
UC Berkeley
Research Reports

Title
Models Of Vehicular Collision: Development And Simulation With Emphasis On Safety IV: An
Improved Algorithm For Detecting Contact Between Vehicles

Permalink
https://escholarship.org/uc/item/3568z4g4

Authors
O'Reilly, Oliver M.
Papadopoulos, Panayiotis
Lo, Gwo-jeng
et al.

Publication Date
1998-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3568z4g4
https://escholarship.org/uc/item/3568z4g4#author
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

June 1998

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 309

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Models of Vehicular Collision: Development
and Simulation with Emphasis on Safety IV:
An Improved Algorithm for Detecting
Contact Between Vehicles

UCB-ITS-PRR-98-25
California PATH Research Report

Oliver M. O’Reilly, Panayiotis Papadopoulos,
Gwo-Jeng Lo, Peter C. Varadi
University of California, Berkeley

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

Models of Vehicular Collision:

Development and Simulation with

Emphasis on Safety

IV: An Improved Algorithm for Detecting

Contact Between Vehicles

REPORT { June 1998

Submitted to: PATH (MOU 309)

Oliver M. O'Reilly (PI)
Panayiotis Papadopoulos (PI)

Gwo-Jeng Lo

Peter C. Varadi

Department of Mechanical Engineering
University of California, Berkeley

ii

Abstract

In previous works, the authors developed a computational model for collision
detection where each vehicle was modeled as an ellipsoid. This model does
not accurately re
ect the geometry of realistic vehicles, yet it possesses sig-
ni�cant theoretical and computational advantages over other possible mod-
els. This report outlines a novel procedure for detecting the geometry of the
contact interface between vehicles which employs a better approximation
of their actual shape yet it also preserves the advantage of the ellipsoidal
model.

Keywords: IVHS America, Vehicle Dynamics, Collision Dynamics, Safety,
Computer Simulation, Animation and Simulation

iii

Executive Summary

In previous works, the authors developed a computational model for colli-
sion detection where each vehicle was modeled as an ellipsoid. This model
does not accurately re
ect the geometry of realistic vehicles, yet it pos-
sesses signi�cant theoretical and computational advantages over other pos-
sible models. This brief report outlines a novel procedure for detecting the
geometry of the contact interface between vehicles which employs a better
approximation of their actual shape yet it also preserves the advantage of
the ellipsoidal model.

The procedure, known as BM, uses the vehicle ellipsoid to construct
a box-like region representing the lateral surface of the vehicle. For two
contacting vehicles, the corresponding ellipsoids are used to determine the
unique contact point. However, in contrast to our earlier works, the unit
normal at the contact point is determined using the box-like region.

iv

Contents

1 Introduction 1

2 A New Model for Contact Detection 2

3 Computer Implementation of the Contact Algorithm 6

4 Computer Simulation 6

5 Conclusions 10

References 10

A Vehicle Parameters 11

A.1 model.dat . 11
A.2 platoon1.dat . 12
A.3 platoon2.dat . 12

B Modi�ed Source Code for the New Contact Detection Al-

gorithm 14

v

1 Introduction

The model for the detection of vehicular collision used in Medusa is dis-
cussed in O'Reilly, Papadopoulos, Lo and Varadi [1]. We henceforth refer
to this model as the ellipsoid model (EM). In that work, the positions of
the contact points and the corresponding outward unit normal vectors were
de�ned using the surfaces of ellipsoids. The approximation of the geometry
of a vehicle as an ellipsoid is not only shape-preserving under the homoge-
neous deformation (see Truesdell and Toupin [4]), but is also numerically
convenient for contact detection because of the convexity of an ellipsoid (see
O'Reilly, Papadopoulos, Lo and Varadi [2]). However, the use of EM yields
unrealistic solutions in simulations of o�set head-on-tail collisions between
two vehicles. The reason for this can be easily understood from Figure 1,
where the vehicles in the simulation rotate counterclockwise due to the def-
inition of the contact normal. Here, the normal to the ellipsoid is also used
to specify the direction of the contact force between the contacting vehicles.
Instead, when two vehicles collide under these conditions, they should re-
alistically rotate clockwise as a result of the line of action of the resultant
contact forces.

Figure 1: The di�erence between the contact normal vectors using ellipsoids
and the actual vehicles.

In order to remedy this de�ciency and further improve the geometric
modeling of a vehicle, a new model for the low relative velocity vehicular

1

collision is proposed. It is based on a box model for the outer surface of the
vehicle, and is referred to here as BM.

2 A New Model for Contact Detection

In order to retain the bene�ts of the ellipsoidal representation, while both
�xing the error arising in the direction of the contact forces and improving
the overall geometric modeling of a vehicle, the contact detection proce-
dure still takes advantage of the ellipsoid. To this end, the positions of the
contact points are de�ned on the surfaces of the ellipsoids as in O'Reilly, Pa-
padopoulos, Lo and Varadi [2]. However, instead of using the corresponding
outward unit normal vectors at the positions of the contact points, the con-
tact normal vectors in the new vehicle model are de�ned as the outward unit
normal vectors of the surface of a box with rounded corners as depicted in
Figure 2, where R is the radius for all molli�ed corners.

Figure 2: The modi�ed geometrical model of a vehicle.

2

Since the ellipsoid in the current con�guration is well-de�ned under the
homogeneous deformation (for details, see O'Reilly, Papadopoulos, Lo and
Varadi [1]), the corresponding three-dimensional box can be constructed
using a unique mapping in which the ellipsoid and the box share the same
volume, aspect ratios and principal directions. In addition, if the vehicle has
a homogeneous mass density, the box and ellipsoid will have the same total
mass. The reason for the existence of the rounded corners in the modi�ed
geometrical model is because the unit normal vector is not uniquely de�ned
at sharp corners. However, it can be computed for smooth surfaces which
include the rounded corners in Figure 2.

Figure 3: The outward unit normal vectors on the surface of the modi�ed
vehicle model.

Suppose the position of the contact point is detected as one of the
following �ve points: A0, B0, C0,D0 andE0 as in Figure 3. The corresponding
�ve contact normal vectors nA, nB , nC , nD and nE are de�ned as the
outward unit normal vectors at points A, B, C, D and E which are the
intersection points of the surface of the box and the lines joining the original
contact points and the center of mass of the ellipsoid. Note that in the
event of a homogeneous mass distribution, this mass center coincides with

3

the geometrical center of the corresponding box. In Figure 3, the point O
and the vectors P1 and P2 are the mass center and the normalized principal
vectors of the ellipsoid, respectively. The third principal vector, P3, which
is not shown in Figure 3, is normal to P1 and P2. These three principal
vectors of the ellipsoid in the current con�guration form a orthonormal basis
to represent the contact normal vectors of the modi�ed vehicle model. The
intersection points A and E are located on the surfaces of planes. Therefore,
the contact normal vectors are the plane normal vectors of the corresponding
planes which are exactly the principal directions of the ellipsoid: nA = P2

and nE = P1. As for the points B, C and D, which are located in the
corner region of the box, the contact normal vectors nB, nC and nD are the
outward unit normal vectors on the surfaces of the corresponding cylinders
or spheres. Notice that the tangent vectors at the points from the planes
to the corner regions are continuous. This guarantees the continuity of
the contact normal vectors along the surface of the modi�ed model. Thus,
nA = nB and nD = nE where the points B and D are at the interface of
the molli�ed surfaces and the planes.

After the contact normal vector of an individual vehicle has been de-
�ned, the directions of the contact forces between impacting vehicles for
several di�erent scenarios can be de�ned as in Figure 4. Consider case I
of Figure 4: this is the typical case which distinguishes between EM's and
BM's determination of the directions of the contact forces. The contact
points on each vehicle are located in the plane regions of the corresponding
boxes and the three principal directions of the two vehicles are parallel, so
that n1, the contact normal vector of the contact force acting on vehicle 2
from vehicle 1, is the corresponding principal direction, 1P1, of vehicle 1.
The vector �P1 denotes the principal vector which corresponds to the max-
imum principal length of vehicle �. Notice that the contact normal vectors
of the contact forces acting on vehicle 1 due to vehicle 2 for all cases are
determined by Newton's third law; thus n2 = �n1. Case II is similar to case
I, except that the principal directions of the two vehicles are not parallel.
In this case, if the angle �1 in Figure 4 is less than �2, then the contact
normal vector n1 will be the direction of the corresponding principal vector
of vehicle 1, i.e., 1P1. Case III is a plane versus corner case in which the
vector n1 is determined by the corresponding principal vector of the vehicle
with its contact points projected in-plane. Thus, the contact normal vector
n1 in case (III) of Figure 4 is equal to 1P1. The last case, IV, is a corner
versus corner case where the outward unit normal vectors at the corners of
vehicle 1 and 2 are n̂1 and n̂2, respectively. In such a case, the vector n1 is
de�ned as n1 = (n̂1 � n̂2)=jjn̂1� n̂2jj.

4

Figure 4: Contact normal vectors determined by the box model (BM) for
di�erent contact scenarios: (i) n1 = 1P1, (ii) n1 = 1P1 when �1 < �2,
(iii) n1 = 1P1, and (iv) n1 is an average.

5

3 Computer Implementation of the Contact Algo-

rithm

The changes to the computer code Medusa, where the contact algorithm
based on BM is implemented, are restricted to the calculation of the normal
vector to the contact surface of the colliding vehicles. The remainder of the
program remains unaltered. Only the functions info() and eig() which
are included in Appendix B, are added to detect_contact. The function
info() calculates the matrix K̂ which contains the information pertaining to
the principal directions and principal semi-axes of the ellipsoid in the current
con�guration (for details, see O'Reilly, Papadopoulos, Lo and Varadi [2]).
The function eig() �nds the eigenvalues and eigenvectors of the matrix K̂.
The major modi�ed part of the program is contained in the function norm()

of the �le contact.c which is included in this report as Appendix B.

4 Computer Simulation

Two illustrative examples of vehicular collision are presented in this sec-
tion. Each ellipsoid in the following simulation represents a vehicle. In the
�rst example, which is mentioned in Section 1, di�erences in the impact
scenario using the current (BM) and previous (EM) versions of the contact
algorithm are shown. The second example shows how the algorithm based
on BM avoids incorrect contact detection since it still detects the positions
of contact points on the surface of an ellipsoid. The vehicle parameters for
both examples are listed in Appendix A. Further, the variables R, the radii
of the corner regions of a vehicle, are set to be equal to 0.3 meters which are
given in the function norm().

The motivation for the development for the new model of contact de-
tection comes from the �rst case where two vehicles are driving along the
same direction at speeds of 65 miles per hour (mph) and 60 mph, respec-
tively. The impact scenario shown in Figure 5, which uses EM to calculate
the contact normal vectors. It results in an incorrect rotation of the vehi-
cles which can be attributed to the geometry of the ellipsoids. The physical
motion of the vehicles in this situation should result in a clockwise rotation
as presented in Figure 6. This is predicted when the contact normal vectors
are de�ned on the surfaces of the three-dimensional boxes, i.e., the BM is
used.

In the second example, the two vehicles are still moving with the same
direction and velocity as those in the �rst case, however, the distance be-

6

0 25 50 75 100

X (m)

0

10

20

Y (m)

0

0

0

F
ig
u
re

5
:
P
la
n
vi
ew

of
th
e
pr
e-
co
ll
is
io
n
,
co
ll
is
io
n
,
po
st
-c
ol
li
si
on

of
tw
o
ve
hi
-

cl
es

in
a
n
o�

se
t
h
ea
d
-o
n
-t
ai
l
co
ll
is
io
n
u
si
n
g
th
e
E
M

ba
se
d
co
n
ta
ct

de
te
ct
io
n

a
lg
o
ri
th
m
.
T
he

n
on
-r
ea
li
st
ic
co
u
n
te
rc
lo
ck
w
is
e
ro
ta
ti
on

sh
ou
ld

be
n
ot
ed
.

7

0 25 50 75 100

X (m)

0

10

20

Y (m)

0

0

0

F
ig
u
re

6
:
P
la
n
vi
ew

of
th
e
pr
e-
co
ll
is
io
n
,
co
ll
is
io
n
,
po
st
-c
ol
li
si
on

of
tw
o
ve
hi
-

cl
es

in
a
n
o�

se
t
h
ea
d
-o
n
-t
ai
l
co
ll
is
io
n
u
si
n
g
th
e
B
M

ba
se
d
co
n
ta
ct

de
te
ct
io
n

a
lg
o
ri
th
m
.

8

tween their mass centers is such that two ellipsoids intersect, however the
corresponding boxes don't (cf. Figure 7).

To avoid inaccurate contact detection, the new algorithm, which uses
the BM, detects no contact if

1P2 is parallel to 2P2 and d >
1

2
(B1 + B2) ; (1)

where 1P2, 2P2, B1 and B2 are the principal vectors and the widths of the
two vehicles in the current con�guration, respectively. The variable d is the
component of the distance between the mass centers of the two vehicles in
the 1P2 direction.

Figure 7: A di�erence between the contact detection based on the ellipsoidal
model and the box model.

9

5 Conclusions

This work describes a new model which represents the realistic three di-
mensional shapes of vehicles while retaining the advantage of parameteriz-
ing their motions and deformations using ellipsoids and uniform deforma-
tion �elds, respectively. The representative simulations reveal that the new
model predicts physically plausible post-collision vehicular motions.

References

[1] O. M. O'Reilly, P. Papadopoulos, G.-J. Lo and P. C. Varadi. Models
of Vehicular Collision: Development and Simulation with Emphasis on
Safety. II: On the Modeling of Collision between Vehicles in a Platoon
System. California PATH Research Report UCB-ITS-PRR 97-34, 1997.

[2] O. M. O'Reilly, P. Papadopoulos, G.-J. Lo and P. C. Varadi. Models
of Vehicular Collision: Development and Simulation with Emphasis on
Safety. III: Computer Code, Programmer's Guide and User's Manual
for MEDUSA. California PATH Research Report UCB-ITS-PRR 98-10,
1998.

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery.
Numerical Recipes in C: the Art of Scienti�c Computing. 2nd ed., Cam-
bridge University Press, Cambridge, 1992.

[4] C. Truesdell and R. A. Toupin. The Classical Field Theories, in Hand-
buch der Physik. Vol. III/1, pp. 226-858, edited by S. Fl�ugge, Springer-
Verlag, Berlin, 1960.

10

A Vehicle Parameters

The following are the input data �les model.dat, platoon1.dat and pla-

toon2.dat for the computer simulation examples described in Section 4. The
two examples share the same �le model.dat. The �les platoon1.dat and pla-

toon2.dat in Sections A.2 and A.3 are used in the �rst and second examples,
respectively.

A.1 model.dat

%

% Physical parameters of vehicle model for the examples in Section 4

%

NUMBER_OF_MODELS 1

% description of Model 1 starts here

MODEL 1

COSSERAT_POINT

MASS 1573.0 % mass of car [kg]

Ix 479.6 % moments of inertia along principal axes [kg m^2]

Iy 2594.6

Iz 2782.0

E 200.0e6 % Young's modulus [N/m^2]

nu 0.30 % Poisson's ratio

volume 0.42 % assumed volume of the Chassis [m^3]

SUSPENSION

L1 1.034 % distance from cg to front axle [m]

L2 1.491 % distance from cg to rear axle [m]

B 0.725 % track of axle [m]

H1 0.0 % vertical distance from cg to front assembly pts.

H2 0.0 % and to rear assembly points [m] (assumed)

spring_ref 0.15 % reference length of spring [m]

C1 40000.0 % spring constant for front wheel suspension [N/m]

C2 40000.0 % spring constant for rear wheel suspension [N/m]

D1 1500.0 % damping coeff. for front wheel suspension [Ns/m]

D2 1200.0 % damping coeff. for rear wheel suspension [Ns/m]

TYRE 0.0016 % lag parameter for tyre model [s]

CONTACT

A1 5.0 % dimensions of a vehicle: length [m]

A2 3.0 % width [m]

A3 2.9 % height [m]

EQUILIBRIUM

R3 5.039617e-02 % vertical position of vehicle's center of mass [m]

D11 9.999151e-01 D12 0.0 D13 -1.382584e-02 % director 1 [.]

D21 0.0 D22 1.0 D23 0.0 % director 2 [.]

D31 1.382916e-02 D32 0.0 D33 9.999048e-01 % director 3 [.]

11

% description of model 1 ends here

A.2 platoon1.dat

%

% Initialization of a two vehicle platoon with collision

%

NUMBER_OF_VEHICLES 2

% Vehicle 1

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

X 0.0 % X coordinate of center of mass [m]

Y 0.0 % Y coordinate of center of mass [m]

ORIENTATION 0.0 % heading angle [.] (cw:"-", ccw:"+")

SPEED 29.1 % forward speed [m/s]

STEERING 0.0 % steer angle [rad]

% Vehicle 2

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

X 7.0 % X coordinate of center of mass [m]

Y -2.0 % Y coordinate of center of mass [m]

ORIENTATION 0.0 % heading angle [.] (cw:"-", ccw:"+")

SPEED 26.8 % forward speed [m/s]

STEERING 0.0 % steer angle [rad]

A.3 platoon2.dat

%

% Initialization of a two vehicle platoon without collision

%

NUMBER_OF_VEHICLES 2

% Vehicle 1

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

X 0.0 % X coordinate of center of mass [m]

Y 0.0 % Y coordinate of center of mass [m]

ORIENTATION 0.0 % heading angle [.] (cw:"-", ccw:"+")

12

SPEED 29.1 % forward speed [m/s]

STEERING 0.0 % steer angle [rad]

% Vehicle 2

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

X 6.0 % X coordinate of center of mass [m]

Y 3.6 % Y coordinate of center of mass [m]

ORIENTATION 0.0 % heading angle [.] (cw:"-", ccw:"+")

SPEED 26.8 % forward speed [m/s]

STEERING 0.0 % steer angle [rad]

13

B Modi�ed Source Code for the New Contact De-

tection Algorithm

This appendix includes three functions: info(), eig() and norm(). The
purpose of adding the functions info() and eig() is discussed in Section 3.
The function eig() consists of two subfunctions: jacobi() and eigsrt()

which are adapted from Numerical Recipes in C [3]. The �rst function
jacobi() calculates the eigenvalues and eigenvectors of a matrix. The func-
tion eigsrt() sorts the eigenvalues in descending order and rearranges the
eigenvectors accordingly.

There are three small functions: snorm(), cnorm() and choice() in the
function norm(). It determines the contact normal vector n1 which is calcu-
lated from the function snorm() if the intersection point de�ned in Section 2
is located in the spherical region of a vehicle. If the calculated intersection
point is in the cylindrical region of a vehicle then the corresponding contact
normal vector is computed by the function cnorm(). As for the function
choice(), it determines which one of the principal directions is the contact
normal vector if the intersection point is detected on a plane.

/**/

/* Compute the matrix KHAT=F^(-T)KF^(-1) */

/**/

void info(Vector SA, Matrix F, Matrix KHAT)

{

Matrix FINV, FT, K, C;

FINV=matrix(3,3); FT=matrix(3,3); K=matrix(3,3); C=matrix(3,3);

matrix_inverse(F, 3, FINV);

matrix_trans(FINV,FT,3,3);

K[1][1]=1/(SA[1]*SA[1]); K[1][2]=0.; K[1][3]=0.;

K[2][1]=0.; K[2][2]=1/(SA[2]*SA[2]); K[2][3]=0.;

K[3][1]=0.; K[3][2]=0.; K[3][3]=1/(SA[3]*SA[3]);

matrix_times_matrix(C,FT,K,3,3,3);

matrix_times_matrix(KHAT,C,FINV,3,3,3); /* KHAT=F^(-T)KF^(-1) */

free_matrix(C);

free_matrix(FT);

free_matrix(K);

free_matrix(FINV);

}

/**/

/* Compute and sort the eigenvalues and eigenvectors */

14

/**/

void eig(Matrix a, int n, Vector d, Matrix v)

{

int nrot;

void jacobi(Matrix a, int n, Vector d, Matrix v, int *nrot);

void eigsrt(Vector d, Matrix v, int n);

jacobi(a, n, d, v, &nrot);

eigsrt(d, v, n);

}

/**/

/* Compute the principal directions and principal values of the ellipsoids */

/* in the current configuration */

/**/

#define ROTATE(a,i,j,k,l) g=a[i][j]; h=a[k][l]; a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);

void jacobi(Matrix a, int n, Vector d, Matrix v, int *nrot)

/* Compute all eigenvalues and eigenvectors of a real symmetric matrix a[1..n][1..n].

On output, the elements of above the diagonal are destroyed. d[1..n] returns the

eigenvalues of a. v[1..n][1..n] is a matrix whose columns contain, on output,

the normalized eigenvectors of a. nrot returns the number jacobi rotates that

were required. See Numerical Recipes on C pp.467-468.*/

{

int j, iq, ip, i;

double tresh, theta, tau, t, sm, s, h, g, c;

Vector b, z;

b=vector(n); z=vector(n);

for(ip=1;ip<=n;ip++){

for (iq=1;iq<=n;iq++) v[ip][iq]=0.0;

v[ip][ip]=1.0;

}

for (ip=1;ip<=n;ip++){

b[ip]=d[ip]=a[ip][ip];

z[ip]=0.0;

}

*nrot=0;

for (i=1;i<=50;i++){

sm=0.0;

for (ip=1;ip<=n-1;ip++){

for (iq=ip+1;iq<=n;iq++)

sm += fabs(a[ip][iq]);

}

if(sm==0.0){

free_vector(z);

free_vector(b);

15

return;

}

if (i<4)

tresh=0.2*sm/(n*n);

else tresh=0.0;

for (ip=1;ip<=n-1;ip++){

for (iq=ip+1;iq<=n;iq++){

g=100.*fabs(a[ip][iq]);

if (i>4 && (double)(fabs(d[ip])+g)==(double)fabs(d[ip])

&& (double)(fabs(d[iq])+g)==(double)fabs(d[ip]))

a[ip][iq]=0.0;

else if (fabs(a[ip][iq])>tresh){

h=d[iq]-d[ip];

if ((double)(fabs(h)+g)==(double)fabs(h))

t=(a[ip][iq])/h;

else{

theta=0.5*h/(a[ip][iq]);

t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));

if (theta<0.0) t= -t;

}

c=1.0/sqrt(1+t*t);

s=t*c;

tau=s/(1.0+c);

h=t*a[ip][iq];

z[ip] -= h;

z[iq] += h;

d[ip] -= h;

d[iq] += h;

a[ip][iq]=0.0;

for (j=1;j<=ip-1;j++) {

ROTATE(a,j,ip,j,iq)

}

for (j=ip+1;j<=iq-1;j++) {

ROTATE(a,ip,j,j,iq)

}

for (j=iq+1;j<=n;j++) {

ROTATE(a,ip,j,iq,j)

}

for (j=1;j<=n;j++) {

ROTATE(v,j,ip,j,iq)

}

++(*nrot);

}

}

}

for (ip=1;ip<=n;ip++){

b[ip] += z[ip];

d[ip]=b[ip];

16

z[ip]=0.0;

}

}

nrerror("Too many iterations in routine jacobi");

}

/**/

/* Sorting the eigenvalues and eigenvectors */

/**/

void eigsrt(Vector d, Matrix v, int n)

/* Given the eigenvalues d[1..n] and the eigenvector in matrix v[1..n][1..n]

as the output from Jacobi, this routine sorts the eigenvalues into decending

order, adn rearranges the eigenvectors correspondingly. See Numerical Recipes

in C on p.468. */

{

int k, j, i;

double p;

for (i=1;i<n;i++){

p=d[k=i];

for (j=i+1;j<=n;j++)

if (d[j] >= p) p=d[k=j];

if (k != i){

d[k]=d[i];

d[i]=p;

for (j=1;j<=n;j++){

p=v[j][i];

v[j][i]=v[j][k];

v[j][k]=p;

}

}

}

}

/**/

/* Compute the outward unit normal on the surface of the ellipsoids */

/**/

void enorm(Vector x, Vector nvec1, Vector nvec2)

/* x[1]=u1, x[2]=v1, x[3]=u2, x[4]=v2 */

{

int i,k1,k2;

double tang1[4], tang2[4], cp1[4], tang3[4], tang4[4], cp2[4];

double norm1, norm2;

double s_x1=sin(x[1]), s_x2=sin(x[2]), c_x1=cos(x[1]), c_x2=cos(x[2]);

double s_x12=s_x1*s_x2, c_x12=c_x1*c_x2, cs_x21=c_x2*s_x1, cs_x12=c_x1*s_x2;

double s_x3=sin(x[3]), s_x4=sin(x[4]), c_x3=cos(x[3]), c_x4=cos(x[4]);

double s_x34=s_x3*s_x4, c_x34=c_x3*c_x4, cs_x43=c_x4*s_x3, cs_x34=c_x3*s_x4;

k1=(int)(x[1]/(2*Pi));

17

x[1]=x[1]-2*k1*Pi;

k2=(int)(x[3]/(2*Pi));

x[3]=x[3]-2*k2*Pi;

for (i=1;i<=3;i++) {

tang1[i]= -A1*cs_x21*F1[i][1]-A2*s_x12*F1[i][2]+A3*c_x1*F1[i][3];

tang2[i]= -A1*cs_x12*F1[i][1]+A2*c_x12*F1[i][2];

tang3[i]= -B1*cs_x43*F2[i][1]-B2*s_x34*F2[i][2]+B3*c_x3*F2[i][3];

tang4[i]= -B1*cs_x34*F2[i][1]+B2*c_x34*F2[i][2];

}

/* Cross product of the two tangent vectors: */

cp1[1]=tang2[2]*tang1[3]-tang1[2]*tang2[3];

cp1[2]=tang2[3]*tang1[1]-tang2[1]*tang1[3];

cp1[3]=tang2[1]*tang1[2]-tang2[2]*tang1[1];

cp2[1]=tang4[2]*tang3[3]-tang3[2]*tang4[3];

cp2[2]=tang4[3]*tang3[1]-tang4[1]*tang3[3];

cp2[3]=tang4[1]*tang3[2]-tang4[2]*tang3[1];

/* Compute unit normal vectors */

norm1=sqrt(square(cp1[1])+square(cp1[2])+square(cp1[3]));

norm2=sqrt(square(cp2[1])+square(cp2[2])+square(cp2[3]));

if (fabs(x[1])<=Pi/2 || fabs(x[1])>=3*Pi/2)

for (i=1;i<=3;i++) nvec1[i]=cp1[i]/norm1;

else

for (i=1;i<=3;i++) nvec1[i]= -cp1[i]/norm1;

if (fabs(x[3])<=Pi/2 || fabs(x[3])>=3*Pi/2)

for (i=1;i<=3;i++) nvec2[i]= cp2[i]/norm2;

else

for (i=1;i<=3;i++) nvec2[i]= -cp2[i]/norm2;

}

/**/

/* Compute the direction of the contact force which is defined on the surface*/

/* of a three-dimensional box with round corners */

/**/

/* Radius of the cylinders or spheres at the corners with respect to vehicle 1

and 2 */

#define RAD1 0.3

#define RAD2 0.3

void norm(Vector x, Vector nvec1)

{

int i;

int corner1[4],corner[3];

double e[4],pa1[4],pa2[4],pa3[4],pb1[4],pb2[4],pb3[4],nvec2[4];

double alph[4],beta[4],drv[4],dev[4],ntri1[4],ntri2[4];

double psi1,psi2,factor1,factor2,r1[4],r2[4],len1[4],len2[4];

18

double gama1[3],gama2[3],eta1[3],eta2[3],tau1[3],tau2[3];

double dot(Vector en1, Vector en2, int);

void pos(Vector state, Vector r1, Vector r2);

void snorm(Vector,Vector,Vector,Vector,Vector,double,Vector);

void cnorm(double,double,double,double,Vector,Vector,double,Vector);

void choice(Vector,Vector,Vector,Vector,Vector,Vector,Vector,Vector,Vector);

pos(x,r1,r2);

for (i=1;i<=3;i++) {

/* the position vetors of the contact points on the ellipsoids 1 and 2

relative to the mass centers are r1[] and e[], respectively */

e[i]=r2[i]-xbar[i];

/* The eigenvalues of KHAT are 1/(semi_axes)^2, therefore the acending sorting

of eigenvalues in eigsrt() is actually decending sorting of the lengths of

semi-axes. The vectors pa1,2,3 and pb1,2,3 are the principal directions of

the ellipsoid 1 and 2, respectively, in the current configuration. */

pa1[i]=v1[i][3]; pa2[i]=v1[i][2]; pa3[i]=v1[i][1];

pb1[i]=v2[i][3]; pb2[i]=v2[i][2]; pb3[i]=v2[i][1];

}

drv[1]=dot(r1,pa1,3); drv[2]=dot(r1,pa2,3); drv[3]=dot(r1,pa3,3);

dev[1]=dot(e,pb1,3); dev[2]=dot(e,pb2,3); dev[3]=dot(e,pb3,3);

/* the angles between r1[] (e[]) and the principal directions */

alph[1]=atan(fabs(drv[2]/drv[1]));

alph[2]=atan(fabs(drv[3]/drv[1]));

alph[3]=atan(fabs(drv[3]/drv[2]));

beta[1]=atan(fabs(dev[2]/dev[1]));

beta[2]=atan(fabs(dev[3]/dev[1]));

beta[3]=atan(fabs(dev[3]/dev[2]));

/* Update the dimensions of the vehicles, len1[] & len2[] in the current

configuration by the identity of the volumes of the ellipsoids and vehicles. */

factor1=pow(4*Pi/(3*sqrt(d1[1]*d1[2]*d1[3])*AX1*AX2*AX3),1./3);

factor2=pow(4*Pi/(3*sqrt(d2[1]*d2[2]*d2[3])*BX1*BX2*BX3),1./3);

len1[1]=factor1*AX1; len1[2]=factor1*AX2; len1[3]=factor1*AX3;

len2[1]=factor2*BX1; len2[2]=factor2*BX2; len2[3]=factor2*BX3;

if (2*RAD1 > len1[3] || 2*RAD2 > len2[3]) {

nrerror("The radius of cylinder at the corner is too large!");

}

/* Define the angles of the ranges of corners located on the vehicles*/

gama1[1]=atan((len1[2]-2*RAD1)/len1[1]); gama1[2]=atan(len1[2]/(len1[1]-2*RAD1));

gama2[1]=atan((len2[2]-2*RAD2)/len2[1]); gama2[2]=atan(len2[2]/(len2[1]-2*RAD2));

eta1[1]=atan((len1[3]-2*RAD1)/len1[1]); eta1[2]=atan(len1[3]/(len1[1]-2*RAD1));

eta2[1]=atan((len2[3]-2*RAD2)/len2[1]); eta2[2]=atan(len2[3]/(len2[1]-2*RAD2));

tau1[1]=atan((len1[3]-2*RAD1)/len1[2]); tau1[2]=atan(len1[3]/(len1[2]-2*RAD1));

19

tau2[1]=atan((len2[3]-2*RAD2)/len2[2]); tau2[2]=atan(len2[3]/(len2[2]-2*RAD2));

/* The contact normal is defined on the vehicle 1. */

if (alph[1] >= gama1[1] && alph[1]<= gama1[2]) corner1[1]=TRUE;

else corner1[1]=FALSE;

if (alph[2] >= eta1[1] && alph[2] <= eta1[2]) corner1[2]=TRUE;

else corner1[2]=FALSE;

if (alph[3] >= tau1[1] && alph[3] <= tau1[2]) corner1[3]=TRUE;

else corner1[3]=FALSE;

if (corner1[1] || corner1[2] || corner1[3]) corner[1]=TRUE;

else corner[1]=FALSE;

if (beta[1] >= gama2[1] && beta[1] <= gama2[2]) corner[2]=TRUE;

else if (beta[2] >= eta2[1] && beta[2] <= eta2[2]) corner[2]=TRUE;

else if (beta[3] >= tau2[1] && beta[3] <= tau2[2]) corner[2]=TRUE;

else corner[2]=FALSE;

if (corner[1] && corner[2]){

/* corner to corner contact */

if (corner1[1] && corner1[2]) {

if (!corner1[3]) nrerror("Errors occur in corner dectection.");

snorm(len1,r1,pa1,pa2,pa3,RAD1,nvec1);

}

else if (corner1[1] && corner1[3]){

if (!corner1[2]) nrerror("Errors occur in corner dectection.");

snorm(len1,r1,pa1,pa2,pa3,RAD1,nvec1);

}

else if (corner1[2] && corner1[3]){

if (!corner1[1]) nrerror("Errors occur in corner dectection.");

snorm(len1,r1,pa1,pa2,pa3,RAD1,nvec1);

}

else if (corner1[1]) {

cnorm(len1[1],len1[2],r1[1],r1[2],pa1,pa2,RAD1,nvec1);

}

else if (corner1[2]) {

cnorm(len1[1],len1[3],r1[1],r1[3],pa1,pa3,RAD1,nvec1);

}

else {

cnorm(len1[2],len1[3],r1[2],r1[3],pa2,pa3,RAD1,nvec1);

}

}

else if (corner[1] || corner[2]){

/* corner to face contact */

if (corner[1]){

choice(beta,gama2,eta2,tau2,dev,pb1,pb2,pb3,nvec2);

/* using the principal direction of ellipsoid 2 as the contact normal */

for (i=1;i<=3;i++) nvec1[i]= -nvec2[i];

}

20

else {

choice(alph,gama1,eta1,tau1,drv,pa1,pa2,pa3,nvec1);

/* using the principal direction of ellipsoid 1 as the contact normal */

}

}

else {

/* face to face contact */

choice(alph,gama1,eta1,tau1,drv,pa1,pa2,pa3,ntri1);

choice(beta,gama2,eta2,tau2,dev,pb1,pb2,pb3,ntri2);

/* compute the angles psi1,2 which are the angles between the position

vector of contact point and the plane normal(ntri1,2), the principal

direction, chosen in the function choice */

if (fabs(dot(ntri1,pa1,3)) > 0.9) {

psi1=alph[1]; /* the contact point is at the plane with normal pa1 */

}

else if (fabs(dot(ntri1,pa2,3)) > 0.9) {

psi1= Pi/2-alph[1]; /* the contact point is at the with normal pa2 */

}

else psi1= Pi/2-alph[2]; /* the contact point is at the plane with normal pa3 */

if (fabs(dot(ntri2,pb1,3)) > 0.9) psi2=beta[1];

else if (fabs(dot(ntri2,pb2,3)) > 0.9) psi2= Pi/2-beta[1];

else psi2= Pi/2-beta[2];

if (psi1 < psi2) {

/* if the angle psi1 is less than psi2 then the plane normal on the

vehicle 1 is used as the contact normal*/

for (i=1;i<=3;i++) nvec1[i]= ntri1[i];

}

else {

for (i=1;i<=3;i++) nvec1[i]= -ntri2[i];

}

}

}

/**/

/* Compute the outward unit normal on the surface of spheres */

/**/

void snorm(Vector L, Vector a, Vector p1, Vector p2, Vector p3, double R,

Vector out)

/* Vector L[1..3] and a[1..3] are the dimensions of the vehicles and positions

of contact points on the ellipsoid 1 w.r.t. the mass center in the current

configuration. The principal directions of the ellipsoid 1 or 2 are p1,2,3.

The variable R is the radius of spheres at the corners of a vehicle and

the output unit normal vector on the vehicle 1 is the Vector out. */

{

int i;

double g,h,q,temp,p,x[4],y[4],z[4],norm;

21

g= a[1]*a[1]+a[2]*a[2]+a[3]*a[3];

h= 2*R*(fabs(a[1])+fabs(a[2])+fabs(a[3]))-(fabs(a[1])*L[1]+fabs(a[2])*L[2]+fabs(a[3])*L[3]);

q= 2*R*R+(L[1]*L[1]+L[2]*L[2]+L[3]*L[3])/4-(L[1]+L[2]+L[3])*R;

temp= h*h-4*g*q;

if (temp < 0) nrerror("Negative values in square root in function snorm.");

p= (-h+sqrt(temp))/(2*g);

/* x[1..3] is the position of point projected by the line from the mass center

to the contact point on the surface of the sphere */

for (i=1;i<=3;i++) x[i]= p*a[i];

/* the distance measured from the mass center to the intersection point on the

sphere must be larger than the distance from the mass center to the contact

point */

if (p < 1) nrerror("Errors occur in function snorm.");

for (i=1;i<=3;i++) {

y[i]= a[i]/fabs(a[i])*(L[i]/2-R); /* the position of the center of the sphere */

z[i]= x[i]-y[i];

}

out[1]= z[1]*p1[1]+z[2]*p2[1]+z[3]*p3[1];

out[2]= z[1]*p1[2]+z[2]*p2[2]+z[3]*p3[2];

out[3]= z[1]*p1[3]+z[2]*p2[3]+z[3]*p3[3];

norm= sqrt(out[1]*out[1]+out[2]*out[2]+out[3]*out[3]);

for (i=1;i<=3;i++) out[i] /= norm;

}

/**/

/* Compute the outward unit normal on the surface of cylinders */

/**/

void cnorm(double L1, double L2, double ax, double bx, Vector p1, Vector p2,

double R, Vector out)

{

int i;

double c,g,h,q,temp,a[3],L[3],x[3],y[3],z[3],norm;

a[1]=ax; a[2]=bx;

L[1]=L1; L[2]=L2;

c= tan(a[2]/a[1]);

/* x[1..2] is the position of point projected by the line from the mass

center to the contact point on the surface of the cylinder */

g= 1+c*c;

h= (2*R-L[1])*a[1]/fabs(a[1])+(2*R-L[2])*c*a[2]/fabs(a[2]);

q= R*R+(L[1]*L[1]+L[2]*L[2])/4-(L[1]+L[2])*R;

temp= h*h-4*g*q;

22

if (temp < 0) nrerror("Negative values in square rootin function cnorm.");

x[1]= (-h+sqrt(temp))/(2*g);

x[2]= c*x[1];

for (i=1;i<=2;i++) {

y[i]= a[i]/fabs(a[i])*(L[i]/2-R); /* the position of the center of the circle */

z[i]= x[i]-y[i];

}

out[1]= z[1]*p1[1]+z[2]*p2[1];

out[2]= z[1]*p1[2]+z[2]*p2[2];

out[3]= z[1]*p1[3]+z[2]*p2[3];

norm= sqrt(out[1]*out[1]+out[2]*out[2]+out[3]*out[3]);

for (i=1;i<=3;i++) out[i] /= norm;

}

/**/

/* Find the corresponding plane normal of the 3d box as the contact normal */

/**/

void choice(Vector a, Vector g, Vector e, Vector t, Vector d, Vector p1,

Vector p2, Vector p3, Vector out)

{

int i;

if (d[1]>0 && a[1]<g[1] && a[2]<e[1]) {

for (i=1;i<=3;i++) {

out[i]=p1[i];

}

}

else if (d[1]<0 && a[1]<g[1] && a[2]<e[1]) {

for (i=1;i<=3;i++) {

out[i]= -p1[i];

}

}

else if (d[2]>0 && a[1]>g[2] && a[3]<t[1]) {

for (i=1;i<=3;i++) {

out[i]= p2[i];

}

}

else if (d[2]<0 && a[1]>g[2] && a[3]<t[1]) {

for (i=1;i<=3;i++) {

out[i]= -p2[i];

}

}

else if (d[3]>0 && a[3]>t[2] && a[2]>e[2]) {

for (i=1;i<=3;i++) {

out[i]= p3[i];

}

}

23

else {

for (i=1;i<=3;i++) {

out[i]= -p3[i];

}

}

}

24

