UC Berkeley

Research Reports

Title
Smartpath Regulation Layer Implementation: A User's Guide

Permalink
https://escholarship.org/uc/item/3536n9mx

Authors

Carbaugh, Jason
Alvarez, Luis
Chen, Pin-yen

Publication Date
1997

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3536n9mx
https://escholarship.org/uc/item/3536n9mx#author
https://escholarship.org
http://www.cdlib.org/

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

SmartPath Regulation Layer
Implementation: A User’s Guide

Jason Carbaugh, Luis Alvarez
Pin-Yen Chen, Roberto Horowitz
University of California, Berkeley

California PATH Research Report
UCB-ITS-PRR-97-48

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 287

November 1997
ISSN 1055-1425

SmartPath Regulation Layer Implementation

A User’s Guide

SmartPath Regulation Layer Implementation
A User’s Guide

Jason Carbaugh, Luis Alvarez, Pin-Y en Chen and Roberto Horowitz

Department of Mechanical Engineering
University of California
Berkeley, CA 94720
{ carbaugh, avar, pychen, horowitz@me.berkel ey.edu}

November, 1997

" Work supported by the PATH program, Institute of Transportation Studies, University of California,
Berkeley under Cal Trans grants MOU-287.

ABSTRACT

The implementation on SmartPath[1] of the regulation layer maneuvers for the
hierarchical architecturein [3] is described. Thefirst part of this report explains with
some detail the structure of SmartPath in order to facilitate modifications or additions to
this maneuvers. The second part of the report is devoted to understand the
implementation of the existing set of maneuvers; the explanations are tightly connected
with theoretical work developed in PATH under MOU-135. The third part focus on
modifications or additions to existing maneuvers. One example of such amodification is
presented in the fourth part, where the design of the splinning process for the current join
maneuver is changed. Finally, sample code for the join maneuver and some programming
toolsisincluded.

KEYWORDS

Automated highway systems (AHS), hierarchical AHS architectures, regulation layer
maneuvers, SmartPath, feedback-based safe maneuvers.

ACKNOWLEDGEMENTS

Thiswork was executed under grant MOU-238 of the Institute of Transportation Studies
of the University of Californiaat Berkeley and is part of alarger effort to develop control
systems for AHS in normal and degraded mode of operation. Besides the authors, this
group includes Prof. Shankar Sastry, Prof. Pravin Varaiya, Dr. Datta Godbole, Dr. John
Lygeros, Dr. Rgja Sengupta, Tony Lindsey, John Haddon and other graduate students.
Their input to thiswork is gratefully acknowledged. The authors wish to thank specially
Farokh Eskafi and Delnaz Khorramabadi for their help in al the issues related with
SmartPath.

EXECUTIVE SUMMARY

This report describes the implementation on SmartPath[1] of regulation layer maneuvers
for the hierarchical architecturein [3]. The aim istwo fold. On the one hand this report
contains information that is helpful to SmartPath usersinterested in the simulation of
automated vehicle control laws in the SmartPath environment. On the other, this report
provides an overview on the set of maneuvers currently implemented.

Thereport isdivided in four parts. Thefirst part explains the structure of SmartPath with
focus on what is necessary to know in order to facilitate modifications or additions to
these regulation layer maneuvers. The second part of the report is devoted to describe the
set of regulation layer maneuvers currently implemented in SmartPath: join, split, gentle
stop, crash stop and leader. SmartPath simulation results are included. The description of
these maneuvers is tightly connected with theoretical work developed in PATH under
MOU-135 [2,6]. The third part focus on the modification of the existing maneuvers or
additions of new ones. Skeletons for function definitions and a function call tree are
included. Some programming tools helpful to test the code prior to itsimplementation on
SmartPath are also described. One example of such amodification is presented in the
fourth part, where a new design of the splinning process for the current join maneuver is
presented. Finally, the code for the programming tools and some sample code for thejoin
maneuver implementation in SmartPath are included in the appendices. Some of the code
presented in this report is currently being ported to SHIFT [8].

Table of Contents

Y 011 7= Vo PP RRRRPPPPPPRN 1
(0= YT 0 {0 1
ACKNOWIEAGEMENLS ...ttt 1
EXECULIVE SUMIMANY ... e e et s e e e e e e e e e e et eaeeaaeeenennnns 2

PART | Getting Started

I [T 0T [0 Tod 1 o] o SR 6
N Yoo o1 PP PPPRRPPIN 6
1.2. AHS Control HierarChy..........cccccovviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 6

1.2. 1. PRYSICAl LAYENeiieiieeeeeeeeeee ettt 7
1.2.2. REGUIBEION LBYENceeieeeieeieeeesieste sttt 7
1.2.3. CoOrdination LAYENc.coiiieiiiiesierieeee et 7
12,4, LINK LBYEN ...ttt sttt n e 8
1.2.5. NEIWOIK LAYES ..ot 8

2. SmartPath Directory Structure: Where it liVES...............ccovveeuieeiiiiieeieeeenn, 9

3. SmartPath Function Calls: HOW it WOIKSccouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinneen, 10
3.1. Regulation Layer FrameWOrK............ccoivriuiiiiiiiiie e e e 10
3.2. Maneuver Module SIUCTUIEoiiiieiiiiiiiiiee e 11

4. SmartPath Execution: WHhHat it TAKES.............cuuuueeiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeens 13
R [o o UL 1 13
4.2. Making and RUNNINGuuuiiiiii s 13
G TR O W1 11 | | = 13

PART Il Understanding Existing Maneuvers

5. The Regulation Layer: Maneuver Development..................ccccccccviiinnnnnnnnnnn. 14
5.1. TheOoretiCal BaSiScociviiiiiiiiiii e 14
5.2. The Safety BOUNAIYcoovviiiiiiiiiieece e 14
5.3. ManeuVer DESCIIPLIONSuuuuiiiiiiae e e e e e e e e e e e e eeeeeees 15

6. The Regulation Layer: Maneuver Implementation.....................cccccccueenennn.. 15
6.1. BOUNAAIY CUIVESovuiiie e e ettt e e e e et e e e e e e e e e e e e e e e eeennnns 15
6.2. CONLIOIEr REGIONS ... 16
R T I = 1= Toa (o] VAo =T 18

6.3.1. All MANEUVETS......ocuiiiiiiieieeie ettt sttt e nne e 18
LIS 22N o1 o [PPSR 18
B.3.3. SPHIT ettt nae s 18
6.3.4. Gentle StOP/Crash SEOP........ccveveieereee e ee e st nee s 19
B.3.5. LBAEN ...t et 19
6.4. Maneuver Performance Results and Open ISSUESccevvvvevvvvvieninnnne 21

PART Ill Modifying and Creating Manuevers

7. The Regulation Layer: Maneuver Code Structure..............cccceeeeeuveeuuvniineaenn. 34

7.1. FUNCLION DEFINITIONS ..uiivecii e 34
7.2. FUNCLION Call TIEE v e 35
8. Tools for ManeuVer TESHING.........uuuiiii i e e 35
S 7 I 1o Lo]I @ AV =T V=Y 35
o T V0 Tor= | g (= PR 36
8.3. lookistate.m, I00KESIAtE.Mccveiiiii e 36
o T Yo | (o= g o 1 [PPN 36

PART IV Join Maneuver Spline Improvements

S Y o 11 Z- 1 [0 o PO URPPPTPPRT 37
10. Derivation of Join Maneuver Desired TrajeCtoryccccoeeeeevvveeiviiiiiineeeeennnn. 38
10.1. Definition Of TEIMIS:uuuiiiii e e e e eeeenes 38
10.2. Desired Trajectory in SPLINE3 ZONe..........ccoviiiiiiiiiiiieeieie e, 39
10.3. Desired Trajectory in DECEL ZONe..........cooooiiiiiiiiii 40
10.4. Desired Trajectory in SPLINE2 ZoNe...........couviiiiiiiiiiieeieie e 40
L1 RESUILS ...t e e ettt e e e e e e e e e e e e eeeaane 43
Appendices
A: Derivation of Desired Trajectory for Leader laweevvevvveeiiiieeeeneennne. 46
B: Parameter Values Used for thiS REPOIt.........cccoeivieiiiiiiiiiiiiie e 48
(O Yo 11| (o= @0 o [111V 0 Tor= 1 o o SR 49
D: Sample Maneuver Module Code: regmerge.Ccoouvuvvvviiiieeeeeeeeeeiiiieee e e e 54

4a:

6a:

6b:

8a:
8b:

10a:
10b:

11:

12a:
12b:

13:

14a:
14b:

15:

16a:
16b:

17:
18:

19a:
19b:

20:

List of Figures
AHS Hierarchy and Information Flow
Function Call Tree for Execution of a Regulation Layer Maneuver
General Maneuver Controller Regions
Desired Trajectory Zones: Join Maneuver
Desired Trajectory Zones: Split Maneuver
Desired Trajectory Zones: Leader Maneuver
Join Maneuver Boundary Curves
Join Trajectory Tracking
Join State History
Split Maneuver Boundary Curves
Split Trajectory Tracking
Split State History
Gentle Stop Maneuver Boundary Curves
Gentle Stop Trajectory Tracking
Gentle Stop State History
Crash Stop Maneuver Boundary Curves
Crash Stop Trajectory Tracking
Crash Stop State History
Leader Maneuver Boundary Curves: Starting Near
Leader Trajectory Tracking: Starting Near
Leader State History: Starting Near
Leader Maneuver Boundary Curves: Starting Far
Leader Trajectory Tracking: Starting Far
Leader State History: Starting Far
Join Maneuver Splining Method Comparison
Improved Join Maneuver Boundary Curves
Improved Join Trajectory Tracking
Improved Join State History

PART |

Getting Started

1. Introduction

1.1. Scope

The user’s guide in Parts | through Il of this report is meant for thetiatéa user of
SmartPathwho wishes to simulate automated vehicle control laws for testing and
validation. The reader will of course need to spend some time getting familiar with the
history and development of the hierarchical AtdBntroller construct that is simulated in
the SmartPath architecture [1]. Once that has been accomplished, however, there is a
learning curve associated with running and interpreting the results of the simulator. This
guide serves to provide some details about this process so that the user can spend more
time focused on the topic of study, and less in trying to understand the simulator
architecture. With this goal in mind, the scope of this document will be limited to what is
known in the AHS architecture as the Regulation Layer. No treatment aside from
interfacing details will be given to the large portion of SmartPath which is outside the
realm of the Regulation Layer.

Another function of the user’s guide is to explain the methods used in implementing the
Regulation Layer controllers developed in [2]. It serves as documentation for the
resulting source code, and will assist the programmer/designer by providing a reasonable
roadmap to facilitate modifications. Lastly, some software development tools are
described which assist in the transition from maneuver design to the SmartPath platform
implementation.

Part IV of this report details a new method for generating smooth splines between the
different portions of the desired join maneuver trajectory. This method results in join
maneuvers that are not only safe but comfortable when the front vehicle’s behavior is
favorable. The derivation of the splines and simulation results are shown.

1.2. AHS Control Hierarchy

The AHS architecture mentioned above divides the task of controlling all vehicles on an
automated highway into a hierarchical structure. Each controller operates at a more
macroscopic scale than the one below it, and thus abstracts the highway to a higher level.
Although much documentation about the development of this hierarchy exists [3,4] a

brief overview of each layer is given here to provide the reader with a framework within
which to think about the modules which will be discussed in detail as we read on.

! SmartPath is an automated highway simulation developed by Farokh Eskafi. A copy can be downloaded
from: http://www.path.berkel ey.edu/~delnaz/SmartPath. PATH stands for Partners for Advanced Transit
and Highways

2 AHS: Automated Highway System

Five layers make up the AHS information flow structure: Physical, Regulation,
Coordination, Link, and Network. Thefirst three: Physical, Regulation, and
Coordination; are considered to be onboard each individual vehicle. Thus, in an AHS,
there are as many of each of these layers as there are vehicles on the highway. The Link
and Network Layers consider aggregate traffic information, and thus are associated with
roadside intelligence and control. Figure 1 isadiagram of the information flow between

layers[5].

1.2.1. Physical Layer

The most microscopic layer of simulation isthe Physical Layer. It represents the plant of

the AHS control system. Thus, the simulation of thislayer incorporates dynamic models

of automated vehicles. In an actual AHS, the control input could be something like

voltages to a servo motors that position a vehicle’s throttle, steering, and other actuators.
The output would be the vehicle trajectory and the signals from each sensor on the
vehicle. In the SmartPath simulator, the longitudinal control input is the desired jerk (rate
of change of acceleration) of the vehicle. During this development, no dynamic model
was used for lateral control. The vehicle is modeled as a linear third order system for
longitudinal control. The vehicle trajectory is stored, and the vehicles’ sensor signals are
simulated based on the time history of the behavior of all the vehicles in the simulation.

1.2.2. Regulation Layer

The Regulation Layer simulates the vehicle borne longitudinal and lateral control
systems. The input to the Regulation Layer is a maneuver initiation command from the
Coordination Layer. Based upon the maneuver command and the interpretation of the
environment by the sensors, the Regulation Layer controller calculates the desired control
signal to be sent to the Physical Layer. The Regulation Layer also monitors the status of
the maneuver. It flags the Coordination Layer when the maneuver is complete, or when
the maneuver must be aborted. Since the Regulation Layer is responsible for controlling
the details of vehicle trajectories, it must also be responsible for the vehicle’s safety.
Certainly, the other layers will and should assist in assuring vehicle safety since,
intuitively, the presence of more information about the environment facilitates better
planning of a safe vehicle trajectory in that environment. However, degeded

modes [6] of operation, this extra information may not be available, and the Regulation
Layer must still be able to guarantee safety, though perhaps at the cost of reduced speed
and throughput.

1.2.3. Coordination Layer

The Coordination Layer handles communication between nearby vehicles. Itis
responsible for message passing and managing conflicts between desired behaviors of
vehicles maneuvering close to one another. These decisions and negotiations are
arbitrated based on the current maneuver in which each vehicle is involved, and certain
desired local flow characteristics as communicated by the roadside Link Layer.

1.2.4. Link Layer

The Link Layer manages the macroscopic flow for a section (link) of highway. A link is
generally considered to be on the order of 1 milein length [3]. TheLink Layer controller
is responsible for avoiding congestion, and changing traffic patterns to recover from a
system failure. It setslocal targets for platoon size, highway speed and number of
vehicles changing lanes based on its assessment of the success of the Coordination Layer
in maintaining flow, getting vehicles to their desired exit ramps, etc., and on the regional
traffic advisories and suggested routes communicated by the Network Layer.

1.2.5. Network Layer

The highest abstraction of the AHS system is the Network Layer. A Network Layer
controller may oversee anumber of AHS highways. In function, its purpose is similar to
traffic advisory radio messages and signs which announce congestion due to traffic
incidents and other delays. It helps to proportion vehicles anong the AHS highways,
both getting vehicles to their destinations and keeping any one AHS highway from being
disproportionately congested. In order to combat congestion, the Network Layer also
controls the number of vehicles entering and exiting at particular points on the automated
highway.

NETWORK LAYER

SUGGESTED ROUTE H GHWAY TRAVEL TI MES
LINK LAYER
T Roadside
DESI RED SPEED, \GGRE(i
LANE CHANGE A Eﬁ‘gfv -ISAR'?E:I ¢ l Vehicle
PROPORTI ONS,
PLATOON S| ZE

COORDINATION
LAYER

MANEUVER REQUEST FLAGS & AGGREGATE
SENSCR DATA
REGULATION
LAYER
CONTROL
| NPUT RAW SENSOR DATA
PHYSICAL
LAYER
(plant)
Figure 1

AHS Hierarchy and Information Flow

2. SmartPath Directory Structure: Where it lives

With this hierarchical framework in mind, we now proceed to understand how this
scheme isreflected in the SmartPath simulator, and more specifically, how to use this
understanding to implement Regulation Layer designs. Because there are many modules
full of many lines of code in SmartPath (about 30K lines devoted to AHS architecture,
plus underlying event manager software), we begin by pointing the reader to the
important directories and files that will be involved in the design process. Then once the
Regulation Layer has been located, we continue to zoom in by looking at how the
different modules and functions work together. Finally, a brief description of the process
of running SmartPath is given. With thisintroduction, one should begin to feel
comfortable devel oping new Regulation Layer material.

The directory structure of SmartPath is asfollows. The parent directory of thiswhole tree
may be something like Sm_Release or sm_devel, depending on the name chosen by the
user who downloaded it. The entriesin bold face are the directories and files that may be
used or modified when one inserts and tests a new Regulation Layer control law.
/ Bin
/ Dat a

[casenane] . cars [casenane] . config [casenane].error

[casenane] . st ate
/Libraries

/1 ncl udes
/ Src
/ Comuni cati on
[H ghway
/ Li nk
/ Sensor
/ Coordi nati on
/ Hwgadget s
/ Net wor k
/ Si mul ation
/ Geom
/1o
/ Regul ati on
Makefil e housekeep. c kmer. c
regAut oAL. c regAut oM.. c regAut oTL. c
reghan. c regapply.c r egchange. c
regextern.c regfollowc reginit.c
reglateral.c regl ead. c regnerge.c
regsimec regsplit.c rgSave. c

/ Dat a iswhere all of the ssmulation input and output filesreside. The input files are the
specifications of the vehicles, highway, and vehicle/highway geometry and
configurations. See[7] for details on the format of these files. In general the files may be
described as follows:

[nputs

[casenane] . cars: Specifies the vehicle type for each vehiclein the
simulation.

[casenane].config: Specifiesthe size of each vehicle type, the highway
topology, details of vehicle generation during the simulation, and simulation time

parameters.

Outputs

[casenane] . error: Reports any errors detected during the simulation.

[casenane] . st at e: Records the state of al vehicles throughout the entire

simulation. Thisfileisused for analysis of controller performance and can even be fed
into post processors to render and animate the simulation scenario.

/ Sr c isthe directory which contains all the source code. One can see that thereisa
subdirectory for each of the hierarchical layers described in Part 1 - except for the
Physical Layer. In SmartPath, the Physical Layer is actually inside the Regulation Layer.
Thefilekmer . ¢ isanumerical integrator that calculates the ssmulated vehicle response
to the control signal from the Regulation Layer.

/ Src/ Regul at i on contains al of the Regulation Layer framework and maneuver
modules. Thisiswhere most of the work will be done in implementing control laws.

/' Src/ Si mul at i on contains the code which oversees the execution of the simulation.
This directory also contains the executabl e that |aunches SmartPath.

3. SmartPath Function Calls: How it Works

3.1. Regulation Layer Framework

Figure 2 shows a scheme of how the Regulation Layer works using a Function Call Tree.
Each large box represents one module (file) within the/ Regul at i on directory. The
small boxes with rounded corners contain the file name of each module, and the square-
cornered boxes below them are the names of the functions which are defined in that
module. An arrow pointing from one function A to another function B signifiesthat A
calsB.

Reading the diagram from left to right, the Coordination Layer sends a maneuver request
to the Regulation Layer by calling the function Rg_Aut oRegul at i onAL with the
appropriate arguments. This sets the maneuver into motion as
Rg_Aut oRegul at i onALI oop runs every simulation time step (SmartPath currently
records all the vehicle states at 0.1 second intervals) until the maneuver is completed.
Notice that the Coordination Layer can send its commands to any one of the four modules
in the first column. This depends on the type and location of the vehicle. In descending
order, these functions refer to:

An automated vehiclein an Automated Lane

An automated vehiclein aManual Lane

An automated vehiclein a Transition Lane

A manual vehiclein aManua Lane
The Rg_Aut oRegul at i onALI oop has one further responsibility. It checksif the
vehicle state is safe, and decides to allow or disallow each requested maneuver to begin.

10

It also continuously monitors the state of the maneuver to seeif it is completed, or if it
must be aborted. Thisinformation isthen relayed up to the Coordination Layer.

In the second column, we seether egappl y. ¢ module. The function

Appl yCont r ol callsthe appropriate lateral and longitudinal controller functions from
within the respective maneuver modules. Asto timing, the controller functions are called
once every simulation time step (currently 0.1 sec), which is assumed to be the same as
the interval between sensor readings.

Not shown in the diagram is a construct that builds many bridges between each module
without explicit function calls. It isadatabase called the State Table. It contains many
variables which keep track of the state of the vehicle, its sensors, its communication, and

more. Each of the state variables are accessed from the code as;
rgSt at eTabl e[ci d] - >vari abl e_nane

3.2. Maneuver Module Structure

The Regulation Layer controller for each maneuver is contained in afile

named: r eg[Maneuver_Nane]. c. Some examplesare: r egner ge. c,
regsplit.c,regl ead. c. Thefunctionswhich are called during the execution of a
maneuver are of the form shown below (with examples):

I ni t [Maneuver_Nane] InitSplit I ni t Leader

Saf eTo[Maneuver__Nane] Saf eToSpl it Saf eToLeader
Saf eToA[Manuever _Nane] Saf eToASpl it Saf eToALeader
[Action] [Maneuver _Nane] Decel ToSpl it BelLeader

Conpl et e[Maneuver _Nane] Conpl et eSplit Conpl et eLeader

I ni t [Maneuver _Nane] isaninitiaization function which must be called before
executing the maneuver. Itinitializesall of the necessary variablesin the vehicle state
table.

Saf eTo[Maneuver _Nane] checksif the current state of the maneuvering vehicleis
safe. Currently, this function only returns a verdict of unsafe if an impact isimminent at a
relative velocity that is higher than the allowable impact velocity. The purpose of this
function isto act as a permission gateway to the execution of the maneuver. If the
function returns a’0’, then the maneuver will be disallowed.

Saf eToA[Maneuver _Name] checksif it is safe to immediately abort the current
maneuver. Following the logic of the maneuver designs described in Part 11, if the
maneuver has begun, then the state is guaranteed to be safe. Therefore thisfunction
simply returns a1’ signifying 'Safe to Abort’.

[Action] [Maneuver _Nane] isthe heart of the module. It calculatesthe control
signal that will feed into the vehicle's longitudinal actuator. For now, thisvalueisthe
jerk of the maneuvering vehicle. The jerk is assumed to have no dynamics, and thus can
be set arbitrarily within the jerk limits of the vehicle.

11

$19]]03U0D
[euipniBuo pue [esaye JaYiQ,

abueypale|dwod

abueyno[929a

abueyonu|

abueypo | ayes

9 abueyobal

anopae|dwo)d

abueypaue]

deayaue

|joluoppeauRK

daa)jauequep

uonenbayueNqung by

9 uebai

dooj7uoneinbayoiny b6y

J.LuonenBayoiny” by

SN0

9AONO0 | BJes

o'[esare|bal

ydsalejdwod

udsyolajes

wdsoyle98@

Jue|d|spoN

JuE|d[eay

aleISalns

9710Iny6al

QlelSonslIey

jonuoDA|ddy

doo|nuone|nbayoiny 6y

o'A|ddebai

InuonenBayony” by

wdsnu

udsolapes

9 INoINy DBl

doojyuoneinbayoiny by

Tvuoneinbayony 6y

o ydsbal

9 voinybBal

uoneUIPI00D

ure 2

Fi
Function Call Tree for Execution of a Regulation Layer Maneuver
12

Conmpl et e[Maneuver _Nanme] monitors the maneuvering vehicle's state in relation to
a target final state region. Thisfunction determinesif the maneuver is Complete, Not
Complete, Unable to Complete (e.g. out of sensor range of front vehicle).

4. SmartPath Execution: What it Takes

4.1. Input Files

In order to run SmartPath, one must first verify that the input configuration is as desired.

As stated above, this mainly involvestwo files. [casenane] . car s and

[casenane] . confi g. Infact, since most information isin the latter, it is usually the
only one that needs verification. See[7] for more details about the format of SmartPath’s
input and output files.

4.2. Making and Running

Once all of the input files are in order, the source code is ready to be compiled. This is
accomplished by executing the Makefile in the appropriate directories. Look at the
extensions of the Makefiles in each directory, and use the appropriate Makefile for the
platform upon which you are running SmartPath. When doing Regulation Layer
development, compilation is usually necessary only in the /Regulation and /Simulation
directories. If changes are made in other directories, it will be necessary to remake them.
Changes in some global header files will require a remake in all directories. To execute
SmartPath with Regulation Layer changes, execute the following commands:

cd / Src/ Regul ation
make
cd /Src/Simulation
make

Dosi m [casenane]

where[casenane] matches the name of the input filecasenane] . confi g in
/ Dat a.

4.3. Output Files

If any errors are detected by SmartPath during run-time, they are recorded in
[casenane] . error. Otherwise, look for the simulation results in
[casenane] . st at e. This is an ascii file with columns of numbers of the format:

{Time [s]}{Car IDH{Car ID of Platoon Leader}{Velocity}{Acceleration}...

{Highway Segment #}{X Position [m]}{Y Position [m]H{Z Position [m]}...
{Yaw Angle}{Pitch Angle}{Roll Angle}{Tire Angle}

13

PART Il

Understanding Existing Maneuvers

5. The Requlation Layer: Maneuver Development

5.1. Theoretical Basis

The maneuvers whose implementation is described below were developed directly from
[2]. The general philosophy of this design isto track a minimum time trajectory for a
desired maneuver. A safety boundary is defined in the state space that describes the
relative motion of pair of vehiclesinvolved in that maneuver (the relative distance,
relative velocity and the velocity of the lead car are chosen in [2]). Thisboundary is such
that if the front vehicle of the pair suddenly brakes at its maximum capability, then the
back vehicleis able to brake to avoid a collision at an unsafe relative velocity. If the rear
vehicle strays from its desired trajectory (this depends on the controller performance)
such that its state is close to the safety boundary, then the vehicle brakes at its maximum
capability in order to driveitself into a safer region of the state space. It is proven that,
under this philosophy, maneuvers so designed will always be safe under normal
operating conditions. The reader is advised to acquire this paper before reading further,
for the terminology used here will be adopted from that paper without a full explanation.

Regulation controllers for some maneuvers have been implemented in SmartPath using
the above design methodology. Discussion of implementation issues and documentation
of source code are the two major purposes of the sections that follow. The modular
structure adopted to represent maneuversin SmartPath enables new maneuversto be
programmed quickly, asit standardizes concepts common to all maneuvers. For example,
all maneuvers must calculate the safety boundary and all maneuvers must have a desired
trajectory for the back vehicle to track.

5.2. The Safety Boundary

The concept of a safety boundary is developed in [2], where it is shown that for any initial
state outside Xpoung, @N Unsafe impact (an impact with arelative velocity above a
parameter: Vaon) may be imminent, where Xpoung IS @ boundary curve derived in the
relative distance/relative velocity state space. This boundary is the absolute safety limit;
even if the back vehicleis braking at its maximum capability when it crosses this
boundary, an unsafe impact can occur. In order to prevent this, another boundary curve
Xsfe iSdefined. As soon as avehicle detectsthat it is crossing over the boundary X «fe, it
applies maximum braking. X«e is defined such that the vehicle will be guaranteed saf ety
if it does. The distance between the Xpoung @and X sse boundaries depends on the reaction
delay between the front vehicle braking hard and the back vehicle detecting the
emergency condition and braking hard.

14

5.3. Maneuver Descriptions

The maneuvers that have been implemented thus far are:

Join (previously known as Merge). A vehicle or platoon joins the tail of
another platoon. The formation of platoons increases throughput on the highway because
the vehicles follow at very close (intra-platoon) spacings.

Split A vehicle or partial platoon slows to break away from the rest of the
platoon. Two types of split exist: Fast Split and Slow Split. InaSlow Split, the splitting
platoon decel erates and accel erates such that is ends up one inter-platoon spacing away
from the platoon ahead. The Slow Split is essentially the opposite of aJoin. The Fast
Split issimply alogical delineation, to allow the back platoon to immediately begin
another maneuver, such as an emergency lane change. All details below will refer to the
development of the Slow Split.

L eader A vehicleisafree-agent or the leader of a platoon. In this development,
no distinction is made between these two cases. In actuality, the leader of a platoon may
have additional constraints placed upon it. For example, when a platoon leader wishes to
brake hard, it is conceivable that it would coordinate with the followers within its
platoon. They are following at such close spacings that they cannot react in time if their
leader brakes hard without warning. An free-agent has an empty set of followers and
therefore no need of coordinating.

Gentle Stop A vehicle brakes to a stop with comfortable deceleration. A vehicle may
want to slow gently if it experiences a moderate failure, such aloss of cooperative vehicle
communications, or perhaps even ablown tire.

Crash Stop A vehicle brakes to a stop with maximum deceleration. This maneuver
could be initiated if the vehicle experienced a debilitating failure, such as afailure of its
vehicle range/range rate detection sensors. The vehicle would stop asfast asit could to
minimize therisk to itself and other vehicles on the highway.

Many other maneuvers exist which give an automated vehicle awide range of activitiesit
may perform on the highway. Some are normal mode maneuvers and some are degraded
mode maneuvers which are initiated under certain failure conditions. Of these additional
maneuvers, some are more difficult to cast in the safety framework because they involve
multiple vehicles. The problems arise when one tries to choose a strategy which trades
off safety between different vehicles. In any case, some examples of these additional
maneuvers are: Lane Change, Platoon Follower, Entry/Exit, Front Dock, Aided Stop,
Take Immediate Exit, Back Up. Many of these additional maneuvers have been
implemented in SmartPath, though they do not necessarily use the same structure as
described in this manual.

6. The Reqgulation Layer: Maneuver Implementation

6.1. Boundary Curves

The equations which describe the safety boundary were developed in [2]. They are
solved for the velocity safety limit of the back car. The boundary defined by Viound1
covers the case when an impact occurs after the front vehicle has come to astop. The

15

boundary defined by Vhoung2 COvers the case when both vehicles are moving when the
collision occurs. For clarity, these equations are rewritten here in terms that match the
implemented source code.

_ 2 2

Vboundl = \/ = 2aminAX + Vigad + AVajiow (1)
Vhound2 = AVallow * Viead (2
Viound = MaX(Vhound1: Vbound2) (3

The boundary defined by vg(e is likewise restated below. Upon crossing this boundary, a
vehicle will brake hard to assure safety. Again, Ve COvers the case when the front
vehicle would be stopped when the collision occurs; vster COVers the case when the front
vehicle would still be moving. An additional term, Awy,s is afactor of safety. The main
reason for itsinclusion isto account for a possible braking jerk constraint on the back
vehicle and to account for controller transients. The boundary equation derivations do
not account for jerk constraints on either vehicle.

Vaatel = ~(@max — @min)d — AVpyst +...

\/_ 2"jlminAX"'VIZead +AV§||OW = apmin(Qmax _amin)dz (4)
Vaafe2 = ~(@max ~@min)d = AVpytt +AVajiow * Viead ®)
Veafe = MaX(Veafel s Vsafe?) (6)

A final boundary is calculated which is essentially vsse1 evaluated at zero allowable
impact velocity. Its use for maintenance of passenger comfort is explained in the next
section. It isthe boundary which avehicle must not crossif it wishes to avoid any impact
with the vehiclein front.

_ 2 2
VNocColl = ~(@max — @min)d — AVt +\/_ZaminAX+Vlead = apin (Qmax —a@min)d (7)

6.2. Controller Regions

The term region is used to describe the current state (distance and velocity relative to the
vehiclein front) of avehiclein relation to the boundary curves defined above. These
regions are depicted graphically in Figure 3, and can be seen to cover the entire state
Space (assuming shaded regions on the edges continue to infinity). Four of the seven
regions result from the previously discussed boundaries: Xpoung and X se:

NORMAL: All stateswithin X«s. A vehicle within this region ssmply follows
whatever control law it happens to be executing at the time.

BRAKE: All states between Xgre and Xpoung. While in this region, avehicle brakes
hard until its state returns to Xgte. Thisis uncomfortable, and should occur as
infrequently as possible. Potential causes for entering this region are poor controller
performance and antagonistic behavior of the vehiclein front.

UNSAFE: All states outside Xpoung before the collision. Within this region, the
vehicle continues to brake hard, but a collision isimminent if the lead car mantainsits
maxim braking. Thisregion is unreachable under a properly implemented safe maneuver.

16

CRASH: All states in which vehicles occupy the same space. Thisregionis
unreachable under a properly implemented safe maneuver.

General Maneuver Controller Regions

10
8r Unsafe
_ 6
0
=
©
o
IR 7
|
T:G
|_
>
2 -
Normal
Finished
[ty I E— S|
-40 -20 0 20 40 60 80 100
Spacing [n.t.s]
Figure 3

General Maneuver Controller Regions

In order to maintain comfort of the passengersin the vehicle, the acceleration and jerk of

the vehicleis normally restricted well within the vehicle capabilities. Thus, while the

state of the vehicleisin the NORMAL region, maneuvers should not only be safe, but

also comfortable. However, while under comfort constraints, a vehicle may not be able to
keep itself away from the X «s boundary, and thus have a tendency to ‘bounce’ off the
boundary by alternately braking hard and drifting back to the boundary. In order to
reduce this effect, an additional region ‘NOCOMFORT’ was added. Another boundary
curve was defined by evaluating the boundary g Xith a zero allowable impact

velocity (aiow). This new boundary is denoted ag -

NOCOMFORT: All states between o1 and Xgare. Within this region, the

saturation limits on acceleration and jerk are lifted so that the vehicle can remain within
X e although reducing the comfort of the passengers.

17

The final two regions are defined to determine if and when the maneuver will be

complete. Some maneuvers such as Join cannot be completed if athe vehiclein front

goes out of sensor range, so this region must be distinguished. Also, some maneuvers
accomplish a certain goal which must be determined to be ‘in progress’ or ‘finished’.

The completion of a maneuver is defined in terms of a target region in the state space.
For example, a Join is finished when the vehicles are one intra-platoon spacing apart, and
at zero relative velocity.

TOO_FAR: All states in which the vehicle in front is out of sensor range.

FINISHED: All states within the ‘completion target’ portion of the state space. This
completely depends on the goal of the maneuver, but will be somewhere in the NORMAL
or perhaps the TOO_FAR region.

6.3. Trajectory Zones

6.3.1. All Maneuvers

All maneuvers exist for the purpose of moving the vehicle state to a target state space
region: either a FINISHED region or a desired operating point. The path by which the
state travels to get to this desired region should follow a desired trajectory. This desired
trajectory is chosen to reduce or minimize maneuver completion time and to provide a
level of passenger comfort while remaining inside the NORMAL region. It does this by
defining a velocity setpoint for the vehicle controller at any initial state in the NORMAL
region (at this development stage, the velocity setpoint depends only on the current
spacing and lead vehicle velocity and not on the current relative velocity). The desired
trajectory is, in general, a piecewise continuous function in the spacing/relative speed
space. Theonein which a vehicle’s state lies is determined by the equation which
defines the desired trajectory and thus setpoint of the controller.

6.3.2. Join

Figure 4a diagrams the zones of a Join maneuver. In the first and third zones, SAFE1 and
SAFE2, the desired trajectory is the boundary g XThis is to reduce maneuver

completion time. The fifth zone, DECEL, departs from the safety boundary in order to
move toward the target completion region. For a Join, this requires a zero relative

velocity at one intra-platoon spacing (within some tolerance). The second and fourth
zones, SPLINE1 and SPLINEZ2 are cubic splines between the adjacent trajectory curves.
They provide some comfort by avoiding sharp vehicle accelerations in response to a non-
smooth desired velocity trajectory.

6.3.3. Split

The desired trajectory for the Split maneuver is simpler than the Join. It requires only
two zones: ADVANCE and RETREAT. These two zones simply follow the minimum
time trajectory at comfortable accelerations to a desired Split completion distance.

18

6.3.4. Gentle Stop/Crash Stop

The Stop maneuvers do not use the concept of zones since they are open loop controllers.
Instead of tracking a desired vel ocity, the Stop maneuvers simply decelerate at a constant
rate until the vehicle comesto rest. The safety boundary is still monitored, however, and
thus the vehicle will still brake hard in response to a breach of that boundary.

6.3.5. Leader

In many ways, the Leader law issimilar to the Split law. Both seek to maintain alarge
spacing between platoons at zero relative velocity. Thus, both include the zones
ADVANCE and RETREAT. However, an additional feature was added to the Leader
trajectory - sacrificing asmall increase in completion time for the sake of passenger
comfort. Itisamodification which could potentially be made to the other maneuvers as
well. It can be seen from looking at the desired trgjectory diagrams (Figures 4a-5) that
most desired trajectories bring the vehicle state to the target region at a non-zero
acceleration. Theresult is oscillation about the desired equilibrium point as the next
maneuver tries to regulate the state around that point. In order to avoid thisin the Leader
law, the quadratic minimum time curves which cross the target state at non-zero
acceleration are replaced by cubic splines which go to zero acceleration at the target state.

The other two boundary conditions that are used to define the splines are the desired
velocities at the edges of the NORMAL region. At very close spacings, the desired
velocity approaches the minimum speed allowed on the highway under normal
conditions: Vgow (O Viront If Viront < Vaow)- At Spacings which approach the sensor range,
the desired velocity approaches the value set by the Link Layer for large scale flow
optimization. Thus, if avehicleistraveling on open road (in the CRUISE zone) traveling
at vLink, it will not suffer a sudden change in setpoint if a vehicle comesinto sensor
range. See Appendix A for derivation of the Leader law desired velocity curves.

19

Desired Trajectory Zones: Join Maneuver

A vTrail-vLead

dxIntxn2
dxIntxn1

> Spacing
ol W

—

w| z 0 z T

O — [T — T

L o < o <

=) 7 %) »n n |

(9] ~ o
I

c T £ T £ 25
o [- c — O C
S w n L %) N T
pad x x X x X Y
© © © © © ©

Desired Trajectory Zones: Split Maneuver
A vTrail-vLead

=
o
©
L.
X
©
> Spacing
|_
< w
A (@]
« pd
i <
@)
<
=
%)
x
©

dxSensor
Range

Figure 4
Join and Split Maneuver Desired Trajectory Zones

20

Desired Trajectory Zones: Leader

A vTrail-vLead
vLink-vLead
=
o
©
L
X
©
> Spacing
K
I}
i O L
— Z 5 >
4 5 %
<
© [
@© o
g 25
vSlow - vLead < O c
o QS8
3 o
Figure 5

Leader Law Desired Trajectory Zones

6.4. Maneuver Performance Results and Open Issues

Figures 6b,8b,10b,12b,14b,16b show examples of performance for each maneuver for a
certain set of gains. Figures 7,9,11,13,15,17 show this performance in terms of the full
state of the back vehicle (position, velocity, acceleration, jerk). Note that two sets of
results are shown for the Leader law using two different initial spacings. In studying all
of the maneuver performance plots, some design issues are worth noting:

Not observable in the figuresis the high sensitivity of performance to gain with the
existence of a hard safety boundary. In the Join maneuver, high gains cause the
vehicle state to get thrown rapidly away when it hits the safety boundary. Over-
correction results in the vehicle state continuously bouncing off the safety boundary.
One possible solution would be to track a desired trajectory which is farther within
the safety boundary, thus sacrificing alittle completion time for lower sensitivity to
overshoot.

In the Join maneuver, the desired trgjectory in the DECEL region is overshot even
when the controller is tuned aggressively. One may wish to design amore
comfortable tragjectory as a Join finishes. Currently, the vehicle is lamming on its
brakes at the conclusion of any Join, even in normal conditions. This behavior is due
to the choice of Awy , that istoo small for the sampling time used in the SmartPath
simulations, and also to the width of the SPLINE2 region . One correction to this
problem, based on a reformulation of the SPLINEZ is presented in chapter 9.

21

vTrail - vLead [m/s]

vTrail - vLead [m/s]

All desired velocity curves are subject to saturation by Veag, the speed limit of the
highway under normal conditions. Currently, thereis no splining region to smooth
the transition into this ‘saturation zone'.

Join Maneuver Boundary Curves

12
10- Dash-Dot: Bound e
Solid: Safe SR ’ T
sl Dash: Desired - -
Dot: No Collision - /_'
6 s '
Al e
2ry
I
I
O
!
_2 ' | | | | | |
0 10 20 30 40 50 60
Spacing [m]
Join Trajectory Tracking
10
— - - -
8 Dash: Desired S
Solid: Actual R

-2 | | | | | J
0 10 20 30 40 50 60

Spacing [m]

Figure 6
Join Maneuver Safety Boundaries and Performance

22

Back Car State

Back Car State

o o
~ N
L L o
i
e
g
w n
L o g | lo
E O -
X
o]
s}
L - 10
- o (@] (e8] N~ <] Te} (92] N — o — N ™
o™ ™ N N N N N | |
[s/w] AuoojaA 8injosay [evs/w] >pac anjosqy
o o
N N
i |w i o
— —
2
g
@ h
\ ag 8 |2
X
o]
0
L ElTo) F 10
: : : : : o : : : : : : o
o o o o o o o (90} N i o i N o™ <
8 8 ¢ 8 & S smosan
(L] UoniSoy S1n[0Sqy [gvs/w] uonela|a2oy anjosqy
Figure 7

Join Maneuver State History

23

Time [s]

Time [s]

vTrail — vLead [m/s]

vTrail — vLead [m/s]

Split Maneuver Boundary Curves

10 _
5 el
O [l
/
Dash-Dot: Bound e
Solid: Safe e
-5F Dash: Desired P
Dot: No Collision -
-10F e
—15L= -— " | | | | | |
0 10 20 30 40 50 60
Spacing [m]
Split Trajectory Tracking
2 —
-10+ SRt Dash: - Desired
// - Solid: ‘Actual
=12+ T
V| e
-16 | | | | |]
0 10 20 30 40 50 60
Spacing [m]
Figure 8

Split Maneuver Safety Boundaries and Performance

24

Back Car State: Split

Back Car State: Split

1O L] O
— —
1 © - 1
a
()
—_ o —_
10 L g {0 L
g < =
£ 5 £
— O |
i< M - 1<
0
AN r 1 N
; o L - - - o
2 S 9 R I T
[s/w] AnoojoA anjosqy [evs/w] >aC Injosqy
1O L 1O
— —
1 = [4 00
=3
n
—_ 9 —_
10 L S 1w L
g 2 g
£ = =
- O (==
m 4 n.kpav - N 4
0
N - 1N
- - - - o . . - : . o
2 8 8 8 8 ° T
N N — —
[W] UoNISOd MOSAY [2vs/w] uoneis|@22y a1NjosqQy
Figure 9

Split Maneuver State History

25

vTrail — vLead [m/s]

vTrail — vLead [m/s]

25

20

= =
o Ul

T

a1

Gentle Stop Maneuver Boundary Curves

1

T

bash-Dot: - - Bound
Solid: Safe
Dot: No Collision

| | | | | | | |

0 20 40 60 80 100 120 140 160

Spacing [m]

Gentle Stop Trajectory

| | | | | | | |

20 40 60 80 100 120 140 160
Spacing [m]

Figure 10

Gentle Stop Maneuver Safety Boundaries and Performance

26

LC

A101SIH 91e1S JaAnauey dois ajjusn

14

TIT oin

200

Absolute Position [m]
= =
o ul
o o

a
o

I
o
3

I
=
al

Absolute Acceleration [m/s”2]

I
N
3

Back Car State: Gentle Stop

|
[y

|
N

0 5 10 15
Time [s]
Back Car State: Gentle Stop
5 10 15

Time [s]

Back Car State: Gentle Stop

= = N N
o 1 o a1

Absolute Velocity [m/s]

(¢

0 5 10
Time [s]

Back Car State: Gentle Stop

15

0.5

o

I
o
o

I
=
al

Absolute Jerk [m/s”3]
AN

|
N

i

|
w

10

o
al

Time [s]

15

12

10

vTrail — vLead [m/s]
IN o o)

N

-10

vTrail — vLead [m/s]
AR
6]

|
N
o

-25
0

1

T

Dash-Dot:

Solid:
Dot:

Crash Stop Maneuver Boundary Curves

Bound L
Safe _ =
No -Collision e

T

T

10

| |
20 30 40 50 60 70
Spacing [m]

Crash Stop Trajectory

10

| |
20 30 40 50 60 70
Spacing [m]

Figure 12

Crash Stop Maneuver Safety Boundaries and Performance

28

Back Car State: Crash Stop

Back Car State: Crash Stop

o Ln
Q.
=)
(99}
< r 1<
0
g
O
m (90}
(%)
]
O L 1o
X
(8]
©
m
o —
Il 1 Il Il il 1 1 1 1 0
n o n o n o o o o o o o o o
N Sl Amon on = TS 9 YT 99
s/w] A20|9A a1njosqy
[s/ul Awool 10sd [£vS/W] Yior SINjoSqY
o o
- - n
Q.
=
0
- < 1<
(9]
s
@ ©
L () QL
= I @
= n
]
i oL I
X
(8]
©
m
= = —
o o o o o o o o o — N ™ < n ©
N~ O n < ™ N — | | | | | |
[w] uonisod ainjosqy [evs/w] uoneis@00y anjosqy
Figure 13

Crash Stop Maneuver State History

29

Time [s]

Leader Maneuver Boundary Curves: Starting Near

8 —
6
__ 4
®
E
B 2r Dash-Dot: - -Bound
3 Solid: Safe
L oor Dash: Desired USRIy
= O
E Dot: No Collision -
2k e -
_4 — B - -
-6E - I I I I I I J
20 22 24 26 28 30 32 34
Spacing [m]
Leader Trajectory Tracking: Starting Near
E‘Z [7 -
E 7
o e
g -
< -3r Phd Dash: Desired
e
; pid Solid: Actual
© .
'; -4 / g
P e
e
Ve
-5 P 7.
//
Ve
_6 | | | | | | |
20 22 24 26 28 30 32 34
Spacing [m]
Figure 14

Leader Maneuver Safety Boundaries and Performance: Initially Near Front

30

Back Car State: Lead from Near

Back Car State: Lead from Near

20
20

g
e 2 19
S
=
£
©
v, o)
[@2N)) - L O o
[I [
n
[
O
{10 St {0
I
)
, , , o , , , 1 o
Lo Lo < [e} ™ N i o i N ™
N < N ™ N I I I
N N [Evs/w] >uaC dInjosqy
[s/w] AwoolaA @njosqy
o o
N N
g
e 2 19
S
o
=
©
v, ®)
(@R} — L [« N))
F © [
n
[
O
m 5 W - n 5
IS
)
; ; ; o ; , , o
S 8 8 8 8 ° e ° =2 T = 9
red < ™ « — © Q i
[w] uomsod anjosqy [2vS/w] uoneIs|922Y 81Nj0SqY
Figure 15

Leader Maneuver State History: Initially Near Car in Front

31

18

16

T

= = =
o N i
T T T

vTrail — vLead [m/s]
(o]
T

Leader Maneuver Boundary Curves: Starting Far

Dash-Dot: Bound
Solid: Safe

Dash: : Desired
Dot: No Collision

| | | | | |

) a1 D
T T T

vTrail — vLead [m/s]
w
T

40 45 50 55 60 65
Spacing [m]

Leader Trajectory Tracking: Starting Far

70

Desired
Actual

| | | | | |

40 45 50 55 60 65
Spacing [m]

Figure 16

70

Leader Maneuver Safety Boundaries and Performance: Initially Far from Front

32

Back Car State: Lead from Far

Back Car State: Lead from Far

kS

L L

S

=

©

= ®

L, |

g g

[= 8

(7]

[

@)

X

(SN

©

m
© 1 ¥ ® & o4 o o o ®m - o = «
N N N N N N N — — | |
[s/w] AnoojaA anjosqy [evs/w] yiar 8njosqy

o
N

)

| w W L

S

9

£

©

= o

O.B. -

2¢ B

[&

(9]

3

@)

S

1o S |

m
o o o o o o o o o 0 o L0 — 0
© m © L © m O S S I -
< ™ ™ N N — — T |
[w] uonisod anjosay [2vS/w] uoneIs|99Y 81Nj0SqY

Figure 17

Leader Maneuver State History: Initially Far from Car in Front

33

15 20

10
Time [s]

Time [s]

PART Il

Modifying and Creating Maneuvers

7. The Requlation Layer: Maneuver Code Structure

7.1. Function Definitions

In order to standardize and simplify the development of regulation maneuvers, each uses

the same set of functions and structure (Appendix C is an example maneuver’s source
code). Therefore, only the specific equations that uniquely define a maneuver need to be
inserted into the framework to begin testing. Each of these functions are shown below.
They calculate the variables needed to determine the controller output, such as the desired
trajectory and the safety boundary. The functions are common to all maneuvers in name
and purpose, though the calculation contained within may be different:

I nv2by2 inverts a 2x2 matrix. This is used in the calculation of spline coefficients.

traj returns the desired back vehicle trajectory and its first and second patrtial
derivatives with respect to spacing and front vehicle velocity.

I ntxn calculates the spacing at the point where two desired trajectories intersect.
This value is used when that intersection will be smoothed with a spline.

zone determines the zone which contains the back vehicle’s state.

spline calculates the spline coefficients and regressors of the cubic splines at the

intersections of desired trajectories. Also calculates the first and second partial
derivatives of the coefficients and regressors with respect to spacing and front vehicle

velocity.

vdes calculates the desired velocity of the back platoon, given the back
vehicle’s current state and zone.

dvdes calculates the first partial derivativeswafes with respect to spacing and
front vehicle velocity.

ddvdes calculates the second partial derivatives @és with respect to spacing
and front vehicle velocity.

vsaf e calculates the boundary ofx¢: the maximum safe velocity of the back

vehicle such that no collision will occur if the back vehicle slams on its brakes as soon as
it crosses this velocity limit.

vbound calculates the boundary ofgéng: the maximum safe velocity of the back
vehicle with zero braking delay.

vnocol | calculates the boundary ofyecoi: the maximum velocity of the back

vehicle that ensures that NO collision occurs.

regi on determines the state space region of the back vehicle desiring to execute or
continue a maneuver.

7.2. Function Call Tree

In order to visualize the role of each function within a maneuver module, afunction call
tree is presented below. Functions contain calls to functions immediately beneath them
on thetree. For example, the function’r egi on’ contains a cal to the function 'vsaf e’.
The functions at the top of the tree are those mentioned above that are called by the
master task of the Regulation Layer (r egAut 0AL. ¢) asit interprets commands from the
Coordination Layer.

Saf eToSpl it
Car AheadDi st (gets sensor read distance to vehicle ahead)

Car AheadVel (gets sensor read relative velocity of vehicle ahead)
region
InitSplit
Decel ToSplit
Sm d ock (gets current simulation time)
Car AheadDi st
Car AheadVel
traj
i ntxn
zone
spline
i nv2by?2
vdes
dvdes
vdes
dvdes
ddvdes
region
vsafe
vbound
vnocol |
Saf eToASpl it
Conpl eteSplit

Bothspl i neandtraj cal thefunctionsvdes anddvdes. They arecalled in

spl i ne for the purpose of calculating the spl i ne coefficients. They are called in

t raj becausethe controller usesthese derivatives to calculate the control output. The
functionr egi oniscaledin Saf eToSpl i t to check if it is safeto begin splitting, and
repeatedly in Decel ToSpl i t to monitor proximity to the safety boundary.

8. Tools for Maneuver Testing

8.1. Tool Overview

The tools described below were developed in order to facilitate easy maneuver
development outside of the SmartPath environment, and subsequent testing after the
integration into SmartPath. The tools are written in C or MATLAB.

35

8.2. twocar.exe

This executable is derived from the source codet wocar . c. It callsthe functions within
amaneuver module to execute it just as SmartPath would. Some external SmartPath
functions, such as Sm Cl ock and Car AheadDi st, areaso emulated by this program.
All of the interfaces needed between SmartPath and the maneuver modul es have thereby
been reproduced. Once a maneuver module has been successfully run and debugged
using thistool, it should work in SmartPath. Even if some problems do arise, many
potential problem sources can be eliminated by debugging in this friendly environment.

The name of the tool impliesits scope of usefulness. Like all of the maneuvers detailed
in this report, it handles only two-vehicle interactions. Complex maneuvers such as Lane
Change and Front Dock cannot be simulated without this tool being extended. For the
two-vehicle maneuvers, however, it is easy to test maneuvers or even series of

maneuvers. In SmartPath, maneuvers necessarily depend on communication protocols
and the behavior of other vehicles on the highway. In the two-car environment, these
external forces can be eliminated, and maneuvers can be forced based on any user-defined
criteria. In addition, the front vehicle of the pair can be forced to perform any sort of
behavior to verify the reaction of the back vehicle.

The inputs to the program are the initial state of the two vehicles, the desired maneuvers
to be carried out, and some simulation parameters. They are all at the beginning of

t wocar . c. The outputs of the program aretwo files: | st at e. dat and

t st at e. dat . They areahistory of the states of the front and back vehicles
respectively, and are ascii columns with the format:

{ Time[s]}{ Position [m]}{Velocity [m/s]}{ Acceleration [m/s]}{ Jerk [m/s’]}

8.3. looklstate.m, looktstate.m

Oncet wocar . exe has been executed, the state of both the front and back vehicles can
be viewed with the simple MATLAB scripts: | ookl st at e. mand | ookt st at e. m
respectively. They will display four plots on one page: one plot per state variable. This
program was used to generate Figures 7,9,11,13,15,17.

8.4. sortcar.m

When amaneuver has been executed in SmartPath, one would like to view the state
history of the vehiclesinvolved. However, the output of SmartPath in

[casenane] . st at e recordsall the carsat once. Thissimple MATLAB script sorts
out the state data of a specified vehicle for subsequent analysis.

36

PART IV

Join Maneuver Spline Improvements

9. Motivation

In simulating the join maneuver described in the report, significant velocity tracking error
can be seen in the SPLINE2 and DECEL zones (Figure 6). Thisis not the result of
improper gain setting in the controller. Rather, it isthe result of the saturation of the
control jerk in the NORMAL region. This saturation isin place to assure the comfort of
passengers under normal operating conditions. In order to eliminate this tracking error
without relaxing the comfort constraints, it is necessary to derive desired state space
trajectories that can be tracked while maintaining comfortable levels of acceleration and
jerk.

One way to accomplish this task would be to simply increase the length of the SPLINE2
zone. Thejerk required to transition from zero acceleration in SAFE2 zone to
comfortable deceleration in the DECEL zone would then remain within the comfortable
jerk limits. However, for longer splines as shown in Figure 18, the resulting cubic spline
can have alocal maximum between the spline endpoints that exceeds the safe velocity. A
vehicle tracking this desired trajectory is thus drawn to the safety boundary and forced to
apply emergency braking. To avoid this scenario, it is desirable to redefine SPLINE2
while still striving to minimize the maneuver completion time. In this addendum,
SPLINE?2 is redefined by setting the jerk of the desired trgjectory to be at the comfort
limit. It should be noted that by this method, the cubic spline start and end points are
calculated from the tragjectory boundary conditions. In[2], the spline endpoints are
centered on the relative spacing axis around the zone intersection points (SAFEL/SAFE2
and SAFE2/DECEL).

Using these same comfort considerations, a new zone has been added at the end of the
DECEL zone: SPLINE3. The purpose of this portion of the join trgjectory isto guide the
back vehicle to its desired join spacing while also bringing its acceleration and jerk to
zero. Thisallowsthe follower law to take over vehicle control at its desired target state.
In[2], thefinal state of the back vehicle isnot an equilibrium state, and the follower law
must bring the back vehicle’s acceleration and jerk to zero.

The desired trajectory for SPLINE1 could also be rederived using this same methodology,
but it is not done here. The existing cubic spline is left in place as originally designed in
[2]. The length of the spline is chosen for a given set of controller gains such that the
actual state of the vehicle remains comfortable while tracking SPLINE1. Inthe SPLINE1
zone, the existing cubic spline does not exhibit the same extremum between the endpoints
as in the SPLINEZ2 zone.

37

Join Maneuver Spline Improvement

6 ‘ | |
St Dot: Safety Boundary / P
Dash: Previous Splining Method L
Solid: New Splining Method ~ -
4 i .y s _
) T
E e
© - g P
S S
< 3r e |
= ~
B e —
|_
>
2 i —
1 i —
0 ‘ | | | |
0 5 10 15 20 o5 30
Spacing [m]
Figure 18

Join Maneuver Splining Method Comparison

10. Derivation of Join Maneuver Desired Trajectory

10.1. Definition of Terms:

J comMax Maximum comfortable jerk of the back vehicle.

JcomMin Minimum comfortable jerk of the back vehicle (anegative
number).

acomMin Minimum comfortable acceleration of the back vehicle
(anegative number).

Armax Maximum acceleration of front and back vehicles.

Ain Minimum acceleration of front and back vehicles
(anegative number).

Viead Lead vehicle absolute velocity.

Vdes Desired back vehicle absolute velocity.

VAVATEY Allowable relative velocity at impact.

38

VAV Buffer relative velocity offset between desired and safe

trajectories.

AX Spacing between the front vehicle’s rear bumper and the
back vehicle’s front bumper.

Moin Desired spacing at the end of a join maneuver.

t Time since the vehicle entered the current zone.

d Delay after the lead vehicle begins hard braking that the
back vehicle achieves its maximum deceleration.

end (subscript) Denotes the ending point of a spline (at the smallest

spacing

in the spline zone).
start (subscript) Denotes the starting point of a spline (at the largest spacing
in the spline zone).

10.2. Desired Trajectory in SPLINE3 Zone

The desired velocity trajectory for the SPLINE3 portion of the join maneuver is now
derived, beginning with the general equation for a vehicle at the maximum comfortable
jerk relative to a vehicle in front at a constant velocity:

AX = =~ jcomMax (8)

In order for the SPLINE3 zone to be a smooth transition from the DECEL zone to an
ideal follower, the following boundary conditions apply:

AXend,spline3 = DXjoin 9)

AXend,splines = 0 (10)
AXend,splines =0 (11)
AXgart,spline3 = ~@ComMin (12)

Integrating (8) and using boundary conditions (12), (10), and (9), the desired relative
acceleration, relative velocity, and spacing are:

AX = 'jCOmMax [- acommin (13)
. 1. 2 _.2
fax= 2 JcomMax (t” — tend,spline3) ~ @commin(t — tend,spline3) (14)

. 13 1, 5 1 4
A><=JcOm|v|ax(-gt + % ténd splines - 3 d,spline3)

12 12
+ acomMin(- 5t~ *+ t Dend splines - - téend,splines)+ AXjoin (15)

Finally, using boundary condition (11) in equation (13):
_ 8comMin
JcomMax

tend,spline3 = (16)

39

Now, using the general solution for a cubic equation to solve (15) for t, and choosing the
real root between 0 and teng splines:

1

3,_:2 3

_ —acommin ~ 2 7 (~ iCommax (X jgin = AX))] 3

jComMax

t (17)

Finally, plugging t into equation (14), the desired relative velocity in terms of vehicle
spacing is:

1
Ax=-2[% Jcommax (BXjoin = AX)Z] 3

(18)

Thisyields the desired velocity for the back vehicle when it is advancing to reach the
desired join spacing:

1
3

— 9 . 2
Vdesadvance = Viead * 2[7 Jcommax(2Xjoin = AX)7] (19)

A similar trgjectory is derived for when the back vehicleis closer than the desired join
spacing:

1
Vdesretreat = Viead 2l 1_% Jcommin(&Xjgin = AX)?]3 (20)
The vehicle spacing at the beginning of SPLINE3 isfound by plugging t=0 into
equation (15):
3
8ComMin (21)

AXgart,spline3 = DXjoin =5
6 ComMviax

The spacing at the end of SPLINE3 comes directly from boundary condition (9), and thus
the SPLINE3 zone desired trgjectory is completely determined:

AXend,spline3 = DXjoin (22)

10.3. Desired Trajectory in DECEL Zone
The general equation for comfortable acceleration tragjectory is:

AX = —acommin (23)
Boundary Conditions:

AXend,decd = DXstart,splines (24
AXend,decel = DXgtart,spline3 (25)

10.4. Desired Trajectory in SPLINE2 Zone
The general equation for comfortable jerk trajectory is:
AX = = jcomMin (26)

Boundary Conditions:

40

AXgart,spline2 = DXend,safez =V 27)
Agartspline2 = 0 (28)
AXend,spline2 = ~@ComMin (29)

The value of V can be determined from the equation for the SAFE2 zone:
V = (@max ~ amin) Ll — AVgion + AVpyst (30)

So far, the SPLINE2 and DECEL zones each lack one boundary condition for solving
their respective desired velocity equations. The two lacking boundary conditions are
supplied by constraints at the intersection of the SPLINE2 and DECEL regions. The two
desired velocity equations are thus solved simultaneoudly.

Boundary Conditions:
AXgart,decdl = DXend,spline2 =S (31)
AXgart,decel = DXend,spline2 (32)

The value of Swill come out of subsequent calculations.

Starting with the DECEL zone, the relative velocity and spacing are found by integrating

equation (23):
AX = —acommin 1 + ¢ (33)
AX:_%a(?omMin [ﬂ2+clt+c2 (34)
Using boundary condition (31):
Co = S (35)
Then using boundary condition (24), one equation for c; is:
3
1 2 _ aComMi
=5 8commin Bénd, decel * Citend,decel +S= MXjoin = 5> (36)
JComMax

A second equation for ¢; comes from boundary condition (25). But first, from (18):

2 .
DXgart spline2 = ~ Za.Colin (37
JComMax
Thus:
a&ommi
_ omMin
— acomMin Hend,decel €1 = — = (38)

2J'ComMax

Solving (36) and (38) simultaneoudly:

41

cl—-\/ZaC iy Sxx-- __2omuin_ —sg (39)
= omMin join .2
g 24 | ComMax g

Equation (34) isthen solved for t, which isinserted into equation (33). The desired
velocity equation is thereby defined independently of t:

_ 2
Vdes = Viead t \/ Cl +2acomminC2 (40)

Continuing on to solve the desired velocity in the SPLINEZ region, equation (26) is
integrated using boundary conditions (28), (27), (29), and (31):

AX = = jcommin U (a1)
) 1.
AXZ__JComI\/Iin 1% +V 2
1 .
Ax = JComMm 3 +V I +S+ a_Czolin —V acomMin 43)

6)ComMin jcomMin

Using boundary condition (32) in equations (42) and (33), the last unknown Sis found:

1 7
JColin Dﬁmﬂ +V=qg (a4
DJComMmD
2
S= AXjgin ~ aCOI”ﬂMin _ aComMin +VaC0mMin Vv 5

24jéomMax 8jéomMin 2jcomMin 28comMin

Equation (43) isthen solved for t, and inserted into equation (42). Once again, the
desired velocity equation defined independently of t:

zyv 2% Bz
H A jComI\/IinE

— 1.
Vdes = Viead =V *3 Jcommin & (46)

Where:

_ Br 1 2
A= & 27(—g JComMin) (Axstart,splineZ _AX)

Eys (47)

0
H

oo,

' \/4(_ 3 Vicomwi n)3 * E_ 27(_ 5 Icomvin)2 (AXSta”’Sp' ine2 = AX)

And by plugging t=0 into equation (40):

Mgartsplinez = S+ aComMm B aComMm (48)
6JComMm JComMm

42

11. Results

Simulation results are shown in Figures 19 and 20. They correspond to the previousjoin
results shown in Figures 6 and 7. Notice that with the new desired join trgectory, the
back vehicle state remains nearly within the comfort limits:

(a[-2.0,2.0] m/s?, j:[-2.5, 2.5] m/s®). The acceleration in the DECEL zone slightly
exceeds the comfort limit as it tracks the desired trajectory because of the delay d. The
tracking error in the SPLINE2 and DECEL zones has been significantly reduced. Lastly,
the maneuver completion time (assuming the lead vehicle maintains constant velocity)
has actually been reduced even though the magnitude of the maximum control jerk
required to track the join trgjectory is smaller.

vTrail — vLead [m/s]

vTrail — vLead [m/s]

Join Maneuver Boundary Curves

101 Dash-Dot: Bound s
o Solid: safe o
8l Dash: Desired j :; > F

Dot: No Collision » o
TF 5 o
61 /,////./'/
5 > "
4+ ey Z
] P /
2l
1k
ol ! ! ! ! ! |
0 10 20 30 40 50 60
Spacing [m]
Join Trajectory Tracking
ol - .
8t Dash: Desired T g
2L Ssolid: Actual -
6l
5l
4l
3l
2L
1k
ok
-1 1 1 1 1 1]
0 10 20 30 40 50 60
Spacing [m]
Figure 19

Improved Join Maneuver Safety Boundaries and Performance

Back Car State: Join

Back Car State: Join

20
20

——
L | Ln
— —
=
[e]
S
- g
3
Sg 2y 1
£ 5
= O
X
Q
I
o0
m 5 - N 5
i i i i i i o i i i i i o
- o (o] e8] N~ © Lo < (92} N - o - N ™
™ ™ N N N N N N | | |
[s/w] AyoolaA anjosqy [evs/w] spiar @njosqy
o o
o~ N
[Te) | Ie}
— —
£
(@]
i)
. 0]
2, o
=} n Q
- I o | —
E @
= o
X
(&)
I
s}
Lo - Lo
: : : : : o : : : : : o
o o o o o o ™ N — o - N ™
8 ¢ 8 8 % osay |
[01] UonISOd BIN|OSqY [gvS/w] uonela|ad2y aInjosqy
Figure 20

Improved Join Maneuver State History

45

Time [s]

Time [s]

Appendix A

Derivation of Desired Trajectory for Leader law

Definition of Terms:

Vadv
Vret
Vsiow

Viink
Viront

a,b,cd
AX

AVGH
AX

For zone: ADVANCE

Desired velocity of the back vehiclein ADVANCE zone.
Desired velocity of the back vehiclein RETREAT zone.
Highway minimum speed limit under normal
circumstances.

Advisory speed set by the Link Layer.

Absolute velocity of the vehiclein front.

Spline coefficients.

Spacing between the front vehicle’s rear bumper and the
back vehicle’s front bumper.

Spacing at the back vehicle’s sensor range limit.
Desired spacing under the Leader law.

General equation for cubic spline:
V,, = a+b(AXg — AX) + ¢(AXg — AX)? + d(AXg — AX)°

Boundary Conditions:

Vadv|ayg, = Viink

Solve for coefficients:

é\/adv - 0
OAX o
d/.’:ldv - 0
OAX ax,

Vadv‘AXSR = a+b(0) + c(0) + d(0)

évadv
ONAX

Dxg

a = Viink

= 0- b- 2¢(0) - 3d(0)?

b=0

Vadv|AxL = Vi + C(DXg = OX)? + d(Axg = AX,)®

N

adv

ZAVS)
O(AXg, — AX)?

= —20(AXg, — A%,) — 3d(AXg, — AX,)?

(AXSR - AXL)3 DB:D_ Ij/front - VIink 0

] =0 |
T 2(DXg —OX) DX _AXL)Z%D H 0 U

46

ECD_ |:|(AXSq - AXL)2 (AXS? - AXL)3 |jl|j/front - VIink 0
RHH B axg -ax) -3dxg-Ax)20 0 0

For zone: RETREAT
General equation for cubic spline:

V., = a+b(Ax, —AX)+c(Ax, — AX)® + d(Ax, — AX)°

Boundary Conditions:

_ et —_
Vret|AXL = Viront (?ArX =0
Ox
| A,
Vret‘o = min(Vgow: Vfront) Erx =0
0

Following the same derivation steps:
a= Vfront

b=0
=1 .
e B(AXL - O)2 (Ax - 0)3 B (Min(Vgow: Vfront) = Vfront

H B 2(Ax —0) —3Ax, -0)%F H 0 H

a7

Appendix B

Parameter Values Used for this Report

For the sake of repeatability, the controller gains, vehicle, and maneuver parameters are
included here. Thesevaluesare setinr g/ naneuver _nane] . h

/* Maneuver paraneters */

dxSpline =
dvBuff =
dxJoi nMax
dxJoin =
dxJoi nM n
dvJoi nMax
dvJoi nM n
dxSpl it Max
dxSplit =
dxSplitMn
dvSplit Max
dvSplitMn
dxLead =
vGst opMax
vCst opMax

/* Gains

/* Vehicle Limtations

delay =

dxSensor Range =
v Max
aMax
aM n
j Max
jMn

0. 03;
60. 0;
40;

2.5;
-5.0;
2.5;
- 50;

/* H ghway Linitations

vFast =

35;

/| * Passenger Confort/Safety Limitations

aComvax
aConM n
j Comviax
j ComM n
dvAl | ow

2;
_2l
2.5;
-2.5
3.0;

/* To be specified by Link Layer

vLink =

25.0;

48

*/

*/

*/

*/

*/

Appendix C

Source Code: twocar.c

/* FILE: twocar.c */
/* Testing programfor all two car maneuvers */
/* Unless noted otherwise, all units are based on: seconds, neters */
[* | NPUTS: */
/* Parameters in SPECI FY HERE: section */
/* regmerge.c, regsplit.c, regleader.c, reggstop.c, regfollowc */
/* OUTPUTS: */
/* lIstate.dat: |lead platoon state trajectory */
/* tstate.dat: trail platoon state trajectory */
/* Last updated: 6/27/96 Jason Carbaugh */
#i ncl ude "stdio.h"
#i ncl ude "nmat h. h"
#i nclude "regul ation. h"
#include "rglnt.h"
/* Possible | ead pl atoon behaviors */
enum {
CONSTANT, [*maintains initial velocity */
COVFORT, / *decel erates at confort decel & jerk */
SLAM [*decel erates at maxi mum decel & jerk */
s
/* Possible trail platoon nmaneuvers */
enum {
JAO N,
SPLIT,
LEAD,
FOLLOW
GSTOP,
CSTOP,
ESTOP,
REST
b
/* Variabl e declarations */
Rg_Car State **rgSt at eTabl e; /*SmartPath state table */
/ *SPECI FY HERE: sinulation initial conditions and | ead pl atoon behavior */
doubl e Si mEndTi me=20. 0; [*Time of end of sinulation WRT start of*/
/[*simulation */
doubl e xl ead[4] ={59. 5, 25, 0, 0}; [*pos, vel ,acc,jerk of |ead plat WRT road*/
[*under lead pltn at start of simulation*/
[*updat ed every sensor Ti meSt ep */
doubl e xtrail[4]={0, 25,0, 0}; [*pos, vel ,acc,jerk of trail plt WRT road*/
[*under lead pltn at start of simulation*/
[*updat ed every sensor Ti meSt ep */
doubl e sensor Ti meSt ep=0. 01; /*period for sensor data updates */
/*corresponds to SmartPath rgDi scr */
doubl e control Ti meSt ep=0. 01; /*period for control calculation */
/*corresponds to SmartPath rgDi scr */
doubl e sensor Ti me=0. 0; [*time for next sensor reading WRT start*/
/*of simulation */
doubl e control Ti me=0. 0; /*time for next control signal */
/*| ast sensorTi ne */
doubl e xplant[4] = {0,0,0,0}; [*pos, vel ,acc,jerk of trail platoon */
[*WRT road under trail platoon at */

/ *sensor Ti ne based on integrating contrl*/

/*signal . Updated every control Ti meStep*/
mai n()
/*Vari abl e decl arati ons */
doubl e curTinme = 0.0; /[*Current tine WRT start of sinmulation */

49

i nt LeadAct; /*enum of lead activity */

int Trail Act; /*enum of trail activity */
double (*Trail Law)(); /*pointer to longitudinal control law */
FI LE *LSt at e; /*File for lead platoon state trajctry */
FILE *TSt at e; /*File for trail platoon state trajctry */
/*Qpen the record files */

if((LState=fopen("results/lIstate.dat","wt"))==NULL)
printf("Lead state record can't be opened!\n");

if((TState=fopen("results/tstate.dat","wt"))==NULL)
printf("Trail state record can’t be opened!\n");

/* Initialize SmartPath parsing table for trail platoon (cid=1) */
rgStateTable = (Rg_CarState **) calloc(1,sizeof (Rg_CarState *));
rgStateTable[1l] = (Rg_CarState *) calloc(1,sizeof (Rg_CarState));

/* Sinul ation begins here */
for (sensorTi me=0. 0; sensor Ti ne<Si nEndTi ne; sensor Ti me+=sensor Ti neSt ep)
{
/* FORCED LEAD ACTIVITY */
i f(fabs(sensorTi me-0.0)<(sensorTi neStep/10))
{
LeadAct = CONSTANT;
}
/* FORCED TRAIL ACTIMITY */
/* Start a join at beginning of simulation */

i f(fabs(sensorTi nme-0.0)<(sensorTi neStep/10))

printf("Message fromtwocar.c:\n");

printf("Join initiated. Car #1; Tine = %f\n",
sensorTi ne) ;

Trail Act = JON;

InitMerge(l);

}

/* NORMATI VE LEAD ACTIVITY STATE MACHI NE (None. All forced.) */
/* NORVATI VE TRAI L ACTIVITY STATE MACHI NE */
if(Trail Act == JAON)
{
Trail Law = Accel ToMer ge;

i f(Conpl eteMerge(1l) == 1)

printf("Message fromtwocar.c:\n");

printf("Join conplete. Car #1; Time = %f\n",
sensorTi ne) ;

Trail Act = FOLLOW

InitFoll oW 1);

}
i f (Conpl eteMerge(1) == 2)
{
printf("Message fromtwocar.c:\n");

printf("Lead platoon out of sensor range. ");
printf("Car #1; Time = %f\n",sensorTi me);

Trail Act = LEAD;
InitLead(1);
, 1
if(Trail Act == SPLIT)
{
Trail Law = Decel ToSplit;

if(ConpleteSplit(1) == 1)
{
printf("Message fromtwocar.c:\n");

printf("Split conplete. Car #1; Tine = %f\n",
sensor Ti ne) ;

50

Trail Act = LEAD;
InitLead(1);

if(Oonp}I eteMerge(l) == 2)
{

printf("Message fromtwocar.c:\n");
printf("Lead platoon out of sensor range. ");
printf("Car #1; Time = % f\n", sensorTine);
Trail Act = LEAD;

InitLead(1);

}

}
if(Trail Act == GSTOP)

{

Trail Law = Decel ToGst op;

i f(Conpl eteGstop(1l) == 1)
{

printf("Message fromtwocar.c:\n");
printf("G stop conplete. Car #1; Tine = %f\n",
sensorTi ne) ;

Trail Act = REST;
InitRest(1);
, 1
if(Trail Act == CSTOP)
{
Trail Law = Decel ToCst op;

i f(Conpl eteCstop(1) == 1)

printf("Message fromtwocar.c:\n");
printf("C stop conplete. Car #1; Tine = %f\n",
sensorTi ne) ;

Trail Act = REST;
InitRest(1);
, 1
if(Trail Act == ESTOPR)
{
Trail Law = Decel ToEst op;

i f (Conpl eteEstop(1) == 1)

printf("Message fromtwocar.c:\n");
printf("E stop conplete. Car #1; Tine = %f\n",
sensor Ti ne) ;

Trail Act = REST;
InitRest(1);
if(Tr ai}l Act == FOLLOW
Trail Law = DoFol | ow,
if(Tr ai}l Act == LEAD)
Trail Law = DolLead;
if(Tr ai}l Act == REST)
il’r ai | Law = DoRest ;

/* FAI LURE CONDI Tl ONS
/* Terminate programif platoons crash
if(xlead[0]-xtrail[0] < 0.0)

printf("Message fromtwocar.c:\n");
printf("Trail platoon crashed into Lead pl atoon. Car #1;

51

")

*/
*/

printf("Tinme = % f\n", sensorTi ne);
exit(0);
}

/* LEAD PLATOON PLANT

/* Integrate to get the next |ead platoon state
x| ead[0] +=xI ead[1] *sensor Ti neSt ep;
x| ead[1] +=xI ead[2] *sensor Ti neSt ep;
x| ead[2] +=xI ead[3] *sensor Ti neSt ep;

/*Lead plant saturation sinulation
/*Accel eration saturation

i f(xlead[2]>2.5) xlead[?2]=2.5;

i f(xlead[2]<-5.0) xlead[2]=-5.0;
/*Vel ocity saturation

i f(xlead[1]<0) xlead[1]=0;

/*LEAD PLATOON CONTRCL
/*Cal cul ate control signal for |ead platoon
swi t ch(LeadAct)

{
case CONSTANT:
/*Lead acceleration is always 0

x| ead[3] = 0;
br eak;
case COVFORT:
/*Apply brakes at jerk confort threshold...
xl ead[3] = -2.5;

/*...unless the deceleration confort |evel is exceeded
if(xlead[2] < -2)

x| ead[3] =0;
br eak;
case SLAM
[*Apply brakes at maxi numjerk...
x| ead[3] = - 50;

/*...unl ess nmaxi mum decel eration i s exceeded
if(xlead[2] <= -5.0)
x| ead[3] =0;
br eak;

}

/ * LEAD PLATOON DATA STORAGE
fprintf(LState, "%f %f %f %Bf %f\n",
sensorTime, xlead[0], xlead[1], xlead[2], xlead[3]);

/*TRAI L PLATOON PLANT
/ *Readj ust xplant reference point since it noves every sensor Ti meStep
xpl ant [0] =0. 0;
xplant[1]=xtrail[1];
xplant[2]=xtrail[2];
xplant[3]=xtrail[3]

)

/*This loop is the anal og of the one in regapply.c which calls
[*LongLawPr oc(xest, now, cid) every rgDi scr seconds. |Instead of using
/*kmer _step, this is just a plain integration to find the trail state
/*based on the control jerk sent from Accel ToMerge() in regnerge.c
for (control Ti me=0. 0; control Ti me<sensor Ti meSt ep;
control Ti me+=control Ti meSt ep)

/*integrate to get the next trail platoon state
xpl ant [0] +=xpl ant [1] *contr ol Ti meSt ep;
xpl ant [1] +=xpl ant [2] *contr ol Ti meSt ep;
xpl ant [2] +=xpl ant [3] *control Ti meSt ep;

/*Trail plant saturation sinulation

/*Accel eration saturation
i f(xplant[2]>2.5) xplant[2]=2.5;

52

*/
*/

*/

*/

*/

*/

*/

*/

*/
*/

*/
*/

*/

*/
*/

*/
*/
*/
*/

*/

*/
*/

i f(xplant[2]<-5.0) xplant[2]=-5.0;
/*Vel ocity saturation
i f(xplant[1] <0) xpl ant[1]=0;

/*TRAI L PLATOON CONTROL
cur Ti me=sensor Ti ne+cont r ol Ti ne;
xpl ant[3]=(*Trail Law) (xpl ant, curTine, 1);
}

/*Update trail platoon state available for sensors
xtrail[0] +=xpl ant[0];
xtrail[1]=xplant[1];
xtrail[2]=xplant[2];
xtrail[3]=xplant[3];

/*TRAI L PLATOON DATA STORAGE
fprintf(TState, "% f %Bf %Uf %f %f\n",
curTinme,xtrail[0],xtrail[1],xtrail[2],xtrail[3]);

rgSt at eTabl e[1] - >i nc_di st ance=xpl ant[0] ;
}

printf("Message fromtwocar.c:\n");
printf("End of sinmulation tine reached. Tine = %f\n", sensorTi ne);

/*Close data files and end program
fclose(LState);

fclose(TState);

return(0);

/*Smart Path function enul ators begin here
doubl e Sm O ock(voi d)

{

return(sensorTine);

}

doubl e Car AheadVel (int cid)
{
i f((xlead[0] - xtrail[0])<=60.0)

return(xlead[1] - xtrail[1]);
el se

}
doubl e Car AheadDi st (int cid)

return(0.0);

{

i f((xlead[0] - xtrail[0])<=60.0)
return(xlead[0] - xtrail[0]);

el se

}

return(60.0);

53

—~ e e e e~ ~— —
EE R S T . S

~— — — — ~— —
* 0% ok ok X X X

#i
#i
#i
#i
#i
#i

Appendix D

Sample Maneuver Module Code: regmerge.c

FI LE: regnerge.c

Contai ns the functions needed to carry out a Safe Merge
I nit Merge

Saf eToMer ge

Saf eToAner ge

Accel ToMer ge

Conpl et eMer ge

ahwNPE

Devel opers: Jon Frankel, Perry Li
Last updated: 2/11/96 Pin-Yen Chen
8/ 28/ 96 Jason Car baugh

Copyright (c) 1996 The Regents of the University of California. */
Perm ssion to use, copy, nodify, and distribute this software and
its docunmentation for any purpose and w thout fee is hereby granted,
provi ded that the above copyright notice appear in all copies. The
Uni versity of California makes no representation about the

suitability of this software for any purpose. It is provided "as is"

wi t hout expressed or inplied warranty.

ncl ude "stdio. h"

ncl ude "math. h"

ncl ude "regul ation. h"
ncl ude "rglnt.h"

ncl ude "rgal | man. h"
ncl ude "rgmerge. h"

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

/***/

/*

~ o~ — — ~— —
L B S

DESCRI PTI ON\:

i nv2by2() receives a pointer to a 2x2 matrix in *mat, and returns
its inverse in *matinv

I NPUTS:

* mat 1x4 row by row representati on of a 2x2 matrix
OUTPUTS:

*mat i nv 1x4 row by row representati on of the inverse of nat

*/
*/
*/
*/
*/
*/
*/

/***/

voi d i nv2by2(doubl e *mat, doubl e *mati nv)

doubl e det; /* determ nant of mat
det=(mat[0] *mat[3])-(mat[1] *mat[2]);

matinv[0] =(1/det)*(mat[3]);

matinv[1] =(1/det)*(-mat[1]);

matinv[2] =(1/det)*(-mat[2]);

matinv[3] =(1/det)*(mat[0]);

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

**/

DESCRI PTI ON:
traj () returns the desired Trail platoon trajectory and its first
and second derivatives.

I NPUTS:

dx spaci ng between Lead and Trail cars

vLead absol ute velocity of Lead car

vTrail absol ute velocity of Trail car

QUTPUTS:

*vDes desired velocity of Trail car

*DvDes first partial derivatives of vDes */

* DDvDes second partial derivatives of vDes

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

/***/

voi d traj (doubl e dx, double vLead, double vTrail,

doubl e *vDes, double *DvDes, doubl e *DDvDes)

{

i nt Zone; /* trail platoon state space region */

doubl e r; /* spline regressor */

double Dr[2]; /* deriv of r wt dx:0 and vlLead: 1

doubl e DDr[4]; /* 2nd deriv of r wt dx”2:0, dx*vLead: 1*/
/* vLead*dx: 2, vlLead"2:3 */

doubl e c[4]; /* spline coefficients */

doubl e Dc[4]; /* deriv of ¢ wt vlLead

doubl e DDc[4]; /* 2nd deriv of ¢ wt vlLead */

doubl e dxI ntxnil; /* spcg at intersection of SAFEl/ SAFE2 */

doubl e dxI ntxn2; /* spcg at intersection of SAFE2/ DECEL */

dxlntxnl = i ntxn(vLead, SPLINE1);

dxlntxn2 = i ntxn(vLead, SPLINE2);

Zone = zone(dx, dxlntxnl, dxlntxn2);

/* Cal cul ate spline regressor and coefficients for spline regions */

/* and derivatives of both */

spline(dx, vlLead, Zone, &, c, Dr, Dc, DDr, DDc);

vdes(dx, vlLead, Zone, r, c, vDes);

dvdes(dx, vLead, Zone, r, ¢, Dr, Dc, DvDes);

ddvdes(dx, vlLead, Zone, r, ¢, Dr, Dc, DDr, DDc, DDvDes);
}

RETURN: spacing at intersection point

*/
*/

*/

*/
*/

/***I
/* DESCRI PTI ON

/* intxn() returns the spacing at which the desired velocity of

/* intersecting curves are equal

[* I NPUTS:

/* vlead absol ute velocity of Lead pl atoon

/* Zone enum of spline zone that will snmooth the intxn point

/*

/***/

doubl e i nt xn(doubl e vLead, int Zone)
doubl e dxl nt xn; /* return val ue
i f (Zone == SPLI NE1)

{
dxlntxn = (2*dvAl | owvLead +
aM n*(aMax - aM n)*del ay*del ay)/ (-2*aM n);

}
el se if (Zone == SPLI NE2)
{
dxIntxn = (dvAl l ow - dvBuff - (-aMn + aMax)*del ay) *
(dvAl l ow - dvBuff - (-aM n + aMax)*del ay)/
(2*aCom + dxJoin
el se

printf("Error in regnerge.c function intxn():\n");
printf("No desired curve intersection in this Zone.\n");

r et ur n(dxI nt xn);

*/

}
/***/
/* DESCRI PTI ON: */
/* zone() returns the trajectory region which is applicable to the */

/* current trail platoon state. */
/* 1 NPUTS: */
[* dx spaci ng between Lead and Trail cars */
/* dxIntxnl spacing at when SAFE1l/ SAFE2 rel velocities are equal */
/* dxlIntxn2 spacing at when SAFE2/DECEL rel velocities are equal */

55

/* RETURN: enum representation of current trajectory region */

/***I

i nt zone(doubl e dx, double dxlntxnl, double dxlntxn2)

{

int Zone; /* return val ue */
doubl e dxStart1; /* spacing at beg of SPLINE1l */
doubl e dxStart 2; /* spacing at beg of SPLINE2 */
doubl e dxEndi; /* spacing at end of SPLINE1l */
doubl e dxEnd2; /* spacing at end of SPLINE2 */
dxStartl = dxlntxnl + dxSpline/2;

dxStart2 = dxl ntxn2 + dxSpline/2;

dxEndl = dxlntxnl - dxSpline/2;

dxEnd2 = dxlntxn2 - dxSpline/2;

/* Choose region based on dx, then dv */

if ((dx <= dxSensorRange) && (dx > dxStartl))
{Zone = SAFEL,

else if ((dx <= dxStartl) && (dx > dxEndl))
Zone = SPLI NE1;

else if ((dx <= dxEndl) && (dx > dxStart2))
{Zone = SAFE2;

else if ((dx <= dxStart2) && (dx > dxEnd2))
{Zone = SPLI NEZ;

else if ((dx <= dxEnd2) && (dx > dxJoin))
Zone = DECEL;

el se if} ((dx <= dxJoin) && (dx > 0.0))
:Zone = FOLLOW

el se

printf("Error in regnerge.c function zone():\n");
printf("Platoons should not be joining.\n");

}

r et urn(Zone);

/***/

/* DESCRI PTI ON: */
/* spline() calculates the coefficients and regressors of cubic splines */
/* at intersections of the vdes curves, and their derivatives */
/* 1 NPUTS: */
[* dx spaci ng between Lead and Trail cars */
/* vlLead absol ute velocity of the Lead platoon */
/* zone traj region defined by desired spline */
/* QUTPUTS: */
[* *r spline regressor */
/* Dr deriv of r wt dx:0 and vLead:1 */
/* DDr 2nd deriv, r wt dx"2:0,dx*vLead: 1, vLead*dx: 2, vLead”2: 3 */
/* ¢ cubic spline coefficients */
/* Dc deriv of ¢ wt vLead */
/* DDc 2nd deriv of ¢ wt vLead */

/***(***/

voi d spline(doubl e dx, double vLead, int zone, double *r, double *c,
doubl e *Dr, double *Dc, double *DDr, double *DDc)

56

{

doubl e riat[4]; /* spline regressor derivative matrix */
doubl e riatlnv[4]; /* inverse of rMat */
doubl e dxI nt xn; /* veh spcg @desired traj intersection */
doubl e dxStart; /* spcg at beg of spline */
doubl e dxEnd; /* spcg at end of spline */

doubl e vStart; /* vDes at beg of spline */
doubl e VENd; /* vDes at end of spline */
doubl e DvStart][2]; /* DvDes at beg of spline */
doubl e DvENnd[2]; /* DvDes at end of spline */
doubl e a; /* internedi ate cal culation result */

/* Build matrix whose rows are derivatives of spline regression fornula */

rvat[0] = dxSpl i ne*dxSpl i ne;

rvat[1] = dxSpl i ne*dxSpl i ne*dxSpl i ne;
rvat[2] = 2*dxSpl i ne;

rvat[3] = 3*dxSpl i ne*dxSpl i ne;

i nv2by2(rMat, rMatlnv);

i f(zone == SPLI NE1)

{
/* Cal cul ate SAFELl/ SAFE2 intersection point and spline endpoints */
dxl ntxn = i ntxn(vLead, SPLINE1);
dxStart = dxl ntxn + dxSpline/2;
dxEnd = dxlntxn - dxSpline/2;
*r o= dxStart - dx;
/* v and Dv to be matched at dx = dxIntxn + dxSpline/2 */

vdes(dxStart, vLead, SAFEL, *r,c, & Start);
dvdes(dxStart, vLead, SAFEL, *r,c, Dr, Dc, DvStart);
/* v and Dv to be matched at dx = dxIntxn - dxSpline/2 */
vdes(dxEnd, vLead, SAFE2, *r, c, & End) ;
dvdes(dxEnd, vLead, SAFE2, *r, c, Dr, Dc, DvEnd) ;

/* Solve for the regression coefficients */
c[0] = vStart;
c[1] = -DvStart[O0];
c[2] = rvat I nv[0] *(vEnd - vStart + DvStart[O0]*dxSpline) +

rvatInv[1] *(DvStart[0] - DvEnd[O0]);

c[3] = rvatInv[2]*(vEnd - vStart + DvStart[O0]*dxSpline) +

rvat I nv[3]*(DvStart[0] - DvEnd[O0]);
/* Solve for coefficient and regressor first derivatives */

a = sgrt(-aM n*dxSpline +
(vLead + dvAllow) *(vLead + dvAllow));

Dc[0] = (dvAl | ow + vLead)/ a;

Dc[1] = -aM n*(vLead + dvAllow)/(a*a*a);

Dc[2] = rMatInv[0]*(1 - Dc[0O] - Dc[1]*dxSpline) +

rMat | nv[1] *Dc[1] ;
Dc[3] = rvatlinv[2]*(1 - Dc[0O] - Dc[1]*dxSpline) +
rMat I nv[3] *Dc[1] ;

Dr[0] = -1;
Dr[1] = -dvAIIovWaMn
/* Solve for coeff|C| ent and regressor second derivatives */
DDc[0] = -aM n*dxSpl i ne/ (a*a*a);
DDc[1] = aM n*(2*(vLead + dvAllow) *(vLead + dvAllow) +
aM n*dxSpline)/ (a*a*a*a*a);
DDc[2] = rvatlnv[O]*(-DDc[0] - DDc[1] *dxSpline) +

rMat | nv[1] *(DDc[1]);
DDc[3] = rMat | nv[2] *(-DDc[0] - DDc[1]*dxSpline) +
rMat | nv[3] *(DDc[1]);

)

)

0
0,
0
0

)

57

el se if(zone == SPLI NE2)

{
/* Cal cul ate SAFE2/ DECEL intersection point and spline endpoints

dxlntxn = i ntxn(vLead, SPLINE2);
dxStart = dxl ntxn + dxSpline/2;

dxEnd = dxl ntxn - dxSpline/?2;
*r o= dxStart - dx;

/* v and Dv to be matched at dx = dxIntxn + dxSpline/2
vdes(dxStart, vLead, SAFE2, *r, c, & Start);
dvdes(dxStart, vLead, SAFE2, *r, c, Dr, Dc, DvStart);

/* v and Dv to be matched at dx = dxIntxn - dxSpline/2
vdes(dxEnd, vLead, DECEL, *r, c, & End) ;
dvdes(dxEnd, vLead, DECEL, *r, c, Dr, Dc, DvEnd) ;

/* Solve for the regression coefficients

c[0] = vStart;

c[1] = -DvStart[0];

c[2] = rvat I nv[0] *(vEnd - vStart + DvStart[O0]*dxSpline) +
rvatlnv[1] *(DvStart[0] - DvEnd[0]);

c[3] = rvatlnv[2]*(vEnd - vStart + DvStart[O0]*dxSpline) +

rvat I nv[3]*(DvStart[0] - DvEnd[0]);
/* Solve for coefficient and regressor first derivatives

Dc[0] = 1;
Dc[1] = 0;
Dc[2] = 0;
Dc[3] = 0;
Dr[0] = -1;
Dr[1] = 0;
/* Solve for coefficient and regressor second derivatives
DDc[0] = 0;
DDc[1] = 0;
DDc[2] = 0;
DDc[3] = 0;
DDr[0] = 0;
DDr[1] = 0;
DDr[2] = 0;
DDr[3] = 0;
}
el se
{
*r = 0;
Dr[0] = 0;
Dr[1] = 0;
DDr[0] = 0;
DDr[1] = 0;
DDr[2] = 0;
DDr[3] = 0;
c[0] = 0;
c[1] = 0;
c[2] = 0;
c[3] = 0;
Dc[0] = 0;
Dc[1] = 0;
Dc[2] = 0;
Dc[3] = 0;
DDc[0] = 0;
DDc[1] = 0;
DDc[2] = 0;
DDc[3] = 0;
}
}

*/

*/

*/

*/

*/

*/

/***/

/* DESCRI PTI ON:
/* vdes() returns the desired velocity (vDes) of the trail

58

*/
*/

/* platoon given the zone which defines the current trajectory region */
/* of the trail platoon state */
[* I NPUTS: */
[* dx spaci ng between Lead and Trail platoons */
/* vlead absol ute velocity of Lead pl atoon */
/* zone traj region in which to calculate desired velocity */
/* RETURN: desired velocity of trail platoon */

/***I

voi d vdes(doubl e dx, double vLead, int zone, double r, double *c,
doubl e *vDes)

{
/* Cal culate vDes for the given trajectory region */
i f(zone == SAFEl)
{
*vDes = -(aMax - aM n)*delay - dvBuff + sqrt(-2*aM n*dx +
vLead*vLead + dvAl |l owdvAll ow -aM n*(aMax-aM n)
*del ay*del ay) ;
}
el se if(zone == SAFE2)
{
*vDes = -(aMax - aM n)*delay + dvAllow - dvBuff + vLead;
}
el se if(zone == DECEL)
{
*vDes = vLead + sqrt(2*aCont(dx - dxJoin));
}
el se if(zone == FOLLOW
{
*vDes = vLead - sqrt(2*aCont(dxJoin - dx));
}
else if((zone == SPLINE1) || (zone == SPLINE2))
{
*vDes = c[0]
+c[1]*(r)
+ c[2]*(r*r)
+ c[3]*(r*r*r);
}
el se
printf("Error in regnerge.c function vdes():\n");
printf("’ zone’ has taken an illegal value\n");
}
/***/
/* DESCRI PTI ON: */
/* dvdes cal cul ates the partial derivatives of the vdes curves with */
/* respect to dx (DvDes[0]) and vLead (DvDes[1]) */
[* I NPUTS: */
[* dx spaci ng between Lead and Trail platoons */
/* vlLead absolute velocity of Lead pl atoon */
/* zone region in which to calculate desired trajectory */
[* QUTPUTS: */
/* *DvDes first partial derivatives of vDes */

/***/

voi d dvdes(doubl e dx, double vlLead, int zone, double r, double *c,
doubl e *Dr, double *Dc, double *DvDes)

doubl e a; /* internmedi ate cal cul ati on result */

if (zone == SAFE1)

a = sqgrt(-2*aM n*dx + vlLead*vlLead +
dvAl | owrdvAl | ow - aM n*(aMax-aM n) *del ay*del ay) ;
DvDes[0] = -aM n/ a;
DvDes[1] = vLead/ a;

59

}
else if (zone == SAFE2)

{
DvDes[0] = 0;
DvDes[1] = 1;
}
else if (zone == DECEL)
{
DvDes[0] = aConi sqrt (2*aCont (dx-dxJoin));
DvDes[1] = 1;
}
else if (zone == FOLLOW
{
DvDes[0] = aCont sqrt (2*aCont (dxJoi n-dx));
DvDes[1] = 1;

}
else if ((zone == SPLINE1l) || (zone == SPLINE2))

DvDes[0] = (c[1] + 2*c[2]*r + 3*c[3]*r*r)*Dr[0];
DvDes[1] = (Dc[0] + Dc[1]*r + Dc[2]*r*r + Dc[3]*r*r*r) +
(c[1] + 2*c[2]*r + 3*c[3]*r*r)*Dr[1];

}
el se

printf("Error in regnerge.c function dvdes:\n");

printf("’ zone’ has taken an illegal value\n");

}
}
/***/
/* DESCRI PTI ON: */
/* ddvdes cal cul ates the 2nd partial derivatives of the vdes curves */
/* with respect to dx"2 (DDvDes[0]), dx*dvLead (DDvDes[1]), dvLead*dx */
/* (DDvDes[2]), and dvLead"2 (DDvDes[3]) */
/* 1 NPUTS: */
[* dx spaci ng between Lead and Trail platoons */
/* vlLead absolute velocity of Lead pl atoon */
/* zone region in which to calculate desired trajectory */
/* QUTPUTS: */
/* *DDvDes second partial derivatives of vDes */

/***/

voi d ddvdes(doubl e dx, double vLead, int zone, double r, double *c,

doubl e *Dr, double *Dc, double *DDr, double *DDc,

doubl e *DDvDes)
doubl e a; /* internmedi ate cal cul ation result */
if (zone == SAFE1)

a = sqgrt(-2*aM n*dx + vLead*vLead + dvAll owdvAll ow -
aM n* (aMax- aM n) *del ay*del ay) ;

DDvDes[0] = -aMn*aM n/(a*a*a);
DDvDes[1] = vlead*aM n/(a*a*a);
DDvDes[2] = vlead*aM n/(a*a*a);
DDvDes[3] = (a*a - vlLead*vlLead)/(a*a*a);
}
else if (zone == SAFE2)
{
DDvDes[0] = O;
DDvDes[1] = O;
DDvDes[2] = O;
DDvDes[3] = O;
}
else if (zone == DECEL)
{
a = sgrt(2*aCont(dx - dxJoin));
DDvDes[0] = -aContaConi (a*a*a);

60

el

el

el

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

DDvDes[1] = O;
DDvDes[2] = O;
DDvDes[3] = O;
}
se if (zone == FOLLOW
{
a = sqrt(2*aCont(dxJoin - dx));
DDvDes[0] = aConraConi (a*a*a);
DDvDes[1] = O;
DDvDes[2] = O;
DDvDes[3] = O0;
}
se if ((zone == SPLINE1l) || (zone == SPLINE2))
{
DDvDes[0] = Dr[0] *
(2*c[2] +
(6*c[3]*r)) +
DDr[0] *
(c[1] +
(2*c[2]*r) +
(3*c[3]*r*r));
DDvDes[1] = Dr[0] *
(De[1] +
(De[2]*r + c[2]*Dr[1])*2 +
(Dc[3]*r*r + 2*c[3]*r*Dr[1])*3) +
DDr[1] *
(c[1] +
(2*c[2]*r) +
(3*c[3]*r*r));
DDvDes[2] = Dr[0] *
(De[1] +
(De[2]*r + c[2]*Dr[1])*2 +
(De[3]*r*r + 2*c[3]*r*Dr[1])*3) +
DDr[2] *
(c[1] +
(2*c[2]*r) +
(3*c[3]*r*r));
DDvDes[3] = (DDc[0] +

(DDc[1]*r + De[1]*Dr[1]) +

(DDc[2]*r*r + 2*Dc[2]*r*Dr[1]) +

(DDc[3]*r*r*r + 3*Dc[3]*r*r*Dr[1])) +
Dr[1] *

(+

([*r +c[2]*Dr[1])*2 +

(1*r*r + 2*c[3]*r*Dr[1])*3) +
DOr[3] *

(

(

(

wN

se

printf("Error in regnerge.c function ddvdes():\n");
printf("’ zone’ has taken an illegal value\n");

**/

DESCRI PTI ON:
vsafe() calculates the nmaxi rum safe velocity of the Trail platoon
such that no collision will occur if the Trail platoon slans on its

brakes as soon as it crosses this velocity limt. |In addition, */
a buffer dvBuff provides a factor of safety.

I NPUTS:

dx spaci ng between Lead and Trail platoons

vLead absolute velocity of Lead pl atoon */
RETURN: maxi mum safe velocity of Trail platoon with del ay

61

*/
*/
*/
*/
*/
*/

*/

/***I

doubl e vsaf e(doubl e dx, doubl e vLead)

doubl e vSafel; /* maxi mum safe Trail plat vel in SAFE1 */
doubl e vSafe2; /* maxi mum safe Trail plat vel in SAFE2 */
doubl e vSafe; /* maxi mum safe Trail plat vel */
vSafel = -(aMax - aMn)*delay - dvBuff + sqrt(-2*aM n*dx +

vLead*vLead + dvAl |l owdvAll ow -aM n*(aMax-aM n)
*del ay*del ay) ;

vSafe2 = -(aMax - aM n)*delay + dvAl |l ow -dvBuff + vlLead,

vSafe = Max(vSaf el, vSaf e2);

return(vSafe);

}
/***I
/* DESCRI PTI ON: */
/* vbound() cal cul ates the maxi mum safe velocity of the Trail platoon */
/* with no delay. That is, an initial state outside vBound() wll */

/* certainly result in a collision if the |ead platoon slans on its */
/* brakes, even if the Trail platoon is already slammng on its brakes */
[* I NPUTS: */
[* dx spaci ng between Lead and Trail platoons */
/* vlead absol ute velocity of Lead pl atoon */

/* RETURN: maxi mum safe velocity of Trail platoon w o del ay */

/***/

doubl e vbound(doubl e dx, doubl e vLead)

{

doubl e vBound1; /* maxi mum safe Trail plat vel in SAFE1 */
doubl e vBound2; /* maxi mum safe Trail plat vel in SAFE2 */
doubl e vBound; /* return val ue */

vBoundl = sqrt(-2*aM n*dx + vLead*vLead + dvAl | ow*dvAl |l ow);

vBound2 = dvAl | ow + vlLead;

vBound = Max(vBoundl, vBound2) ;

ret urn(vBound);

}
/***/
/* DESCRI PTI ON: */
/* vnocol |l () calculates the maxi mum velocity of the Trail platoon */
/* with delay that insures that no collision occurs. */

/* When the Trail platoon velocity is above this value, the Trail */

/* platoon is allowed to exceed acceleration and jerk confort */
/* constraints to avoid collisions below dvAl | ow. dvBuff adds a factor */
/* of safety. */
[* I NPUTS: */
[* dx spaci ng between Lead and Trail platoons */
/* vlLead absolute velocity of Lead pl atoon */

/* RETURN: maxi mum vel ocity of Trail platoon w delay for no inpact */

/***/

doubl e vnocol | (doubl e dx, doubl e vLead)
doubl e vNoCol | ; /* return val ue */

vNoCol | = -(aMax - aM n)*delay - dvBuff + sqrt(-2*aM n*dx +
vLead*vLead - aM n*(aMax-aM n)*del ay*del ay) ;

return(vNoCol |);

}
/***/
/* DESCRI PTI ON: */
/* region() determnes the state space region of the Trail platoon */

/* desiring to execute or continue a join maneuver */
/* 1 NPUTS: */
[* dx spaci ng between Lead and Trail platoons */

62

/* vlead absol ute velocity of Lead pl atoon
[* vTrail absol ute velocity of Trail platoon

/* RETURN: enum representation of current state space region

*/
*/

/***I

i nt region(doubl e dx, double vLead, double vTrail)

{
doubl e vSafe;
doubl e vBound;

doubl e vNoCol I ;

i nt Region; /* return val ue
vSafe = vsaf e(dx, vlLead);

vBound = vbound(dx, vlLead);

vNoCol | = vnocol | (dx, vLead);

i f (dx > dxSensor Range)
Regi on = TOO FAR;
else if ((dx > dxJoi nMax) && (dx <= dxSensor Range))

if (vTrail <= vNoCol|)

Regi on = NORMAL ;

else if((vTrail <= vSafe) && (vTrail > vNoColl))
Regi on = NOCOVFORT;

else if((vTrail <= vBound) && (vTrail > vSafe))
Regi on = BRAKE;

el se
Regi on = UNSAFE;

else if ((dx >= dxJoinMn) && (dx <= dxJoi nMax))

if (((vLead - vTrail) <= dvJoi nMax) &&
((vLead - vTrail) >= dvJoinMn))
Regi on = FI NI SHED,;

el se

{
if (vTrail <= vNoCol|)

Regi on = NORMAL ;

else if((vTrail <= vSafe) && (vTrail > vNoColl))
Regi on = NOCOVFORT;

else if((vTrail <= vBound) && (vTrail > vSafe))
Regi on = BRAKE;

el se
Regi on = UNSAFE;

}

}
else if ((dx > 0.0) & (dx < dxJoi nM n))
if (vTrail <= vNoGoll)

Regi on = NORMAL ;

else if((vTrail <= vSafe) && (vTrail > vNoColl))
Regi on = NOCOVF ;

else if((vTrail <= vBound) && (vTrail > vSafe))
Regi on = BRAKE;

el se
Regi on = UNSAFE;

el se
Regi on = CRASHED;

ret urn(Regi on);
}

*/

/***/

/* DESCRI PTI ON:

/* Saf eToMerge() checks whether the initial state of the joining trail

/* platoon is in the safe region
/* 1 NPUTS:

63

*/
*/
*/
*/

/* cid car identification nunber of Trail platoon |eader */
/* RETURN: 0 for unsafe, 1 for safe */
/***/
i nt Saf eToMerge(int cid)

{

int safe;

i nt Region;

doubl e vTrail;

doubl e vLead;

doubl e vSafe;

doubl e dx;

/* printf("Checking safe to nerge %\n",cid); */

vTrail = r gSt at eTabl e[ci d] - >speed;

viLead = vTrail + Car AheadVel (cid);

dx = Car AheadDi st (ci d);

Regi on = regi on(dx, vLead, vTrail);

i f((Region == UNSAFE) || (Region == CRASHED))
safe = 0;

el se
safe = 1;

return(safe);

}

/***I
/* DESCRI PTI ON: */
/* InitMerge() initializes the state variables used for a join */
/* I NPUTS: */
/* cid car identification nunber of Trail platoon |eader */
/* QUTPUTS: */
/* rgStateTabl e[ci d] ->(vari ous) */

/***I

void InitMerge(int cid)

{
rgSt at eTabl e

[cid]->Region = NORMAL ;
rgStateTable[cid]->DLimt = 0;
r gSt at eTabl e[ci d] - >xLeadSens = 0. 0;
rgSt at eTabl e[ci d] - >vLeadSens = 0. 0;
r gSt at eTabl e[ci d] - >aLeadSens = 0. 0;
rgSt at eTabl e[ci d] - >j LeadSens = 0.0;
rgSt at eTabl e[ci d] - >xRef = 0.0;
rgStateTabl e[cid]->r = 0.0;
rgStateTabl e[cid]->rDot = 0.0;
rgStateTabl e[cid]->reg_coord = NOT_SET;
}
/***/
/* DESCRI PTI ON: *
/* Accel ToMerge() is the longitudinal control law for a join nmaneuver */
/* The jerk of the Trail platoon is controlled. The Trail platoon is */
/* model l ed as a second order systemwi th a pure del ay. */
/* 1 NPUTS: */
/* *xest Trail platoon state (x, v, a) */
/* time time since beginning of sinulation [sec] */
/* cid car identification nunber of Trail platoon |eader */
/* RETURN: jerk of Trail platoon */

/***/

doubl e Accel ToMer ge(doubl e *xest, double tinme, int cid)

double tCtrl[2]; /* time of current and last control */
double tCtrl I nc; /* time between current & last control */

doubl e t Sens[2]; time of current and | ast sensor sanp */
doubl e t Sensl nc; tinme between current & last snsr snp */
doubl e xRef; ref posn of xLead and xTrail */
doubl e xRefl nc; ref posn increnment */
doubl e xLead; Lead pl atoon position wt xRef */
doubl e xLeadSens|[2]; Current & | ast sensed position*/

doubl e
doubl e

vLead;
vlLeadSens][2] ;

Lead pl at oon absol ute vel ocity*/
Current & | ast sensed Lead velocity */

/*
/*
/*
/*
/*
/*
/*
/*
doubl e aLeadHat ; /* estimated accel of Lead pl atoon */
doubl e aLeadSens[2]; /* Current & | ast sensor derived accel */
doubl e alLeadHat Dot Hat ; /* est of deriv of est’d acc of Lead pl */
doubl e j LeadSens[2] ; /* Current & |l ast sensor derived jerk */
double r[2]; /* R O observer indep var for acc est */
doubl e rDot[2]; /* time deriv of r */
doubl e g[2]; /* q sensitivity factors */
doubl e q; /* non-lin tuning function of observer */
doubl e xTrail; /* Trail platoon postion wt xRef */
doubl e vTrail; /* Trail platoon absolute velocity */
doubl e aTrail; /* Trail platoon acceleration */
double jTrail; /* return val ue */
doubl e vDes; /* desired velocity of Trail platoon */
doubl e DvDes[2]; /* deriv of vDes wt dx and vlLead */
doubl e DDvDes[4]; /* 2nd deriv of vDes wt dx and vlLead */
doubl e aDes; /* desired accel of Trail platoon */
doubl e j Des; /* time deriv of des acc of Trail plat */
doubl e dxSens; /* sensed spacing between Lead & Trail */
doubl e dvSens; /* sensed relative vel btwn Lead & Trail*/
i nt Region; /* state space region of Trail platoon */
int DLimt; /* highest deriv of posn fromsens info */
/* Retrieve last Trail platoon state table... */
/* ...variables static between sensor tine indices */
tSens[1] = rgSt at eTabl e[ci d] - >t Sens;
xLeadSens[1] = rgSt at eTabl e[ci d] - >xLeadSens;
vLeadSens[1] = rgSt at eTabl e[ci d] - >vLeadSens;
aLeadSens[1] = rgSt at eTabl e[ci d] - >aLeadSens;
j LeadSens[1] = rgSt at eTabl e[ci d] - >j LeadSens;
xRef = rgSt at eTabl e[ci d] - >xRef;
DLimt = rgStateTabl e[cid]->DLimt;
/* ...variables dynam c between sensor tine indices */
tarl[1] = rgStateTabl e[cid]->tCtrl;
r[1] = rgst at eTabl e[ci d] - >r;
rDot[1] = rgSt at eTabl e[ci d] - >r Dot ;
/* ...current sensor readings */
tSens[0] = Sm d ock();
xReflnc = r gSt at eTabl e[ci d] - >i nc_di st ance;
dxSens = Car AheadDi st (ci d);
dvSens = Car AheadVel (ci d);
/* ...reset saturation flag */
Saturation = 0;
/* Cal cul ate sensor and control time steps */
t Senslnc = tSens[0] - tSens[1];
tarl[0] = tine;
tCrllnc = tarl[0] - tCrl[1];
tFronSens = tCrl[0] - tSens[O0];
/* On sensor info arrival, update Lead platoon state... */
if(time == tSens[0])
/* Calculate Trail platoon state wt road at the beginning of Join. */
/* Trail platoon considers its position to be zero when sensors update. */
if (DLimt >= 1)
{
xReflnc = r gSt at eTabl e[ci d] - >i nc_di st ance;
}

65

el se

{
xReflnc = 0. 0;
}
xRef += xRef I nc;
xTrail = xRef + xest[O0];
vTrail = xest[1];
aTrail = xest[2];
xLeadSens[0] = dxSens + xTrail;

vLeadSens[0]
if (DLimt >= 1)

dvSens + vTrail;

{
alLeadSens[0] = (vLeadSens[0] - vLeadSens[1])/t Senslnc;
r[o] = r(1] + rDot[1]*tCtrlInc;
}
el se
{
alLeadSens[0] = 0. 0;
r[o] = - (F1*xLeadSens[0] + F2*vLeadSens[O0]);

}
if (DLimt >= 2)
j LeadSens|[0]

el se

j LeadSens[0] = 0. 0;
xLead = xLeadSens[0] ;
viLead = vLeadSens[0] ;

/* Al'l ow one higher derivative to be calculated at the next sensor read

if (DLimt < 2)
DLimt += 1;
el se
DLimt = 2;

/* Store updated Trail platoon state table

/* variables static between sensor tine indices
rgSt at eTabl e[ci d] - >t Sens =t Sens[0] ;
rgSt at eTabl e[ci d] - >xLeadSens xLeadSens|[0] ;
rgSt at eTabl e[ci d] - >vLeadSens vLeadSens[0] ;
rgSt at eTabl e[ci d] - >aLeadSens aLeadSens[0] ;
r gSt at eTabl e[ci d] - >j LeadSens j LeadSens[0] ;

rgStateTabl e[cid]->r = r[o];
rgSt at eTabl e[ci d] - >xRef = xRef ;
rgStateTable[cid]->DLimt = DLimt;

el se

/* Calculate Trail platoon state wt road at the beginning of Join.

xTrail = xRef + xest[O0];
vTrail = xest[1];
aTrail = xest[2];
/*... otherwise, estimate the state of Lead pl atoon between sanpl es.
xLead = xLeadSens[1] +

(vLeadSens[1] *t FronSens) +

(aLeadSens[1] *t FronSens*t FronfSens) /2 +

(j LeadSens[1] *t Fr onSens*t Fr onSens*t Fr onSens) / 6;
vLead = vLeadSens[1] +

(aLeadSens[1] *t FronSens) +

(j LeadSens[1] *t Fr onSens*t Fr onSens) / 2;
r[o] = r[1] + rDot[1]*tCtrl I nc;
}

/* Determ ne region based on pl atoon states
Regi on = regi on(xLead - xTrail, vLead, vTrail);

/* Estimate accel eration of Lead pl atoon using reduced observer
alLeadHat = r[0] + (Fl*xLead + F2*vlLead);

66

(aLeadSens[0] - alLeadSens[1])/t Senslnc;

*/
*/

*/

*/

*/

*/

/* Get description of desired Trail platoon trajectory
/* Backstep through desired trajectories to get control input
traj(xLead - xTrail,vLead, vTrail, &Des, DvDes, DDvDes) ;

/* Calculate desired Trail platoon trajectory velocity
/* Saturation Conditions
if (vDes > M n(vFast, vMax))
{
vDes = M n(vFast, vMax) ;
DvDes[0] 0. 0;
DvDes[1]
DDvDes[0]
DDvDes[1]
DDvDes| 2]
DDvDes| 3]
Saturation =

}
vDes = vDes;

eeeee

0
0.
0.
0
0
1

el se

/* Calculate desired Trail platoon trajectory acceleration
aDes = -Lanbdal*(vTrail - vDes) +
DvDes[0] *(vLead - vTrail) +
DvDes[1] *alLeadHat ;
/* Saturation Conditions
switch (Region)

{
case NORMAL:
i f(aDes > aCom
aDes = aCom
Saturation = 1;
el se if(aDes < -aCom
aDes = -aCom
Saturation = 1;
el se
aDes = aDes;
i f(vDes >= M n(vFast, vMax))
if (aDes > 0.0)
aDes = 0.0;
Saturation = 1;
el se
aDes = aDes;
el se
aDes = aDes;
br eak;
case NOCOVFORT:
aDes = -Lanbdal*(vTrail - vDes) +

DvDes[0] *(vLead - vTrail) +
DvDes[1] *alLeadHat ;

i f(aDes > aMax)
aDes = alax;
Saturation = 1;

el se if(abDes < aM n)
aDes = aM n;
Saturation = 1;

el se
aDes = aDes;

i f(vDes >= M n(vFast, vMax))
if (aDes > 0.0)
aDes = 0.0;
Saturation = 1;
el se
aDes = aDes;
el se

67

*/
*/

*/
*/

*/

*/

aDes = aDes;
br eak;
defaul t:

/* The rest of the cases do not use aDes, don’t worry about saturation

aDes = 0.0;
br eak;

}

/* Calculate desired Trail platoon trajectory jerk
/* Reduced Observer (estinmating aLead only)
/* Calculate gain of effect of (aLead - alLeadHat) on dynam cs of

/* (vTrail - vDes) and (aTrail - aDes)
g[0] = -DvDes[1];
gl1] = - DvDes[0] -

DvDes[1] *(Lanbdal + F2) -
DDvDes[2] *(vLead - vTrail) -
DDvDes|[3] *(alLeadHat) ;
/* Cal cul ate Reduced Cbserver tuning function
g = (g[0]*(vTrail - vDes)*Beta +
gl1]*(aTrail - aDes))*Gnmg;

/* Cal cul ate Reduced Cbserver state dynamics, estinmate of aleadHat Dot

rDot[0] = -F2*r[0] - F1*F2*xLead - (F2*F2+Fl)*vLead + q;
aleadHat Dot Hat = rDot[0] + Fl*vLead + F2*aleadHat;

/* Calculate desired Trail platoon trajectory jerk
jDes = (vLead - vTrail)*
(DDvDes[0] *(vLead - vTrail) + DDvDes[2]*aLeadHat +
DvDes|[0] * Lanbdal)
(aLeadHat) *
(DDvDes[1] *(vLead - vTrail) + DDvDes[3]*alLeadHat +
DvDes|[1] * Lanbdal)
(aTrail)*
(-Lanmbdal - DvDes[0]) +
(aLeadHat Dot Hat) *
DvDes[1] ;
/* Saturation Conditions
switch (Region)
{
case NORMAL:
if(jDes > jCom
j Des =] Com
Saturation = 1;
else if(jDes < -jCom
j Des = -j Com
Saturation = 1;

+

+

el se
j Des = Des;

i f (aDes >= aCon)
if(jDes > 0.0)
jDes = 0. 0;
Saturation = 1;
el se
jDes = j Des;
el se if(aDes <= -aCon)
if(jDes < 0.0)
jDes = 0. 0;
Saturation = 1;
el se
jDes = j Des;
el se
jDes = j Des;
i f(vDes >= M n(vFast, vMax))

if(jDes > 0.0)
jDes = 0. 0;

68

*/
*/
*/
*/

*/

*/

*/

*/

Saturation = 1;
el se
j Des = Des;
el se
j Des = Des;
br eak;
case NOCOVFORT:
if(jDes > jMx)
j Des =j Max;
Saturation = 1;
else if(jDes < -jCom
j Des = -j Com
Saturation = 1;
el se
j Des = Des;

i f (aDes >= aMax)
if(jDes. > 0.0)

jDes = 0.0;
Saturation = 1;

el se
jDes = j Des;

el se if(aDes <= aM n)
if(jDes < 0.0)

jDes = 0. 0;
Saturation = 1;
el se
jDes = j Des;
el se
jDes = j Des;

i f(vDes >= M n(vFast, vMax))
if(jDes. > 0.0)

jDes = 0.0;
Saturation = 1;
el se
j Des = Des;
el se
j Des = Des;
br eak;
defaul t:
/* The rest of the cases do not use jDes, don’t worry about saturation
jDes =0.0;
br eak;

}

/* Cal culate control jerk
swi tch (Region)

case TOO FAR:
jTrail = 0. 0;
printf("Warning in regnerge.c:\n");
printf("Lead platoon is out of sensor range.\n");

br eak;
case NORVAL:
jTrail = -Lanbda2*(aTrail - aDes) -
Beta*(vTrail - vDes) +
j Des;

/* Saturation Conditions for confort in NORVAL region
if(jTrail > jCom

jTrail = j Com
Saturation = 1;
else if(jTrail < -jCom
jTrail = -j Com
Saturation = 1;
el se
jTrail = jTrail;

69

*/

*/

*/

if(aTrail >= aCom
if (jTrail > 0.0)

jTrail = 0. 0;
Saturation = 1;

el se
jTrail = jTrail;

else if(aTrail <= -aCom
if (jTrail < 0.0)

jTrail = 0. 0;
Saturation = 1;
el se
jTrail = jTrail;
el se
jTrail = jTrail;

if(vTrail >= M n(vMax, vFast))
if (jTrail > 0.0)
jTrail = 0. 0;
Saturation = 1;

el se
jTrail = jTrail;
el se
jTrail = jTrail;
br eak;
case NOCOVFORT:
jTrail = - Lanbda2*(aTrail - aDes) -
Beta*(vTrail - vDes) +
j Des;

/* Saturation Conditions for confort in NOCOVFORT region
if(jTrail > jMax)

jTrail = j Max;
Saturation = 1;
else if(jTrail < -jCom
jTrail = -j Com
Saturation = 1;
el se
jTrail = jTrail;

if(aTrail >= aMax)
if (jTrail > 0.0)
jTrail = 0. 0;
Saturation = 1;
el se
jTrail = jTrail;
else if(aTrail <= aMn)
if (jTrail < 0.0)
jTrail = 0. 0;
Saturation = 1;
el se
jTrail = jTrail;
el se
jTrail = jTrail;

if(vTrail >= Mn(vMax, vFast))
if (jTrail > 0.0)
jTrail = 0. 0;
Saturation = 1;

el se
jTrail = jTrail;
el se
jTrail = jTrail;
br eak;
case BRAKE:
jTrail = jMn;

70

*/

/* Saturation Conditions for vehicle capabilities in BRAKE region */
if(aTrail <= aMn)
jTrail = 0. 0;
Saturation = 1;

el se
jTrail = jTrail;
if(vTrail <= 0.0)
jTrail = 0. 0;
Saturation = 1;
el se
jTrail = jTrail;
br eak;
case UNSAFE:

printf("Error in regnerge.c:\n");
printf("Unsafe inpact is enmnent.\n");
jTrail = i Mn;
/* Saturation Conditions for vehicle capabilities in UNSAFE region */
if(aTrail <= aMn)
jTrail = 0. 0;
Saturation = 1;
el se
jTrail = jTrail;

if(vTrail <= 0.0)
jTrail = 0. 0;
Saturation = 1;
el se
jTrail = jTrail;
br eak;
case FI NI SHED:
jTrail = 0. 0;
br eak;
case CRASHED:
printf("Error in regnerge.c:\n");
printf("Unsafe inpact has occured.\n");

jTrail = i Mn;
/* Saturation Conditions for vehicle capabilities in CRASHED regi on */
if(aTrail <= aMn)
jTrail = 0. 0;
Saturation = 1;
el se
jTrail = jTrail;

if(vTrail <= 0.0)
jTrail = 0. 0;
Saturation = 1;

el se
jTrail = jTrail;

br eak;
}
/* Store updated Trail platoon state table... */
/* ...variables dynam c between sensor tinme indices */
rgStateTable[cid]->tCrl = tCrl[0];
rgStateTabl e[cid]->r = r[o];
i f(Saturation)

rgSt at eTabl e[ci d] - >r Dot = rbot[0] - q;
el se

rgStateTable[cid]->rDot = rDot[0];
/* ...variables for flags to other functions */
rgSt at eTabl e[ci d] - >Regi on = Regi on;

return(jTrail);

71

**I

DESCRI PTI ON:

| NPUTS:
cid car identification nunber
RETURN: 0 for unsafe, 1 for safe

/*

/*

/* Saf eToAnerge() is an obsolete function used in regAutoAL. c.
/*

/* of Trail
/*

pl at oon | eader

*/
*/
*/
*/
*/

/***I

i nt Saf eToAnmerge(int cid)

/* regmerge will not initiate an abort
return(l);

}

if it is not safe

*/

**I

DESCRI PTI ON:

/*

/*

/* ConpleteMerge() is called by regAutoAL.c to deternmine if the join
/* manuever is conplete or if it cannot be conpl et ed.
/*
/*
/*

I NPUTS:
cid car identification nunber

of Trail
RETURN: i nteger encoded join completion status

pl at oon | eader

*/
*/

*/
*/
*/

/***I

i nt Conpl eteMerge(int cid)

{

int conpl ete; /* return val ue

if (rgStateTabl e[cid]->Regi on == FI NIl SHED)
conplete = 1;

else if (rgStateTabl e[cid]->Regi on == TOO FAR)
conplete = 2;

el se
conplete = 0;

return (conplete);

72

*/

Appendix E

Source Code: sortcar.m

%-ile: sortcar.m

%y Jason Carbaugh Jan. 17, 1996

uSorts out data froma specified car (N) froma filenane.state Smart Path data
file

%nd puts the filtered data into filenanme.state.carN

%Revi si ons:

Cl DCOL
CoLQrYy

2; %at a tabl e col unm which contains the Car | D nunber
13; 9unber of colums in SmartPath state data table

InputFile = input(’Wat is the nane of the SmartPath state data file? ',’s’);
FID = fopen(InputFile,'r");
[StateAll, ElenentQy] = fscanf(FID,'%");
StateAll = (reshape(StateAl |, COLQTY, El emrent @ y/ COLQTY)) " ;
fclose(FID;
SortCarlD = input('Wat is the Car 1D of the vehicle you wish to sort out? ');
Cut put Row=1,
for InputRow = 1:size(StateAll, 1),
if (StateAl (I nputRow, CIDCOL) == SortCarlD);
for Collndex = 1: COLQTY,
St at eSor t (Qut put Row, Col | ndex) = StateAll (I nput Row, Col | ndex) ;
end
CQut put Row=Qut put Row+1;
end
end
Qutput File = deblank((str2mat ((InputFile)’,(’.car’)’,(nun2str(SortCariD))’))’");
FID = fopen(QutputFile, W);
fprintf(FID, "% % % % % %l % % % 9% % % %\n ,(StateSort)’);
fclose(FID;

73

References

[1] Eskafi, Farokh, Delnaz Khorramabadi and Pravin Varaiya: SmartPath: An Automated
Highway System Smulator, Technical Report PATH Memorandum 92-3. Institute of
Transportation Studies, Partners for Advanced Transit and Highways, University of
Cadlifornia, Berkeley (1992).

[2] Li, Perry, Luis Alvarez and Roberto Horowitz: AHS Safe Control Laws for Platoon
Leaders, To appear in IEEE Transaction on Control Systems Technology (1997).

[3] Varaiya, Pravin and Steven Shladover: Sketch of an IVHS Systems Architecture,
Technical Report UCB-ITS-PRR-91-3, Institute of Transportation Studies, University of
Cadlifornia, Berkeley (1991).

[4] Eskafi, Farokh: Modeling and Smulation of the Automated Highway System, PhD
dissertation (1996).

[5] Figurefrom: Varaiya, Pravin: Smart Cars on Smart Roads: Problems of Control,
|EEE Transactions on Automatic Control, vol. AC-38, no. 2, pp. 195-207 (1993).

[6] Lygeros, John, Dattaprodh Godbole and Mireille Brouke: Design of an Extended
Architecture for Degraded Modes of Operation of IVHS, Technical Report UCB-ITS-
PWP-95-3, Institute of Transportation Studies, Partners for Advanced Transit and
Highways, University of California, Berkeley (1995).

[7] Eskafi, Farokh and Delnaz Khorramabadi: SmartPath User's ManuglL993).

[8] Deshpande, Akash, Aleks Gollu and Luigi Semenzato. SHIFT Reference Manual.
PATH Report. University of California, Berkeley (1996).

74

