
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Data Allocation Approaches for Optimizing Storage Systems

Permalink
https://escholarship.org/uc/item/3423h4mt

Author
Strong, Christina Rose

Publication Date
2016

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3423h4mt
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DATA ALLOCATION APPROACHES FOR OPTIMIZING
STORAGE SYSTEMS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Christina Rose Strong

June 2016

The Dissertation of Christina Rose Strong
is approved:

Professor Darrell D.E. Long, Chair

Professor Peter Alvaro

Professor Ahmed Amer

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c⃝ by

Christina Rose Strong

2016

Table of Contents

List of Figures vi

List of Tables vii

Dedication viii

Acknowledgments ix

Abstract xi

1 Introduction 1

I Theoretical Approach 4

2 Defining Optimization 5
2.1 Pareto Optimality . 7

2.1.1 Pareto Frontier . 8

3 Objective Metrics 11
3.1 Object Similarity . 13
3.2 Object Coverage . 16
3.3 Object Popularity . 18

4 System Design 23

5 Theoretical Approaches 27
5.1 Bin Packing Model . 28
5.2 Queuing Theory Model . 29

iii

II Practical Approach 34

6 Applied Machine Learning 35

7 Predicting Workload Performance 37

8 Experimental Design 41
8.1 Obtaining Workloads . 42

8.1.1 Characteristics to Input Parameters 44
8.1.2 Assigning Values . 45

8.2 Modeling Workload Performance 47

9 Pairwise Prediction 49

10 Reducing Overhead 54
10.1 Device Class Models . 54
10.2 Representative Workloads . 60

10.2.1 Experimental Setup . 62
10.2.2 Comparison Method . 64
10.2.3 Results . 66

11 Simulation Design 70

III Related Work 74

12 Objective Optimization 75
12.1 Load Balancing . 76
12.2 System Responsiveness . 77
12.3 Energy Savings . 79

13 Workload Characterization and Modeling 81
13.1 Obtaining Workloads . 82

13.1.1 Real World Workloads . 82
13.1.2 Synthetic Workloads . 83
13.1.3 Workload Generators . 84
13.1.4 Workload Characterization 85

13.2 Modeling Approaches . 86
13.2.1 Device Modeling . 87
13.2.2 Workload Modeling . 88

iv

IV Future Work and Conclusions 89

14 Future Work 90

15 Conclusions 92

Bibliography 94

v

List of Figures

3.1 Similarity: Measured by entropy. Y -axis begins at 6 to show vari-

ation. 15

3.2 Coverage: Measured by the percent of node covered by other nodes. 18

3.3 Popularity: Measured by the average heat of files on each node. . 21

8.1 Input parameter to workload characteristic mapping. 43

9.1 Predicting performance with varying tree depths and number of

samples. 50

9.2 A closer look at the higher depths of the regression tree. 51

9.3 An example CART model with depth of three. 53

10.1 Device and class models. 56

10.2 Direct comparisons. 57

10.3 Direct comparisons. 58

10.4 Best device depth. 59

10.5 Class model accuracy in predicting device model. 60

10.6 Shows the percent of IOPS of the best possible placement option

that the predicted value achieves, over 200 runs. 66

vi

List of Tables

2.1 House rankings for each requirement on a scale of 1 to 5, with 5

being the best. 8

2.2 House rankings for each requirement on a scale of 1 to 5, with 5

being the best. 9

3.1 Metadata fields in the Los Alamos National Laboratory data sets. 13

7.1 Relationship between the number of possible values for each work-

load characteristic, given five workload characteristics, and the

number of unique workloads. 39

8.1 Workload Characteristics. 47

10.1 Example of how IOPS is used to predict performance. The colored

cells indicate the best possible measured and predicted IOPS for

both the all-knowing experiment, where all workload characteris-

tics are known and used, and the summary experiment, where an

average of the workload characteristics is used. 63

10.2 Trade-off between accuracy and precision with varying tree depths

for three workloads, 200 runs. 68

13.1 Studies of Workloads and Their Defining Characteristics. 85

vii

FOR PONY!

viii

Acknowledgments

It takes a village to raise a dissertation. That may not be quite how that quote

is supposed to go, but it is true nonetheless. It is impossible to list everyone who

contributed either in reading drafts, bringing me food, offering encouragement, or

supplying much needed comic relief (and not just because of my memory). Thank

you all who made this possible – you know who you are.

I would like to call out both the members of my advancement committee and

dissertation committee. To my advisor, Darrell Long, who taught me to trust

my instincts even in the face of adversity. To Ethan Miller, who could always be

counted on to provide a voice of reason amongst the wild ideas. To Jehan-François

Pâris, who passed along excellent advice from Ernest Hemingway and argued my

approach for me. To Peter Alvaro, who may have come a bit late to the party,

but was encouraging and insightful. Last but not least, to Ahmed Amer, without

whom this may never have been completed. For responding to all the panicked

phone calls, emails, and texts with an unwavering faith in my ability: from the

bottom of my heart, thank you.

In addition to my committee members, I would be remiss if I did not mention

my labmates. To those that came before, thank you for making me feel a part of

the lab even before it was official. To those that were in the trenches with me,

you all are what made the unbearable parts bearable. And to those that follow:

always remember to fail often and loudly, and never be afraid to ask questions.

You know how to get in touch with me.

A special thanks goes to Stephanie Jones, who has been my labmate, house-

mate, and friend. I will forever be grateful for the day you sat down next to me

and declared that we were going to be friends. You have read drafts, listened

to ideas and frustrations, reminded me to take care of myself, filled my life with

ix

laughter, and inspired me on a daily basis. And somehow you’re still willing to

write another paper with me once this is all over! I would not be where I am

today without you, and I cannot find sufficient words to thank you.

Last but not least, I want to thank my parents. I may be biased, but you are

the best parents anyone could hope, wish, dream, or ask for. You have always

supported me in everything I do, even when it meant spending a decade pursuing

a degree “just to see if I could do it”. For all the drafts you’ve read even when

you didn’t completely understand it, for being my sounding board, just for being

you: thank you. Never stop being awesome.

x

Abstract

Data Allocation Approaches for Optimizing Storage Systems

by

Christina Rose Strong

As storage systems grow in size and complexity, the necessity for automatically

managing them increases. One area of concern is system optimization, often

managed by the administrator manually tweaking parameters to make the system

as efficient as possible. The problem arises when there are multiple objectives to

optimize, some of which may interfere with each other. Even when optimization

is automated, it often requires either a decision to be made as to which objectives

are more important than others, or if the objectives are combined into a linear

function, this function (and the potential related weights) must be determined

by the administrator. To this end, most systems optimize for only one objective,

or when there are two objectives it is two that do not conflict. However, when

all objectives are equally important, or it is unknown which objective is most

important, the system must learn to balance multiple objectives.

One way to aid in automating system optimization is by looking at the file

allocation problem. The file allocation problem considers a set of files (or tasks)

that need to be allocated to some number of devices, so as to optimize an objective

function. I propose extending the file allocation problem so that rather than

optimizing a single objective function, the goal is to allocate data to a number

of devices subject to a multi-objective optimization. This dissertation covers the

three top-down theoretical approaches I developed as well as a bottom-up practical

approach. In addition, I present a system design that incorporates the practical

approach with two space saving modifications.

xi

Chapter 1

Introduction

The length of this document defends it well against

the risk of its being read.

Winston Churchill

As storage systems grow in size and complexity, the necessity for automatically

managing them increases. One area of concern is system optimization, often

managed by the administrator manually tweaking parameters to make the system

as efficient as possible. The problem arises when there are multiple objectives

to optimize, some of which may interfere with each other. For example, a very

simple optimization strategy for load balancing is to distribute data across the

system such that the relative frequency of access is approximately the same for

each device. In direct conflict with such a strategy is the simple optimization

strategy for energy savings, which attempts to consolidate data on as few devices

as possible.

Even when optimization is automated, it often requires either a decision to

be made as to which objectives are more important than others, or if the objec-

tives are combined into a linear function, this function (and the potential related

1

weights) must be determined by the administrator. To this end, most systems

optimize for only one objective, or when there are two objectives it is two that do

not conflict. However, when all objectives are equally important, or it is unknown

which objective is most important, the system must learn to balance multiple

objectives.

One way to aid in automating system optimization is by looking at the file

allocation problem. The file allocation problem considers a set of files (or tasks)

that need to be allocated to some number of devices, so as to optimize an objective

function. I propose extending the file allocation problem so that rather than

optimizing a single objective function, the goal is to allocate data to a number of

devices subject to a multi-objective optimization.

I focus on three objectives throughout this dissertation: load balancing, system

responsiveness, and energy savings. I define load balancing to be the distribution

of data over devices, such that frequently accessed data is evenly distributed across

the system. I define system responsiveness to be the response time of a request.

Finally, I define energy savings to be the decrease of power consumption of the

system. I assume initially all devices are powered on and active; any reduction in

the number of active devices is considered to be an increase in energy savings.

Two different approaches, a top-down view and a bottom-up view, are pre-

sented in this dissertation. The top-down view, discussed in Part I, consists of

taking a theoretical approach to describe a multi-objective file allocation problem.

I present a system design and three theoretical optimization methods: multi-

objective optimization, bin packing, and queuing theory. Part II discusses the

bottom-up view, which applies machine learning to help solve the file allocation

problem and combines those results with constraint satisfaction to aid with system

optimization.

2

I describe the simulated system in which I test the bottom-up approach, in-

cluding an approach to workload generation that simulates realistic workloads

without necessitating real world workload traces. The results of the bottom-up

experiments show that using a regression tree to predict performance is not only

possible, but a useful technique to aid in intelligent workload allocation. I explore

two simplifications for the performance prediction step: a storage class model

to replace individual device models, and a representative workload that summa-

rizes the workloads currently active on a device. These simplifications decrease

the storage and complexity overhead added by introducing machine learning. I

conclude by presenting a system design that uses the performance prediction with

discussed simplifications along with constraint satisfaction to maintain an optimal

system state.

3

Part I

Theoretical Approach

4

Chapter 2

Defining Optimization

True genius resides in the capacity for evaluation of

uncertain, hazardous, and conflicting information.

Winston Churchill

Since my goal is to extend the file allocation problem to satisfy multiple ob-

jective functions, I looked at the difference between single objective optimization

problems and multi-objective optimization problems. In a single objective opti-

mization problem, there is a single objective function that is being minimized (or

maximized), expressed as in Equation 2.1. Here, f(x) refers to the objective func-

tion to be minimized over x. While this is beneficial when that single objective

is all that matters, if there are other objectives that are important, Equation 2.1

has no way to take those into account.

minimize
x

f(x) (2.1)

In a multi-objective optimization problem, there is often no single global so-

lution. This is especially true when objectives conflict with each other: consider

two objectives that are inversely proportional to each other. Optimizing with

5

respect to a single objective may result in poor performance for another. For ex-

ample, consider two committee members with drastically different writing styles.

Member A prefers a paper to have a distinct structure and pattern; Member B

considers that monotonous and would prefer a more fluidly written paper. There

is no single solution that will optimize the style of a paper for both committee

members.

The standard form of a multi-objective optimization problem is shown in Equa-

tion 2.2. This is extremely similar to Equation 2.1; in fact only one thing has

changed. Instead of trying to optimize a single objective function f(x), there is

now a vector of objective functions, Fi(x), to be minimized.

minimize
x

F(x) = [F1(x), F2(x), . . . Fk(x)] (2.2)

There are many algorithms which can be used to solve this vector of objective

functions; they are divided into three categories, depending on how the decision-

maker chooses to articulate his preferences [40]. The first categorization is a

priori, where preferences are determined prior to running the algorithm. The

benefit to a priori algorithms is that often a single solution is found, rather than

a set of multiple solutions; the downside is that the user must know the relative

importance of the objectives in advance. The opposite approach is a posteriori,

where the user can look at a set of mathematically equivalent solutions and choose

one. This allows the user to see his/her options before making a decision, but can

be more computationally intensive since a set of solutions must be generated

rather than a single one. Finally, there are a set of algorithms which require no

articulation of preference; these, however, are often simplified versions of the a

priori algorithms.

One of the most common a priori methods is the weighted sum method, which

assigns a weight to each objective and uses the sum of the weighted objectives to

6

create an aggregate objective function. This approach, like all aggregate objec-

tive approaches, can be highly subjective due to the necessity of determining the

objective weights in advance. There is an excellent summary of the different ways

to calculate the weights, along with the difficulties of the weighted sum method

in [40].

Often it is better to use an a posteriori method instead: to consider a set of

solutions that satisfy the objectives and fit a predetermined definition of optimum,

and make a decision from that set of solutions. The predominate concept used

to define an optimal point is known as Pareto optimality [30]. Pareto optimality

finds a set of solutions such that no element of the set can be replaced by another

solution which improves an objective without worsening another. This provides

flexibility in the way the data allocation algorithm behaves in different systems.

If, for instance, a system prioritizes energy savings above any other objectives,

it is possible to always chose an allocation from the set of solutions that favors

energy savings. In this way, the system is optimized for multiple objectives while

still placing priority on a particular objective when necessary.

2.1 Pareto Optimality

Pareto optimality, also known as Pareto efficiency, is a concept from eco-

nomics. Given an initial allocation of goods, a Pareto improvement is an allo-

cation that makes one person better off without worsening conditions for anyone

else [38]. When no further Pareto improvements can be made, the allocation is

said to be Pareto optimal, or Pareto efficient.

Pareto Optimum. Given two optimization criteria P(x) and Q(x) to maximize,

a point z is a Pareto optimum if there is no point x′ such that P(z) < P(x′) and

Q(z) ≤ Q(x′) or Q(z) < Q(x′) and P(z) ≤ P(x′)

7

Table 2.1: House rankings for each requirement on a scale of 1 to 5, with 5 being

the best.

A B C

Size 4 4 4

School 3 3 5

A typical example of Pareto optimality is looking to buy a house [38]. Con-

sider a list of requirements about your dream house: that it is large enough to

accommodate your family, is in a good school district, and is within a certain

price range. Your real-estate agent shows you three different houses, A, B, and

C, all within your price range. The decision then falls to the other requirements,

so you visit each house and rank them as shown in Table 2.1. While house C is

ranked the same in terms of size, it is ranked much higher than house A or B in

terms of the school district.

Pareto optimality says that house C is the optimal choice; moving from C

to B or from C to A would cause one of the requirements to suffer. Therefore,

assuming that all requirements carry equal weight, house C is Pareto optimal. The

concept of Pareto optimization can be applied to data allocation, where instead

of determining an allocation of goods to people you are determining an allocation

of data to devices. Thus, given an initial allocation of data, there is an optimal

allocation that can be determined.

2.1.1 Pareto Frontier

Much work has been done looking at applying the concept of Pareto optimality

to multi-objective optimization problems [10, 40, 68]. In the case of multi-objective

8

Table 2.2: House rankings for each requirement on a scale of 1 to 5, with 5 being

the best.

A B C D

Backyard 5 4 3 2

Size 3 4 3 4

School 4 2 5 2

Water Pressure 4 5 3 4

optimization problems, there is often not a single allocation that is Pareto optimal,

but rather a subset of allocations called the Pareto frontier. The Pareto frontier

consists of the subset of optimal allocations with respect to the given objectives

Let us revisit the house example, except this time your dream house has a

backyard and decent water pressure, as well as being large enough to accommodate

your family, in a good school district, and within a certain price range. Your real-

estate agent shows you four houses, all within your price range, and you rank them

as shown in Table 2.2. House B and house D are equal in terms of school district

and size, but house B is better in terms of backyard and water pressure. This

allows us to remove house D from the decision, since house B would be a better

choice. However, houses A, B, and C all have different tradeoffs. While house A

is best in terms of backyard, house B has the best water pressure, and house C is

in the best school district. Without any other information, it is impossible to tell

which of the three remaining houses is “best”.

Consider first what would happen if we combined the objectives into a single

aggregate function. Let that function be the sum of the objectives, with the

expectation that a higher sum is better. House A now has a value of 16, house B

9

has a value of 15, house C has a value of 14, and house D has a value of 12. The

obvious choice here according to our aggregate function is house A. Looking at

the actual objective values, however, one might suggest that the size of the house

is more important than the backyard. Let us revise our aggregate function to

include a weight on the house size: let the size be twice as important as any other

objective. The resulting values are house A is equal to 19, house B is equal to 19,

house C is equal to 17, and house D is equal to 16. We have created a situation

where we required extra knowledge (that the size is more important than the

backyard) and we are still unable to determine which house is “best”.

Pareto optimality says that A, B, and C are all optimal choices: while moving

from A to B causes the backyard and school district to suffer, it increases the

house size and water pressure. Similarly, moving from A to C would cause the

backyard and water pressure to suffer, but causes no change in the house size and

improves the school district. House D is not considered optimal because house

B is equal to or better than house D in all objectives; house D is dominated by

house B. Assuming all requirements carry equal weight, houses A, B, and C are

Pareto optimal. The Pareto frontier consists of houses A, B, and C—while one

allocation favors one objective over another, all are Pareto optimal. An allocation

is on the Pareto frontier if it is not dominated by any other allocation.

10

Chapter 3

Objective Metrics

Research is to see what everybody else has seen,

and to think what nobody else has thought.

Albert Szent-Gyorgyi

In order to optimize for three different objectives, there needs to be a way

to measure them. To this end I have defined the following three metrics: units

that can be defined and measured, which influence an objective and are under

the control of the file/object management system. This last point is necessary, as

one could imagine adding more memory would influence system responsiveness–an

effective solution, but not one that file allocation can achieve.

Object Similarity. There is a body of work [1, 32, 56] that shows grouping

similar data together has an effect on system responsiveness. There are different

ways to define similarity: it could be as simple as comparing the metadata of two

objects, or as complex as comparing the contents of two objects. I define object

similarity is the probability that similar items will be accessed together. If the next

item you want is near the item you just retrieved, the seek time will be decreased,

resulting in increasing the system responsiveness.

11

Object Coverage. The number of active devices has a large influence on the

power consumption of a system. The metric for energy savings has two parts:

object coverage on a device, which is defined as the amount of similar data on

a device, and device coverage in the system, which is defined as the number of

similar devices in the system. In order to maintain the current number of active

devices when an object is placed, object coverage identifies which active disk is most

similar rather than spinning up an idle disk, even if it has better object coverage.

Device coverage helps identify redundant disks, in order to decrease the number of

disks necessary to guarantee the availability of the data.

Object Popularity. A well known influence on load balancing is the popularity

of objects. While definitions differ among works, it is generally accepted that

popularity relates either to the frequency with which an object is accessed or the

recency with which an object was accessed. I define the popularity of an object as

the frequency of access over a given period of time.

These are not the only possible metrics for these objectives; other metrics

could easily be used in place of the ones I have described. These metrics are not

the only influences on the objectives I am exploring: system responsiveness, for

example, is influenced by the amount of memory and speed of the CPU. In this

section of the dissertation, however, I am focusing on the three metrics described,

as they are good candidate metrics that have been selected for their suitability to

the data set under consideration.

In order to develop these metrics, I worked with data sets from the Los Alamos

National Laboratory (LANL). These data sets are anonymized, static metadata

snapshots, with a subset of metadata fields shown in Table 3.1. I focused on the

anon-lnfs-fs4 data set, which consists of 163, 267 files over 12 nodes. For the

purposes of these experiments, I looked at assigning files to nodes both sequentially

12

Table 3.1: Metadata fields in the Los Alamos National Laboratory data sets.

Fields Used Fields Unused

file permissions unique identifier

file size (in bytes) block size (in bytes)

user ID path to file

group ID

creation time

modification time

and in a round robin manner. Sequential assignment simply assigned files in the

order they appeared in the data set until a node filled; round robin distributed

them across nodes.

3.1 Object Similarity

Many of the algorithms that optimize for system responsiveness require some

sort of sorting [34, 69, 67], often by file size or access rate. This results in similarly

accessed or similarly sized data being placed together. As mentioned previously,

there is a body of work [1, 32, 56] that points out that grouping similar data is

often used to help improve response time. Since the proximity of similar data has

a well-researched influence on system responsiveness, I am using the similarity

between objects as a metric for system responsiveness.

Object similarity depends on the probability that similar objects will be ac-

cessed together. When an object is accessed, there is (depending on the type of

storage device) an initial seek time that is spent to get to that object. If the next

13

object to be accessed comes immediately after it, that initial seek time is reduced.

It is important to note that this benefit is only seen when working with small

objects: objects that are larger than a track require a seek to the next object

regardless of where it is. Despite the scale of the experiments, there are a limited

number of large files1.

There are three different ways to measure the similarity of two objects: com-

paring the contents, identifying similar metadata attributes, or when provenance

information is available determining that the lineage is comparable. In practice,

comparable lineage means that the input files are the same, the process to get

from input file to the object is the same, or both the input files and the process

are the same. This produces very different kinds of similarity. The first produces

objects that all came from the same input file; the second produces all objects

that were created using the same program. The third produces objects that had

the same input file and were created using the same program. Consider a comma

separated file of data that I want to manipulate using a Python script I have

written. The first kind of similarity would give me all objects that came from

that input file, the second would give me all objects created using that Python

script, and the third would give me all objects created using the input file with

the Python script. While these are all useful, it may be beneficial to keep the

different types separate, as they may result in different access patterns.

For the purposes of this dissertation, I focused on identifying similar metadata

attributes, since the data available was metadata information. Similarity is mea-

sured using Shannon Entropy, as seen in Equation 3.1. This means that given a

specific metadata attribute, the probability of each value occurring on a node can

be calculated. A low entropy means that there are many similar values, a high

entropy means that there are many diverse values. Since the metadata used is

1As indicated by the metadata information from Los Alamos National Laboratory.

14

(a) Round Robin Assignment (b) Sequential Assignment

Figure 3.1: Similarity: Measured by entropy. Y -axis begins at 6 to show varia-

tion.

static, entropy works well as a metric, as shown by Parker-Wood et al. [50].

H(X) = −
n∑

i=1

p(xi) logb p(xi) (3.1)

As you can see in Figure 3.1, similarity is dependent on the assignment strat-

egy. The reason the entropy values in both assignment strategies are fairly large

is due to the nature of the LANL data set. Despite the large values, it is still

possible to see the difference between the two strategies.

When data is assigned sequentially, files in a directory are assigned to the same

node, resulting in many of the metadata fields having the same value and lower

entropy. When data is assigned in a round robin fashion, files in a directory are

spread across the nodes, resulting in the metadata fields having diverse values

on each node and higher entropy. This supports the findings of Parker-Wood et

al. [50] that entropy is a good metric for comparing the similarity of files on a

node.

15

3.2 Object Coverage

Coverage influences energy savings, and measures the percentage of data on the

disk that is “covered” by other disks in the system. This allows for identification of

redundant devices: devices that are 100% covered by the rest of the system can be

spun down with few repercussions. In much of the related work, energy savings is

defined as a reduction in power or energy consumed. Essary and Amer [17] looked

at reducing the movement of the disk arm, thereby reducing the energy consumed

by the arm mechanism. Others spin down the disk entirely or spin at lower speeds

when the disk is idle [11, 8, 52] in order to reduce the energy consumed by the

disk. For the purposes of this research, I define energy savings to mean the power

consumed is decreased.

A “simple” solution for energy savings for write requests would be to write

the data to whatever device is active and closest. Likewise, a “simple” solution

for energy savings for read requests would be to write the data to the device

that has the most similar data on it regardless of its state. This is based on

the assumption that similar data is likely to be accessed together, as discussed

previously. These approaches are very different, and result in very different data

allocations. I propose a hybrid approach, building off the work on Rabbit [2].

Rabbit creates replicas of the data, and distributes the primary replica over p

nodes, guaranteeing the availability of the data as long as those p nodes are

active: the data is “covered” by those p nodes.

Rather than using replicas to provide coverage, I use similarity. The more

similar a piece of data is to the data on a device, the better it is “covered” by that

device. This reflects the simple read request solution described in the previous

paragraph. However, if a piece of data is best covered by an idle device, it will

be placed on the next most similar device that is active. An extension of object

16

coverage is device coverage, which looks at the coverage of the contents of a device

in the system. Device coverage will be used to help identify redundant devices:

devices which have content that is well covered elsewhere in the system and thus

could be idle rather than active.

Given the measure of similarity that I am currently using is metadata, coverage

is a somewhat flawed term. In this case, “approximate coverage” is a better

term; just because the metadata is similar does not mean the data themselves are

identical. Thus the term coverage can be misleading, and can lead to misleading

results if not handled with care. However, in an environment where the metric

similarity incorporates not only metadata, but also content and provenance as

well, coverage can become a powerful metric.

The original design of the coverage metric was to compare the number of

different values (on average) for each metadata attribute on each node. The first

problem that arose was that this technique resulted in as many values as devices,

when a single value was needed. To resolve this, I took the average of the values.

The problem with that, however, was that if two nodes covered each other very

well, but had little in common with the rest of the system, the average was highly

skewed.

My next approach was to count the number of other nodes that covered the

current node, but a simple count doesn’t tell you which node is covered by which.

Since the goal is to identify which nodes can be spun down with little to no loss

of data, this was not a valid metric either. I needed a metric that rewarded skew,

since that was a good indicator that there were two highly similar nodes, and I

needed to know which node covered which. This resulted in the current metric

for coverage, which is the percent of the node that is covered by the rest of the

system. Nodes that have the exact same percentage as the current node are the

17

(a) Round Robin Assignment (b) Sequential Assignment

Figure 3.2: Coverage: Measured by the percent of node covered by other nodes.

ones that cover it.

As with similarity, coverage is highly dependent upon the assignment strategy,

as can be seen in Figure 3.2. When all the files in one folder are stored on a single

node, the coverage is poor as seen in Figure 3.2(b). However, when the files of

a folder are spread evenly across the nodes, coverage increases by close to 65%

(Figure 3.2(a)). This drastic difference, due to the assignment strategy, mimics

what I would expect, and supports the coverage metric.

3.3 Object Popularity

One way to measure the popularity of a file or object is to use what is often

called the “heat” of an object [12, 55]. Heat is often defined as the access frequency

of a file or object over a period of time. Popularity influences successful load

balancing, because it helps determine how to distribute frequently accessed data.

If there is a specific set of data that are “hot”, or very popular, then it is better

as far as load balancing goes for that data to be distributed over multiple devices.

While it is possible that an unbalanced system may result in better performance,

18

this assumes that performance is your primary objective. I am addressing the case

where there is not a primary objective, but multiple, equally important objectives.

Heat is often calculated by the product of the access rate and the service time,

which requires either a workload that indicates access patterns or an assumption

about the workload. In the case of web servers, for instance, the access rate can

be successfully modeled by a Poisson process [34]. However, the same assumption

may not be true in a file system. Rather than looking at frequency, an alternative

approach is to consider recency: how recently the file was used.

Both recency and frequency on their own are somewhat incomplete. A bet-

ter approach is to combine the two, similar to the algorithm ARC presented by

Megiddo and Modha [41]. ARC is designed as a cache management policy, called

Adaptive Replacement Cache. It continually balances between recency and fre-

quency, in an online and self-tuning manner [42]. It does this by maintaining two

lists, one with files seen at least once “recently” and the other with files seen at

least twice “recently”, implying high frequency. One major difficulty in adopting a

combined approach like this is the dearth of dynamic data available for academic

research. In addition, frequency is difficult to measure if the file has not been

accessed yet.

Originally, since the data I have is static metadata and therefore there is no

measure of frequency, and since using both recency and frequency is a better met-

ric, I was going to try to estimate popularity by assuming that a more recent

access meant more frequent access. However, having developed solid metrics for

both system responsiveness (object similarity) and energy savings (object cov-

erage), I decided to instead see if I could use the definition for “heat” found

in [14, 34, 67, 69] to develop a better metric.

What I developed was an estimate for popularity, based on the definition of

19

heat seen in Equation 3.2 where you’re looking at the access rate and the expected

service time. Disk accesses to a file can be modeled as a Poisson process with mean

access rate of λ. Service time of a file is assumed to be fixed as si.

hi = λisi (3.2)

I started by looking at the access rate λi, which is the popularity weight times

the aggregate access rate. The aggregate access rate can be seen in Equation 3.3,

where N is the number of files. I found that in some cases the aggregate access rate

was fixed (either at 100 [14] or 200 [67]), and in other cases the aggregate access

rate was varied (from 20 to either 240 or 1000 [67, 69]). For these experiments I

present results for a fixed aggregate access rate of 200. Evaluation of varied rates

is not considered for this work.
N∑
i=1

λi (3.3)

The other half of the access rate is the popularity weight, which provides an

idea of the frequency of requests for that file. Equation 3.4 shows a definition for

the popularity rate of a file, pi, given a Zipf-like file distribution. Here, rank refers

to the rank of the file (starting at 1), and c =
1

H1−θ
N

. The denominator of c is the

N th harmonic number of order 1 − θ, which means that c can also be written as

seen in Equation 3.5. A common theme here is 1 − θ, but there is no definition

for θ.

pi =
c

rank1−θ
i

(3.4)

c =
1∑N

k=1
1

k1−θ

(3.5)

Most of the current work assumes that the file access request rate distribution

is Zipfian with a skew of θ = log A/100
log B/100

, where A% of accesses are directed at B%

of files. Given the Zipfian nature, generally the parameters are set as A= 70

and B= 30. However, since I am using a static data set, I don’t actually know

20

(a) Round Robin Assignment (b) Sequential Assignment

Figure 3.3: Popularity: Measured by the average heat of files on each node.

the access request rate distribution. That being said, the denominator of c is

incredibly similar to the denominator of the Zipf distribution (Equation 3.6).

Here, s is the value of the exponent characterizing the distribution, N is the

number of elements, and k is the rank.

1
ks∑N

n=1
1
ns

(3.6)

The value of the exponent characterizing the distribution can be calculated,

as s is the slope of the log-log graph of the data set. However, calculating s still

requires knowing the file access request rates. So instead I make the common

assumption that file sizes are inversely correlated with file access request rates.

This allows me to say that the file size distribution is an inverse Zipf distribution

with the same skew of theta. Since the file size distribution is known, as long as it

follows an inverse Zipf distribution, the file access request rate can be calculated. I

found that the file size distribution does indeed follow an inverse Zipf distribution,

allowing me to calculate file access request rates.

However, if you recall Equation 3.2, the file access request rate is only one half

of the equation. The other half is service time, which is comprised of seek time,

21

rotational time, and transfer time. Seek time and rotational time are negligible

compared to the transfer time, which is heavily influenced by the size of the file. I

use an estimated service time metric equivalent to the size of the file in megabytes.

Since file popularity does not change regardless of where the file is placed, it

is calculated before placement. Since I am dealing with simply static metadata to

determine popularity and am using the size of the file in megabytes, the resulting

values are extremely small. As a result, once the average heat of the files on each

node is calculated, I have multiplied by 1013 for readability in Figure 3.3. As you

can see, the results consistently vary depending on the assignment strategy as

with our previous two metrics.

22

Chapter 4

System Design

Out of intense complexities, intense simplicities

emerge.

Winston Churchill

While Pareto optimization provides us with a set of possible solutions, it does

not actually make a decision as to where each object should be placed. Thus,

I designed a data allocation algorithm called JACK, which stands for Joining,

Aggregating, andCollocating Knowledge. After identifying a set of Pareto optimal

solutions, JACK uses these solutions to make a decision as to where each object

should be placed. This decision is made based on information already calculated

about the state of the system, as well as information given by the system adminis-

trator when necessary. JACK is designed to place data at any granularity; from

a specific disk to an entire data center.

JACK consists of three stages: calculation, optimization, and decision. In the

calculation stage, the metrics described in Chapter 3 are calculated to measure

the objectives for which I am optimizing. The majority of the calculation stage

can occur at any point in time prior to data needing to be placed, and in fact

23

should occur in idle periods. Once the initial calculations have been made, this

stage only needs to happen when new data has been added to the system.

The optimization stage occurs when an object needs to be placed initially or

moved to a new location. This is when JACK calculates the Pareto frontier to

determine the set of optimal devices on which the object could be placed. Phrasing

the problem as a multi-objective optimization problem is attractive, because it

provides flexibility to optimize for multiple objectives while still choosing the

allocation from the Pareto frontier that favors a specific objective. Since I do not

want the data allocation algorithm to be dependent on the user knowing what is

important, using an a posteriori algorithm makes more sense.

One type of a posteriori algorithms that has been gaining popularity recently

is genetic algorithms [30, 40, 58]. While many a posteriori algorithms determine

the Pareto frontier one solution at a time (as the result of multiple single-objective

optimizations), genetic algorithms are designed to discover the entire Pareto fron-

tier. This is also expensive to compute: in the worst case, the complexity becomes

O(N3), where N is the population size [13]. For the purposes of this document,

the population size is the number of devices in your system. In a small system,

such as our development cluster of 16 nodes, O(N3) is not bad. In a real world

situation, however, the complexity becomes orders of magnitude larger. Consider

the high performance computer at Pacific Northwest National Laboratory, which

is considered to be “small”. It has over 2300 nodes, each with 8 local disks.

There are algorithms that can reduce the complexity to O(N2) in the worst

case through careful bookkeeping and maintaining comparisons. However, the

result of the bookkeeping is the increase of storage from O(N) to O(N2). While

this is a fairly high cost, it is still less costly compared to the approximate Pareto

frontier found by running multiple single-objective optimizations. In order to

24

alleviate this even further, I introduce a “pre-processing” step before the actual

Pareto optimization. Based on the information calculated in the calculation step,

JACK narrows down the number of possible devices for an object to be stored

on, reducing the size of N .

Once the subset of optimal devices has been identified, the decision stage is

invoked. JACK must make a decision as to which of these devices is the best for

the given object. Ultimately, this decision will be based on input provided by the

system administrator indicating which of the objectives is the most important.

Recall the house buying problem discussed in Section 2.1.1, where houses A, B,

and C were all optimal, given the requirements all carried equal weight. The user

input allows the system administrator to indicate that one of the requirements

has a higher weight. Just like the house buyer may decide that a good school

system should count more than a nice backyard, the system administrator could

decide that system responsiveness counts more than energy savings.

In the instance where the input indicates that all three objectives are of equal

importance, or no input is given, a balanced decision strategy is necessary. A

baseline approach is to have JACK make decisions in a round-robin fashion. The

decision will favor each objective in turn, starting with energy savings, then system

responsiveness, then load balancing. Knowing the prior two decisions will allow

JACK to maintain this rotation as long as there is no user input. This is not an

optimal solution, but it assures that every objective gets an equal opportunity.

There are two approaches to a more optimal balanced decision strategy: the

simple approach and the intelligent approach. The simple approach takes the so-

lution on the Pareto frontier which minimizes the difference among the objectives.

In other words, it determines the Pareto optimal solution which is most balanced

among the objectives. The intelligent approach requires JACK to take the state

25

of the system into account when making a decision. This allows JACK to make

intelligent decisions about whether to favor one objective over the others based on

the state of the system. While this work is focused on using JACK to initially

place data, it can also be used to relocate data. The relocation of data, however,

is reserved for future work.

26

Chapter 5

Theoretical Approaches

Experience: that most brutal of teachers. But you

learn, my God do you learn.

C.S. Lewis

The theory behind JACK is solid, with the minor exception of the concept of

“heat” for the load balancing metric. The reason using a metric of heat for load

balancing is so attractive is because it’s “easy”. Heat can be calculated by simply

looking at how frequently the file or object is accessed, and then it can be used to

optimize for load balancing by taking care not to put all the frequently accessed

files on the same disk. The difficulty lies in finding data that reports, or allows

you to calculate, the frequency of access to each file.

As discussed in Section 3.3, I used the definition for “heat” as found in [14,

34, 67, 69], shown in Equation 5.1.

hi = λisi (5.1)

When I started looking into tweaking the aggregate access rate (λi), however, I

realized that these papers calculated a Poisson process for each file, something

that is not feasible in any reasonably sized system.

27

With no clear direction for a metric for load balancing, I moved away from

Pareto optimality and phrasing it as a multi-objective optimization problem. I

started considering a more theoretical approach, while keeping in mind the desire

to be able to optimize for multiple objectives. Two theoretical models arose from

this: a partial bin packing model, and a model based on queuing theory. As with

the Pareto optimality approach, a bin packing model nicely fits two out of the

three objectives, and in fact I used concepts from the bin packing model in the

next direction of my research. The queuing theory model is a purely hypothetical

but solid theoretical model, and arose from my attempts to identify from whence

Equation 5.1 was derived.

5.1 Bin Packing Model

In its simplest form, bin packing takes objects that have a size and places them

in bins that have a capacity and minimizes the number of bins needed. Fairly

obviously, in this work the objects correspond to files or objects and the bins

correspond to the disks. This simple form of bin packing is the one dimensional

bin packing problem. There exists a list L of numbers between 0 and 1 which

need to be assigned to unit capacity bins so that no bin receives numbers totaling

to more than 1 and a minimum number of bins is used.

Clearly, however, there is more to it or this would not be a difficult problem.

Indeed, rather than just placing files on disks, there is a set of files, each of which

have a set of properties. This set of files needs to be placed on a set of disks

such that the sum of the file properties does not exceed a threshold that has been

set for the disk. This requires multi-dimensional bin packing, where the items

being packed can be thought of as vectors ⟨R1(x), R2(x), · · · , Rs(x)⟩ where Ri is a

function and the goal is to pack the vectors into bins such that bins are dominated

28

by ⟨1, 1, · · · , 1⟩.

Mathematically, Ri : 1 ≤ i ≤ s is a set of functions Ri : L → [0, 1] where L

is the set of files. That is, Ri maps a file to a value between 0 and 1, or rather

Ri identifies resource usages of the file. While the goal of multi-dimensional bin

packing is to pack vectors into bins such that bins are dominated by ⟨1, 1, · · · , 1⟩,

it is possible to change those values. This allows one not only to set thresholds to

maximum system responsiveness, but also provides a model for a heterogeneous

system. It is not difficult to imagine that the thresholds for a solid state drive

would differ from those of a hard disk drive; modifying multi-dimensional bin

packing allows for this.

The problem arises, as with Pareto optimization, with load balancing. As

I have pointed out, by modifying the threshold values I can maximize system

responsiveness. Since the inherent goal of bin packing is to minimize the number

of bins, the idea of reducing the number of disks used to maximize energy savings

is already factored into the model. It may be possible to use the thresholds to also

maximize load balancing, but ideally in that case one of the disk thresholds (and

corresponding file property) would be how “hot” the file is, or how frequently it

is accessed.

5.2 Queuing Theory Model

Studying the measure of heat in Equation 5.1 revealed that its origin lies in

queuing theory. In determining this, I developed a theoretical model rooted in

queuing theory, based on the concept that each disk in the system can be modeled

as a queuing system.

I am using the standard three part descriptor of A/B/m that denotes an m-

server queuing system where A is the inter-arrival time distribution and B is

29

the service time distribution. A and B can take values from the following set of

symbols: M (exponential), Er (r-stage Erlangian), Hr (r-stage hyper-exponential),

D (deterministic), and G (general). So an M/G/1 queue is a single-server system

with Poisson arrivals and an arbitrary service time distribution denoted by B(x),

and a service time pdf denoted by b(x) [29].

The key to an M/G/1 system is imbedded Markov chains, also known as semi-

Markov processes. In an imbedded Markov chain, state transitions can happen

at any time, causing the times between states to obey an arbitrary probability

distribution, but at the instants of state transitions, the process behaves like an

ordinary Markov chain. For the purposes of this model, state transitions occur

when a customer departs, as the expected service time at those instances is 0 for

the new customer in service (as the new customer just now entered).

The imbedded Markov chain then is the number of customers present in the

system immediately following the departure. The distribution of time between

state transitions is equal to the service time distribution B(x) whenever the de-

parture leaves behind at least one customer. If the departure leaves behind an

empty system, the distribution equals the convolution of the inter-arrival time

distribution (exponentially distributed) with b(x).

Working under the assumption that a single node can be modeled as an M/G/1

queue, I can make use of the utilization factor to optimize load balancing. System

responsiveness can be optimized by minimizing the total amount of time spent in

the system, both waiting in the queue and the time in service. Lastly, I can take

advantage of the busy-idle cycles and batch requests in such a way as to maximize

busy times to optimize for energy savings.

30

Load Balancing

The probability that the system is busy is defined as the utilization factor, ρ,

and is equal to the expected number of arrivals per service interval.

ρ = λx̄ (5.2)

This is a very familiar looking equation, and indeed Equation 5.1 is derived from

the utilization factor. Here, λ is the arrival rate of customers and x̄ is the average

time spent in service.

The goal of load balancing is to spread your busy data across your system to

keep from any one disk being thrashed. In order to do this, the model needs to

minimize the utilization factor. To put it another way, it is necessary to keep

the probability of any disk being busy from getting very high. This needs to be

monitored at the system level, to keep the utilization factor approximately equal

across all disks.

System Responsiveness

Knowing that the service time for the model is the arbitrary service time

distribution denoted by B(x), it is possible to map files to this by assuming that

each file has a service time along that distribution. Depending on the configuration

of the system, the service time will be different for given nodes. The average time

spent in the system can be expressed using ρ as follows.

The average number of customers in an M/G/1 system can be written as seen

in Equation 5.3.

q̄ = ρ+ ρ2
1 + C2

b

2(1− ρ)
(5.3)

This is known as the Pollaczek-Khinchin (P-K) mean-value formula, where q̄ is

the average number of customers found at random. It is written in terms of the

31

utilization factor ρ and the squared coefficient of the service time variation, C2
0 .

Little’s law states that N̄ = λT , which is the expected number of customers N̄ in

a system related to the arrival rate of customers λ and their average time in the

system T .

It is possible to apply Little’s law to Equation 5.3 to obtain the average time

spent in the system, both waiting in the queue and time in service. Since q̄ is

the average number of customers found at a random time, it can be stated that

q̄ = N̄ , resulting in Equation 5.4.

N̄ = ρ+ ρ2
1 + C2

b

2(1− ρ)
= λT (5.4)

Solve for T and the result is

T = x̄+
ρx̄(1 + C2

b)

2(1− ρ)
(5.5)

This states that the average total time spent in the system is the average time

spent in service plus the average time spent in the queue. The average queuing

time can be expressed as follows

W =
ρx̄(1 + C2

b)

2(1− ρ)
=

W0

1− ρ
(5.6)

where

W0 ,
λx̄2

2

W0 is the average remaining service time for the customer in service at the time

of a new arrival

In general, I actually expect that the total time T = x̄+W will be dominated

by the average service time x̄ and that the average queuing time W is next to

nothing. In order to maximize system responsiveness, this needs to be true; no

request should be waiting on another.

32

Energy Savings

Interestingly, the most difficult objective to optimize for in the theoretical

queuing theory model is energy savings. In an M/G/1 queue, however, there is a

concept of busy and idle periods. The expected length of a busy period depends

only on the average service time x̄ and the arrival rate λ, and is expressed as 1
x̄−λ

.

It is possible to batch incoming requests in order to maximize the busy periods,

optimizing for energy savings. Care must be taken to find an optimal batch size,

even given a set of constraints defined in order to not adversely affect system

responsiveness. Of course, once requests are arriving in a batched manner, it is

no longer an M/G/1 queue.

33

Part II

Practical Approach

34

Chapter 6

Applied Machine Learning

Anyone who has never made a mistake has never

tried anything new.

Albert Einstein

In order to approach the system optimization problem from the bottom up, I

focused on the problem of finding intelligent ways to place the data. I changed the

definition of data to be a workload, rather than attempting to identify behavior

based on static metadata. I further defined a workload as a “logical volume”,

which could be anything from a single application to a virtual machine running

several other virtual machines, each of which could be running several applications.

Approaching the problem from the perspective of placing workloads can be

broken into two parts, modeling and mapping. First, a model of how a workload

is going to behave must be created. This allows the prediction of how a workload

will behave in the presence of other workloads. Second, that prediction must be

able to be used to help map on which physical device the workload should be

placed. This mapping is subject to practical issues such as whether the size of

the workload added to the currently used space on the device will exceed the

35

maximum capacity of the device.

The goals of modeling revolve around a single formula, specifically the follow-

ing:

Performancei = F (Workload Characteristicsi) (6.1)

This says that the performance of a specific workload, i, is determined by some

function F , the input to which is the set of characteristics that define the workload

i. Clearly, a key problem is determining the function F , which I chose to approach

with machine learning. The key to this challenge is determining whether the

performance interference experienced by and caused by the workload should be

part of F . The reason is that this becomes complicated, since the interference

is dependent on other workloads as well as the properties of the physical disk.

While an actual measure of performance interference is difficult, if not impossible,

to determine, a prediction is not.

Mapping workloads to physical devices can be thought of as a constraint sat-

isfaction problem. In this case, the problem is that there is a set of n logical

volumes to be placed onto m physical volumes, with a constraint of either perfor-

mance interference or service level agreements, such that the number of physical

volumes used is minimized.
b∑

i=1

w(Si) (6.2)

The goal is to find the allocation that maximizes the summation, where Si is

a set of logical volumes and b ≤ m is the number of physical volumes. The

major challenge here is to define the function w. This combination of predicting

workload performance and constraint satisfaction resulted in an approach that

drove the remainder of my dissertation.

36

Chapter 7

Predicting Workload

Performance

To raise new questions, new possibilities, to regard

old problems from a new angle, requires creative

imagination and marks real advance in science.

Albert Einstein

The approach identified in Chapter 6 uses the concept of predicting workload

performance and using these predictions along with constraint satisfaction in or-

der to optimally place workloads as they enter the storage system. I argue that

the important aspect for optimal placement is not the disk or the workloads, but

how the workloads themselves interact with other workloads. Rather than at-

tempt to mitigate the workload contention on disk, I model how the performance

of one workload is affected given the presence of other workloads, and use this to

make intelligent placement decisions. Thus, I care less about the actual predicted

value of the performance of a workload, but rather on which disk the new work-

load performs best compared to the other disks in the system, given the existing

37

workloads on the disk.

One of the primary benefits of approaching the workload placement problem

in this manner is that since I am interested in how workloads interact with each

other comparatively, I am not tied to models that reflect only how a specific device

will behave. It also lifts the constraint of finding a precise value for performance.

One could look at all possible combinations of workloads and determine the best

division across the system, but such an approach would really only be viable at

the initialization of a system. The best division could be constantly changing, and

constantly moving workloads is not optimal. Instead, I observe what is already

running on the system, and determine the best placement given the current state.

In order to predict which disk would be the best fit for a new workload, I

needed to model the workloads currently running on each disk as well as the new

workload. I have chosen to use workload characteristics as the input to the model,

as they can be specified or observed. This allows for easy adaptation to a real

system.

The performance of a specific workload, i, can be defined as the output of

some function F , the input to which is the set of characteristics that define the

workload i.

pi = F (wci) (7.1)

Here the workload i is specified by its characteristics: wc = ⟨bs, io, rw, pr⟩, where

bs is the block size, io is the number of IO units in flight against a file, rw is the

read/write ratio of the workload, and pr is the percentage of the workload that

is random. I chose these characteristics because they can be specified, as I am

doing in this work, but they can also be measured or observed in a real-world

system, allowing the model to be easily adapted to a real system without needing

to change how workloads are defined. Similarly, I measure performance as the

38

Table 7.1: Relationship between the number of possible values for each work-

load characteristic, given five workload characteristics, and the number of unique

workloads.

Number of Characteristic Values Unique Combinations

One Workload Two Workloads

2 32 1024

3 243 59049

4 1024 1048576

5 3125 9765625

tuple of total bandwidth, total latency, and percentage of disk utilization.

It is, in theory, fairly straightforward to predict the performance of workloads

using brute force methods by making F a simple look-up table. In practice,

however, this is not a realistic approach. If the number of characteristics used to

define the workload are limited, nc = 5, and limit the number of possible values

each characteristic can take on, v, the number of possible unique workloads can be

calculated by vnc. This assumes that the number of values for each characteristic

is the same, which may not always be the case. The formula then becomes the

product of the number of values for each characteristic.

nc∏
i=1

vi (7.2)

This means that if I restrict the number of possible values each characteristic

has to two, there are 32 unique workloads that can be created. Since it is possible

to have multiple instances of the same workload running, when there is more than

one workload on a device, the number of unique combinations is calculated by the

39

following:

(
nc∏
i=1

vi)
n (7.3)

where n is the number of workloads. In Table 7.1, I outline the growth that results

when I vary the number of values possible for each characteristic for one and two

workloads.

These values are a conservative estimate, as they do not take into consideration

the fact that just because two workloads have the same set of characteristic values

does not mean they will behave identically. For example, consider two workloads

that have a read-write ratio of 25% read, 75% write. If workload A reads first and

workload B writes first, the behavior is very different. The numbers in Table 7.1,

then, are a conservative estimate to the number of possible unique workloads. It

is clear, then, that F can not be a simple look-up table. In order to intelligently

place a workload in a reasonable amount of time, it is necessary to be able to

predict the performance of the workload.

40

Chapter 8

Experimental Design

No idea is so outlandish that it should not be

considered with a searching but at the same time a

steady eye.

Winston Churchill

Real world workloads are notoriously difficult to obtain, as they contain iden-

tifying, and often sensitive, content and information about performance. In ad-

dition, they do not always translate well from the system on which they were

obtained to another. Synthetic workloads attempt to alleviate the translation

problem by creating statistical models or probability distributions of various work-

load characteristics [37], such as request size, request rate, and IO queue depth.

Rather than depend on real world workloads or statistical models, I developed

a unique approach called Bypass. Bypass uses a workload generator, specifically

the Flexible IO tester (fio) [4], to generate workloads using easily modified input

parameters. Using the work summarized in [27, 26, 43, 21], further discussion

of which can be found in Chapter 13.1.4, I identified significant workload char-

acteristics and mapped them to input parameters in fio. By using reported and

41

realistic values for these characteristics to generate workloads, I bypass the need

for real world data while maintaining realistic workloads.

It is important to note that Bypass is not a workload generator or a bench-

mark, it is an approach to workload simulation. Benchmarks are designed to test

the performance of a system [60], and thus often present an incomplete characteri-

zation of workloads. A benchmark designed to test the de-duplication capabilities

of a system will be highly concerned with the content of the workload, while a

benchmark to test the response time will emphasize relative timing.

Benchmarks and real world workloads that excel for specific system tests do not

necessarily describe the workload completely, and report the performance of the

system. I am interested in the performance of the workloads themselves; to limit

the effects of interactions with layers of the software stack, I bypass the file system

and perform IO directly on the disk. Bypass serves two purposes: it provides

a more complete understanding of workloads themselves by using characteristics

which define real world workloads, and it reports the performance of the workloads

rather than the system.

8.1 Obtaining Workloads

Having decided on fio as the workload generator and identified the defining

characteristics of real world workloads , I can now generate realistic workloads and

run them. In order to generate workloads, fio takes the characteristics as either

command line input or reads them from a job file. Once a workload, or set of

workloads, has been generated, fio can run it and return performance information

including bandwidth, latency, and IOPS.

42

Read/Write
Ratio

Spatial Locality

defined
by

maps to

maps to

randrw

Request Sizemaps to

bs

rwmixread

percentage_
random

poisson

Request Ratedefined
by maps torate_process

bssplit

linear

Temporal
Localitymaps tonorandommap

Outstanding
IOsmaps toiodepth

Figure 8.1: Input parameter to workload characteristic mapping.

43

8.1.1 Characteristics to Input Parameters

It is fairly straightforward to map the workload characteristics to input pa-

rameters in fio, despite the wide array of parameters fio allows you to specify. The

formal mapping is shown in Figure 8.1, where rectangles indicate a fio parameter

or a workload characteristic, ovals are a possible value for the parameter, and

diamonds indicate the relationship.

I use three parameters to cover the read/write ratio and spatial locality. The

first parameter, rw, indicates whether the job is read or write and random or

sequential. For example, rw = read would indicate a workload that was composed

only of sequential reads. Since I want more control over both the read/write ratio

and the spatial locality, I designate rw to be randrw, indicating a mixed random

read/write workload. This allows two more parameters to be set, rwmixread and

percentage random. The first, rwmixread, is a percent that represents how much

of the workload should be read IO, with the inverse being the amount of write

IO. Spatial locality is defined with percentage random, indicating how much of

the workload should be random IO and how much should be sequential.

The request size is handled by one of two parameters. Either bs is used to

indicate a static block size for the entire workload, or bssplit is used to indicate a

range of different block sizes. To use bssplit, the block size and the percent of the

workload that should use that block size must be indicated. It is also possible to

indicate different block sizes (or block size distributions) for reading and writing.

Request rate is handled by the parameter rate process, which controls how IO

is submitted. I set this to poisson, as real world request rates are often modeled

as a Poisson process.

I force fio to not keep track of where blocks are being written in a random

workload using norandommap. This allows some blocks to be overwritten, while

44

others never get touched. Another parameter that could be used for temporal

locality is dedupe percentage, which tells fio to generate that percent of identical

buffers when writing. I currently only use norandommap to get temporal locality;

dedupe percentage would allow finer control of that characteristic.

In order to be able to account for outstanding IOs, I used the parameter

iodepth. This defines the number of IO units in flight against the file at a

time. I used the Linux native asynchronous IO engine (libaio) with non-buffered

IO to ensure the IO depth is met. IO latency is not a parameter that I set,

but rather one I collect for performance information. It is possible to set the

parameter latency target which will attempt to find the maximum performance

for a workload while maintaining a latency less than the indicated target.

8.1.2 Assigning Values

Up to this point, I have not discussed what values to assign the input parame-

ters. While one of the studies did not have actual values [27], the other three had

at least average values. While I used the values from [43] as reference, they are

averaged for specific vendor systems that were being tested, and are not useful for

generating specific workloads.

This left me with the studies from Kavalanekar et al. [26] and Gulati et al. [21],

both of which report values for the workloads they characterized. Kavalanekar et

al. report a mix of averages and modes, while Gulati et al. provide a distribution

of values when appropriate. I present the range of values from which I chose based

on these studies; future studies could improve these to create even more realistic

workloads.

Request size ranged from 2KB to 512KB in powers of two, with the most

frequent sizes being 4KB, 8KB, 32KB, and 64KB. As mentioned in Section 8.1.1,

45

I either keep the block size constant or create a distribution, with different values

for read and write. For example, a workload based on the Microsoft Exchange

Server data [21], could have a read block size of 8KB with a write block size being

a distribution with 75% being 8KB, 15% are 16KB and the remaining 10% are

32KB.

Given the request rate in fio is limited to either a poisson distribution or a

linear rate with fixed delays, and the interarrival time of requests varied quite

widely (anywhere from 1 millisecond [21] to 500 milliseconds [26]), I chose to

use the poisson distribution. Lambda is fixed at 106/IOPS for a given workload.

Outstanding IOs are allowed to range from 1 to 32, the maximum reported in

Gulati et al.

One of the parameters I let vary quite widely is the one corresponding to

spatial locality, percentage random. Spatial locality is one of the easiest ways to

observe how workloads interact; highly sequential and highly random workloads

do not perform well when placed on the same disk. Another reason to vary spatial

locality is that there is high variability in the real world workloads themselves.

The Windows build server [26] for example is mostly random (only 4% of reads

and 13% of writes are sequential), while the developer tools release server is more

sequential (20% of reads and 32% of writes).

I let the read/write ratio range from 0% (meaning an all write workload) to

100% (an all read workload). In [26] the ratio ranges from essentially an all read

workload to an all write workload and several ratios in between. Since the ratio is

not recorded in the study done by Gulati et al. I used 50% when replicating those

workloads and modified from there (for example a drop to 45% or an increase to

55%) to get slightly different workloads.

In order to collect data initially, I used the parameters specified in Table 8.1

46

Table 8.1: Workload Characteristics.

FIO Parameter Value

read percentage 0 – 100

percent random 0 – 100

iodepth 1 – 64

block size 1k, 4k, 8k, 16k, 32k, 64k, 128k, 256k,

512k

and randomly selected a value from the ranges shown for each workload. In this

way, I was able to create a large number of workloads with unique IO charac-

teristics. This was useful for the preliminary experiments that determined the

viability of using performance prediction. In the experiments that tested using

performance prediction to optimally place workloads, I used the more realistic

characteristic values.

8.2 Modeling Workload Performance

Having identified the input parameters necessary to characterize a workload,

and assigned realistic values to them, Bypass can use fio to run the generated

workload and report performance information. As mentioned, fio is writing di-

rectly to either a hard disk drive or a solid state drive and bypassing the file system

entirely. This is so that when I run multiple workloads on the same device, I can

assert that changes in performance come from how the workloads are interacting.

In the presence of a file system, changes in performance could be an artifact of

the IO scheduler being used rather than the workload interaction.

47

Some of the initial tests collected IOPS (IOs per second), both read and write,

as the measure of performance; most of the experiments also collected total com-

pletion latency and bandwidth. I used the measured performance information,

along with the characteristics of the workloads, to create a model using machine

learning to predict the performance of the workloads. I am using CART (Classi-

fication And Regression Tree) models since they allow for rapid iteration and are

human readable, making it easy to identify behavior. I used the scikit-learn [51]

modules for regression trees to generate the models.

In all of the experiments, I reserved 10% of the data for testing and used the

remaining 90% for training and validation. I divided the training data into nine

equal parts and used eight parts for training and one part for validation. This

was repeated until all parts were used as validation. I chose to do 9-fold cross-

validation, rather than 10-fold, because this way each validation part consisted

of 10% of the initial data set. In each fold of validation, the mean relative error

is calculated to give a measurement of goodness to the generated model. Mean

relative error is calculated by comparing the predicted value to the real value using

the following formula: |predicted−real|
real

. I select the model with the lowest relative

error, and that model is used with the test data to produce results.

48

Chapter 9

Pairwise Prediction

However beautiful the strategy, you should

occasionally look at the results.

Winston Churchill

To successfully place workloads optimally by predicting the performance, I

first needed to make sure that predicting the performance of workloads using my

method of workload generation and modeling was possible with some degree of

accuracy.

The initial set of experiments I designed were specifically to test whether

predicting the performance of workloads was feasible. Each experimental run

generated two workloads by randomly sampling from the values in Table 8.1 and

wrote the characteristics to a file that could be read by fio. Bypass then ran the

workloads and collected performance information as a tuple of total bandwidth,

total completion latency, and total IOPS. I collected data from 3 000 experimental

runs. The workload characteristics, as well as the performance of the first workload

in isolation, were used as described in Section 8.2 to create a CART model.

In addition, I used a historical average as a naive predictor to compare how

49

Figure 9.1: Predicting performance with varying tree depths and number of

samples.

the CART model did at predicting performance. The historical average simply

takes an average of the performance that has been seen previously and uses this

as the predicted performance. I consider this a baseline for comparison purposes,

to ensure that the CART model is successfully predicting the performance.

There are two parameters I chose to vary, the depth of the decision tree and

the number of samples used, both of which represent a tradeoff in cost and benefit.

A very shallow decision tree will be faster to compute and traverse, but will give

less accurate predictions. The deeper the decision tree is allowed to go, the more

accurate the prediction, but in addition to being more costly in computation and

50

Figure 9.2: A closer look at the higher depths of the regression tree.

traversal, there is also the danger of overfitting. Similarly, the fewer samples that

are needed the faster the model will be to compute, but a greater number of

samples allows the model to begin to converge on a mean relative error.

The first thing to note in Figure 9.1 is that naive predictor (the black line)

has a much higher mean relative error than any depth of the CART model. This

is encouraging, since it means choosing to use machine learning was correct and

that the CART model is better at predicting performance than the baseline. As

expected, the mean relative error is very unstable with only a few samples; using

only ten data points to create a predictive model isn’t going to be very accurate.

As the number of samples increases, the mean relative error begins to stabilize.

51

Based on Figure 9.1, a minimum of 500 samples seems necessary to create a stable

model, though the more samples the better.

The other thing of interest in Figure 9.1 is that there appears to be a depth

after which there is little to be gained by allowing the tree to go deeper. Figure 9.2

shows a closer look at the higher depths, with the X-axis starting at 500 to

eliminate the variance in the mean relative error caused by too few samples. It

is clear that while the mean relative error does improve as the depth increases,

that improvement is only notable at the higher sample sizes. Additionally, the

improvement past a depth of six is not significantly different (at 3000 samples,

the difference in mean relative error between a depth of six and a depth of twelve

is 0.204).

An example of one of the CART models generated is shown in Figure 9.3,

where the depth is limited to three. The leaf nodes show the mean squared error,

the number of samples at that leaf, and the predicted values for the tuple of

bandwidth, latency, and IOPS. It is interesting to note that the top split is the

latency of the first workload in isolation. Indeed, this remains constant across

the different models built and different depths allowed. Performance is the best

predictor of performance: that is, how the first workload performs on its own

is a good predictor of how the two workloads will perform together. Another

interesting thing to note is that the tree is not even; it is heavily weighted to the

left. This is encouraging, since that means the majority of the workloads that

were used to create the model had lower rather than higher latencies.

52

la
t

<
=

 5
5
5
8
5
.2

9
6
9

m
se

 =
 1

5
4
9
5
4
1
3
9
4
.3

1
sa

m
p
le

s
=

 2
4
0
0

b
s1

 <
=

 1
9
2
.0

0
0
0

m
se

 =
 9

2
0
0
1
0
7
6
1
.7

4
6

sa
m

p
le

s
=

 2
0
0
6

b
s1

 <
=

 1
9
2
.0

0
0
0

m
se

 =
 2

0
7
3
4
0
3
6
9
9
.3

7
sa

m
p
le

s
=

 3
9
4

la
t

<
=

 4
2
0
0
.0

1
8
6

m
se

 =
 4

2
4
0
3
7
3
1
6
.5

0
5

sa
m

p
le

s
=

 1
6
1
1

io
1
 <

=
 3

6
.5

0
0
0

m
se

 =
 1

3
1
0
8
5
2
4
5
2
.4

8
sa

m
p
le

s
=

 3
9
5

m
se

 =
 3

1
0
0
3
1
2
0
6
.3

2
8
7

sa
m

p
le

s
=

 8
1
7

v
al

u
e

=
 [

[
7
0
4
3
3
.3

0
4
9
2
7
2
3
]

 [
 1

5
0
5
4
.1

7
5
0
3
0
6
]

 [
 1

0
9
8
0
.1

3
6
0
8
2
2
8
]]

m
se

 =
 3

5
5
2
0
7
7
4
4
.8

9
7
9

sa
m

p
le

s
=

 7
9
4

v
al

u
e

=
 [

[
9
8
0
6
0
.4

5
5
9
5
1
4
5
]

 [

8
4
5
3
.5

6
1
7
1
2
8
5
]

 [
 2

8
1
3
4
.7

5
1
4
6
7
4
5
]]

m
se

 =
 6

3
3
2
5
6
1
8
0
.2

2
4
1

sa
m

p
le

s
=

 2
1
4

v
al

u
e

=
 [

[
1
1
1
6
8
5
.7

1
0
0
9
2
1
8
]

 [

 6
1
4
3
.0

4
2
0
5
6
0
7
]

 [

5
6
5
7
7
.2

5
2
7
9
8
6
7
]]

m
se

 =
 1

0
9
4
9
0
6
4
8
8
.3

3
1
1

sa
m

p
le

s
=

 1
8
1

v
al

u
e

=
 [

[
1
1
9
5
6
3
.7

5
1
6
0
0
7
5
]

 [

 6
4
1
9
.6

6
0
2
2
0
9
9
]

 [
 1

3
1
2
0
8
.5

6
0
4
5
5
6
2
]]

la
t

<
=

 1
4
5
6
1
0
.1

5
6
2

m
se

 =
 1

0
9
1
2
0
1
3
4
5
.4

3
sa

m
p
le

s
=

 3
1
4

la
t

<
=

 1
2
6
9
4
8
.3

7
5
0

m
se

 =
 3

1
5
6
6
3
6
2
1
1
.1

6
sa

m
p
le

s
=

 8
0

m
se

 =
 4

7
5
4
5
7
3
2
0
.9

6
7
7

sa
m

p
le

s
=

 2
2
9

v
al

u
e

=
 [

[
1
1
4
2
7
6
.5

0
1
0
4
7
1
6
]

 [

 6
2
3
6
.4

5
8
5
1
5
2
8
]

 [

8
4
1
0
8
.3

2
9
8
6
7

]]

m
se

 =
 1

0
7
7
3
0
7
1
4
0
.5

5
0
9

sa
m

p
le

s
=

 8
5

v
al

u
e

=
 [

[
1
2
4
6
2
1
.1

3
1
3
6
8
4
5
]

 [

 5
1
0
4
.1

7
0
5
8
8
2
4
]

 [
 1

6
6
4
0
5
.0

7
0
2
3
7
7
2
]]

m
se

 =
 1

2
9
8
9
7
4
8
8
8
.6

7
8
9

sa
m

p
le

s
=

 5
6

v
al

u
e

=
 [

[
1
2
9
4
7
1
.5

9
1
5
9
2
7
7
]

 [

4
9
3
.0

7
1
4
2
8
5
7
]

 [
 1

6
1
2
3
3
.5

5
3
4
9
8
2
5
]]

m
se

 =
 1

8
6
9
2
5
5
6
2
2
.1

9
8
6

sa
m

p
le

s
=

 2
4

v
al

u
e

=
 [

[
1
2
5
1
4
2
.5

4
6
8
7
1
1
2
]

 [

3
2
0
.7

0
8
3
3
3
3
3
]

 [
 3

1
6
3
9
5
.3

6
6
6
7
6
9
2
]]

F
ig
u
re

9
.3
:
A
n
ex
am

p
le

C
A
R
T

m
o
d
el

w
it
h
d
ep
th

of
th
re
e.

53

Chapter 10

Reducing Overhead

If we knew what it was we were doing, it would not

be called research, would it?

Albert Einstein

While applying machine learning to the allocation problem allowed me to

predict the performance of a workload with respect to other workloads, there is

an associated, and often significant, overhead. In this particular problem, there

is a time and space overhead in both creating and maintaining the models used

for prediction. I looked at two different ways to decrease the overhead: one by

creating a single model for each type of storage device rather than a model for

every device in the system; the other by using a representative workload in place

of keeping track of all the workloads running on a given device.

10.1 Device Class Models

Since modeling every single device in the system would swiftly become un-

wieldy in any decent sized system, I wanted to find a way to avoid individual

54

models. As I am interested in the interaction among workloads, I decided to look

at the model on a class basis rather than a device basis. Solid state drives are

going to behave differently from hard disk drives, and this difference needs to be

reflected so that workloads can be placed accordingly.

These experiments followed the general outline of collecting data as in Sec-

tion 8.2, except I collected data on four individual devices, and then aggregated

the data from those devices and sampled from the aggregate data to create the

class model. There is no baseline in these experiments, and these results are all

collected from SSDs.

The graphing is similar to the previous section’s experiments, varying the

number of samples and the depth of the tree, and measuring the mean relative

error. The difference in these experiments is that I am interested in how the class

model does compared to the individual device models. In Figure 10.1, it is clear

that with only a few samples, the mean relative error varies wildly. In most of the

device models, however, once the model gets above 200 samples and the depth

is deeper than about four, the mean relative error starts to converge. The class

model appears to fluctuate much more than the device models, though when the

Y -axis is noted it becomes clear that it is not fluctuating more than most of the

device models. In addition, the class model is sampling from a much larger pool

of data, so the higher relative error at shallow depths makes sense. The larger

the sample set, the harder it is to accurately predict based on only a few decision

points.

In order to do a more direct comparison, I took the data that was used for test

for each device model and used it with the system model. While interesting, it is

difficult to make any sort of statement about how the models compare with each

other, since the class model fluctuates at different points than the device models.

55

(a) Device A (b) Device B

(c) Device C (d) Device D

(e) Class Model

Figure 10.1: Device and class models.

56

(a) Device A (b) Class Model

(c) Device B (d) Class Model

Figure 10.2: Direct comparisons.

I decided to give the device models the best advantage I could. From the

graphs in Figure 10.2 and Figure 10.3 I determined the depth with the lowest

mean relative error for each device, and then compared that with the same depth

on the class model. As can be seen in Figure 10.4, while the class model has a

some spikes in relative error where the device model does not, the class models

start to mimic the device model as the number of samples increases.

In order to replace a device model, however, what I really want to know is how

accurate the class model is at predicting how the device model would predict. To

57

(a) Device C (b) Class Model

(c) Device D (d) Class Model

Figure 10.3: Direct comparisons.

58

(a) Device A (b) Device B

(c) Device C (d) Device D

Figure 10.4: Best device depth.

59

Figure 10.5: Class model accuracy in predicting device model.

determine this, I built a device model for each device as well as a class model

and tested how the class model predicted with respect to how each device model

predicted. As can be seen in Figure 10.5, the class model predicts the same as the

device model between 65% and 85% of the time.

10.2 Representative Workloads

The other way I approached reducing the overhead caused by machine learning

was to look at using a workload that was representative of all the workloads

currently on a device, rather than keeping the information about all of them. Not

60

only did this allow me to maintain a pairwise comparison, it also paves the way

for collecting data directly from the device in the future.

The formula in Equation 7.1 determines the performance of a single workload,

where a workload is defined by its characteristics: wc = ⟨bs, io, rw, pr⟩. However,

it can be extended to calculate the performance of multiple workloads on a device

D.

pD = F (∀i ∈ D,wci) (10.1)

The most straightforward way is to take the characteristics of each workload on

the device and use them all as inputs to the function F . The formula shown in

Equation 10.1 defines the performance of a set of workloads D running together

on the same device. This, then, is the baseline I used when collecting data.

However, this requires keeping track of the specific characteristics of each work-

load currently running. In an effort to mimic what could be gathered from the

device itself and reduce the amount of information needing to be kept, I took

the characteristics of all the workloads running on a device and created a new

workload representative of them. For each workload characteristic c, an average

of the values from each workload is found, creating an averaged set of workload

characteristics for the device, wcm.

wcm = ∀c ∈ wc,

∑m
i=1 ci
m

(10.2)

This allows me to collect information about what is currently running, without

having to maintain a record of the specifics of each workload.

Using this representative summary workload rather than the individual char-

acteristics results in Equation 10.3. This takes the characteristics of the new

workload n and the average characteristics of the workloads on the device wcm as

inputs. pm|n is the performance of the workloads on the device if the new workload

61

is placed there.

pm|n = F (wcn,wcm) (10.3)

This is the equation used to collect data in order to compare against using Equa-

tion 10.1, which assumes all knowledge is known.

10.2.1 Experimental Setup

The setup was slightly different for these experiments than is described in

Chapter 8. In the previous two sets of experiments, the focus was on whether

it was possible. In these experiments, I shifted focus to see how well the two

different methods did in predicting performance with respect to each other. The

reason for this shift was twofold. First, the end goal is to predict performance

and use it in optimally placing workloads. Second, and very related to the first

point, a comparison of how accurately the performance was predicted would tell

me less about whether the representative workload is viable than how accurately

it can be used to predict where a new workload should be placed.

Experiments were run in sets of ten, where each instance in a set simulated

a device in the system. In each set, one workload was held constant as the new

workload being placed. The remaining workloads were varied to simulate a differ-

ent set of workloads on each device. Every set was run twice, in order to calculate

the performance using both Equation 10.1 and Equation 10.3. The workloads

are the same across both equation runs; in the first run all the characteristics

are used, in the second only the average characteristics are used. This allows us

to see how well using an average does compared with knowing all the individual

characteristics.

62

Table 10.1: Example of how IOPS is used to predict performance. The colored

cells indicate the best possible measured and predicted IOPS for both the all-

knowing experiment, where all workload characteristics are known and used, and

the summary experiment, where an average of the workload characteristics is used.

New Workload Device Number Workloads on Disk All-Knowing Summary

Measured Predicted Measured Predicted

639232

1 1617429, 5566586 10129.0 12994.0 6407.0 6340.0

2 1668095, 1026817 361.0 334.0 343.0 466.0

3 2264879, 5840499 9534.0 16349.0 9394.0 9807.0

4 2573259, 211665 568.0 714.0 466.0 298.0

5 499374, 2973522 914.0 1154.0 830.0 553.0

6 5169995, 1123477 6099.0 6215.0 3888.0 3508.0

7 5655641, 6412728 20657.0 19300.0 16205.0 19076.0

8 6208830, 4177327 15689.0 16006.0 10937.0 11125.0

9 6415495, 4583967 18087.0 19976.0 13208.0 18413.0

10 77175, 6343920 16425.0 18018.0 14964.0 15893.0

63

10.2.2 Comparison Method

Table 10.1 shows an example of one set of experiments with three workloads.

The new workload to be placed, whose unique identifier is seen in Column 1,

is held constant across all ten instances, and the remaining two workloads, the

unique identifiers of which are in Column 3, are different on each disk. I measure

the performance (in IOPS) using Equation 10.1, recorded in Column 4, and using

Equation 10.3, in Column 6. I compare the measured performance of each device

against the other devices in the system and identify the absolute best performing

device as the device with the highest IOPS when the new workload is added,

highlighted in green. In this set, Device 7 shows the best performance for both

equations, though the actual IOPS measured are different.

In order to make a comparison of how well I can predict the best placement

of a new workload, I created a CART model for each equation. One model, the

all-knowing model, predicts pD where all workload characteristics were known and

used, while the other model, the summary model, predicts pm|n where an average

of workload characteristics on the device were used.

For each run, I used the all-knowing model to predict how well each device

would perform, and then picked the best performing device based on the highest

IOPS. I then used the summary model to predict how well each device would per-

form, and picked the best performing device from that data as well. In Table 10.1,

the predicted IOPS are seen in Columns 5 and 7 for the all-knowing model and

summary model respectively with the best predicted value highlighted in green.

The all-knowing model predicted Device 9 to have the best performance and the

summary model predicted Device 7.

Since I care about where to place the new workload, I don’t care about the

actual value of IOPS beyond determining which device had the highest predicted

64

value. Since the predictions aren’t going to give a precise value, I determined the

goodness of the prediction by taking the IOPS actually measured on the predicted

device and expressing it as a percentage of the best IOPS actually measured, as

in Equation 10.4.

IOPS measured on predicted best device

IOPS measured on actual best device
(10.4)

This tells me what percentage of the best performance the workload would achieve

if I placed the new workload on the device predicted. If I predict the best device,

the workload achieves 100% of the best performance.

In the example, to calculate how well the all-knowing prediction was, I took

the all-knowing IOPS measured at Device 9 (the device I predicted would have

the best performance) and divided it by the all-knowing IOPS measured at Device

7 (the device that had the actual best performance) (18087
20657

= 0.876). This means

that if I were to place the new workload based on the all-knowing prediction,

it would achieve 87.6% of the IOPS it could have achieved. Similarly, I took

the summary IOPS measured at Device 7 (the device predicted to have the best

performance) and divided it by the summary IOPS measured at Device 7 (the

device that had the actual best performance), giving 16205
16205

, or 100% of the IOPS

the workload could achieve.

Finally, I used Equation 10.3 to predict the performance of Equation 10.1. To

do this, I used the summary model to predict how well each device would perform,

and chose the best performing device. In the example in Table 10.1, the summary

model predicted Device 7 as the best. I follow the same procedure as before using

Equation 10.4, except instead of finding the corresponding disk IOPS in Column

6 (the measured summary IOPS), I find it in Column 4 (the measured all-knowing

IOPS). In the example, I take the IOPS from Device 7 for both the numerator

and denominator (20657
20657

), showing the predicted device would achieve 100% of the

65

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100
Percent of Best

0

10

20

30

40

50

60

70

80

Pe
rc

en
t

of
R

un
s

Predicted pD / Best pD
Predicted pm|n / Best pm|n
Predicted pm|n / Best pD
Random

(a) Three Workloads: one new, two

on current device.

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100
Percent of Best

0

10

20

30

40

50

60

70

80

Pe
rc

en
t o

f R
un

s

Predicted pD / Best pD
Predicted pm|n / Best pm|n
Predicted pm|n / Best pD
Random

(b) Four Workloads: one new, three

on current device.

Figure 10.6: Shows the percent of IOPS of the best possible placement option

that the predicted value achieves, over 200 runs.

best performance.

Using the measured values from the all-knowing experiments gives me the ac-

tual performance on that device, rather than the performance of the representative

workload. Predicting the performance using the representative workload allows

me to see how well the summary model works to predict actual performance. This

last approach gives me the most realistic view of the system, assuming I could

only collect data from the device, as I would not have full knowledge.

10.2.3 Results

Figure 10.6a shows the results of adding a new workload to two workloads

already running on device. The first bar, in blue, shows how well I can predict

the all-knowing performance using the all-knowing model. The second bar, in

red, shows how well I can predict the summary performance using the summary

model. The fourth bar, in yellow, shows what the results would be if a random

device placement were chosen each time, for comparison sake. Since there are ten

66

disks, randomly selecting a device will result in the best placement about 10% of

the time as we would expect.

The third bar, in green, shows the results of using the summary model to

predict the all-knowing performance. It is interesting to note that I predict the

best placement more often using this method than using the all-knowing model

to predict all-knowing, or the summary model to predict the summary. Similar

results are seen in Figure 10.6b, where I am adding a new workload to three

workloads already running on a device.

There is more variation in the predictions in Figure 10.6b, but predicting pD

using pm|n again outperforms the others. The cause for the decrease in accuracy

can be explained by the increase in information due to an additional workload.

As more workloads are added, the distance between the summary and the actual

values will grow, causing the accuracy to decrease slightly. There may be a point

at which the summary model is no longer effective due to the number and disparity

of workloads; such a consideration is future work.

It is important to note that the graphs in Figure 10.6 were created without

specifying the depth of the regression tree. When unspecified, the CART model

will create a tree whose leaves each contain one and only one data point from

the training data. With two hundred experiments, this created a tree of depth

greater than 20. As can be seen in Table 10.2, higher accuracy can be achieved

by limiting the depth of the tree. The most likely explanation for this is that it

is an artifact of how the best device placement is selected.

When predicting the best placement, it is possible to end up with several

devices with the same predicted IOPS. This is due to the nature of a decision tree:

if two devices have workloads with similar characteristics, it is entirely possible

that the predicted value will be the same, depending on the depth and complexity

67

Table 10.2: Trade-off between accuracy and precision with varying tree depths

for three workloads, 200 runs.

Tree Depth Percent Predicted Best Percent Predicted > 75% of Best

2 55.0 95.0

3 75.0 90.0

4 55.0 90.0

5 85.0 95.0

6 80.0 100.0

7 70.0 100.0

8 60.0 95.0

9 75.0 95.0

10 75.0 100.0

11 70.0 100.0

12 75.0 90.0

68

of the tree. When this happens, I randomly select one of the devices as the “best”,

since I currently have no way to break such a tie. Thus, at smaller depths, the

chance of a tie is much higher, resulting in a higher likelihood that I may select the

best device. A more complex definition of performance may cause this to change.

69

Chapter 11

Simulation Design

I have nothing to offer but blood, toil, tears and

sweat.

Winston Churchill

I designed a simulated system to test the feasibility of using the methods

described in this dissertation as an online placement technique. Workloads are

represented as a vector of characteristics, as seen in Chapter 7. When a new

workload enters the system, it is sent to a “communications” device. An outline

of what happens within the communications device is shown in Algorithm 1.

The communications device has several tasks, including performing constraint

satisfaction and performance prediction. If the system is heterogenous, or if there

is a service level agreement associated with the workload, the first task required

by the communications device is to characterize the workload to determine which

class of device is best suited to the workload’s constraints and needs. This char-

acterization identifies not only what type of device the workload should be run

on, but also which class model should be used for predicting performance.

In order for the communications device to make placement decisions, it has

70

Algorithm 1 Pseudocode for what happens when a new workload enters the

system.

procedure placeWorkload(newWorkload)

type← classify(newWorkload)

currentStates← current state of each device of type

for all device in currentStates do

if device < deviceThreshold then

if device+ newWorkload < deviceThreshold then

availableDevices← newWorkload

end if

end if

end for

for all device in availableDevices do

representative← representative workload of device

prediction← predict(representative, newWorkload)

predictions← [device, prediction]

end for

bestPerformance, bestDevice← maximum(predictions)

while bestPerformance > bestDeviceThreshold do

predictions.remove(bestDevice)

bestPerformance, bestDevice← maximum(predictions)

end while

place newWorkload on bestDevice

end procedure

71

the ability to ping the other devices in the system and collect the information

necessary to create a representative workload for each device. In addition to the

representative workload, the communications device also gets the current state of

each device. Similar to workloads, devices are represented by two vectors: one

representing the maximum threshold of what each device is capable of (or is rea-

sonable for that device), and one with the current state of the device. Realistically,

the maximum threshold should not be the absolute maximum of the device, to

allow room for unexpected events. The current state of the device indicates how

full the disk is and what the current bandwidth and latency are.

Before performance prediction happens, two constraint checks are performed.

One to see if any devices are near their maximum thresholds, and the second to

make sure that adding the new workload won’t cause the device to exceed the

maximum threshold. If either of these are true, the device is not considered to

be available for the new workload. The representative workload for each available

device is sent to the prediction model along with the new workload, and an optimal

device is predicted. A second constraint check occurs at this point, to make sure

that adding the workload’s predicted performance will not exceed what the device

is capable of, given the other workloads.

Once the workload has been placed, it is necessary to periodically check to

make sure that the workloads are still performing together as expected, since the

behavior of workloads can change over time. Rather than randomly checking, or

checking too frequently, I have implemented a warning system. In order for the

check to be triggered, each workload is set with a minimum allowable bandwidth

and latency. When a minimum threshold is tripped, the workload that triggered it

is removed from the device and treated as a completely new workload. Since this

includes getting an updated current state of all the devices in the system, it also

72

results in checking on everything else. The rebalancing of the system also gives

the opportunity to reassign the triggered workload to a different device class.

73

Part III

Related Work

74

Chapter 12

Objective Optimization

The farther backward you can look,

the farther forward you can see.

Winston Churchill

The three objectives I focused on in this dissertation were load balancing,

system responsiveness, and energy savings. Optimizing for load balancing and

system responsiveness has been important since the early days of distributed sys-

tems [61]. Load balancing addresses the need to keep popular data evenly spread

across the system, in order to not overload any device. It is closely related to

system responsiveness, which is concerned with how quickly the system responds

to a request. Energy savings is particularly an issue in backup systems, where

disks can be spun down in order to save power and money [11, 8, 52], but is also

beginning to be addressed in primary systems where spinning disks down is not

always an option. However, very few optimization techniques go beyond optimiz-

ing for one objective; those that do only consider two and often in a very specific

context.

75

12.1 Load Balancing

One common way to relieve the skew caused by load balancing is to replicate

the popular data. A good example of this technique is CRUSH [63], which is a

pseudo-random data distribution algorithm. CRUSH distributes object replicas

across a storage cluster by mapping an input value to a list of devices on which to

store object replicas. Distribution is pseudo-random in that there is no apparent

correlation between resulting output from similar inputs or items stored on any

device. Another example is MMPacking [28], a load and storage balancing method

developed for distributed multimedia servers. MMPacking uses a combination of

replication and a weighted scheduling algorithm in order to achieve load balancing.

It produces at most x − 1 replicas of video streams in a system of x servers,

distributing the replicas among servers so that no server stores more than two

video streams more than any other server.

MMPacking distributes identical size data items across multiple disks; the work

done by Ma et al. [39] extends the work to apply to variable size data items. Called

LSB Placement, it is specifically designed for web applications and web servers

and attempts to find a load balanced placement that also minimizes the required

capacity for each disk. To achieve this, first best fit bin packing is performed, in

order to place data items into approximately equal size bins. This reduces the

problem such that the MMPacking method can be applied. The focus here is on

finding the optimal bin capacity in order to minimize the required disk capacity.

Berenbrink et al. [6] use a parity strategy rather than a replication strategy.

For blocks that are more frequently read than updated, each block is divided into k

equal subparts, and an extra subpart is created that is the exclusive or of the k

subparts. This allows a block to be read from any k of the k+1 subparts, reducing

the redundancy and space constraints that replication introduces. Subparts are

76

distributed across disk arrays using a hash function and an assimilation function,

to help remap the data should a disk array be added or removed. Short term

load balancing is achieved using a minimum game strategy, where the k necessary

subparts are read from the k least busy disk arrays.

Load balancing is also used in the file allocation problem, as a way to minimize

disk utilization. One popular algorithm is the Greedy algorithm, which originated

from the Longest Processing Time algorithm (LPT) [20]. The LPT algorithm is a

simple greedy algorithm designed for multiprocessor load balancing and can oper-

ate on- or off-line. At each step, LPT greedily assigns a process to the processor

that has the least accumulated load. When LPT is running online, processes are

assigned in the order of their arrival; in offline mode, processes are ordered by

their load and assignment is done in decreasing load order. When applied to the

file allocation problem, the LPT algorithm becomes the Greedy algorithm [34],

where the load of each file is defined as the product of the file access rate and the

access service time.

12.2 System Responsiveness

System responsiveness refers to the amount of time it takes for the system to

respond to a request, be it a query for data from the user or a simple ls to list the

files in a directory. This is closely related to load balancing, as distributing the

load often results in an increase of system responsiveness. This is not always true,

however, as one of the best load balancing algorithms, the Greedy algorithm [20],

results in very poor system responsiveness according to the comparisons performed

by Lee et al. [34]. Likewise, the best algorithm for average response time, Sort

Partition, does very poorly in load balancing.

Lee et al. [34] present two different algorithms, Sort Partition (SP) and Hy-

77

brid Partition (HP), and evaluate against the Greedy algorithm using average

response time as a performance metric. SP tries to optimize the response time

by minimizing the service time variance at each disk, but is an offline algorithm

that requires complete knowledge of the files. HP is the online version of SP, and

attempts to reconcile minimizing the load variance across disks and minimizing

service time variance at each disk by giving priority to minimizing service time

variance when overall disk utilization is low. This is because when disk utilization

is low, the load imbalance does not have a significant effect on the response time.

Not content with trading optimal load balancing for response time, and vice

versa, Zhu et al. [69] propose two algorithms that optimize both response time and

load balancing in parallel I/O systems. The first, Balanced Allocation with Sort

(BAS), is an offline algorithm for static file assignment and needs full knowledge

of the service times and access rates for all files. The second, Balanced Allocation

with Sort for Batch (BASB), is an online algorithm, which uses information about

the coming batch of files and the previously assigned files rather than needing

complete knowledge like BAS. Files in a batch are sorted in descending order of

their service times, with no correlation between service times in other batches,

and then assigned to disks based on the average disk load.

One of the problems with the algorithms above is that they were developed

under the assumptions that file access rate obeys a Zipfian distribution and that

file access frequency is inversely related to file size. These assumptions were

based on early studies on web requests, but Xie et al. [67] point out that these

assumptions are not strictly true, given other recent web proxy trace studies. Xie

et al. propose an algorithm, called Static Round Robin (SOR), which aims to

minimize response time regardless of the workload assumptions. SOR does this

by sorting the files in ascending size, so that files of the same size are placed

78

near each other with large files placed separately on a dedicated disk. Each file is

placed in a partial round robin manner, making sure that the load on each disk

does not exceed the average disk load.

12.3 Energy Savings

Energy savings has been a concern with archival systems for some time: as

systems add more storage capacity, the amount of power needed increases along

with the cost of cooling. Since in some situations, disks and the power to cool

them consume more energy than the rest of the system combined [5, 19], enabling

more disks to remain idle is a big part of this research [11, 8, 52]. While high

performance computing (HPC) workloads are not ideal candidates for techniques

which exploit idle disks [8], there has been work which indicates that significant

idle periods exist in enterprise workloads [45].

Grouping data on disk to help improve response time is a well-researched

topic [1, 32, 56]. Building off this work, Essary and Amer [17] present a theoretical

framework that aims to reduce energy consumption as well as improve response

time. This is accomplished using a predictive grouping algorithm, called OE ME

which stands for optimized expansion, maximized expectation. OE ME uses first

order successors to build groups, combining breadth first and depth first expansion

strategies to create a balanced expansion to find successors.

The work done by Wildani et al. [64] extends this by providing a realistic

prediction mechanism and semi-permanent groupings, which reduces the need

for constant prediction. Wildani et al. show that by grouping data likely to be

accessed within a short period of time together, the number of times disks have

to spin up is reduced. This is supported by other research showing that data

arrangement can have an impact on energy savings in single-disk systems [15, 54,

79

17].

Much of this work, however, requires knowledge of access patterns and arranges

data after the data has been placed. An alternative to this approach is Rabbit, a

power proportional distributed file system proposed by Amur et al. [2], which uses

a cluster-based storage data layout to provide ideal power-proportionality. This

means that the performance-to-power ratio at all performance levels is equivalent

to that at the maximum performance level. It does this through an equal-work

data layout policy, which stores replicas of data on non-overlapping subsets of

nodes. A primary replica is stored on p nodes. The lowest power setting only

requires those p nodes be powered, in order to guarantee the availability of all the

data.

Since my work is concerned with data allocation, there is no such knowledge:

data that has not been stored cannot have access patterns associated with it.

However, Pâris et al. [48] have shown that the access patterns over a large percent

of files in most workloads is stable, so there may be some assumptions that can be

made based on the characteristics of the file. The work that Wildani et al. have

done could also be used in conjunction with my work, as they have shown that

“working sets” (groups of data likely to be accessed together) can be identified

from I/O traces gathered from real systems [65].

80

Chapter 13

Workload Characterization and

Modeling

If you steal from one author it’s plagiarism; if you

steal from many it’s research.

Wilson Mizner

Obtaining real world workloads is often prohibitively difficult in academic re-

search, forcing many researchers to turn to synthetic workloads as a replace-

ment. However, synthetic workloads often fail to catch nuances that exist in

real world applications. In addition, current tools and techniques focus on us-

ing workloads to identify the performance of the system. Much of the work in

predicting performance has been focused on modeling the devices in the system

or the workloads that are being placed, rather than the interaction among them

[35, 24, 23, 44, 62, 49]. My interest lies in identifying the performance of the

workloads as they interact with each other.

81

13.1 Obtaining Workloads

An often overlooked key component of storage systems research is the data

that is required to prove the theories and test the hypotheses. In order to make

assertions about the performance and behavior of what is being proven, data

is needed that is representative of what will be used in the system in the real

world. Traditionally, there are two methods to obtain data: collecting real world

workload traces, or creating workload data using synthetic models.

The debate between real world workloads and synthetic workloads is hardly

new. While there will always be arguments for why real workloads are better for

evaluating storage performance [66], there is also evidence that the choice of work-

load generation technique by itself does not significantly affect the performance of

algorithms [37]. However, there is no real state-of-the art technique for evaluating

the performance of the workloads themselves.

13.1.1 Real World Workloads

The term “real world workloads” refers to a workload trace, that is, a record

of the timing of read and write requests that were issued and run on a system,

along with the details of the requests. Replaying traces allows users to evaluate

the performance of a system in the presence of real data, which is one reason real

world workloads are difficult to come by.

Knowing how a workload behaves in a live system, even if the system is not

the one that was originally traced, often results in knowing either about the in-

formation that is being read and written, or about the performance of a specific

system, or sometimes both. It is easy to understand, then, why companies do not

easily release this kind of information. Indeed, the most easily available block IO

traces are the MSR Cambridge traces from 2007 [?].

82

Depending on the type of work being done, real workload traces are the only

option. Tarasov et al. [59] built a system that converts traces into something that

benchmarks can easily understand, shrinking the size of the trace in the process.

Paragone [57] takes it a step further and suggests completely rethinking how traces

should be modeled and replayed. It combines a number of existing data analysis

techniques to preserve sequential patterns in a trace as well as IO bursts.

13.1.2 Synthetic Workloads

Although workload traces provide the highest level of realism, there are several

drawbacks as well. It is difficult to change a single characteristic of the trace, in

order to test the effect of that change. In addition, workload traces do not always

translate well from one system to another. Synthetic workloads are one way to

manage these drawbacks.

Synthetic workloads are generated by creating statistical models of all the char-

acteristics of a workload trace and sampling from the models to create workload

data. These models generally fall into two categories [18]: descriptive models,

which describe how the workload behaves, and generative models, which attempt

to describe how the workload was obtained to begin with.

The problem with synthetic workloads is that a workload trace is needed to

create meaningful statistical models. While some models exist [18], often the

model is tailored to something specific, such as SSD performance [36] or parallel

workloads [16]. One could use “naive” models, which are simple statistical dis-

tributions, such as modeling inter-arrival times using an exponential distribution.

However, the “naive” models are less realistic.

83

13.1.3 Workload Generators

Workload generators provide a way to create synthetic workloads without nec-

essarily needing a statistical model of the workload characteristics. The Dis-

tiller [33] was designed to, using a target workload and a library of workload

attributes, identify the key attributes necessary to create a synthetic workload

that is representative of the target. In order for the synthetic workload to be

representative of the target workload, the distribution of IO response times must

be similar. Buttress [3], another workload generator, was designed to generate

and replay workloads with a high level of timing accuracy. It was developed to

address the issue of timing when replaying workload traces for IO benchmarking,

though it can also generate workloads with microsecond accuracy.

Filebench [47] is a program for benchmarking file systems. It uses a workload

model language to create “workload personalities”, benchmarks which model real

IO applications. Iometer [25] and fio [4] were both designed to generate workloads

as well as record the performance of the workload and the impact on the system.

Iometer emphasizes the generation of workloads for the purposes of stressing the

system and was developed to run on Windows Server NT. With the goal of avoid-

ing the need to write tailored programs for individual test cases, fio was designed

to simulate workloads and is available on a variety of platforms.

Any of these workload generators could be used for workload simulation; I

chose fio because it offered the widest range of options to generate realistic work-

loads and because it was designed to generate user specified workloads. In addi-

tion, fio can read and write directly to a disk drive without needing a file system.

This enables observation of workload performance and interactions with other

workloads without needing to determine how much of the performance is the

workload itself and how much is outside influence from the system.

84

Table 13.1: Studies of Workloads and Their Defining Characteristics.

Keeton [27] Mesnier [43] Kavalanekar [26] Gulati [21]

Read/Write Ratio X X X

Request Size X X X X

Request Rate X X X X

Spatial Locality X X X X

Temporal Locality X X

Outstanding IOs X X X

IO Latency X X X

13.1.4 Workload Characterization

In order to create realistic workloads, it is necessary to be able to characterize

real world workloads. There are many different studies of workloads and how

to characterize them; I have chosen a few to focus on and summarized them in

Table 13.1. In the table, spatial locality refers to the sequentiality of the workload,

while temporal locality refers to whether the IO is unique.

Keeton et al. [27] attempted to characterize the IO of commercial workloads

with the goal of being able to describe a workload in sufficient detail to reproduce

the workload on a different storage system. There are three characteristics that

are not summarized in Table 13.1: burstiness, the correlation between accesses

to different parts of the system, and phased behavior. They also emphasized

that finding a distribution for the characteristics, rather than an average, was

important.

Kavalanekar et al. [26] looked at twelve Windows production server traces

and two database benchmark traces. While burstiness is not measured, they

85

propose using “self-similarity” both in a spatial and temporal manner to calculate

burstiness. They also track the number of outstanding IOs as well as the latency of

IO requests. Gulati et al. [21] also includes outstanding IOs and IO latency in their

list of workload characteristics. This study covers three enterprise applications

using VMWare’s ESX server hypervisor. A separate, detailed trace is used to

observe burstiness in the workloads.

The approach of Mesnier et al. [43] is interesting. They start by generating

workloads based on the read/write ratio, request size, and spatial locality. These

workloads are run, and the characteristics in the table are measured, as well as the

performance. In addition, the workload characterization done is for the purpose of

building a relative fitness model to predict the difference in performance between

two storage devices.

13.2 Modeling Approaches

Using machine learning enables a system to make predictions based on prior

information [7]. The majority of my experiments used decision tree learning,

which is a machine learning technique that uses a decision tree as a predictive

model. The tree is built by successively splitting the data set into subsets based

on attributes, and decisions are made by following these splits to leaf nodes.

Classification And Regression Tree (CART) analysis is a specialized version

of decision tree learning that covers both classification trees, which predict the

class to which the data belongs, and regression trees, which predict a real num-

ber. I chose CART analysis as the predictive method because they are human

readable and provide comparable performance to similar techniques such as neural

networks [53].

86

13.2.1 Device Modeling

Li and Huang [35] present a black box performance model for solid state drives

(SSDs). They use a basic black box model with traditional workload characteris-

tics, and collect training data on workload characteristics and device performance.

A statistical machine learning algorithm is applied for model fitting, and perfor-

mance is predicted as a function of workload characteristics. They extend this

work by benchmarking an SSD and using this for training data [24].

BASIL [22] is a software system that automates virtual disk placement with

a focus on IO load balancing. BASIL collects information pairs of outstanding

IOs and average IO latencies observed, then uses data points of the form ⟨OIO,

Latency⟩ over a period of time and computes a linear fit to minimize the least

squares error. The resulting slope indicated the overall performance capability

of the data store. Using the IO latency as a metric for modeling results in some

amount of dependence on the underlying storage device and architecture.

PESTO [23] is a storage performance management system for virtualized data

centers, providing IO load balancing. It builds off of the work done in BASIL,

and extends it by including a cost-benefit analysis with the IO load balancing.

Detailed statistics are collected on the way virtual disks are accessed at each host,

in order to find a good placement that balances IO across available data stores.

A workload injector is run during idle periods to generate performance models

periodically.

All of these works end up creating a model that is dependent on the underlying

storage device. The problem with this type of modeling is that when the system

is modified due to upgrading or replacing devices, the model also must be rebuilt.

My goal is to avoid this dependence by modeling the interaction among workloads

based on the workload characteristics.

87

13.2.2 Workload Modeling

Wang et al. [62] build black box models based on CART models for storage

devices. They predict device performance as a function of IO workloads. In

this case, a workload is a sequence of disk requests (arrival time, LBN, request

size in blocks, and read/write type). CART is used to approximate the function,

working under the assumption that the model construction algorithm can feed any

workload into the device to observe its behavior for a period of time for training.

The main goal in this work is to accurately predict device performance, and could

be used as complementary to my work.

Mesnier et al. [44] also uses a black box approach based on CART models to

model the performance of storage devices, but they choose to use relative fitness.

Rather than predicting the performance of a specific storage device, relative fitness

predicts the differences between a pair of devices. The characteristics of a workload

are measured on the device it is currently on, and then the relative fitness model is

used to predict the consequences of moving the workload to a different device. This

could be useful in conjunction with my work, in the case of workload migration.

Other workload models [31, 46, 9] are focused on the interference between

workloads. This is important when workloads already exist on a device and the

goal is to mitigate any interference that is occurring. While my work will minimize

this interference by placing workloads intelligently, any of these models could be

used to further eliminate any minor interference that may occur over time.

88

Part IV

Future Work and Conclusions

89

Chapter 14

Future Work

The outcome of any serious research can only be to

make two questions grow where only one grew

before.

Thorstein Veblen

There are many opportunities to extend the work presented in this dissertation.

A highly impactful extension of this work would be to find or create realistic

workloads that contain data content. This would allow the consideration of real

system concerns such as replication and deduplication. It would be interesting to

see if the prediction model could compensate for the idea of “the majority of the

data this workload needs already exists on a certain device”, or if there would

need to be a weight of sorts added to reflect this information.

Another area of expansion that would be both insightful and useful is to work

with this in a system at scale. Currently our simulated system only consists of ten

devices. One potential issue is in the simulated system design; the communications

device could very quickly become a bottleneck since all new workloads must go

through it. One simple solution is to create multiple “pools” of devices, each with

its own communications device. This could result in a very elegant solution: if

90

the pools are created such that all devices in a pool have similar constraints and

thresholds, entire pools could be eliminated at a constraint satisfaction check.

There are two interesting questions to explore with respect to the representa-

tive workloads. The first is concerned with a larger system, to see if there is a

point at which the representative workload is no longer effective due to the num-

ber and disparity of workloads. It is conceivable that there is such a point, but

finding that point has been left for future students. The second question has to do

with how the representative workload is constructed. The characteristics that de-

fine a workload are values that can be either measured or calculated by collecting

information from the device itself. This may also have interesting implications in

defining the new workload as well, in the case where the workload characteristics

are not known or not specified.

One other opportunity exists in the class models. The results presented in

this dissertation were mainly collected on solid state drives (SSDs), though data

from hard disk drives (HDDs) was also collected. I did not attempt to simulate

a heterogenous system that has a mix of HDDs and SSDs, nor did I model Flash

or shingled magnetic recording (SMR) disks. It would be interesting to see the

effect of a heterogenous system with all types of storage devices.

Lastly, should all these questions be addressed1, it would be fascinating to see

this implemented in a real system to see how well it worked in a real environment.

While I have pointed out areas for improvement and expansion, I would expect

that there are other problems that will arise when this is no longer a simulated

proof of concept. That being said, it is an excellent starting point for automatically

optimizing the state of a system.

1If this happens (or really, if you have actually read this far) drop me an email at
christina.strong@gmail.com

91

Chapter 15

Conclusions

If you have an important point to make, don’t try

to be subtle or clever. Use a pile driver. Hit the

point once. Then come back and hit it again. Then

hit it a third time – a tremendous whack.

Winston Churchill

I began by taking a top-down, theoretical look at solving automating system

optimization by extending the file allocation problem to satisfy multiple objec-

tives. The first theoretical model, a multi-objective optimization approach, was

unsatisfactory in that the metric to measure load balancing was difficult to obtain

with the data I had available (namely static metadata). The theoretical model

based on bin packing suffered from the same difficulty. The third approach, based

on queuing theory, resulted in a solid theoretical model, but became complex when

attempting to implement.

Since each theoretical model had its own issues, I looked at a bottom-up ap-

proach of applying machine learning to assist in solving the file allocation problem

combined with constraint satisfaction to maintain or achieve an optimal system

state. Rather than attempting to predict a precise value for performance, I looked

92

at predicting the best allocation. I introduced Bypass, a novel approach to work-

load simulation that generates realistic workloads based on real workload charac-

teristics and values. I outlined how to map the workload characteristics to input

parameters in fio, bypassing the system to perform IO directly on the disk and

allowing me to evaluate the performance of the workloads themselves.

By turning prediction into a tool for workload allocation, I no longer needed a

highly accurate value for performance. I needed an accurate prediction for a given

allocation, or how the workload would behave on each device relative to the other

devices. This allowed me to reduce the overhead of adding machine learning

by creating a general model for each class of device, rather than requiring an

individual model for each device in the system. I have shown that there a class

model predicts the same as the device model between 65% and 85% of the time,

and that the class model begins to mimic the device model (as measured by mean

relative error) as the number of test samples increases.

Additionally, I decreased the amount of information I needed to keep track

of by using a representative workload for each device. The representative work-

load was a summary of all the workloads currently running on a given device,

which meant I didn’t need to keep track of every workload in the system. I have

shown that using the representative workload to create a model for predicting per-

formance actually outperforms creating a model using information from all the

workloads.

These two improvements make performance prediction a feasible option for

determining an allocation. Combining performance prediction with constraint

satisfaction, I have outlined a system design that achieves and maintains an opti-

mal system state with minimal input from the system administrator.

93

Bibliography

[1] Amer, A., Long, D., Pâris, J., and Burns, R. File access predic-

tion with adjustable accuracy. Proceedings of the International Performance

Conference on Computers and Communication (IPCCC ’02) (2002).

[2] Amur, H., Cipar, J., Gupta, V., Ganger, G. R., Kozuch, M. A.,

and Schwan, K. Robust and flexible power-proportional storage. In Pro-

ceedings of the 1st ACM Symposium on Cloud Computing (New York, NY,

USA, 2010), SoCC ’10, ACM, pp. 217–228.

[3] Anderson, E., Kallahalla, M., Uysal, M., and Swaminathan, R.

Buttress: A toolkit for flexible and high fidelity I/O benchmarking. In Pro-

ceedings of the 3rd USENIX Conference on File and Storage Technologies

(2004), USENIX Association, pp. 4–4.

[4] Axboe, J. Fio: Flexible IO tester. http://freecode.com/projects/fio.

[5] Barroso, L. A., and Holzle, U. The case for energy-proportional com-

puting. IEEE Computer 40, December (2007), 33–37.

[6] Berenbrink, P., Brinkmann, A., and Scheideler, C. Design of the

PRESTO multimedia storage network, 1999.

94

[7] Beygelzimer, A., Langford, J., and Zadrozny, B. Machine learning

techniques – reductions between prediction quality metrics. In Performance

Modeling and Engineering. Springer, 2008, pp. 3–28.

[8] Carrera, E. V., Pinheiro, E., and Bianchini, R. Conserving disk

energy in network servers. In Proceedings of the 17th Annual International

Conference on Supercomputing (New York, NY, USA, 2003), ICS ’03, ACM,

pp. 86–97.

[9] Casale, G., Kraft, S., and Krishnamurthy, D. A model of storage

I/O performance interference in virtualized systems. In Distributed Comput-

ing Systems Workshops (ICDCSW), 2011 31st International Conference on

(2011), IEEE, pp. 34–39.

[10] Censor, Y. Pareto optimality in multiobjective problems. Applied Mathe-

matics & Optimization 4 (1977), 41–59. 10.1007/BF01442131.

[11] Colarelli, D., and Grunwald, D. Massive arrays of idle disks for storage

archives. In Proceedings of the 2002 ACM/IEEE Conference on Supercomput-

ing (Los Alamitos, CA, USA, 2002), Supercomputing ’02, IEEE Computer

Society Press, pp. 1–11.

[12] Copeland, G., Alexander, W., Boughter, E., and Keller, T. Data

placement in Bubba. In Proceedings of the 1988 ACM SIGMOD International

Conference on Management of Data (New York, NY, USA, 1988), SIGMOD

’88, ACM, pp. 99–108.

[13] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A fast elitist

multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolu-

tionary Computation 6 (2000), 182–197.

95

[14] Dong, B., Li, X., Xiao, L., and Ruan, L. A file assignment strategy for

parallel I/O system with minimum I/O contention probability. In Grid and

Distributed Computing, T.-h. Kim, H. Adeli, H.-s. Cho, O. Gervasi, S. S. Yau,

B.-H. Kang, and J. G. Villalba, Eds., vol. 261 of Communications in Com-

puter and Information Science. Springer Berlin Heidelberg, 2011, pp. 445–

454.

[15] Douglis, F., Krishnan, P., and Marsh, B. Thwarting the power-

hungry disk. In Proceedings of the USENIX Winter 1994 Technical Confer-

ence on USENIX Winter 1994 Technical Conference (Berkeley, CA, USA,

1994), WTEC’94, USENIX Association, pp. 23–23.

[16] Downey, A. B. A parallel workload model and its implications for processor

allocation. Cluster Computing 1, 1 (1998), 133–145.

[17] Essary, D., and Amer, A. Predictive data grouping: Defining the bounds

of energy and latency reduction through predictive data grouping and repli-

cation. Transactions on Storage 4, 1 (May 2008), 2:1–2:23.

[18] Feitelson, D. G. Workload modeling for computer systems performance

evaluation. Cambridge University Press, 2015.

[19] Ganesh, L., Weatherspoon, H., Balakrishnan, M., and Birman,

K. Optimizing power consumption in large scale storage systems. In Pro-

ceedings of the 11th USENIX Workshop on Hot Topics in Operating Systems

(Berkeley, CA, USA, 2007), HOTOS’07, USENIX Association, pp. 9:1–9:6.

[20] Graham, R. Bounds on multiprocessing timing anomalies. SIAM Journal

on Applied Mathematics 17, 2 (1969), 416–429.

96

[21] Gulati, A., Kumar, C., and Ahmad, I. Storage workload characteri-

zation and consolidation in virtualized environments. In Workshop on Vir-

tualization Performance: Analysis, Characterization, and Tools (VPACT)

(2009).

[22] Gulati, A., Kumar, C., Ahmad, I., and Kumar, K. Basil: Automated

IO load balancing across storage devices. In FAST (2010).

[23] Gulati, A., Shanmuganathan, G., Ahmad, I., Waldspurger, C.,

and Uysal, M. Pesto: online storage performance management in virtu-

alized datacenters. In Proceedings of the 2nd ACM Symposium on Cloud

Computing (2011), ACM, p. 19.

[24] Huang, H. H., Li, S., Szalay, A., and Terzis, A. Performance model-

ing and analysis of flash-based storage devices. In Mass Storage Systems and

Technologies (MSST), 2011 IEEE 27th Symposium on (2011), IEEE, p. 111.

[25] Intel. Iometer: The I/O Performance Analysis Tool for Servers.

http://www.iometer.org/. Intel Open Source License.

[26] Kavalanekar, S., Worthington, B., Zhang, Q., and Sharda, V.

Characterization of storage workload traces from production windows servers.

In Workload Characterization, 2008. IISWC 2008. IEEE International Sym-

posium on (2008), IEEE, pp. 119–128.

[27] Keeton, K., Veitch, A., Obal, D., and Wilkes, J. I/O character-

ization of commercial workloads. In Proc. Third Workshop on Computer

Architecture Evaluation Using Commerical Workloads (CAECW-00) (2000).

[28] Kenyon, C. Best-fit bin-packing with random order. In Proceedings of the

Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (Philadel-

97

phia, PA, USA, 1996), SODA ’96, Society for Industrial and Applied Math-

ematics, pp. 359–364.

[29] Kleinrock, L. Theory, Volume 1, Queueing Systems. Wiley-Interscience,

1975.

[30] Konak, A., Coit, D. W., and Smith, A. E. Multi-objective optimization

using genetic algorithms: A tutorial. Reliability Engineering & System Safety

91, 9 (September 2006), 992–1007.

[31] Kraft, S., Casale, G., Krishnamurthy, D., Greer, D., and Kil-

patrick, P. Performance models of storage contention in cloud environ-

ments. Software & Systems Modeling 12, 4 (2013), 681–704.

[32] Kroeger, T., and Long, D. D. E. Design and implementation of a

predictive file prefetching algorithm. Proceedings of the 2001 Annual USENIX

Technical Conference (January 2001), 105118.

[33] Kurmas, Z., Keeton, K., and Mackenzie, K. Synthesizing representa-

tive I/O workloads using iterative distillation. InModeling, Analysis and Sim-

ulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.

11th IEEE/ACM International Symposium on (2003), IEEE, pp. 6–15.

[34] Lee, L.-W., Scheuermann, P., and Vingralek, R. File assignment in

parallel I/O systems with minimal variance of service time. IEEE Transac-

tions on Computers 49, 2 (February 2000), 127–140.

[35] Li, S., and Huang, H. H. Black-box performance modeling for solid-state

drives. InModeling, Analysis & Simulation of Computer and Telecommunica-

tion Systems (MASCOTS), 2010 IEEE International Symposium on (2010),

IEEE, pp. 391–393.

98

[36] Lingenfelter, D. J., Khurshudov, A., and Vlassarev, D. M. Effi-

cient disk drive performance model for realistic workloads. Magnetics, IEEE

Transactions on 50, 5 (2014), 1–9.

[37] Lo, V., Mache, J., and Windisch, K. A comparative study of real

workload traces and synthetic workload models for parallel job scheduling.

In Job Scheduling Strategies for Parallel Processing (1998), Springer, pp. 25–

46.

[38] Luc, D. T. Pareto Optimality. In Pareto Optimality, Game Theory and

Equilibria. Springer New York, 2008, pp. 481–515.

[39] Ma, Y.-C., Chiu, J.-C., Chen, T.-F., and Chung, C.-P. Variable-size

data item placement for load and storage balancing. Journal of Systems and

Software 66, 2 (May 2003), 157–166.

[40] Marler, R., and Arora, J. Survey of multi-objective optimization meth-

ods for engineering. Structural and Multidisciplinary Optimization 26, 6 (Apr.

2004), 369–395.

[41] Megiddo, N., and Modha, D. S. ARC: A self-tuning, low overhead

replacement cache. Proceedings of the 2nd USENIX Conference on File and

Storage Technologies (FAST ’03) (2003).

[42] Megiddo, N., and Modha, D. S. One Up on LRU. login–The Magazine

of the USENIX Association 28, 4 (2003).

[43] Mesnier, M. P., Wachs, M., Sambasivan, R. R., Zheng, A. X., and

Ganger, G. R. Modeling the relative fitness of storage. In Proceedings of

the 2007 ACM SIGMETRICS International Conference on Measurement and

99

Modeling of Computer Systems (New York, NY, USA, 2007), SIGMETRICS

07, ACM.

[44] Mesnier, M. P., Wachs, M., Sambasivan, R. R., Zheng, A. X., and

Ganger, G. R. Modeling the relative fitness of storage. In Proceedings of

the 2007 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems (New York, NY, USA, 2007), SIGMETRICS

07, ACM, p. 3748.

[45] Narayanan, D., Donnelly, A., and Rowstron, A. Write off-loading:

Practical power management for enterprise storage. ACM Transactions on

Storage (TOS) 4, 3 (November 2008), 10:1–10:23.

[46] Noorshams, Q., Bruhn, D., Kounev, S., and Reussner, R. Predictive

performance modeling of virtualized storage systems using optimized statisti-

cal regression techniques. In Proceedings of the 4th ACM/SPEC International

Conference on Performance Engineering (2013), ACM, pp. 283–294.

[47] OpenSolaris. Filebench. http://filebench.sourceforge.net/.

[48] Pâris, J.-F., Amer, A., and Long, D. D. E. A stochastic approach to file

access prediction. In Proceedings of the International Workshop on Storage

Network Architecture and Parallel I/Os (New York, NY, USA, 2003), SNAPI

’03, ACM, pp. 36–40.

[49] Park, N. Statistical characterization of storage system workloads for data

deduplication and load placement in heterogeneous storage environments. PhD

thesis, University of Minnesota, 2013.

[50] Parker-Wood, A., Strong, C., Miller, E., and Long, D. Secu-

rity aware partitioning for efficient file system search. In 2010 IEEE 26th

100

Symposium on Mass Storage Systems and Technologies (MSST) (May 2010),

pp. 1–14.

[51] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,

R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research 12 (2011), 2825–

2830.

[52] Pinheiro, E., and Bianchini, R. Energy conservation techniques for

disk array-based servers. In Proceedings of the 18th Annual International

Conference on Supercomputing (New York, NY, USA, 2004), ICS ’04, ACM,

pp. 68–78.

[53] Razi, M. A., and Athappilly, K. A comparative predictive analysis of

neural networks (NNs), nonlinear regression and classification and regression

tree (CART) models. Expert Systems with Applications 29, 1 (2005), 65–74.

[54] Rybczynski, J. P., Long, D. D. E., and Amer, A. Adapting predictions

and workloads for power management. In Proceedings of the 14th IEEE In-

ternational Symposium on Modeling, Analysis, and Simulation (Washington,

DC, USA, 2006), MASCOTS ’06, IEEE Computer Society, pp. 3–12.

[55] Scheuermann, P., Weikum, G., and Zabback, P. Data partitioning

and load balancing in parallel disk systems. The VLDB Journal — The

International Journal on Very Large Data Bases 7, 1 (February 1998), 48–

66.

101

[56] Seltzer, M., Bostic, K., Mckusick, M. K., and Staelin, C. An

implementation of a log-structured file system for unix. In Proceedings of the

USENIX Winter 1993 Conference (Berkeley, CA, USA, 1993), USENIX’93,

USENIX Association, pp. 3–3.

[57] Talwadker, R., and Voruganti, K. Paragone: What’s next in block

I/O trace modeling. In IEEE 29th Symposium on Mass Storage Systems and

Technologies (MSST) (2013), IEEE, pp. 1–5.

[58] Tamaki, H., Kita, H., and Kobayashi, S. Multi-objective optimiza-

tion by genetic algorithms: A review. In Proceedings of IEEE International

Conference on Evolutionary Computation (1996).

[59] Tarasov, V., Kumar, S., Ma, J., Hildebrand, D., Povzner, A.,

Kuenning, G., and Zadok, E. Extracting flexible, replayable models

from large block traces. In Proceedings of the 10th USENIX Conference on

File and Storage Technologies (FAST ’12) (2012), vol. 12, p. 22.

[60] Traeger, A., Zadok, E., Joukov, N., and Wright, C. P. A nine

year study of file system and storage benchmarking. ACM Transactions on

Storage (TOS) 4, 2 (2008), 5.

[61] Wah, B. File placement on distributed computer systems. Computer 17

(1984), 23–32.

[62] Wang, M., Au, K., Ailamaki, A., Brockwell, A., Faloutsos, C.,

and Ganger, G. R. Storage device performance prediction with CART

models. In Modeling, Analysis, and Simulation of Computer and Telecom-

munications Systems, 2004.(MASCOTS 2004). Proceedings. The IEEE Com-

102

puter Societys 12th Annual International Symposium on (2004), IEEE,

p. 588595.

[63] Weil, S. A., Brandt, S. A., Miller, E. L., and Maltzahn, C. Crush:

controlled, scalable, decentralized placement of replicated data. In Proceed-

ings of the 2006 ACM/IEEE Conference on Supercomputing (New York, NY,

USA, 2006), SC ’06, ACM.

[64] Wildani, A., and Miller, E. Semantic data placement for power man-

agement in archival storage. In Proceedings of the 5th Annual Petascale Data

Storage Workshop (PDSW10) (November 2010), pp. 1–5.

[65] Wildani, A., Miller, E. L., and Ward, L. Efficiently identifying work-

ing sets in block I/O streams. In Proceedings of the 4th Annual International

Conference on Systems and Storage (SYSTOR ’11) (New York, New York,

USA, 2011), ACM Press.

[66] Wires, J., Ingram, S., Drudi, Z., Harvey, N. J., and Warfield,

A. Characterizing storage workloads with counter stacks. In 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 14)

(2014), pp. 335–349.

[67] Xie, T., and Sun, Y. A file assignment strategy independent of work-

load characteristic assumptions. ACM Transactions on Storage (TOS) 5, 3

(November 2009), 10:1–10:24.

[68] Yoo, S., and Harman, M. Pareto efficient multi-objective test case selec-

tion. In Proceedings of the 2007 international symposium on Software testing

and analysis (New York, NY, USA, 2007), ISSTA ’07, ACM, pp. 140–150.

103

[69] Zhu, Y., Yu, Y., Wang, W. Y., Tan, S. S., and Low, T. C. A

balanced allocation strategy for file assignment in parallel I/O systems. In

Proceedings of the 2010 IEEE Fifth International Conference on Networking,

Architecture, and Storage (Washington, DC, USA, 2010), NAS ’10, IEEE

Computer Society, pp. 257–266.

104

