
UC San Diego
Recent Work

Title
Semiparametric Estimation of Nonseparable Models: A Minimum Distance from 
Independence Approach

Permalink
https://escholarship.org/uc/item/32k957bp

Authors
Komunjer, Ivana
Santos, Andres

Publication Date
2009-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32k957bp
https://escholarship.org
http://www.cdlib.org/


SEMIPARAMETRIC ESTIMATION OF NONSEPARABLE MODELS:
A MINIMUM DISTANCE FROM INDEPENDENCE APPROACH

IVANA KOMUNJER AND ANDRES SANTOS

Abstract. This paper focuses on nonseparable structural models of the form

Y = m(X,U, α0) with U ⊥ X and in which the structural parameter α0 contains

both finite dimensional (θ0) and infinite dimensional (h0) unknown components.

Our proposal is to estimate α0 by a minimum distance from independence (MDI)

criterion. We show that: (i) our estimator of h0 is consistent and obtain rates of

convergence; (ii) the estimator of θ0 is
√
n consistent and asymptotically normally

distributed.

1. Introduction

Nonparametric identification of nonlinear structural models is often achieved by

assuming that the model’s latent variables are independent of the exogenous vari-

ables. Examples of such arguments include Brown (1983), Roehrig (1988), Matzkin

(1994), Chesher (2003), Matzkin (2003), and Benkard and Berry (2007), among

others. Yet the criteria used for estimation in such models rarely involve the inde-

pendence property. Instead, nonparametric and semiparametric estimation methods

typically use the mean independence between the latent and exogenous variables

that comes in a form of conditional moment restrictions (see, e.g., Ai and Chen,

2003). Weaker than independence, the mean independence property by itself does
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2 KOMUNJER AND SANTOS

not guarantee the identification to hold; hence, nonparametric and semiparametric

estimation literature most often simply assumes the models to be identified.

In the present paper we unify the estimation and identification of nonlinear models

by employing the same criterion to obtain both: the independence between the

models’ latent and exogenous variables. We focus on the models of the form:

Y = m(X,U, α0) U ⊥ X U ∼ U [0, 1]

with variables Y ∈ R and X ∈ Rdx that are observable, a latent disturbance U ∈ R,

and in which the function m(x, u, α0) strictly increasing in u ∈ R for all x ∈ Rdx .

The parameter of the model is α0 ≡ (θ0, h0) ∈ A ≡ Θ × H, where Θ ⊂ Rdθ is

finite dimensional and H is an infinite dimensional set of functions. Requiring U ∼

U [0, 1] is not a restrictive assumption, as for any random variable ξ with strictly

increasing cdf Fξ we can let ξ = F−1
ξ (U) and consider the function F−1

ξ as part of

the nonparametric component h0.

The key insight of our estimation procedure lies in the following equality implied

by the model:

P (Y ≤ m(X, tu, α0); X ≤ tx) = tu · P (X ≤ tx)

for all (tu, tx) ∈ [0, 1]×Rdx . We then exploit this relationship between the marginal

and joint cdfs, and derive a von-Mises type criterion function:

Q(α) ≡
∫

[P (Y ≤ m(X, tu, α); X ≤ tx)− tu · P (X ≤ tx)]
2 dµ(t)

where µ a measure on [0, 1]×Rdx . In a sense, the criterion function Q(α) measures the

distance from independence of U and X in the model. Hence, we call our estimator

α̂—which we obtain by minimizing an appropriate sample analogue Qn(α) of Q(α)

above—a minimum distance from independence (MDI) estimator. If α0 is identified

by the assumptions of the model, then α0 will also be the unique zero of Q(α).

Exploiting the standard M-estimation arguments we are then able to: (i) show that

the MDI estimator α̂ = (θ̂, ĥ) is consistent for α0 = (θ0, h0); (ii) obtain the rate of
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convergence of the estimator ĥ for h0; and (iii) establish the asymptotic normality

of the estimator θ̂ for θ0.

The approach of minimizing the distance from independence for estimation was

originally explored in the seminal work of Manski (1983). In the context of nonlinear

parametric simultaneous equations systems, the asymptotic properties of the MDI

estimators were derived in Brown and Wegkamp (2002). These results, however,

assume that the structural mappings are finitely parameterized and do not allow for

the presence of nonparametric parameters, which our approach does.

The remainder of the paper is organized as follows. In Section 2 we illustrate how

semiparametric nonseparable models arise naturally in economic analysis by studying

a simple version of Berry, Levinsohn, and Pakes’s (1995) model of price-setting with

differentiated products. Our estimator is presented in Section 3 and its consistency

is established. Section 4 obtains the rate of convergence for the estimator of h0. The

asymptotic normality result for the estimator for θ0 is derived in Section 5. Section

6 concludes the paper. The proofs of all the results stated in the text are relegated

to Appendix.

2. Example

We proceed to illustrate how nonseparable structures arise naturally in simple

economic models. We consider a basic version of Berry, Levinsohn, and Pakes (1995)

(BLP henceforth) model with 2 products and 2 firms. On the demand side, we use

a random utility specification à la Hausman and Wise (1978):

(1) uij = −apj + b′zj + ξj + ζi + εij,

in which uij is the utility of product j (j = 1, 2) to individual i (i = 1, . . . , I) with

unobserved characteristics ζi (ζi ∈ R), pj and zj are respectively the price and a

k-vector of observed characteristics of product j (pj ∈ R+, zj ∈ Rk, k < ∞); b is

a k-vector of coefficients determining the impact of zj on the utility for j (b ∈ Rk),

and ξj is an index of unobserved characteristics of the latter (ξj ∈ R); −a is a taste



4 KOMUNJER AND SANTOS

parameter on the price assumed constant across individuals (a > 0); finally, εij is

an error term that represents the deviations from an average behavior of agents and

whose distribution is induced by the characteristics of the individual i and those of

product j (εij ∈ R).

A baseline specification of the random utility in (1) is that εij are iid across prod-

ucts j and individuals i. For example, assuming that εij’s are Gumbel random

variables, the resulting individual choice model is logit. In what follows, we let the

difference εi2 − εi1 be distributed with known cdf F ; while F is assumed to be some

known cdf, it need not be logit. When εi2 − εi1 has cdf F , the demand for good j,

denoted Dj(pj, p−j), is given by:

(2) Dj(pj, p−j) = M · F
(
a(p−j − pj) + b′(z−j − zj) + ξ−j − ξj

)
where M is the total market size.

Hereafter, we let the Y ≡ D1(p1, p2)/M be the market share for firm 1’s good

(Y ∈ [0, 1]), P ≡ p2 − p1, Z ≡ z2 − z1 and ξ ≡ ξ2 − ξ1. Then, the structural BLP

model of (2) takes the form:

(3) Y = F
(
aP + b′Z + ξ

)
with ξ ⊥ Z

In the model above, prices are endogenous, so even if ξ is independent of Z, we can

expect P to depend on ξ. Hence, without further restrictions on ξ and P it is not

possible to identify the parameters a and b in (3). We now show how the supply side

information may be used to identify these parameters.

We assume that firms compete in prices (à la Bertrand), so each firm chooses

prices which maximize its profits:

Πj(pj, p−j) = (pj − cj)Dj(pj, p−j)

Let the marginal costs C ≡ (c1, c2) be observable and let X ≡ (Z ′, C ′). The price

(p1, p2) is then implicitly defined by the solution to the Bertrand game with ex-

ogenous variables X. Lemma 1 exploits this relationship to obtain an alternative

representation for the model in (3).
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Lemma 1. Assume F is twice continuously differentiable on R with density f sat-

isfying f ′(x)F (x) < f 2(x). If the unobservable ξ in the model (3) is continuously

distributed, then it follows that:

(4) Y = F (h(X,U) +X ′θ)

with 0 < ∂h(X, u)/∂u < 1, U ∼ U [0, 1], and θ′ = (b′, 0, 0).

The assumption f ′(x)F (x) < f 2(x) guarantees the existence of a unique Nash equi-

librium and the Lemma can then be obtained by analyzing the equilibrium strategies.

3. Minimum Distance from Independence Estimation

We now proceed to study our MDI estimator, which applies to a class of models

of which (4) is a special case. Consider the following general setup:

(5) Y = m(X,U, α0) U ⊥ X U ∼ U [0, 1]

with observables Y ∈ R and X ∈ Rdx , unobservable U ∈ R, and where m(x, u, α) is

some known real function that is strictly increasing in u for all (x, α). Recall that

the parameter of interest α consists of a finite dimensional component θ ∈ Rdθ and

an infinite dimensional one h ∈ H. We therefore let (θ, h) ≡ α ∈ A ≡ Θ×H.

In many models, as in the BLP example discussed in Section 2, the assumption

that U ∼ U [0, 1] is not restrictive as nonuniform latent variables may be transformed

to fit this model. When permitted, this re-parameterization is helpful as it allows for

a simple characterization of the independence of U and X, as shown in the following

Lemma.

Lemma 2. Let the model (5) hold, X be continuously distributed, and

∂m(x, u, α0)/∂u > 0 for all x. Then, it follows that U ⊥ X if and only if for

all (tx, tu) ∈ Rdx × (0, 1):

(6) P (Y 6 m(X, tu, α0); X 6 tx) = tu · P (X 6 tx)



6 KOMUNJER AND SANTOS

Lemma 2 suggests a straightforward way to construct a criterion function through

which to estimate α0. Let t = (tu, tx, ) and define

(7) W (t, α) ≡ P (Y 6 m(X, tu, α); X 6 tx)− tu · P (X 6 tx)

Note that under the assumptions of Lemma 2, U ⊥ X if and only if W (t, α0) = 0 for

all t. Hence, a natural candidate for a population criterion function is the Cramer

von-Mises type objective:

(8) Q(α) ≡
∫
W 2(t, α)dµ(t)

where µ is a measure on Rdx × (0, 1) that is absolutely continuous with respect to

Lebesgue measure. The choice of µ is free, though we note that it will influence the

asymptotic variance of our estimator for θ.

When the model in (5) is identified by the restriction U ⊥ X, Lemma 2 implies

that α0 is the unique zero of Q(α) and hence we have

α0 = arg min
A
Q(α) .

Estimation will then proceed by minimizing an empirical analogue of Q(α). First

define the sample analogue to W (t, α):

(9) Wn(t, α) ≡ 1

n

n∑
i=1

1{yi 6 m(xi, tu, α); xi 6 tx} − tu ·
1

n

n∑
i=1

1{xi 6 tx} ,

which yields a finite sample criterion function,

(10) Qn(α) =

∫
W 2
n(t, α)dµ(t)

Since A contains a nonparametric component, minimizing Qn(α) to obtain an

estimator may not only be computationally difficult, but also undesirable as it may

yield slow rates of convergence; see Chen (2006). For this reason we instead sieve

the parameter space A. Let Hn ⊂ H be a sequence of approximating spaces, and

define the sieve An = Θ×Hn. The MDI estimator is then given by,

(11) α̂ ∈ arg min
An

Qn(α)
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Under the following assumptions, it is possible to establish the consistency of α̂.

Assumption A. (i) {yi, xi} are i.i.d.; (ii) (Y,X, U) are continuously distributed

according to (5); (iii) α0 = arg minAQ(α); (iv) The conditional densities fY |X(y|x)

and fX(x) are uniformly bounded in (y, x); (v) µ(t) has full support on Rdx × (0, 1).

Assumption B. (i) m(x, u, α) is strictly increasing in u ∀(x, α); (ii) Θ ⊂ Rdθ and

H are compact w.r.t ‖ · ‖ and ‖ · ‖∞; (iii) |m(x, t, α)−m(x, t, α̃)| 6 G(x){‖θ− θ̃‖+

‖h − h̃‖∞} with E[G2(X)] < ∞; (iv) The entropy
∫∞

0

√
N[ ](η3,H, ‖ · ‖∞)dη < ∞;

(v) Hn ⊂ H are closed in || · ||c and for any h ∈ H there exists a Πnh ∈ Hn such

that ‖h− Πnh‖∞ = o(1).

Assumption A(iii) requires identification of the model. For fully nonparamet-

ric specifications, identification of these models is well understood, see for exam-

ple Matzkin (2003). Identification in semiparametric setups, however, can be more

challenging and of course depends on the model specification. Below, we provide

conditions for identification of the BLP example. Assumptions B(i)-(iv) ensures the

stochastic process is asymptotically equicontinuous in probability. In Assumption

B(iv), N[ ](η
3,H, ‖ · ‖∞) denotes the bracketing number of H with respect to || · ||∞,

see van der Vaart and Wellner (1996) for details and examples of function classes

satisfying Assumption B(iv). Finally, Assumption B(v) requires the sieve can ap-

proximate the parameter space with respect to the norm || · ||∞.

For the consistency result, endow A with the metric ||α||c = ||θ||+ ||h||∞.

Theorem 1. Under Assumptions A and B, ‖α̂− α‖c = op(1).

In the context of the BLP example, Assumption B(v) can be verified by letting H

be a smooth set of functions. For example, suppose x has compact support X and

let λ be a dx + 1 dimensional vector of positive integers. Define |λ| =
∑dx+1

i=1 λi and

Dλ = ∂λ/∂xλ1
1 . . . ∂x

λdx
dx
∂uλdx+1 . An appropriate set H is then given by:

H = {h(x, u) : max
|λ|≤ 3(dx+1)

2
+1

sup
x,u
|Dλh(x, u)| ≤M, inf

x,u

∂h(x, u)

∂u
≥ ε, ε > 0} .
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By Theorem 2.7.1 in van der Vaart and Wellner (1996), Assumption B(iv) is then sat-

isfied. For approximating sieves Hn that satisfy B(v) appropriate options are splines

or polynomials, see Chen (2006) for further examples and discussion. Assumption

B(iii) follows by the mean value theorem if we assume F has bounded derivative. To

verify Assumption B(ii), note the set of functions {∂h(x,u)
∂u

: h(x, u) ∈ H} is compact

in || · ||∞ due to them having uniformly bounded derivatives and the Arzela Ascoli

Theorem. Compactness for all of H is then implied by the same arguments.

The hardest condition to verify for the discussed BLP model is identification, for

which we provide primitive conditions in the following Theorem:

Theorem 2. Let h(x, u) be continuously differentiable, (i) ∂h(x, u)/∂u > 0 for all

x; (ii) h(0, 1/2) = 0 and (iii) ∂h(0, 1/2)/∂x = 1. If F is a known cdf that is

strictly increasing, then the parameters (θ, h) of the model (4) are identified by the

restrictions U ⊥ X and U ∼ U [0, 1].

Combining the results of Lemma 1 and Theorem 2 then shows that the parameters

(θ, h) in the BLP model in (4) are identified.

The conditions of the Theorem fix the values of the unknown function h and of

its gradient with respect to x, denoted by ∂h(x, u)/∂x, at one point. In particular,

(ii) holds if the distribution Fξ of the products’ unobservable ξ in the BLP model

in Equation (3) is known to satisfy Fξ(0) = 1/2, since when X = 0 and ξ = 0 the

equilibrium is symmetric which implies P = 0. Hence, aP + ξ = 0 = h(0, 1/2).

Requirement (iii) fixes the value of the gradient ∂h(x, u)/∂x at the same point. It

ensures that the effects of changing θ can be separated from those of changing h.

Indeed, if h is additively separable in x as in: h(x, u) = φ′x+ r(u), then (ii) holds if

φ = 1. This restriction is as we would expect since it would be otherwise impossible

to identify θ in Y = F ((φ+ θ)′X + r(U)).

4. Rate of Convergence

This section examines the rate of convergence of ĥ. This result is not only inter-

esting in its own right, but is also instrumental in deriving the asymptotic normality
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of
√
n(θ̂ − θ). We focus on the following norm for h(x, u):

(12) ‖h‖2
L2 =

∫
h2(x, tu)fX(x)dxdµ(t)

Associated to the norm ||h||L2 is the vector space L2 = {h(x, u) : ||h||L2 <∞}.

In order to obtain the rates of convergence for ||ĥ−h||L2 , it is necessary to examine

the local behavior of Q(α) at α0. Consider the function m(x, tu, α), and notice

that it can be thought of as a mapping m : (A, || · ||c) → L2. As a mapping,

m(x, tu, α) is said to be Frechet differentiable, if there exists a bounded linear map

dm(x,tu,α)
dα

: (A, || · ||c)→ L2 such that,

lim
||π||c↘0

||m(x, tu, α + π)−m(x, tu, α)− dm(x,tu,α)
dα

[π]||L2

||π||c
= 0

The Frechet derivative is a natural extension of the standard derivative to arbitrary

metric spaces. To illustrate these concepts, notice that in the BLP example the

mapping m(x, tu, α) = h(x, tu) + x′θ. Further, since in this case m(x, tu, α) is linear,

the mapping is its own Frechet derivative, i.e. for π = (hπ, θπ) we have:

dm(x, tu, α)

dα
[π] = hπ(x, tu) + x′θπ

Given these definitions, we introduce the following assumption.

Assumption C. (i) In a neighborhood N (α0) ⊂ A, m : (A, ‖ · ‖c)→ L2 is continu-

ously Frechet differentiable; (ii) The conditional densities |fY |X(y|x)− fY |X(y′|x)| 6

J(x)|y − y′|ν with E[J2(X)G2∨2ν(X)] <∞.

Under Assumption A(iv), B(iii) and C, the Frechet differentiability of m(x, tu, α)

is inherited by Q(α) as a mapping Q : (A, || · ||c) → R. To state the form of this

Frechet derivative, we define the linear map:

(13) Dᾱ[π] =

∫
fY |X(m(x, tu, ᾱ)|x)

dm(x, tu, ᾱ)

dα
[π]1{x 6 tx}fX(x)dx

Lemma 3 establishes that Q(α) is twice Frechet differentiable at α0.
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Lemma 3. Under Assumption A(iv), B(iii) and C(i)-(ii), Q(α) : (A, ‖ · ‖c)→ R is:

(i) continuously Frechet differentiable in N (α0) with dQ(ᾱ)
dα

[π] =
∫
W (t, ᾱ)Dᾱ[π]dµ(t)

(ii) and twice Frechet differentiable at α0 with d2Q(α0)
d2α

[ψ, π] =
∫
Dα0 [ψ]Dα0 [π]dµ(t).

In this model, since Q(α) is minimized at α0, its second derivative at α0 induces

a norm on A. This result is analogous to a parametric model, in which if the

Hessian H is a positive definite matrix, then
√
a′Ha is a norm equivalent to the

standard Euclidean norm. Guided by Lemma 3 we hence define the inner product

and associated norm,

(14) 〈α, α̃〉w =

∫
Dα0 [α]Dα0 [α̃]dµ(t) ‖α‖2

w = 〈α, α〉w

The advantage of the norm ||·||w is that through a Taylor expansion it is often possible

to show ||α − α0||2w . Q(α), which makes it easy to obtain rates of convergence in

|| · ||w. However, the norm || · ||w may not be of interest in itself. We instead aim to

obtain a rate of convergence in the norm:

||α||s = ||θ||+ ||h||L2 .

It is possible to obtain a rate of convergence for ||α̂ − α0||s by understanding the

behavior of the ratio || · ||s/|| · ||w on the sieve An. The assumptions we impose to

obtain the rate of convergence for ||α̂− α0||s are:

Assumption D. (i) In N (α0), ||α − α0||2w . Q(α) . ||α − α0||2s; (ii) The ratio

τn = supAn ‖αn‖2
s/‖αn‖2

w satisfies τn = o(nγ) with γ < 1/4; (iii) For any h ∈ H

there exists Πnh ∈ Hn with ‖h− Πnh‖s = o(n−
1
2 ) and ‖h− Πnh‖c = o(n−

1
4 ).

Assumption D(i) requires ||α − α0||w . Q(α). As discussed, this is often verified

through a Taylor expansion and allows us to obtain a rate of convergence in || · ||w.

In our model, || · ||w is too weak and Q(α) is often not continuous in this norm. We

impose instead Q(α) . ||α − α0||2s. Assumption D(ii) is crucial in enabling us to

obtain rates in || · ||s from rates in || · ||w, and vise versa, which is needed to refine

initial estimates of the rate of convergence. The ratio τn is often referred to as the
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sieve modulus of continuity, see for example Chen and Pouzo (2008). In practice,

Assumption D(ii) is requiring the sieve not to grow too fast. Finally Assumption

D(iii) refines the requirements of rates of approximation for the sieve An.

Given these assumptions we obtain the following rate of convergence result:

Theorem 3. Under Assumptions A, B, C and D, ‖α̂− α0‖s = op(n
− 1

4 ).

Notice that since ||α̂− α0||s = ||θ̂− θ0||+ ||ĥ− h0||L2 , it immediately follows from

Theorem 3 that ||ĥ− h0||L2 = op(n
− 1

4 ), as desired.

5. Asymptotic Normality

In this section we establish the asymptotic normality of
√
n(θ̂− θ). The approach

of the proof is similar to that of Ai and Chen (2003) and proceeds in two steps:

(i) For any λ ∈ Rdθ show the functional Fλ(α) = λ′θ, which returns the para-

metric component of the semiparametric specification is continuous in ‖ · ‖w.

(ii) By the Riesz Representation theorem there is vλ such that 〈vλ, α̂ − α0〉w =

λ′(θ̂ − θ0). We then establish the asymptotic normality of
√
n〈vλ, α̂− α0〉w.

We therefore begin by establishing the continuity of Fλ(α) = λ′θ in || · ||w. Let

Ā denote the closure of the linear span of A − α0 under ‖ · ‖w, and observe that

(Ā, ‖ · ‖w) is a Hilbert Space with inner product 〈·, ·〉w. Notice that Ā = Rdθ × H̄,

with H̄ the closure of the linear span of H− h0 under ‖ · ‖w. For any (α− α0) in Ā,

we can then decompose Dα0 [α− α0] according to:1

Dα0 [α− α0] =
dW (t, α0)

dα
[α− α0]

=
dW (t, α0)

dθ′
[θ − θ0] +

dW (t, α0)

dh
[h− h0](15)

For each component θi of θ, 1 6 i 6 dθ, let h∗j ∈ H̄ be defined by:

(16) h∗j = arg min
h∈H̄

∫ (
dW (t, α0)

dθj
− dW (t, α0)

dh
[h]

)2

dµ(t)

1The first equality in (15) is formally justified in the proof of Lemma 3 in the Appendix, in which

it is shown Dα0 is the Frechet derivative of W (t, α).
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where the minimum in (16) is indeed attained and h∗j is well defined due to the

Projection Theorem in Hilbert Spaces, see for example Theorem 3.3.2 in (Luenberger,

1969). Similarly define h∗ = (h∗1, . . . , h
∗
dθ

) and let,

(17)
dW (t, α0)

dh
[h∗] =

(
dW (t, α0)

dh
[h∗1], . . . ,

dW (t, α0)

dh
[h∗dθ ]

)
As a final piece of notation, we also need to denote the vector of residuals,

(18) Rh∗(t) =
dW (t, α0)

dθ
− dW (t, α0)

dh
[h∗]

and the associated matrix:

(19) Σ∗ =

∫
Rh∗(t)R

′
h∗(t)dµ(t)

As Lemma 4 shows, the continuity of the functional Fλ(α) = λ′θ depends on the

matrix Σ∗ being positive definite. Lemma 4 also obtain the formula for the Riesz

Representor of Fλ(α).

Lemma 4. Let vλθ = (Σ∗)−1λ, vλh = −h∗vλθ and (vλθ , v
λ
h) ∈ Ā. If Σ∗ is positive-

definite, then for any λ ∈ Rdθ , Fλ(α − α0) = λ′(θ − θ0) is continuous on Ā under

‖ · ‖w and in addition we have Fλ(α− α0) = 〈vλ, α− α0〉w = λ′(θ − θ0).

Having established the continuity of Fλ(α) in || · ||w, we can now show the asymp-

totic normality of
√
n〈vλ, α̂−α0〉w. For this purpose we require one final assumption.

Assumption E. (i) Σ∗ is positive definite; (ii) vλ ∈ A for ||λ|| small; (iii)

∀ α ∈ N (α0), and π, ᾱ ∈ A, the pathwise derivative dDα+τᾱ[π]
dτ

exists with∫
sups∈[0,1]

∣∣∣dDα+τᾱ[π]
dτ

∣∣∣
τ=s

∣∣∣ dµ(t) . ‖ᾱ‖s‖π‖s and
∫

sups∈[0,1]

(
dDα+τᾱ[π]

dτ

∣∣∣
τ=s

)2

dµ(t) .

‖ᾱ‖2
s; (iv) ∀ α ∈ N (α0) and π ∈ A, |Dα[π]| is bounded.

Assumption E(i) ensures that Fλ(α) = λ′θ is continuous in || · ||w, as shown in

Lemma 4. While vλ ∈ Ā, Assumption E(ii) additionally requires vλ ∈ A. As a result

vλ may be approximated by an element Πnv
λ ∈ An. The qualification “for ||λ|| small”

is due to the compactness assumption on Θ × H requiring them to be bounded in

norm. Finally Assumptions E(iii)-(iv) require W (t, α) to be twice differentiable and
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for some regularity conditions on the derivatives. For example, in the discussed BLP

example for α = (θα, hα) we have:

(20) Dα[π] =

∫
fY |X(x′θα + hα(x, u)|x)(x′θπ + hπ(x, tu))1{x ≤ tx}fX(x)dx

Hence, Assumption E(iv) is easily verified by requiring suptu E[|x′θ + h(x, tu)|] <∞

uniformly in (θ, h) ∈ A. Similarly, by direct calculation we obtain that in the

discussed BLP example,

dDα+τᾱ[π]

dτ

∣∣∣
τ=s

=

∫
f ′Y |X(x′(θα + sᾱ) + hα(x, tu) + shᾱ(x, tu))(x

′θπ + hπ(tu, x))

× (x′θᾱ + hᾱ(tu, x))1{x ≤ tx}fX(x)dx

and hence Assumption E(iii) is easily verified if |f ′Y |X(y|x)| is bounded in (y, x).

We are now ready to establish the asymptotic normality of
√
n(θ̂ − θ0).

Theorem 4. Let Assumptions A, B, C, D and E hold. Then,
√
n(θ̂− θ) L→ N(0,Σ)

where Σ = [Σ∗]−1 [∫ Rh∗(t)R
′
h∗(s)Σ(t, s)dµ(t)dµ(s)

]
[Σ∗]−1

6. Conclusion

We have proposed a general estimation framework for a large class of semipara-

metric nonseparable models. The resulting estimator converges to the nonparametric

component at a op(n
− 1

4 ) rate, and yields an asymptotically normal estimator for the

parametric component. Some of the Assumptions must be verified in a model spe-

cific basis, which we have done in an example motivated by Berry, Levinsohn, and

Pakes’s (1995) model of price-setting with differentiated products.
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Appendix A. Details of the BLP example

In this Appendix, we give the proofs of Lemma 1 and Theorem 2. We start with an

auxiliary Lemma whose result will be useful later on.

Lemma 5. Assume F is twice continuously differentiable with f ′(x)F (x)/f2(x) < 1. Then

the BLP equilibrium prices exist, are unique, and the map (ξ2−ξ1, z2−z1, c1, c2) 7→ (p2−p1)

is twice continuously differentiable with:

−1
a
<
∂(p2 − p1)
∂(ξ2 − ξ1)

< 0

Proof of Lemma 5: Under the assumption f ′(x)F (x)/f2(x) < 1 the goods are sub-

stitutes and the elasticity of demand is a decreasing function of the other firm’s prices,

i.e.
∂2 lnDj(pj , p−j)

∂pj∂p−j
> 0 .

It follows that the (log-transformed) Bertrand duopoly played by the firms is supermodular;

hence, there exist a pure Nash equilibrium to the game (see, e.g., Milgrom and Roberts,

1990). We now show that this equilibrium is unique. For this purpose note that

−∂
2 ln Πj(pj , p−j)

∂p2
j

− ∂2 ln Πj(pj , p−j)
∂pj∂p−j

=
1

(pj − cj)2
> 0

so that the “dominant diagonal” condition of Milgrom and Roberts (1990) holds; this

guarantees that the equilibrium is unique.

Since f ′(x)F (x)/f2(x) < 1 we also have ∂2 lnDj(pj , p−j)/∂p2
j < 0, which implies that

∂2 ln Πj(pj , p−j)/∂p2
j < 0, and the Nash equilibrium (p∗1, p

∗
2) is the unique solution to the

first order conditions Φ(p1, p2, ξ) = 0, where we have let ξ = ξ2 − ξ1 and

Φ(p1, p2, ξ) =

 1
p1−c1 + ∂ lnD1(p1,p2)

∂p1

1
p2−c2 + ∂ lnD2(p1,p2)

∂p2


Note that the map Φ is continuously differentiable and we have:

D(p1,p2)Φ =

 − 1
(p1−c1)2 + ∂2 lnD1(p1,p2)

∂p2
1

∂2 lnD1(p1,p2)
∂p1∂p2

∂2 lnD2(p1,p2)
∂p1∂p2

− 1
(p2−c2)2 + ∂2 lnD2(p1,p2)

∂p2
2


In addition, note that the demand function in (2) satisfies:

(21) −∂
2 lnDj(pj , p−j)

∂p2
j

=
∂2 lnDj(pj , p−j)

∂pj∂p−j
= α

∂2 lnDj(pj , p−j)
∂pj∂(ξ−j − ξj)

> 0
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where the last inequality follows from Assumption f ′(x)F (x)/f2(x) < 1. Therefore,

det D(p1,p2)Φ =

1
(p1 − c1)2(p2 − c2)2

− 1
(p1 − c1)2

∂2 lnD2(p1, p2)
∂p2

2

− 1
(p2 − c2)2

∂2 lnD1(p1, p2)
∂p2

1

> 0

Hence, by the Implicit Function Theorem (see, e.g., Theorem 9.28 in Rudin, 1976), the

equation Φ(p1, p2, ξ) = 0 defines in a neighborhood of the point (p∗1, p
∗
2, ξ) a mapping

ξ 7→ pj that is continuously differentiable, and whose derivative at this point equals:

∂p1

∂ξ
= −1

a

1
det D(p1,p2)Φ

1
(p2 − c2)2

∂2 lnD1(p1, p2)
∂p2

1

(22)

∂p2

∂ξ
=

1
a

1
det D(p1,p2)Φ

1
(p1 − c1)2

∂2 lnD2(p1, p2)
∂p2

2

(23)

where the first equality uses (21) and the fact that

∂2 lnD2(p1, p2)
∂p2

2

∂2 lnD1(p1, p2)
∂p1∂ξ

− ∂2 lnD1(p1, p2)
∂p1∂p2

∂2 lnD2(p1, p2)
∂p2∂ξ

= 0

while the second exploits (21) and the fact that

∂2 lnD1(p1, p2)
∂p2

1

∂2 lnD2(p1, p2)
∂p2∂ξ

− ∂2 lnD2(p1, p2)
∂p1∂p2

∂2 lnD1(p1, p2)
∂p1∂ξ

= 0

¿From (22) we then have the desired result:

−1
a
<
∂(p2 − p1)

∂ξ
< 0

which concludes the proof of the Lemma. �

Proof of Lemma 1: It follows from Lemma 5 that the demand for good 1 in (2) is an

increasing function of ξ2 − ξ1. To see this, note that:

∂D1(p1, p2)
∂(ξ2 − ξ1)

= M ·
[
a
∂(p2 − p1)
∂(ξ2 − ξ1)

+ 1
]
· f
(
a(p2 − p1) + b′(z2 − z1) + ξ2 − ξ1

)
which together with Proposition 1 yields:

∂D1(p1, p2)
∂(ξ2 − ξ1)

> 0

Since ξ is continuously distributed, it has a strictly increasing cdf, which we denote Fξ.

Noting that Fξ(ξ) ∼ U [0, 1], we may define:

h(X,U) ≡ a(p2 − p1) + F−1
ξ (U)
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and the claim of the Lemma follows immediately from Equation (3). �

Proof of Theorem 2: Let FY |X(·|·;S) denote the conditional distribution of Y given X

that is induced by the structure S ≡ (θ, h). Fix x ∈ Rdx and let v : Rdx+1 → R be such

that for any u ∈ R, we have: h(x, u) = t if and only if u = v(t, x). Note that v(·, x) is well

defined since by (i) we have ∂h(x, u)/∂u > 0. Then, for any y ∈ R,

FY |X(y|x;S) = P
(
Y 6 y

∣∣X = x
)

= P
(
h(X,U) 6 F−1(y)− θ′x

∣∣X = x
)

= P
(
U 6 v(F−1(y)− θ′x, x)

∣∣X = x
)

= P
(
U 6 v(F−1(y)− θ′x, x)

)
= v(F−1(y)− θ′x, x)(24)

where the second equality uses the fact that h(x, u) is strictly increasing in u, the third

exploits the independence of U and X, and the last follows from U being uniform.

Since h(x, u) is continuously differentiable on Rdx× (0, 1) and such that ∂h(x, u)/∂u > 0

on Rdx × (0, 1), v(t, x) is continuously differentiable on Rdx+1 with:

∂v

∂x
(t, x) = −∂h

∂x
(x, v(t, x))

[
∂h

∂u
(x, v(t, x))

]−1

∂v

∂t
(t, x) =

[
∂h

∂u
(x, v(t, x))

]−1

(25)

Further, for any (y, x) ∈ Rdx+1 let Φ(y, x) ≡ P
(
Y 6 y

∣∣X = x
)
. Under our assumptions

on F , Φ(y, x) is continuously differentiable on Rdx+1 and we have:

∂Φ
∂y

(y, x) =
∂v

∂t
(F−1(y)− θ′x, x)

1
f(F−1(y))

∂Φ
∂x

(y, x) = −θ∂v
∂t

(F−1(y)− θ′x, x) +
∂v

∂x
(F−1(y)− θ′x, x)(26)

In particular, ∂Φ(y, x)/∂y > 0 on Rdx+1. Combining (25) and (26) we then obtain:

(27) − 1
f(F−1(y))

[
∂Φ
∂x

(y, x)
][
∂Φ
∂y

(y, x)
]−1

= θ +
∂h

∂x

(
x, v(F−1(y)− θ′x, x)

)
Evaluate the left hand side of (27) at x = 0 ∈ Rdx and y = F (0) ∈ (0, 1). For these

values of x and y, we have: F−1(y) − θ′x = 0 so by using Assumption (ii), v(0, 0) = 1/2.
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Combining the latter with Assumption (iii) then gives:

θ = − 1
f(0)

[
∂Φ
∂x

(
F (0), 0

)][∂Φ
∂y

(
F (0), 0

)]−1

− 1

from which it follows that θ is identified. The identification of v(t, x), and hence h(x, u)

then immediately follows from (24). �

Appendix B. Proofs for Section 3

Proof of Lemma 2: Since U is uniform on (0, 1) it immediately follows that U ⊥ X if

and only if for all (tx, tu) ∈ Rdx × (0, 1):

(28) P (U 6 tu; X 6 tx) = tu · P (X 6 tx)

Further, notice that for any (tx, tu) ∈ Rdx × (0, 1) the following holds:

P (X 6 tx; Y 6 m(X, tu, α0)) =
∫
sx6tx

∫
sy6m(sx,tu,α0)

fXY (sx, sy)dsxdsy

=
∫
sx6tx

∫
su6tu

fXY (sx,m(sx, su, α0))
∂m(sx, su, α0)

∂u
dsxdsu

=
∫
sx6tx

∫
su6tu

fXU (sx, su)dsxdsu

=
∫
sx6tx

fX(sx)dsx
∫
su6tu

fU (su)dsu(29)

where the second and third equalities follow by a change of variable (sx, sy) =

(sx,m(sx, su, α0)) and a change in measure. The final equality in (29) then follows by

U ⊥ X. Combining (28), (29) and the fact that U is unform on (0, 1) then establishes the

claim of the Lemma. �

Lemma 6. Under Assumptions A and B, the following class is Donsker:

F =
{

1{y 6 m(x, tu, α); x 6 tx}, (α, tx, t) ∈ A× Rdx × (0, 1)
}

Proof: First define the following classes of functions for 1 6 k 6 dx:

Fu =
{

1{y 6 m(x, t, α)}
}

: (α, t) ∈ A× (0, 1)}(30)

F (k)
x = {1{x(k) 6 t} : t ∈ R}(31)
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Further notice that by direct calculation we have,

(32) F = Fu ×
dx∏
k=1

F (k)
x

We will establish the Lemma by exploiting (32). Notice that for any continuously dis-

tributed random variable V ∈ R and η > 0 we can find {−∞ = t1, t2, . . . , tbη−2c+2 = +∞}

such that P (ti 6 V 6 ti+1) 6 η2. The brackets [1{v 6 ti}, 1{v 6 ti+1}] then cover

{1{v 6 t} : t ∈ R} and in addition by construction we have,

E[(1{V 6 ti} − 1{V 6 ti+1})2] 6 η2

Therefore, we immediately establish that for all 1 6 k 6 dx:

(33) N[ ](η,F (k)
x , ‖ · ‖L2) = O(η−2)

By assumption, H is compact under ‖ · ‖∞ and Θ under ‖ · ‖. Thus, there exists a

collection {hj} and {θl} such that the open balls of size Khη
3 around {hj} and of size

Kθη
3 around {θl} cover H and Θ respectively. Define the collection {αi} = {hj} × {θl}

and note that,

(34) #{αi} = N[ ](Khη
3,H, ‖ · ‖∞)× (Kθη

3)−dθ

Furthermore, it then follows that for any α ∈ A there exists a αi ∈ {αi} such that

|m(x, t, α)−m(x, t, αi)| 6 G(x){‖θ − θi‖+ ‖h− hi‖∞}

6 G(x){Kθ +Kh}η3(35)

We conclude from (35) that for αi ∈ {αi}, brackets of the form

[m(x, t, αi)− {Kθ +Kh}η3G(x); m(x, t, αi) + {Kθ +Kh}η3G(x)]

cover the class {m(x, t, α) : α ∈ A} for each fixed t. Next note that since m(x, u, α) is

strictly increasing in u for all (x, α), we may define their inverses:

(36) v(u, x, α) = t ⇐⇒ m(x, t, α) = u
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Following Akritas and van Keilegom (2001), for each αi ∈ {αi} we let FUi (t) be as in the

first equality in (37) and obtain second equality in (37) from (36).

FUi (t) ≡ P (Y 6 m(X, t, αi) + {Kθ +Kh}η3G(X))

= P (v(Y − {Kθ +Kh}η3G(X), X, αi) 6 t)(37)

Arguing as in (33), it follows that it is possible to pick tUik with k = 1, . . . , O(η−2) such

that they partition R into segments each with FUi probability at most η2/6. Also let

(38) FLi (t) = P (Y 6 m(X, t, αi)− {Kθ +Kh}η3G(X))

and choose tLik with k = 1, . . . , O(η−2) such that they partition R into segments each with

FLi probability at most η2/6. Next combine {tLik} and {tUik} into a single bracket, by letting

each t ∈ R form the bracket

tLik1
6 t 6 tUik2

where tLik1
is the largest element of {tLik} such that tLik 6 t, and similarly tUik2

is the smallest

element in {tUik} such that tUik ≥ t. We denote this new brackets by {[tik1 , tik2 ]} and note

that direct calculation shows

(39) #{[tik1 , tik2 ]} = O(η−2)

It follows from the strict monotonicity of m(x, t, α) in t that for every (α, t) ∈ A × (0, 1)

there exists a αi ∈ {αi} and [tik1 , tik2 ] ∈ {[tik1 , tik2 ]} such that,

1{y 6 m(x, tik1 , αi)− {Kθ +Kh}η3G(x)} 6 1{y 6 m(x, t, α)}

6 1{y 6 m(x, tik2 , αi) + {Kθ +Kh}η3G(x)}(40)

In order to calculate the size of the proposed brackets, note their L2 squared norm is

FUi (tik2)− FLi (tik1). The construction of {[tik1 , tik2 ]} in turn implies the first inequality in

(41) holds for any t ∈ [tik1 , tik2 ], while direct calculation yields the second inequality for

any constat Mη. Setting Mη =
√

6E[G2(X)]/η and Chebychev’s inequality yields (41).

FUi (tik2)− FLi (tik1) 6 FUi (t)− FLi (t) +
η2

3

6 FUi (t;G(X) 6Mη)− FLi (t;G(X) 6Mη) + 2P (G(X) ≥Mη) +
η2

3

6 FUi (t;G(X) 6Mη)− FLi (t;G(X) 6Mη) +
2
3
η2(41)
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To conclude, notice that the first inequality and equality in (42) follows by direct cal-

culation. The second inequality is implied by the mean value theorem and Mη =√
6E[G2(Y,X)]/η. The resulting expression is finite due to Assumptions A and B.

FUi (t;G(X) 6Mη)− FLi (t;G(X) 6Mη)

6 P
(
Y 6 m(X, t, αi) + {Kθ +Kh}Mηη

3
)
− P

(
Y 6 m(X, t, αi)− {Kθ +Kh}Mηη

3
)

= E
[
P
(
Y 6 m(x, t, αi) + {Kθ +Kh}Mηη

3
∣∣x)− P (Y 6 m(x, t, αi)− {Kθ +Kh}Mηη

3
∣∣x)]

6 2{sup
y,x

fY |X(y|x)}{Kθ +Kh}
√

6E[G2(Y,X)]η2(42)

It follows from (41) and (42), that by choosing

{Kθ +Kh} 6
(
2{sup

y,x
fY |X(y|x)}

√
6E[G2(X)]

)−1

the proposed brackets will have L2 size η. Thus, we have from (34) and (39),

(43) N[ ](η,Fu, ‖ · ‖L2) = O(N[ ](Khη
3,H, ‖ · ‖∞)× (Kθη

3)−(2+dθ))

To conclude note that (33), (43), Assumption B and Theorem 2.5.6 in van der Vaart and

Wellner (1996) implies the classes F (k)
x and Fu are Donsker. In turn, since all classes are

uniformly bounded by 1, Theorem 2.10.6 in van der Vaart and Wellner (1996) and (32)

establishes the claim of the Lemma. �

Proof of Theorem 1: By Assumption B and the Tychonoff Theorem, A is compact

with respect to ‖ · ‖c. Furthermore, Lemma 6 and simple manipulations show,

(44) sup
t,α
|Wn(t, α)−W (t, α)| p→ 0

By direct calculation, exploiting (44) and noticing Wn(t, α) and W (t, α) are uniformly

bounded by 1, we then obtain

(45) sup
α
|Qn(α)−Q(α)| 6 sup

t,α
|Wn(t, α)−W (t, α)|×

{
sup
t,α
|Wn(t, α)|+ sup

t,α
|W (t, α)|

}
p→ 0

The result then follows by Lemma A1 in Newey and Powell (2003) and noticing that their

requirement that Qn(α) being continuous can be substituted by α̂ being an element of the

argmin correspondence. �
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Appendix C. Proofs for Section 4

Throughout the proofs in this Appendix, it is useful to define the norm

||ξ||2L2
µ

=
∫
ξ2(t)dµ(t)

and study the associated vector space L2
µ = {ξ(t) : ||ξ||L2

µ
<∞}.

Proof of Lemma 3: We first study the differentiability of W (t, α) : (A, ‖ · ‖c) → L2
µ

in a neighborhood of α0. Notice that Dᾱ[π] is well defined for every ᾱ ∈ N (α0) due to

Assumption C(i). Next, use fY |X(y|x) uniformly bounded and Jensen’s inequality to obtain

the first result in (46). The second inequality holds for ‖ · ‖o the linear operator norm; see

Chapter 6 in (Luenberger, 1969).

‖Dᾱ[π]‖2L2
µ
.
∫ (

dm(x, tu, ᾱ)
dα

[π]
)2

fX(x)dxdµ(t)

6

∣∣∣∣∣∣∣∣dm(x, tu, ᾱ)
dα

∣∣∣∣∣∣∣∣2
o

‖π‖2c(46)

Since Frechet derivative are a fortiori continuous, (46) implies Dᾱ[π] is continuous in π ∈ A
for all ᾱ ∈ N (α0). To examine continuity of Dᾱ in ᾱ ∈ N (α0), we use Jensen’s inequality

to obtain (47) pointwise in tu.

(47) |Dᾱ[π]−Dα̃[π]| 6
∫ ∣∣fY |X(m(x, tu, ᾱ)|x)− fY |X(m(x, tu, α̃)|x)

∣∣ ∣∣∣∣dm(x, tu, ᾱ)
dα

[π]
∣∣∣∣ fX(x)dx

+
∫
fY |X(m(x, tu, α̃)|x)

∣∣∣∣dm(x, tu, ᾱ)
dα

[π]− dm(x, tu, α̃)
dα

[π]
∣∣∣∣ fX(x)dx

In turn, the Lipschitz Assumptions B(iii) and C(ii), fY |X(y|x) uniformly bounded by

Assumption A(iv) and equation (47) yield the following inequality,

(48) |Dᾱ[π]−Dα̃[π]| . ‖ᾱ− α̃‖νc
∫
J(x)Gν(x)

∣∣∣∣dm(x, tu, ᾱ)
dα

[π]
∣∣∣∣ fX(x)dx

+
∫ ∣∣∣∣dm(x, tu, ᾱ)

dα
[π]− dm(x, tu, α̃)

dα
[π]
∣∣∣∣ fX(x)dx

Using (48), Markov’s and Jensen’s inequality and E[J2(X)G2ν(X)] <∞ then implies:

(49) ‖Dᾱ[π]−Dα̃[π]‖2L2
µ
. ‖ᾱ− α̃‖2νc

∫ (
dm(x, tu, ᾱ)

dα
[π]
)2

fX(x)dxdµ(t)

+
∫ (

dm(x, tu, ᾱ)
dα

[π]− dm(x, tu, α̃)
dα

[π]
)2

fX(x)dxdµ(t)
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Let Āc denote the completion of the linear span of A under ‖ · ‖c. The definition of ‖ · ‖o
then implies the first equality in (50), while the first inequality follows from (49). Further,

since ‖Dᾱ‖o : (N (α0), ‖ · ‖c)→ R is a continuous functional and A is compact under ‖ · ‖c
it follows that supN (α0) ‖Dᾱ‖o <∞. The second inequality in (50) then follows.

‖Dᾱ −Dα̃‖2o = sup
π∈Āc

‖π‖−2
c ‖Dᾱ[π]−Dα̃[π]‖2L2

µ

. ‖ᾱ− α̃‖2νc
∣∣∣∣∣∣∣∣dm(x, tu, ᾱ)

dα

∣∣∣∣∣∣∣∣2
o

+
∣∣∣∣∣∣∣∣dm(x, tu, ᾱ)

dα
− dm(x, tu, α̃)

dα

∣∣∣∣∣∣∣∣2
o

. ‖ᾱ− α̃‖2νc +
∣∣∣∣∣∣∣∣dm(x, tu, ᾱ)

dα
− dm(x, tu, α̃)

dα

∣∣∣∣∣∣∣∣2
o

(50)

Since m(x, tu, α) is continuously Frechet differentiable on N (α0), (50) implies Dᾱ is con-

tinuous in α.

We now show Dᾱ is indeed the Frechet derivative of W (t, α) : (A, ‖ · ‖c)→ L2
µ. Straight-

forward manipulations imply,

(51) W (t, α) =
∫
P (Y 6 m(x, tu, α)|x)1{x 6 tx}fX(x)dx− tuP (X 6 tx)

Next, using the definition of Dᾱ and (51) together with Jensen’s inequality we obtain (52)

pointwise in t for any ᾱ ∈ N (α0) and π ∈ A.

(52) |W (t, ᾱ+ π)−W (t, ᾱ)−Dᾱ[π]| 6 2
∫
|P (Y 6 m(x, tu, ᾱ+ π)|x)

− P (Y 6 m(x, tu, ᾱ)|x)− fY |X(m(x, tu, ᾱ)|x)
dm(x, tu, ᾱ)

dα
[π]|fX(x)dx

Applying the mean value theorem inside the integral in (52) then implies

(53) |W (t, ᾱ+ g)−W (t, ᾱ)−Dᾱ[π]| 6 2
∫
|fY |X(m̄(x, tu)|x)(m(x, tu, ᾱ+ π)−m(x, tu, ᾱ))

− fY |X(m(x, tu, ᾱ)|x)
dm(x, tu, ᾱ)

dα
[π]|fX(x)dx

where m̄(x, tu) is a convex combination ofm(x, tu, ᾱ+π) andm(x, tu, ᾱ). Hence, |m̄(x, tu)−

m(x, tu, ᾱ)| 6 |m(x, tu, ᾱ+π)−m(x, tu, ᾱ)|. The Lipschitz conditions of Assumptions B(iii)

and C(ii) imply the inequality:

(54)
∫
|(fY |X(m̄(x, tu)|x)− fY |X(m(x, tu, ᾱ)|x))(m(x, tu, ᾱ+ π)−m(x, tu, ᾱ))|fX(x)dx

6 ‖π‖1+ν
c

∫
J(x)G1+ν(x)fX(x)dx
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Using (53), (54) and Jensen’s inequality establishes the first inequality in (55). The final

result in (55) then follows by dm(x,tu,ᾱ)
dα [π] being the Frechet derivative of m(x, tu, ᾱ).

(55) ‖W (t, ᾱ+ π)−W (t, ᾱ)−Dᾱ[π]‖2L2
µ
. ‖π‖2+2ν

c

+
∫ (

m(x, tu, ᾱ+ π)−m(x, tu, ᾱ)− dm(x, tu, ᾱ)
dα

[π]
)2

fX(x)dxdµ(t) = o(‖π‖2c)

We conclude from (55) that Dᾱ is the Frechet derivative of W (t, α) : (A, ‖ · ‖c) → L2
µ

and that it is continuous in ᾱ. To conclude the proof of the first claim of the Lemma,

notice that Q(α) = ‖W (t, α)‖2L2
µ
. Since the functional ‖ · ‖2L2

µ
: L2

µ → R is trivially Frechet

differentiable, applying the Chain rule for Frechet derivatives (see for example Theorem

5.2.5 in (Siddiqi, 2004)) yields,

(56)
dQ(ᾱ)
dα

[π] =
∫
W (t, ᾱ)Dᾱ[π]dµ(t)

To establish the second claim of the Lemma, define the bilinear form T : A×A → R,

(57) T [ψ, π] =
∫
Dα0 [ψ]Dα0 [π]dµ(t)

We will show T is the second Frechet derivative of Q(α) at α0. Notice that T [ψ, ·] : A → R

is a linear operator. The first requirement of Frechet differentiability is to show T [ψ, ·] is

continuous in ψ. For this purpose, notice that the first equality in (58) follows by definition

while the first and second inequalities are implied by the Cauchy-Schwarz inequality and

(46) respectively.

‖T [ψ, ·]‖2o = sup
π∈Āc

‖π‖−2T 2[ψ, π]

6
∫
D2
α0

[ψ]dµ(t)× sup
π∈Āc

∫
D2
α0

[π]dµ(t)

.

∣∣∣∣∣∣∣∣dm(x, tu, α0)
dα

∣∣∣∣∣∣∣∣4
o

‖ψ‖2c(58)

It follows from (58) that T [ψ, ·] is continuous in ψ ∈ A. Next, we verify T is the second

Frechet derivative of Q(α) at α0. In (59) use (56) and W (t, α0) = 0 for all t to notice
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dQ(α0)
dα = 0 and obtain the equality:

(59)
∣∣∣∣∣∣∣∣dQ(α0 + ψ)

dα
− dQ(α0)

dα
− T [ψ, ·]

∣∣∣∣∣∣∣∣2
o

= sup
π∈Āc

‖π‖−2

(∫
W (t, α0 + ψ)Dα0+ψ[π]dµ(t)−

∫
Dα0 [ψ]Dα0 [π]dµ(t)

)2

In (60) we control one of the terms in the right hand side of (59). Use the Cauchy-Schwarz

inequality to obtain the first inequality in (60) and Dα0 being the Frechet derivative of

W (t, α0) : (A, ‖ · ‖c)→ L2
µ for the second.

sup
π∈Āc

‖π‖−2
(∫

(W (t, α0 + ψ)−W (t, α0)−Dα0 [ψ])Dα0+ψ[π]dµ(t)
)2

6 ‖W (t, α0 + ψ)−W (t, α0)−Dα0 [ψ]‖2L2
µ
× sup
π∈Āc

‖π‖−2‖Dα0+ψ[π]‖2L2
µ

6 o(‖ψ‖2c)× ‖Dα0+ψ‖2o(60)

Similarly, we use the Cauchy-Schwarz and the definition of || · ||o to obtain,

sup
π∈Āc

‖π‖−2
c

(∫
Dα0 [ψ](Dα0+ψ[π]−Dα0 [π])dµ(t)

)2
(61)

6 ‖Dα0‖2o‖ψ‖2c × sup
π∈Āc

‖π‖−2
c ‖Dα0+ψ[π]−Dα0 [π]‖2L2

µ

6 ‖Dα0‖2o‖ψ‖2c × ||Dα0+ψ −Dα0 ||
2
o

To conclude, combine (59), (60), (61) and W (t, α0) = 0 for all t to derive the first inequality

in (62). As argued in (50), however, ‖Dᾱ‖o is bounded in a neighborhood of α0. Thus, the

continuity of Dᾱ in ᾱ for ᾱ ∈ N (α0) implies the final result in (62).

(62)
∣∣∣∣∣∣∣∣dQ(α0 + ψ)

dα
− dQ(α0)

dα
− T [ψ, ·]

∣∣∣∣∣∣∣∣2
o

6 o(‖ψ‖2c)× ‖Dα0+ψ‖2o + ‖ψ‖2c‖Dα0‖2o ||Dα0+ψ −Dα0 ||
2
o = o(‖ψ‖2c)

It follows T is the second Frechet derivative of Q(α) at α0. �

Proof of Theorem 3: Let Πnα0 = arg minAn . By Theorem 1, α̂ ∈ N (α0) with proba-

bility tending to one. Therefore, Assumptions D(i) and (iii), imply that with probability
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tending to one we have,

‖α̂− α0‖2w . Q(α̂)−Q(Πnα0) +Q(Πnα0)

= Q(α̂)−Q(Πnα0) + o(n−1)(63)

Let δn → 0 sufficiently slow such that P (‖α̂ − α0‖s > δn) → 0, which is possible due to

Theorem 1 and ‖ · ‖s . ‖ · ‖c. Letting Aδn0 = {α ∈ A : ‖α−α0‖s 6 δn} then yields the first

inequality in (64). Noticing that Qn(α̂) 6 Qn(Πnα0) by virtue of α̂ minimizing Qn(α) over

An and using the Cauchy-Schwarz inequality gives us the second inequality. For the third

and fourth inequalities we use Lemma 6 which implies
√
n(Wn(t, α)−W (t, α)) is tight in

L∞(Rdt ×A) together with the definition of Q(α).

Q(α̂)−Q(Πnα0) 6 Qn(α̂)−Qn(Πnα0) + 2 sup
Aδn0

|Qn(α)−Q(α)|

6 2 sup
(t,α)∈Rdt×A

|Wn(t, α)−W (t, α)| × [sup
Aδn0

∫
(Wn(t, α) +W (t, α))2dµ(t)]

1
2

6 Op(n−
1
2 )× [ sup

(t,α)∈Rdt×A
(Wn(t, α)−W (t, α))2 + sup

Aδn0

4
∫
W 2(t, α)dµ(t)]

1
2

6 Op(n−
1
2 )× [Op(n−1) + sup

Aδn0

4Q(α)]
1
2(64)

By Assumption D(i), supAδn0
Q(α) . δ2

n = o(1). Therefore, combining (63) and (64):

(65) ‖α̂− α0‖2w . Op(n−
1
2 )× op(1) + o(n−1) = op(n−

1
2 )

To obtain a rate with respect to ‖ · ‖s, we use Assumption D(iii) for the first and second

inequalities in (66). Further, it follows from (65) and Assumption D(iii) that ‖α̂−Πnα0‖2w =

op(n−
1
2 ) which together with Assumption D(ii) implies the equality in (66).

(66) ‖α̂−α0‖2s 6 ‖α̂−Πnα0‖2s+o(n−1) 6 sup
α∈An

‖α‖2s
‖α‖2w

×‖α̂−Πnα0‖2w+o(n−1) = op(n−
1
2

+γ)

We can now exploit the local behavior of the objective function to improve on the

obtained rate of convergence. Notice that due to (66) it is possible to choose δn = o(n−
1
4

+ γ
2 )

such that P (α̂ ∈ Aδn0 ) → 1. Repeating the steps in (64) we obtain (67) with probability
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approaching one.

Q(α̂)−Q(Πnα0) 6 Op(n−
1
2 )× [Op(n−1) + sup

Aδn0

4Q(α)]
1
2

= Op(n−
1
2 )× op(n−

1
4

+ γ
2 )(67)

¿From (63) and (67) and Assumption D(ii), we then obtain ‖α̂−α0‖2w = op(n−
1
2
− 1

4
+ γ

2 ) and

similarly that ‖α̂ − Πnα0‖2w = op(n−
1
2
− 1

4
+ γ

2 ). In turn, by repeating the argument in (66)

we obtain the improved rate ‖α̂ − α0‖2s = op(n(γ− 1
2

)(1+ 1
2

)). Proceeding in this fashion we

get ‖α̂−α0‖2s = op(n(γ− 1
2

)(1+ 1
2

+ 1
4

+ 1
8

+...)). Since γ−1/2 < −1/4, repeating this argument a

possibly large, but finite, number of times yields the desired conclusion ‖α̂−α0‖2s = op(n−
1
2 )

thus establishing the claim of the Theorem. �

Appendix D. Proofs for Section 5

Because the criterion function Qn(α) is not smooth in α, it is convenient to define the

alternate criterion:

(68) Qsn(α) =
∫

(Wn(t, α0) +W (t, α))2dµ(t)

Throughout the proofs we will exploit the following Lemma,

Lemma 7. If Assumptions A, B, C and D hold, then Qsn(α̂) 6 infAn Qsn(α) + op(n−1).

Proof: Since ‖α̂− α0‖c = op(1), Lemma 6 implies

sup
t
|Wn(t, α̂)−W (t, α̂)−Wn(t, α0)| = op(n−

1
2 ) .

By simple manipulations we therefore obtain:

Qsn(α̂) 6
∫

(|Wn(t, α0) +W (t, α̂)−Wn(t, α̂)|+ |Wn(t, α̂)|)2 dµ(t)

=
∫
W 2
n(t, α̂)dµ(t) + op(n−

1
2 )×

∫
|Wn(t, α̂)|dµ(t) + op(n−1)(69)

Next, apply Jensen’s inequality and Qn(α̂) 6 Qn(Πnα0) to obtain the first and second

inequalities in (70). By Lemma 6, supt,α |Wn(t, α) −W (t, α)| = Op(n−
1
2 ). Together with
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Assumption D(i), the final two inequalities in (70) then immediately follow.∫
|Wn(t, α̂)|dµ(t) 6

[∫
W 2
n(t, α̂)dµ(t)

] 1
2

6

[∫
W 2
n(t,Πnα0)dµ(t)

] 1
2

6

[
2
∫

(Wn(t,Πnα0)−W (t,Πnα0))2dµ(t) + 2
∫
W 2(t,Πnα0)dµ(t)

] 1
2

.
[
Op(n−1) + ‖Πnα0 − α0‖2s

] 1
2(70)

By Assumption D(iii), ‖Πnα0 − α0‖s = o(n−
1
2 ) and therefore combining (69) and (70),

Qsn(α̂) 6 Qn(α̂) + op(n−1)(71)

Let α̃ ∈ arg minAn Qsn(α), and notice that Lemma 6 and the same arguments as in

Theorem 1 imply that ‖α0− α̃‖c = op(1). The same arguments as in (69) then imply (72).

Qn(α̃) 6
∫

(|Wn(t, α̃)−Wn(t, α0)−W (t, α̃)|+ |Wn(t, α0) +W (t, α̃)|)2
dµ(t)

=
∫

(Wn(t, α0) +W (t, α̃))2
dµ(t) + op(n−

1
2 )
∫
|Wn(t, α0) +W (t, α̃)|dµ(t) + op(n−1)(72)

Proceeding as in (70), Jensen’s inequality and Qsn(α̃) 6 Qsn(Πnα0) imply the first and

second inequalities in (73). The last two results in (73) then follow by Assumption D(i)

and by noting that Lemma 6 implies supt |Wn(t, α0)| = Op(n−
1
2 ).∫

|Wn(t, α0) +W (t, α̃)|dµ(t) 6
[∫

(Wn(t, α0) +W (t, α̃))2 dµ(t)
] 1

2

6

[∫
(Wn(t, α0) +W (t,Πnα0))2 dµ(t)

] 1
2

6

[
2
∫
W 2
n(t, α0)dµ(t) + 2

∫
W 2(t,Πnα0)dµ(t)

] 1
2

.
[
Op(n−1) + ‖α0 −Πnα0‖2s‖

] 1
2(73)

Since ‖Πnα0 − α0‖s = o(n−
1
2 ) by Assumption D(iii), (72) and (73) imply,

(74) Qn(α̃) 6 Qsn(α̃) + op(n−1)

Hence, since Qn(α̂) 6 Qn(α̃), the definition of α̃ together with (71) and (74) establish

Qsn(α̂) 6 Qn(α̃) + op(n−1) 6 inf
An

Qsn(α) + op(n−1)
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which establishes the claim of the Lemma. �

Proof of Lemma 4: The arguments in this Lemma follow those of Ai and Chen (2003).

We first establish continuity of Fλ. Since Fλ is linear, it is only necessary to establish that

it is bounded. For any θ ∈ Rdθ , we can obtain the first equality in (75) by using (16), while

the second equality is definitional.

(75) min
w∈H̄

∫ (
dW (t, α0)

dθ′
[θ]− dW (t, α0)

dh
[h]
)2

dµ(t)

=
∫ ([

dW (t, α0)
dθ

− dW (t, α0)
dh

[h∗]
]′
θ

)2

dµ(t) = θ′Σ∗θ

In order to show Fλ is bounded we need to establish the left hand side of (76) is finite.

Using (75) immediately implies the first equality in (76). For the second equality notice

the optimization problem is solved at θ∗ = (Σ∗)−1λ and plug in θ∗.

(76) sup
06=α∈Ā

F 2
λ (α)
‖α‖2w

= sup
06=θ∈Rdθ

(λ′θ)2

θ′Σ∗θ
= λ′(Σ∗)−1λ

Since by assumption Σ∗ is positive-definite, (76) is finite and hence Fλ is bounded which es-

tablishes continuity. For the second claim of the Lemma, notice the following orthogonality

condition must hold as a result of (16),

(77)
∫ (

dW (t, α0)
dθ

− dW (t, α0)
dh

[h∗]
)
dW (t, α0)

dh
[h]dµ(t) = 0

for all h ∈ H̄. Hence, the first equality in (78) is definitional, while the second one is

implied by (77). Plugging in the definition of vλθ establishes the third inequality in (78).

〈α− α0, v
λ〉w =

∫ [
dW (t, α0)

dθ
[θ − θ0] +

dW (t, α0)
dh

[h− h0]
] [

dW (t, α0)
dθ

[vλ] +
dW (t, α0)

dh
[vλh ]

]
dµ(t)

= (θ − θ0)′
{∫ [

dW (t, α0)
dθ

− dW (t, α0)
dh

[h∗]
] [

dW (t, α0)
dθ

− dW (t, α0)
dh

[h∗]
]′
dµ(t)

}
vλθ

= (θ − θ0)′λ(78)

which verifies the second claim of the Lemma. �

Lemma 8. Let Assumption A, B, C, D and E hold, and let vλn = Πnv
λ. Then:

(i)
∫
Wn(t, α0)Dα̂[vλn]dµ(t) =

∫
Wn(t, α0)Dα0 [vλ]dµ(t) + op(n−

1
2 )

(ii)
∫

(W (t, α̂)−W (t, α0))Dα̂[vλn]dµ(t) =
∫
Dα0 [α̂− α0]Dα0 [vλ]dµ(t) + op(n−

1
2 )
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(iii)
√
nWn(t, α0) L→ G(t) where G(t) a Gaussian process with covariance:

Σ(t, t′) = E[(1{U 6 tu;X 6 tx} − tu1{X 6 tx})(1{U 6 t′u;X 6 t′x} − t′u1{X 6 t′x})]

Proof: To establish the first claim apply the Cauchy-Schwarz inequality, the definition

of the operator norm and Lemma 6 implying supt |Wn(t, α0)| = Op(n−
1
2 ) to obtain the

inequalities in (79).∣∣∣∣∫ Wn(t, α0)Dα̂[vλn − vλ]dµ(t)
∣∣∣∣ 6 [∫ W 2

n(t, α0)dµ(t)
] 1

2

× ‖Dα̂[vλn − vλ]‖L2
µ

6 Op(n−
1
2 )× sup

α∈N (α0)
‖Dα‖o × ‖vλn − vλ‖c(79)

As argued in (50), supα∈N (α0) ‖Dα‖o < ∞. Further, Assumption E(ii) and B(v) imply

‖vλ − vλn‖c = o(1). Therefore, we obtain from (79) that,

(80)
∫
Wn(t, α0)Dα̂[vλn]dµ(t) =

∫
Wn(t, α0)Dα̂[vλ]dµ(t) + op(n−

1
2 )

Similarly, the derivations in (79) imply the inequality in (81). The equality is a result of

the continuity of Dα in α under ‖ · ‖c, as established in the proof of Lemma 3.

(81)
∣∣∣∣∫ Wn(t, α0)(Dα̂[vλ]−Dα0 [vλ])dµ(t)

∣∣∣∣ 6 Op(n− 1
2 )×‖Dα̂−Dα0‖o×‖vλ‖c = op(n−

1
2 )

Together, (80) and (81) establish the first claim of the Lemma.

For the second claim of the Lemma, notice that Assumption E(iii) allows us to do a

second order Taylor expansion to obtain (82),

(82) W (t, α̂) = W (t, α0) +Dα0 [α̂− α0] +
1
2
dDα0+τ(α̂−α0)[α̂− α0]

dτ

∣∣∣
τ=s(t)

The first equality in (83) then follows from (82), while the second one is implied by As-

sumptions E(iii) and E(iv). The final equality is in turn implied by Theorem 3.

(83)
∫

(W (t, α̂)−W (t, α0)−Dα0 [α̂− α0])Dα̂[vλn]

=
1
2

∫
dDα0+τ(α̂−α0)[α̂− α0]

dτ

∣∣∣
τ=s(t)

Dα̂[vλn]dµ(t) . ‖α̂− α0‖2s = op(n−
1
2 )

Next, apply the Cauchy-Schwarz inequality and a Taylor expansion to obtain the first

inequality in (84). The second inequality then follows by Assumption E(iii), ‖α̂− α0‖w .
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‖α̂− α0‖s in a neighborhood of α0, as implied by Assumption D(i), and Theorem 3.

(84)
∣∣∣∣∫ Dα0 [α̂− α0](Dα̂[vλn]−Dα0 [vλn])dµ(t)

∣∣∣∣
6 ‖α̂− α0‖w

∫ (dDα0+τ(α̂−α0)[vλn]
dτ

∣∣∣
τ=s(t)

)2

dµ(t)

 1
2

. ‖α̂− α0‖2s = op(n−
1
2 )

Similarly, applying the Cauchy-Schwarz inequality, ‖α̂ − α0‖w = op(n−
1
4 ) and similarly

‖vλn − vλ‖c = o(n−
1
4 ) by Assumption D(ii) we derive,

(85)
∣∣∣∣∫ Dα0 [α̂− α0](Dα0 [vλn]−Dα0 [vλ])dµ(t)

∣∣∣∣ 6 ‖α̂−α0‖w×‖Dα0‖o‖vλn−vλ‖c = op(n−
1
2 )

Combining results (83), (84) and (85) establishes the second claim of the Lemma. The third

claim of the Lemma is immediate from Wn(t, α0) being a Donsker class due to Lemma 6

and regular central limit theorem. Hence all claims of the Lemma are shown. �

Proof of Theorem 4: Let u∗ = ±vλ, u∗n = Πnu
∗ and 0 < εn = o(n−

1
2 ) be such that

Qsn(α̂) 6 infAn Qsn(α)+Op(ε2n), which is possible due to Lemma 7. Define α(τ) = α̂+τεnu∗n

and note that by Assumption C(i) and Lemma 1, with probability tending to one α(l) ∈ An
for l ∈ [0, 1]. Therefore, Lemma 7 establishes the first equality in (86). A second order

Taylor expansion around τ = 0 yields the equality in (86) for some s ∈ [0, 1].

0 6 Qsn(α(1))−Qsn(α(0)) +Op(ε2n)

= 2εn
∫

(Wn(t, α0) +W (t, α̂))Dα̂[u∗n]dµ(t) +
1
2
d2Qn(α(l))

dα2

∣∣∣
l=s

(86)

where by direct calculation we have that:

(87)
d2Qn(α(s))

dα2

∣∣∣
l=s

= ε2n

∫ (
Dα(s)[u

∗
n]
)2
dµ(t) +

∫
(Wn(t, α0) +W (t, α(s)))

dDα̂+τεnu∗n [εnu∗n]
dτ

∣∣∣
τ=s

dµ(t)

As shown in (50), supα ‖Dα‖o <∞, and hence, since ‖vλ‖c <∞ we obtain,

(88)
∫ (

Dα(s)[u
∗
n]
)2
dµ(t) 6 sup

α∈N (α0)
‖Dα‖o × ‖u∗n‖2c = O(1)

Since Wn(t, α) and W (t, α) are both bounded by 1, Assumption E(iii) establishes:

(89)
∣∣∣∣∫ (Wn(t, α0) +W (t, α(s)))

dDα̂+τεnu∗n [εnu∗n]
dτ

∣∣∣
τ=s

dµ(t)
∣∣∣∣ . ‖εnu∗n‖2s = O(ε2n)
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Therefore, by combining (86)-(89), u∗n = ±vλn and εn = o(n−
1
2 ), it follows that:

(90)
∫

(Wn(t, α0) +W (t, α̂))Dα̂[u∗n]dµ(t) = op(n−
1
2 )

To conclude, in (91) use Lemma 4 for the first equality, Lemma 8(ii) for the second

equality, W (t, α0) = 0 and (90) for the third one and Lemma 8(i) for the final result.

√
nλ′(θ̂ − θ0) =

√
n

∫
Dα0 [α̂− α0]Dα0 [vλ]

=
√
n

∫
(W (t, α̂)−W (t, α0))Dα̂[vλn]dµ(t) + op(1)

=
√
n

∫
Wn(t, α0)Dα̂[vλn]dµ(t) + op(1)

=
√
n

∫
Wn(t, α0)Dα0 [vλ]dµ(t) + op(1)(91)

Hence, applying Lemma 8(iii) we obtain from (91) that,

(92)
√
nλ′(θ̂ − θ) L→ N(0,Ωλ)

where Ωλ =
∫
Dα0 [vλ](t)Dα0 [vλ](s)Σ(t, s)dµ(t)dµ(s). Using the closed form for vλ, ob-

tained in Lemma 4, and the definition of Rh∗(t) yields the results in (93).

Dα0 [vλ] =
[
dW (t, α0)

dθ
− dW (t, α0)

dh
[h∗]
]

[Σ∗]−1 λ

= Rh∗(t) [Σ∗]−1 λ(93)

The Cramer-Wald device, (92) and (93) in turn establish the claim of the Theorem. �
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