fvft[NUM~STATE+l J[NUM-STATE+l];
double fc[NUM_STATE+l][NUM_STATE+l],fcft[NUM_STATE+1][NUM_STATE+l];
double

guu[NUM_STATE+1][NUM_CTRL+l],gugt[NUMSTATE+1][NUM_STATE+1];

transpose(FF,FT,NUM~STATE+l,NUM~STATE+l);
transpose(GG,GT,NUM-STATE+ 1 ,NUM-CTRL+ 1);

matmultiply(FF,cov2_post,fc,NUM.STATE+ 1 ,NUM-STATE+ 1 ,NUM_STATE+ 1);
matmultiply(fc,FT,fcft,NUM_STATE+1,NUM~STATE+l,NUM~STATE+l);
matmultiply(GG,uu,guu,NUM~STATE+l ,NUM-CTRL+ 1 ,NUM-CTRL+l);
matmultiply(guu,GT,gugt,NUM-STATE+1 ,NUM-CTRL+l ,NUM-STATE+l);
matadd(fcft,gugt,cov2-pre,NUM-STATE+1 ,NUM-STATE+l);
GG1[3]=GG1[3]*sigbump;
GG 1[4]=GG1[4] *sig-bump; /* longitudinal velocities sigbump */
outer~product(GGl,GGl,glugt,NUM~STATE+l,NUM~STATE+l);
matadd(cov2_pre,glugt,cov2_pre,NUM_STATE+l,NUM_STATE+l);

1
/*******+********************~************~*****~************** */
/* **+*+*+***++***+* MAIN PROGRAM (LON(-j-SJ&/Q *+*****+*Wk*+*** */
maWw,wH
int argc;
yhm *qHl;

‘FILE *dave;
/* Declare the Xwindow pointer for graph display. */
char display_name[80];

double **x,**u; /* 2d matrices holding
state and control vectors for each car */

double **xhat,*xhat_dot;
double *xdot,*xout; /* Id vectors holding xdot and updated state

vector for current car */
/* 7 LINES ADDED TO ORIGINAL? */

double xhat-out[NUM-STATE+l],dx-out[NUM-STATE+l];
double H[NUM_DATA+l][NVM_STATE+l],ident[~-STA~+l][~M-STA~+l];
double

std-dev-data[NUM-DATA+ l] ,covariance-pre[NUM_CAR+ l] [NUM-STATE+ l] [NUM-STATE
+ll;
double
covariance_post[NR+l][~M-STATE+11[+1
I;

double
cov2_pre[NuM_STATE+l][~M-STATE+l],cov2-post[~M-STA~+l][NuM_STATE+l];

46

double qpos,sumx[4],sumxsq[4],xavg[4],xrms[4],xms;
int npts,icheck+
double dd, dt, t=O.O,time,tf,dt~ctrl;
double alead,vlead,xlead; /* accel, vel and position of lead car */
double *acc,*vel,*pos; /* Id vectors for accel, vel and postion

of each car in the platoon */
double eps,sigbump;
double aprev,vprev,xprev;
int ctrlJlag=O, wrt-flag*,
int icar, i, j, k,
int ctrlJ.ieq,wrtJreq,iprint; /* number of dt for controller and data logging

update */
double *mades-old,*tb-old;

double space,spacingerror; /* desired distance between adjacent cars and

double car length;
int auto-n-%=1;

spacing error */

/* command line options */
char in=‘n’,out=‘n’,in-file[LINELEN],outJile[LINELEN];

FILE *fp-in, *fp-out, *fopen(), *fp;
void readdat(),measure(),rk4();
void profile(),init-long(),gear-shift();
void command(),output();
double mair-manifold();

covtosd();
zuble simple long();
void transition$; /* addition for F, G, Gl computation */
char dummy~str[101];
integ[O]=integ[l]=integ[2]=integ[3]=0.0;
xrms[O]=xrms[l]=xrms[2]=xrms[3]=O.O;
xavg[O]=xavg[l]=xavg[2]=xavg[3]=0.0;
sumx[O]=sumx[1]=sumx[2]=sumx[3]=0.0;
sumxsq[O]=sumxsq[l]=sumxsq[2]=sumxsq[3]=0.0;
npts=O;
xms=O.O;
for (i=O; ic= NUMSTATE; i++)

I
for (i=O; j<=NUM-DATA; j++)

Hu] [i]=O.O;
for (i=O; jc=NUM-STATE; j++)

1
cov2-pre[i]Ij]=O.O;
cov2Ypost[i] u]=O.O;
ident[i] &O.O;

I
1

sig-bump=1 .O; /* fwd rms acceleration, m/s**2 */

Read~covdata(covariance_pre,std_dev-da~,uu,H,&seed);
/* initral~data(&seed,H,uu,covariance-pre,std~dev-data); */

srand(seed);
ident[0][0]=1.0;

47

ident[l][l]=l.O;
ident[2][2]=1.0;
ident[3][3]=1.0;
ident[4][4]=1.0;
ident[5][5]=1.0;
ident[6][6]=1.0;
ident[7][7]=1 .O;

fp=fopen(“outfile.dat”,“w”); /* the output file is a write-file */
HORIG MODE

x=dmaGx(1 ,NUM-CAR, 1 ,NUM-STATE);
u=dmatrix(1 ,NUM-CAR, 1 ,NUM-CTRL);
acc=dvector(1 ,NUM_cAR);
vel=dvector(1 ,NUM-CAR);
pos=dvector(1 ,NUM_CAR);
mades-old=dvector(1 ,NUM-CAR);
tb-old=dvector(1 ,NUM-CAR);

#endif
xdot=dvector(1,NUMSTATE);
xhat_dot=dvector(1 ,NUM-STATE);
xout=dvector(l,NUM-STATE);
/* allocate storage for table lookup data */
tq-tablel&e=TQl-SIZE,
tq-table2&e=TQ2_SIZE;
tc-table&e=TC_SIZE;
we-table-size=WE-SIZE;
tq~tablel=dmatrix(l,4,l,q~tablel~size);
tqmtable2=dmatrix(1,3,1 ,tq_table2_size);
tc-table=dmatrix(1,2,1 ,tc-table-size);
p-table=dmatrix(1 ,we-table-size, 1 ,P-SIZE);
met-table=dmatrix(1 ,we-table-size,1 ,P-SIZE);
mao_table=dmatrix(1 ,we-tableTsize, 1 ,P-SIZE);
we-table=dvector(1 ,we-table-size);
p-tableTsize=ivector(1 ,we-table-size);
/* read rn table lookup data for engine, torque converter

and throttle characteristics */

readdat(tq_tablel,tq_table2,q~tablel_size,q~~ble2_size,
tc~table,tc~table~size,we~table,p~table,
tnet_table,mao_table,we_table-size,p-table~size);

space = 2.0; /* desired spacing between adjacent cars in m */
car-length = 4.0; /* car length in m */

/* process command line arguments */
command(argc,argv,&in,&out,in-file,out-file);
if (in == ‘y’) auto-init = 0;
/** read in initial conditions for the states **/
if (auto-init)
1
profile(t,&alead,&vlead,&xlead); /* lead car act, vel, pos at t=O */
/* initialize the states of the simple long. model */
for(i=l; ic=NUM-CAR; i++)
(
init_long(i,vlead,xlead,space,c~~length,x[i],u[i]);

for (i=O, jc=NUM-STATE, J++)

48

xhat[i]lj]=x[i] u];
I

1
else {

if (in == ‘y’)
fp-in=fopen(in-file,“r”);

else
fp-in=fopen(“ic.dat”,“r”);

fscanf(fp-in, “%*s %lf ‘, &dt);
fscanf(fp+, “%*s %lr’, 8ztf);
fscanf(fp-?n, “%*s %d”, &wr-freq);
fscanf(fp-m, “%*s %d”, &ctrl-fkq);
fscanf(fp-in, “%*s %d”, &iprint);

printf(‘ln Nears = %d, dt = %lf, tf = %lf, wrt-freq = %d, ctrl-freq = %a”, NUM-CAR, dt, tf,
wrt_freq, ctrl_freq);

x=dmatrix(1 ,NUM-CAR, 1 ,NUM-STATE);
xhat&atrix(1 ,NUM-CAR, 1 ,NUM-STATE);
u=dmatrix(1 ,NUM-CAR, 1 ,NUM-CTRL);

acc=dvector(1 ,NUM_cAR);
vel=dvector(l ,NUM-CAR);
pos=dvector(1 ,NUM-CAR);
mades-old=dvector(1 ,NUM-CAR) ;
tb-old=dvector(1 ,NUM-CAR);

for (i=l ; i<=NUMCAR; i++)
for (j=l; jc=NuM-STATE; j++)

fscanf(fp-in,“%lf ‘,&(x[i]Ij]));

for (i=l; ic=NUM-CAR; i++)
for (i=l; jc=NUM-STATE, j++)

fscanf(fp-in,“%lf”,&(xhat[i]Ij]));
fclose(fp_in);

I

P initialize controller variables */
for (i=l; i<=NUMCAR, i++)

1
mades old[i]=mair-manifold(x[i]);
tb-old[i] =O.O;

1
P* perform other initializations **/

#if OlUG-MODE
dt = 0.001; P integration time step in set */
wrt~freq = 50;
tf=30.0; /* simulation end time in set */
ctrl freq=50; /* change control every 50 dt’s */

#en&
dt-ctrl = dt * ct&freq; /* controller update period */
if (out == ‘y’)
erFout = fopen(out-file,“w”);

fp-out=fopen(“sim.out”,“w”);
dd=(double) 0.01;

4 9

/*** loop through time with time increment dt
updating the states every dt and the controls every n*dt ***/

while (t <= tf)
{ /* B E G I N TIMBLOOP /*

profile(t,&alead,&vlead,&xlead);

/** loop through the number of cars updating
the states and controls of each individual car **/

for (icar=l; icar<=NUM_CAR; ++icar)
1 /* B E G I N CARLOOP /*

/* c$;y@;roj input for each car every

if (ctrl-flag == 0)
l

if (icat==l) {
/* for first car, previous car is just the lead car */
aprev = alead;
vprev = vlead;
xprev = xlead,

1
if (icar> 1) {
/* get info for previous car */
aprev = acc[icar-11;
vprev = vel[icar- 11;
xprev = pos[icar- 11;

I
if (icheck == 1) printf(‘ln icar = %d, xprev = %6.2lf \n”,icar,xprev);

gear-shift(x[icar],u[icar]); /* gear shifting */

/******** This is the data update of the filter ***************/
mateq(cov2_pre, covariance-pre[icar]);
data_update(icar,t,H,ident,std_dev_data,x[icar],xhat[icar],cov2_pre,cov2_post);
vecsubtract(x[icar],xhat[icar],dx-out,NUM-STATE+l);
mateq(covariance_post[icar],cov2_post);

#define DEBUG 1
#if DEBUG
#endif

covtosd(cov2_post,std_dev,NUMJ3TATE+l);
/****** USE XHAT, NOT X, TO COMPUTE CONTROL U */

if (icheck == 1) printf(‘ln controller input, icar = %d, ctrl-flag = %d \n”,icar,ctrl-flag);
if (icheck == 1) printf(‘ln xhat = %5.2lf, xprev = %5.2lf \n”,xhat[icar][4],xprev);
controller(icar&ctrl,space,aprev,vprev,xprev,

alead,vlead,xlead,
&mades-old[icar],&tb-old[icar], xhat[icar],u[icar]);

1 I* end of control loop */

simple-long(t,x[icar],u[icar],xdot); /* xdot at current time */
measure(x[icar],xdot,&acc[icar],&vel[icar3,&pos[icar]);
/* output desired states and control info for cars of interest

50

every wrtJreq*dt *I
if (wrt-flag == 0) (

output(icar,NUM-CAR,space,carJength,t,
x[icar],dx-out,std-dev,u[icar],pos,xlead,fp-out);

eps=pos[icar]-xprev+space+carJength;
for (j=l; j<=NUM-STATE; ++j) xoutlj] = x[icar]u];

if (icar == 1)
1
npts = npts + 1;
1

sumx[icar]=sumx[icar]+eps;
xavg[icar]=sumx[icar]/npts;
sumxsq[icar]=sumxsq[icar]+eps*eps;
if (npts > 1)

1
xms=(sumxsq[icar] - sumx[icar]*sumx[icar]/npts)/(npts-1);
xrms[icar]=sqrt(xms);
1

/* Prints values for car number 1 */
if (icar == 1)

(
if (iprint == 1)
(

printf(” 11------_------____-__------------------------------------__--__--_--_______----------------------------------1;
printf(‘ln Time = %5.2lf\n”,t);
if (icheck == 1) printf(‘ln icar=l, xprev,xlead = %7.3lf %7.3lf b”,xprev,xlead);
printf(‘In m - a w-eng vel-x pas-x w-wh a c c e l t-brk e p s ”) ;

printf(‘ln xl = %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.3lr\n”,
xout[l] ,xout[2] ,xout[3] ,xout[4] ,
xout[5] ,xout[6] ,xout[7] , e p s) ;

printf(” dx = %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf\n”,
dx-out[1] ,dx_out[2] ,dx_out[3] ,dx_out[4] ,
dx_out[5] ,dx-out[6] ,dx_out[7]);

printf(” sd = %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf\n”,
stdVdev[l],stdWdev[2],std-dev[3],std_dev[4],
std_dev[5],std_dev[6],std_dev[7]);

1
/* FPRINTF LOADING FOR PLOTS */

fprintf(fp,” %5.2lfW,t);
f+Wfp,

” %7.2lf %7.2lf %7.2lf %7.2lf %7.31&l”,
xout[3] ,xout[4] ,xout[6] ,xout[7] , e p s) ;

fprintf(fp,
” %7.3lf %7.3lf %7.3lf %7,3lf\n”,
dx_out[3] ,dx_out[4],dx_out[6] ,dx_out[7]);

fpAntf(fp,
” %7.3lf %7.3lf %7.3lf %7.3lfh”,

std-dev[3],std-dev[4],std-dev[6],std_dev[7]);
1
/* Prints values for car number 2 */
if (icar == 2)
(

if (iprint == 1)

51

{
if (icheck == 1) printf(‘ln icar=2, xprev,xlead = %7.3lf %7.3lf b”,xprev,xlead);
printf(‘ln x2 = %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.3lf b”,

xout[l] ,xout[2] ,xout[3] ,xout[4] ,
xout[5] ,xout[6] ,xout[7] , e p s) ;

printf(” dx = %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf\n”,
dx-out[l] ,dx_out[2] ,dx_out[3] ,dx_out[4] ,
dx-out[5] ,dx-out[6] ,dx-out[7]);

printf(” sd = %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lti”,
std-dev[l],std-dev[2],stdwdev[3],std-dev[4],
std-dev[5],stdFdev[6],std-dev[7]);

1
fprintftfp,

” %7.2lf %7.2lf %7.2lf %7.2lf %7.3lf/tl”,
xout[3] ,xout[4] ,xout[6] ,xout[7] , e p s) ;

fprintf(fp,
” %7.3lf %7.3lf %7.3lf %7.3lCn”,

dx_out[3] ,dx_out[4] ,dx_out[6] ,dx_out[7]);
fpfintftfp,

” %7.3lf %7.3lf %7.3lf %7.3lt-w,
std-dev[3],stdwdev[4],std-dev[6],std_dev[7]);

1

/* Prints values for car number 3 */
if (icar == 3)

(
if (iprint == 1)
(

if (icheck == 1) printf(‘ln icar=3, xprev,xlead = %7.3lf %7.3lf \n”,xprev,xlead
printf(‘ln x3 = %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.3lf\n”,

x o u t [l] ,xout[2] ,xout[3] ,xout[4] ,
xout[5] ,xout[6] ,xout[7] , e p s) ;

printf(” dx = %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf\n”,
dxput[l] ,dx_out[2] ,dx_out[3] ,dx_out[4] ,
dxeout[5] ,dx_out[6] ,dx_out[7]);

printf(” sd = %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf %7.3lf\n”,
std-dev[1]*3.,std-dev[2],std-dev[3],stdBdev[4],
std_dev[5],std-dev[6],std_dev[7]);

1
fprintf(fp,

” %7.2lf %7.2lf %7.2lf %7.21f %7.3&l’,
xout[3] ,xout[4] ,xout[6] ,xout[7] , e p s) ;

fprintf(fp,
” %7.3lf %7.3lf %7.3lf %7,3lf\n”,

dx_out[3] ,dxput[4] ,dx-out[6] ,dxsout[7]);
fpfintftfp,

” %7.3lf %7.3lf %7.3lf %7.31fLn”,
std-dev[3],stdwdev[4],std-dev[6],std_dev[7]);

1

1
time=t;

/* printf(‘ln INTEGRATE THE STATE VECTOR, time = %5.3lf\n”,time); */
rk4(x[icar],xdot,NUM_STATE,u[icar],t,dt,xout,simple_long);

52

simple long(t,xhat[icar],u[icar],xhat_dot);/* xhatdot current time */
t&e; /* set time back to value before earlier rk4 */

rk4(xhat[icar],xhat_dot,NUM_STATE,u[icar],t,dt,xhat_out,simple_long);

for (i=l; jc=NUM-STATE; ++j) x[icar]u] = xoutlj];
for (i=l; jc=NUM-STATE; ++j) xhat[icar]u] = xhat-outlj];

/* printf(“Integrate estimate of car%d ,time = %5.2lf sb”,ica.r,t); */
/* Now advance the Covariance to the next data time */

mateq(cov2_post,covariance_post[icar]);

transition(dd,t,
x[icar],
u[icar],
xhat-dot);

cov_timeup(icar,uu,sig_bump,F,G,Gl,cov2_post,cov2_pre);
mateq(covariance~pre[icar],cov2~pre);

/* update other variables for next time step */

} /* end of car loop */

/* update variables and control flags for next time step */
if (ctrl-flag == 0)

ctrl-flag = ctrl-freq - 1;
else

--ctrl-flag;

if @r-flag == 0)
wrt-flag = wrt-freq - 1;

else
--wrt-flag;

t += dt;
) /* end of time loop */

printf(‘ln eps-avg, eps-rms[l] = %8.3lf %8.3lf b”,xavg[l],xrms[11);
printf(” eps-avg, eps_rms[2] = %8.3lf %&3lf\n”,xavg[2],xrms[2]);
printf(” eps-avg, eps_rms[3] = %8.3lf %8.3lfb”,xavg[3],xrms[3]);

printf(‘ln sig(x-rel,v-rel,m-a&w-e) = %5.llf,%5.llf,%5.llf,%5.1lf
\n”,std-dev-data[1] ,s&dev_data[2] ,std_dev_data[3] ,std-dev_data[4]);

printf(” sig(x-ca.r,v-car,w-w,Acc,T-b) = %5.llf,%5.llf,%5.llf,%6.llf,%6.llf
\n”,std-dev data[51 ,std-dev-data[61 ,std-devdata[7] ,std-dev_data[8] ,std_dev_data[9]);

p&nf(‘Yn[s**2+(ql+q3)*s+(q2+cp)+q4/s]x = [ka*s**2+qls+q2]xp +
[crs**2~~~~~~plx”);

ql,q2,q3,q4 = %8.3lf %8.3lf %&3lf %8.3lf /Il”,
valuesqldump,
values.q2_dump,
values.q3dump,
values.q4_dump);

printf(” ka,cf,cp = %8.3lf %8.3lf %8.3lf /n”,
values.ka-dump,

53

values.cf-dump,
values.cp-dump);

/* clean up chores before exiting program */
fclose(fp-out);
fclose(fp);

) /* end of simulation program */

54

APPENDIX 3 - ESTIMATED DYNAMIC PARAMETERS FROM COMPUTER CODE

The C-code simple-long was written by Patrick Yip from Fortran programs originated by
D. Swaroop and V. Garg. Its purpose is to find the time-derivatives of the seven state elements of
a platoon vehicle. It uses two numerical tables, for the following computations:

1. Pump torque and turbine torque as tabular functions of engine speed, wheel
speed and gear-reduction ratio

2. Engine mass-flow rate and acceleration as tabular functions of accelerator
displacement, air mass, engine speed and pump torque

In addition, analytical functions are used to calculate three other accelerations:

1. Vehicle acceleration as a nonlinear analytical function of tire forces, air drag
and rolling friction forces,

2. Wheel acceleration as a nonlinear function of tire forces and brake torque,

3. Rates of accelerator and brake torque as nonlinear functions of command values,
limit values and time-constants.

The development of the linear dynamic equations is equivalent to the task of finding the
elements of the transition and control matrices in the difference equation,

x(n+l) = F x(n) + G u(n) ,

where x is the seven-dimensional longitudinal statae, and u is the three-dimensional control. The
computation of F and G is shown in the function transitionc described in Appendix 2. A typical
run determines the matrices at intervals of 0.1 s, typical variations of which are shown on the
following page.

55

Time = 10.00

F =

F =

-

.491 -.005
3.633 .722

0 0
0 0
0 .093
0 0
0 0

Time = 10.10

.486 -.005
3.632 .716

0 0
0 0
0 .095
0 0
0 0

G =

0 0 0
0 0 .679

.984 0 .005

.OlO 1.000 0
4.003 0 .760

0 0 0
0 0 0

0
0

.986

.OlO
3.975

0 0 .OOl 0
0 .695 0 0
0 .005 0 0

1.000 0 0 0
0 .755 0 -.004
0 0 .403 0
0 0 0 .875

0
0

I
0
0
0
0
0

.597
0

.

.OOl 0
0 0
0 0
0 0
0 -.004

.403 0
0 .875

0
0
0
0
0
0

125

56

REFERENCES

Chang, K. S. et al., “Automated Highway System Experiments in the PATH Program,” IVHS
Journal, Vol. 1, No. 1, 1993, pp 63-87.

Finch, J. R., and Smith, J. P., “Multidisciplinary Investigations to Determine Relationship
Between Vehicle Defects, Failures and Vehicle Crashes,” Report DOT-HS-800 550, June 1971

Grandel, J., “Investigation of the Technical Defects Causing Motor Vehicle Accidents,” SAE
International Congress and Exposition, Detroit, MI, 1985.

Hatch, W. and DeArmon, J., “Analysis of On-Road Failure Data,” Final Rept. ASGI-TR-77-36,
DOT-HS-802 360,1977.

Hedrick, J. K., et al., “Longitudinal Control Development for IVHS Fully Automated and Semi-
Automated Systems - Phase I,” Final Report, Dept. of Mechanical Engineering, University of
California, Berkeley, January 31, 1994.

McMahon, D. H., Narendran, V. K., Swaroop, D., and Hedrick, J. K., “Longitudinal Vehicle
Controllers for IVHS: Theory and Experiment,” Automatic Control Conference, 1992.

Schmidt, D. N., Raley, W. L., Long, W. R., and Holter, L. C., “Vehicle Disablement Study,
Executive Summary,” Report No. DOT-HS-261-3-771, Traffic Safety Corp., Palo Alto, CA,
January 1974.

Treat, J. R., et al., “T&Level Study of the Causes of Traffic Accidents - Executive Summary,”
DOT HS-805 099, Final Report, Institute for Research in Public Safety, Indiana University, May
1979.

57

