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 1 
ABSTRACT   2 
The rural two-lane highway in the Southeastern United States is frequently associated with a 3 
disproportionate number of serious and fatal crashes and as such remains a focus of considerable 4 
safety research.  The Georgia Department of Transportation spearheaded a regional fatal crash 5 
analysis to identify various safety performances on two-lane rural highways and offer guidance 6 
for identifying suitable countermeasures to mitigate fatal crashes.  The fatal crash data used in 7 
this study were compiled from Alabama, Georgia, Mississippi, and South Carolina. The 8 
database, developed for an earlier study, included a total of 557 randomly selected fatal crashes 9 
from the years 1997 and/or 1998 (varied per state).  E ach participating state identified the 10 
candidate crashes and performed physical or video site visits to construct crash databases with 11 
enhance site-specific information.  12 
 13 
Motivated by the hypothesis that single- and multiple-vehicle crashes arise under fundamentally 14 
different circumstances, the research team applied binary logit models to predict the probability 15 
that a fatal crash is a single-vehicle run-off-road fatal crash given roadway design characteristics, 16 
roadside environment features, and traffic conditions proximal to the crash site.  A wide variety 17 
of factors appears to influence or be associated with single-vehicle fatal crashes.  This paper also 18 
includes a m odel transferability assessment where the authors determined that lane width, 19 
horizontal curvature, and ambient lighting are the only three significant variables consistent for 20 
the single-vehicle run-off-road crashes for all study locations. 21 
 22 
  23 

 24 
 25 
 26 
 27 
 28 
 29 

 30 
  31 
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INTRODUCTION 1 
The rural two-lane highway in the Southeastern United States is frequently associated with a 2 
disproportionate number of serious and fatal crashes and as such remains a focus of considerable 3 
safety research.  T he Georgia Department of Transportation (GDOT) spearheaded a regional 4 
fatal crash analysis to identify various safety performances on two-lane rural highways and offer 5 
guidance for identifying suitable countermeasures to mitigate fatal crashes.  This study used 6 
physical site data from an earlier research effort to assess potential ways to address perceived 7 
safety hazards for these locations.  In October 2005, the GDOT and researchers with the Georgia 8 
Institute of Technology completed a summary report that identified a series of rural two-lane 9 
road safety assessments for states in the southeastern United States.  This study effort resulted in 10 
four randomly sampled similarly formatted fatal crash databases from Alabama, Georgia, 11 
Mississippi, and South Carolina and provided a unique data source so that a c ross-sectional 12 
comparison study could be performed.  This paper reports an assessment of single-vehicle fatal 13 
crashes that can help illuminate candidate treatments and enhance road safety for rural two-lane 14 
highways.    15 
 Prior to initiating an analysis, the research team conducted a l iterature review to 16 
determine what available safety models are published that could apply to this target rural road 17 
environment. Since road characteristics and the policies that establish the design of roads vary 18 
across jurisdictions, the published literature is limited to assessment of physical road features 19 
between jurisdictions and generally focuses on crashes within individual jurisdictions.  Much of 20 
the published literature has been based on crashes from only one state or select study corridors, 21 
while other studies focused on na tional fatality data.  T he various studies demonstrate many 22 
contradictions about crash type, severity and associated factors justifying the need to further 23 
explore both crash conditions and the rural road environment.   24 

This study investigates cross state differences and similarities for rural two-lane highway 25 
fatal crashes from Alabama, Georgia, Mississippi, and South Carolina in terms of the impact on 26 
crash conditions and potential contributing factors.  T he study’s findings ultimately help to 27 
explain the various safety performances of these highways among the four states and offers 28 
guidance for generating countermeasures to specifically mitigate single-vehicle fatal crashes.  29 
The literature review also identified five primary causal influences for crashes:  v ehicle 30 
occupant/driver, vehicle characteristic, road and roadside features, crash characteristics, and 31 
environmental conditions.    32 
 Efficient and effective safety predictive models can vary based on specific objectives 33 
such as what to predict, at which level to predict, and which method to use.  The vast majority of 34 
safety prediction models attempt to predict crash frequency (number of crashes that occurred 35 
during a period of time) or crash rate (crash frequency over the traffic exposure). Common 36 
models often used for these assessments include Poisson regression models, negative binomial 37 
regression models, or variations of these models.  Systematic-level safety measures, such as 38 
number of crashes that occurred over a time period for specific road segments, require analysts to 39 
aggregate (or sort) crash counts into categories and extract road geometric and roadside 40 
information for each individual road segment.  In this case, a variable only represents an average 41 
condition of the corresponding road segment rather than reflecting a unique feature of a crash 42 
site.      43 
 Safety performance prediction at an aggregated level is important for roadway network 44 
screening and facility evaluation as it can help identify problematic areas.  H owever, these 45 
systematic models do not permit evaluation at the individual crash level.  In some cases, road or 46 
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crash characteristics may have unique associations with safety measures at a disaggregated level 1 
that can be different than at the category or aggregated level.  T his phenomenon is known as 2 
ecological fallacy, an error that occurs when falsely assuming individuals in a group have the 3 
average attributes of the group as a whole. In other cases, some crash level variables are 4 
inappropriate for aggregation. 5 
 In addition to the more common crash frequency and crash rate safety measures, a 6 
considerable number of researchers have also developed models to predict crash injury severity 7 
levels and their associated crash costs (1,2,3).  Crash type, in contrast, has been minimally 8 
investigated (see for example 4 and 5).  Some researchers have addressed crash types by 9 
predicting crash frequency for a specific type of crash alone (6,7,8).  This method can increase 10 
homogeneity of crash data since crash records would include only one specific type of crash, 11 
such as head-on crashes.  Analysis of a homogenous dataset, however, may lead to the exclusion 12 
of potential relationships across different types of crashes.   13 
 For this effort, the research team has elected to focus on crash types for fatal crash 14 
analysis at two-lane rural highways.  The focused evaluation of fatal crash types may help reveal 15 
crash type associations that will be different from what can be determined when studying all 16 
crashes.  Secondly, certain crash types tend to be over-represented for a specific type of highway 17 
facility.  For example, a single-vehicle run-off-road crash type makes up about 60% of overall 18 
fatal crashes on two-lane rural highways; while the single-vehicle crash is less common and 19 
generally less severe at urban locations.    20 
 Fatal crash type prediction models can serve as an analytical assessment tool for safety 21 
improvement projects where the main goal is to reduce fatalities and severe injuries.  In the 22 
process of identifying locations with the greatest safety needs, most current methods do not  23 
directly consider specific crash types.  C rash type prediction models provide an approach to 24 
quantify safety performance measures by taking into account roadway design characteristics, 25 
road environmental features, as well as traffic conditions.  A  random sample of fatal crash 26 
records is available for this analysis.  T hese records include detailed crash-specific roadway 27 
geometric characteristics that were collected through site investigation or video log inspection. 28 
This comprehensive data set enabled the authors team to better understand the relationships 29 
between roadway design features, fatal crashes, and single versus multiple vehicle crash 30 
occurrence. 31 
 32 
REGIONAL FATAL CRASH DATA  33 
As previously indicated, researchers from several states in the southeastern part of the United 34 
States previously participated in a rural fatal crash study.  This paper includes a cross-sectional 35 
analysis of data from four of these states.  Alabama and Georgia researchers randomly selected 36 
150 two-lane rural highway fatal crashes for the year 1997 by assigning random numbers to all 37 
fatal crashes for that year in the Fatality Analysis Reporting System database (FARS) and then 38 
selecting a sample based on simple number selection.  Though conceptually more than one crash 39 
could have occurred at the same road segment, the resulting data set did not happen to include 40 
multiple crashes at adjacent locations (9).  The FARS database contains all fatal traffic crashes in 41 
the United States including those that occur in the 50 states, the District of Columbia, and Puerto 42 
Rico.  For a crash to be included in the FARS database, all resulting fatalities of vehicle 43 
occupants and non-motorists must have occurred within 30 days of the crash.  Mississippi had a 44 
smaller crash population and so researchers from that state similarly developed a random sample 45 
of 100 fatal crashes for the year 1997.  South Carolina evaluated 157 fatal crashes in their final 46 
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analysis.  T hese South Carolina fatal crashes occurred during 1998. Additional information 1 
regarding the random sampling procedures can be found in the state-specific project reports (10, 2 
11, 12).   3 
 Each participating state identified the candidate crashes and performed physical or video 4 
site visits within two to three years of the crash.  T he data collection process included 5 
identification of unique physical features not commonly included in crash reports.  W here 6 
available, the research team acquired this information via video analysis; however, non-state 7 
maintained roads as well as many of the state roads required physical site visits to acquire 8 
information such as lane width, roadside ratings, shoulder treatment, or similar. The only 9 
variable that could not be confidently identified using the video approach was pavement edge 10 
drop off, so this was not included as a variable in the models. The physical road infrastructure 11 
information merged with the crash data makes this dataset one of the largest available datasets of 12 
its kind.  Each state used the same fatal crash site data collection form so that the data from each 13 
site and state would be consistent (10). Generally, each database included five types of data 14 
elements:  c rash details, site characteristics, environmental factors, limited driver information, 15 
and vehicle characteristics. All fatal crashes on rural two-lane highways were included in the 16 
study; however, this paper only focuses on the run-off-road single-vehicle crashes that made up a 17 
significant portion of the study database. 18 
 19 
 20 
METHODOLOGY   21 
For this study, the research team’s goal was to develop models to predict fatal crash type 22 
outcomes.  S ince crash type is a categorical variable, the research team performed categorical 23 
data analysis with a logistic regression model to predict categorical response variables with both 24 
continuous and categorical predictors.  This study defines crash types based on the definition of 25 
“Manner of Collision” in the “First Harmful Events” category used by FARS (13).  Figure 1 26 
presents the fatal crash type classification structure.  FARS describes the first harmful event as 27 
either the first property damage or injury-producing event of a crash occurrence.  T he single-28 
vehicle run-off-road crash identifier is applied when the first harmful event is a non-collision 29 
(e.g. driving off a cliff, rollover), a collision with an object that is not fixed (e.g. pedestrians or 30 
animals), or a collision with a fixed-object (e.g. trees, utility poles).  Since there are only a few 31 
crashes striking objects that are not fixed, a simplified representative description for this study is 32 
a single-vehicle crash where the vehicle exited the roadway and either struck a f ixed object or 33 
overturned.  For crashes that involved more than one vehicle, the two major fatal crash types 34 
observed for this data set were head-on collisions and angle crashes.     35 

 36 
 After initial examination, the research team developed two types of crash type prediction 37 
models as follows:  38 

• Single-vehicle fatal crash vs. Multiple-vehicle fatal crash 39 
• Based on fatal crash history for rural two-lane highways, predict the probability of 40 

a single-vehicle fatal crash.  41 
• Head-on fatal crash vs. Other fatal crash (not a head-on) 42 

• Based on multiple-vehicle fatal crash history for rural two-lane highways, predict 43 
the probability of a head-on fatal crash.  44 
 45 

 46 
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 1 
Figure 1:  Fatal Crash Type Classification 2 

 3 
  4 

This paper only presents the crash type prediction models that can differentiate a single-5 
vehicle fatal crash from a multiple-vehicle fatal crash.  Further information of the head-on fatal 6 
crash versus other fatal crash models can be found in the final project report (14).    7 

As previously discussed, one of the objectives of this study was to develop crash type 8 
models based on the premise that roadway design characteristics, roadside environment features, 9 
and traffic conditions each directly influence crash type occurrence. The research team applied a 10 
binary logit model to help identify influential factors that can differentiate two crash types at a 11 
time. 12 
  To compare conditions using a binary logit model, the first step is to assign a value of 13 
either zero or one for the crash type of interest.  For this effort, the research team assigned the 14 
following values for variable Y for each fatal crash: 15 
  Y= 1, if the crash type is a single-vehicle run-off-road fatal crash; 16 
  Y= 0, otherwise. 17 
 18 
 The analyst can then use the binary logit model to estimate the probability that Y has the 19 
value of 1 based on independent variables that represent features associated with the crash 20 
conditions (X1 ,….., Xk).  The logistic function form estimates what the probability would be of 21 
observing a single-vehicle run-off-road crash in the event of a fatal crash, as shown below:  22 
 23 
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 25 
Given:  26 

Pr(Single-veh-runoff ):  the probability of observing a single-vehicle run-off-road 27 
fatal crash occurrence in the event a fatal crash occurred,  this will be a value 28 
between 0 and 1; 29 

Fatal Crash 

Single-Vehicle 
Fatal Crash 

Multiple-Vehicle 
Fatal Crash 

Fixed-object  
Fatal Crash 

Overturn  
Fatal Crash 

Head-on  
Fatal Crash 

Non-Head-on 
Fatal Crash  
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β0:  estimated intercept; 1 
βi:  estimated coefficient for the corresponding independent variable Xi; 2 
Xi:  the ith independent variable.    3 
 4 

 Common model verification procedures frequently used for ordinary regression models 5 
and some types of logistic regression models are not suitable for evaluating a binary logit model 6 
(15, 16).  The model evaluation and selection for binary logit models mainly relies on examining 7 
the significance of extra terms in the model including squared terms or possible interactions 8 
between variables.  For this analysis, influential variables that appeared to help significantly 9 
differentiate crash types for the final model (with a p-value less than 0.10) were retained during 10 
the examination of potential contributing factors.   11 
 The ultimate goal for developing safety predictive models was to identify valuable 12 
information and quantify relationships between highway design characteristics and associated 13 
safety performance.  While the statistical significance and model goodness-of-fit are very 14 
important considerations in this process, the authors also made decisions based on t heir 15 
knowledge of how highway design characteristics relate to crash types.  This known relationship 16 
between design characteristics and safety performance explains why the ultimate final models 17 
may include higher-than-typical p-values of 0.1 or larger. Though a common p-value for 18 
statistical analysis is 0.05, the authors maintained the 0.1 value so as to demonstrate the 19 
performance of select variables that slightly exceed the conventional value.  This relaxed p-value 20 
permits analysis of a wider variety of variables that could potentially have a less significant 21 
influence on the crash condition.  22 
 23 
RESULTS AND DISCUSSION 24 
The research team developed fatal crash type prediction models to estimate the probability of a 25 
single-vehicle run-off-road fatal crash occurrence in the event of a fatal crash, based on the four-26 
state combined fatal crash database (AL, GA, MS, SC), three-state combined database (AL, GA, 27 
SC), and state specific databases.  Variables used in the state-combined models are defined in 28 
Table 1.  Model development contrasted crash information from each state with similar crashes 29 
in Georgia (the “base state”). For the four-state model, the estimation results were not significant 30 
for state indicator variable AL and SC, but the MS p-value was significant. This observation 31 
indicates that fatal crash types in Georgia, Alabama, and South Carolina share similar 32 
characteristics compared to the disparate findings for similar crash types in Mississippi. In other 33 
words, the predictor variables in the models for GA, AL, and SC are sufficient to explain crash 34 
differences across these states whereas they are not for MS. Since one objective of this study was 35 
to identify rural two-lane highway fatal crash models that can help analysts better understand 36 
crash trends in Georgia and the other states, the research team also investigated the combined-37 
state model based on the fatal crash database from AL, GA, and SC (the three similar states).   38 
 39 
  40 
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 1 

Table 1:  Variable Description (Combined-State Models, Single-Vehicle) 2 

Types Variables Descriptions 

Location Indicator 
AL 1 if in Alabama, 0 otherwise 
MS 1 if in Mississippi, 0 otherwise 
SC 1 if in South Carolina, 0 otherwise 

Road Junction type JUNCTION 1 if a road junction, 0 if road segment 

Geometric design 
features 

LW Lane width (ft) 
PSW Paved shoulder width (ft) 
GSW Graded shoulder width (ft) 

LCURV 1 if curve to the left, 0 otherwise (curve to the 
right or straight alignment) 

CREST 1 if vertical crest curve, 0 otherwise 

Roadside condition RHR67* 1 if road hazard rating is 6 or 7 (hazardous and 
not traversable), 0 otherwise 

Traffic volume ADT Average daily traffic (103 veh/day)  

Land use type LU_C 
1 if commercial driveways in the proximity (500 
ft longitudinally of crash site) of the crash 
location, 0 otherwise 

Lighting condition DARKUNLIT 1 if dark with no supplemental street lights, 0 
otherwise 

Circadian biological 
clock 

HR_DEEPSLEEP 1 if crash time between 1a.m. and 3a.m., 0 
otherwise 

HR_EM 1 if crash occurred between 12a.m. – 6 a.m., 0 
otherwise 

Safety Protection RESTRAINT 1 if driver wore safety restraint, 0 otherwise 
*Note:  The RHR is defined by the seven scale roadside hazard rating system which was 3 
developed to characterize the potential crash risk through roadside design features based on a 4 
pictorial scale on two-lane highways (17). 5 
 6 
 In the three-state model, the state indicator variables AL and SC again did not yield 7 
significant estimation results.  These results imply that the three-state model does a suitable job 8 
of predicting crashes for Georgia-specific conditions.    9 
  The combined three-state model benefits from a larger sample size, with approximately 10 
428 fatal crashes. This larger sample size enabled the authors to investigate more potential 11 
contributing factors at various significance levels.  Meanwhile, the research team also developed 12 
state-specific models in order to investigate the opportunity of examining spatial transferability 13 
as well as to explore unique variables that may only have impacts on fatal crash outcomes in one 14 
or two states.      15 
 16 
 17 
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Three-State Model (AL, GA, SC) 1 
Table 2 summarizes descriptive statistics for the continuous and categorical variables used for 2 
analysis in the multi-state models.  Table 4 presents the resulting three-state and Georgia model 3 
estimations and their goodness-of-fit test results.  The resulting three-state single-vehicle run-off-4 
road fatal crash prediction model as depicted in Table 3 is presented in equation format as:  5 
 6 

For: 7 
3 6.6717 0.1855 0.1167 0.8078 0.5407 0.0542 0.0475

0.0676( * ) 0.788 1.7264 2.5199( * ) 1.1581 67 0.0965
1.3722 _ 1.3101 1.8318 _

state AL SC JUNCTION LW PSW GSW

PSW GSW LCURV CREST LCURV CREST RHR ADT
LU C DARKUNLIT HR DEEPS

η − = − − − − − −

− + − + + −

− + + LEEP

8 

 

The probability of a single-vehicle run-off-road fatal crash can be predicted for a given 9 
set of road and environment conditions as: 10 

3
3

3

exp( )Pr( )
1 exp( )

state
state

state

Single veh runoff η
η
−

−
−

− − =
+

                                                      (2) 11 

Table 2:  Distribution of Continuous and Categorical Variables 12 
(Three-State Model, Single-Vehicle) 13 
Summary of Continuous Variables 

Variable Mean Std Dev Minimum Maximum 
LW (ft) 10.8 1.1 8 12 
PSW (ft) 0.6 1.6 0 12 
GSW (ft) 5.2 3.5 0 16 
ADT (veh/day) 2,896 2,941 75 17,960 

Summary of Categorical Variables 
Variable Status Percent (%) 

JUNCTION 
0 (Segment) 75 
1 (Intersection) 25 

LCURV 
0 (Curve to Right or Straight) 75 
1 (Curve to Left) 25 

CREST 
0 (Not a Crest Vertical Curve) 89 
1 (Crest Vertical Curve) 11 

RHR67 
0 (Roadside Hazard Rating < 6) 92 
1 (Roadside Hazard Rating of 6 or 7) 8 

LU_C 
0 (No Commercial Driveways) 94 
1 (Near Commercial Driveways) 6 

DARKUNLIT 
0 (Daylight, Dark with Lights, Dusk, or Dawn) 55 
1 (Dark without Supplemental Lights) 45 

HR_DEEPSLEEP 
0 (Not between 1 a.m. and 3 a.m.) 96 
1 (From 1 a.m. until 3 a.m.) 4 

  14 
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 1 

Table 3:  Single-Vehicle Fatal Crash Model Estimation (Three-State and Georgia Models) 2 

Variable 
Three State Model 

(AL, GA, SC) Georgia Model 

Estimate P- value Estimate P- value 
Intercept 6.6717 <.0001 8.9011 0.0003 
AL -0.1855 0.5614 -- 2 -- 2 
SC -0.1167 0.7404 -- -- 
JUNCTION -0.8078 0.0051 -2.1473 <.0001 
LW -0.5407 0.0003 -0.8350 0.0003 
PSW -0.0542 0.5873 -0.3506 0.0647 
GSW -0.0475 0.3202 -- -- 
PSW*GSW 1 -0.0676 0.0929 -- -- 
LCURV 0.7880 0.0156 1.7437 0.0112 
STRAIGHT -- -- 1.5662 0.0046 
CREST -1.7264 0.0002 -- -- 
LCURV*CREST 1 2.5199 0.0223 -- -- 
RHR67 1.1581 0.0716 -- -- 
ADT -0.0965 0.0558 -- -- 
LU_C -1.3722 0.0313 -- -- 
DARKUNLIT 1.3101 <.0001 1.1195 0.0124 
RESTRAINT -- -- -1.1604 0.0151 
HR_DEEPSLEEP 1.8318 0.0926 -- -- 

Observations 
(Single-Vehicle/Others) 

428 
(259/169) 

146 
(85/61) 

AIC 440.976 151.893 
SC 505.922 175.762 
-2 Log L 408.976 135.893 
R-Square 0.3204 0.3484 

 Hosmer and Lemeshow 
Goodness-of-Fit Test 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

 Chi-
Square DF Pr > Chi-

Square 
Chi-

Square DF Pr > Chi-
Square 

 7.4889 8 0.4849 4.983 7 0.662 
1 Note:  LCURV*CREST and PSW*GSW indicate these variable pairs interact. 3 
2Note:   The corresponding variable is not included in that model. 4 

 5 
Among the 428 fatal crashes available for the three-state combined model, 259 crashes 6 

were single-vehicle run-off-road fatal crashes.  A s presented in Table 4, the Hosmer and 7 
Lemeshow Goodness-of-Fit test showed an acceptable goodness of fit (p-value = 0.4849 >0.05) 8 
for the three-state model.  As shown in Equation (2), variables that can significantly differentiate 9 
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single-vehicle fatal crash from multiple-vehicle fatal crash include the presence of a road 1 
intersection (junction), lane width, paved shoulder width, graded shoulder width, horizontal 2 
curve direction, presence of a crest vertical curve, a roadside hazard rating 6 or 7, average daily 3 
traffic, driveway land use type, lighting condition, and time of crash. This model indicates, for 4 
example, that in the event a fatal crash occurs, the probability of a single-vehicle run-off-road 5 
fatal crash will increase at road segments with horizontal curves to the left. Single-vehicle run-6 
off-road fatal crashes tend to occur less frequently as both the lane width and traffic volume 7 
increase.  8 
 This study examined the potential correlation among predictors.  It demonstrated that the 9 
explanatory variables do not appear to be strongly correlated with others. Therefore the potential 10 
multi-colinearity is of minimal concern for model development. The selection of potential 11 
predictors targeted road design features and attributes from roadside environment conditions that 12 
can potentially be addressed using engineering countermeasures.  Though there are indications 13 
that alcohol and drug abuse are a primary contributor to the vehicle occupant/driver influence, 14 
these speculations cannot be quantitatively confirmed due to known quality limitations for this 15 
specific data variable.  A dditionally, variables that appear to be strong predictors for crash 16 
frequency prediction may not be significant factors in the fatal crash type model.  For example, 17 
crash time of day is often recognized as a significant factor for crash frequency prediction as this 18 
variable might inadvertently represent traffic volume fluctuations, driver fatigue, or lighting 19 
conditions.   For single-vehicle crashes, however, crash time does not significantly differentiate 20 
single-vehicle fatal crashes from multiple-vehicle fatal crashes. This may be because more than 21 
60-percent of the fatal crashes occurred during night time conditions.  The variable called 22 
HR_DEEPSLEEP is intended to capture the influence of the human circadian cycle while at the 23 
same time this variable might also provide other indications about driver condition and possible 24 
impairment.  In addition, the authors treated some variables as dichotomous variables rather than 25 
maintaining their original scales.  For example, the roadside hazard rating, RHR, is a variable 26 
with seven scales.  Only the road side conditions that pose high crash risks (RHR of 6 or 7) are 27 
likely to be associated with single-vehicle fatal crashes.  Therefore it is reasonable to re-28 
categorize RHR as a dichotomous variable in the single-vehicle fatal crash type model. 29 
 Up to 80-percent of the fatal crash locations in the 3-state crash database did not include 30 
paved shoulders.  The overall shoulder width (paved and graded shoulder width) provides an 31 
approximate representation of the effect from graded shoulders.  T he potential safety effects 32 
from paved shoulders could easily be masked if included with a general shoulder variable.  33 
Therefore, the authors approached the shoulder related variables by treating paved and graded 34 
shoulder width individually and examined the potential interaction effects in order to identify 35 
more informative results.  The statistically significant interaction effect between the paved and 36 
graded shoulder width indicates that the influence of the paved shoulder width on the probability 37 
of single-vehicle fatal crashes is also dependent on the graded shoulder width.  S imilarly, the 38 
horizontal curve to the left and the presence of a crest vertical curve exhibit a similar interaction 39 
effect.   40 
 This study also illustrates how sensitive the probability or a single-vehicle crash is based 41 
on varying graded shoulder widths (0, 2, 4, 6, and 8 ft) at various levels of paved shoulder width.  42 
The probabilities can be calculated based on a set of pre-determined base conditions for a typical 43 
study road segment crash, see Table 4.  Most of the variables were assigned a value similar to 44 
their average condition in the sample data with a crash location in Georgia (GA=1).  As shown in 45 
Figure 2, and Figure 3,  the probability of a single-vehicle fatal crash when the graded shoulder 46 
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width is increased does not vary substantially if there is no companion paved shoulder (paved 1 
shoulder width = 0 ft).  Alternatively if there is a paved shoulder present, the probability of a 2 
single-vehicle fatal crash drops significantly when the graded shoulder width is increased.  This 3 
relationship suggests that the combination of paved and graded shoulders collectively helps to 4 
enhance safety and reduce the likelihood of single-vehicle fatal crashes.   5 
 For daylight conditions or locations with supplemental lighting, the probability of a 6 
single-vehicle fatal crash occurring decreases at a slower rate for wider graded shoulders than 7 
when the lighting conditions are dark with no supplemental lighting. This observation is 8 
particularly true at locations with a wider paved shoulder.   9 
 10 

Table 4:  Description of Basic Condition for Evaluating Single-Vehicle Models 11 

Variables Conditions 
AL 0 
SC 0 
JUNCTION 0 (a road segment) 
LW 11 ft (lane width = 11 ft) 
LCURV 0 (road horizontal alignment is not a curve to the left) 
CREST 0 (road vertical alignment is not a crest vertical curve)   
RHR67 0 (roadside hazard rating 1 through 5) 
ADT 3000 veh/day (average daily traffic estimated as 3000 veh/day) 
LU_C 0 (not in the proximity of a commercial driveway) 
HR_DEEPSLEEP 0 (crash did not occurred between 1 a.m. – 3 a.m.) 

 12 

 13 
Figure 2:  Dark without Street Lights -- Graded and Paved Shoulder Width (Three-State 14 

Model, Single-Vehicle) 15 
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 1 

 2 
Figure 3:  Daylight, Dark with Lights, Dusk, or Dawn -- Graded and Paved Shoulder 3 

Width (Three-State Model, Single-Vehicle) 4 
 5 
GA Only Model 6 
Four individual models, based on the fatal crash sample data, were estimated for each of the 7 
states of Alabama, Georgia, Mississippi, and South Carolina.  This paper presents the Georgia-8 
only model in detail; however, the summary discussion addresses all four separate state models.  9 
In addition to the modeling effort for a regional level as summarized by  the three-state combined 10 
model (AL, GA, SC), the individual state assessment can be used as an indicator for identifying 11 
potential state-specific significant influential factors and their corresponding effects on t he 12 
probability of single-vehicle run-off-road fatal crash occurrence.  This state-level modeling effort 13 
can also help determine the suitability of model transferability for other state applications.      14 
 Independent variables which have significant impacts on the fatal crash type outcomes in 15 
the Georgia-only model include intersection (junction) type, lane width, paved shoulder width, 16 
horizontal curve direction, horizontal alignment type, roadside lighting condition, and safety 17 
restraint system usage for at-fault drivers.  In the Georgia fatal crash database, lane widths 18 
ranged from 8 ft to 12 ft with average lane width at 10.7 ft (approximately 11 ft).  Average width 19 
of paved shoulders was 0.6 ft but for a total range from 0 ft to 6 ft width.   20 
 The resulting Georgia-only single-vehicle run-off-road fatal crash prediction model as 21 
depicted in Table 4 is presented as follows:  22 
 23 
 Let: 24 

8.9011 2.1473 0.835 0.3506 1.7437 1.5662

1.1195 1.1604
GA JUNCTION LW PSW LCURV STRAIGHT

DARKUNLIT RESTRAINT

η = − − − + +

+ −
          25 
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 The probability of a single-vehicle run-off-road fatal crash for Georgia can then be 1 
predicted as follows: 2 

exp( )Pr( )
1 exp( )

GA
GA

GA

Single veh runoff η
η

− − =
+

                                                                 (3) 3 

 4 
As shown in Table 4, 85 out  of 146 fatal crashes were single-vehicle run-off-road fatal 5 

crashes.  For the state of Georgia, if a fatal crash occurred, the likelihood of a single-vehicle run-6 
off-road fatal crash would increase at a location with a horizontal curve to the left after 7 
accounting for other factors.  O ther significant variables for the Georgia single-vehicle fatal 8 
crash include roadside hazard ratings of 6 or 7, dark without supplemental lighting, and at-fault 9 
drivers not utilizing safety restraints.  There were about 71-percent at-fault drivers who did not 10 
wear safety restraints at the time of crash.  Meanwhile, single-vehicle fatal crashes are less likely 11 
to occur at locations with increasing lane and paved shoulder widths.  The maximum lane width 12 
for the Georgia highway crash sites was 12 ft and the maximum paved shoulder width was 6 ft so 13 
this observation should not be extrapolated outside these upper boundaries.    14 
  15 
Model Discussion 16 
Table 5 summarizes the model estimation results for the four individual-state models, the three-17 
state combined model (AL, GA, SC), and the four-state combined model (AL, GA, MS, SC).  18 
The four individual-state models do not  contain the same set of independent variables—19 
suggesting that a multi-state model represents a compromise model that captures many of the 20 
primary but possibly not all factors associated with fatal crashes.  T he two combined-state 21 
models include a collection of independent variables included in all four individual-state models, 22 
except for few variables.  The effort of fitting four individual-state models with the same set of 23 
independent variables was not supported by the data—again highlighting the previous point.  24 
One of the requirements of testing model spatial transferability is to fit models with the same set 25 
of predictors.  This condition can only be achieved if all four individual-state models include a 26 
limited collection of independent variables such as ADT only.  These models would then have 27 
less accurate predictive power since critical contributing factors may be excluded.   28 
 Both of the combined state models provided similar estimates for the categorical location 29 
indicator variables for Alabama and South Carolina indicating that the fatal crash type outcome 30 
prediction is substantively similar across at least three states:  Alabama, South Carolina, and the 31 
base state Georgia.    32 
 The two combined-state models present very similar modeling results when the same set 33 
of independent variables is retained.   As shown in Table 5, despite the differences among the 34 
individual-state models and the combined-state models, there are three independent variables 35 
(lane width, horizontal curve direction, and lighting conditions) that are significant predictors 36 
with similar effects for all six models. Rural roadway segments with narrower lanes have a 37 
greater likelihood of single-vehicle run-off-road fatal crashes than their wider lane counterparts.  38 
The location with a curve to the left tends to be more frequently associated with a single-vehicle 39 
run-off-road crash than are locations with either curves to the right or straight alignment.  40 
Similarly, the location that is dark without supplemental lighting is more likely to be a site for a 41 
single-vehicle run-off-road crash than locations with better lighting conditions or daytime 42 
conditions. These findings suggest that the lane width, curve direction, and lighting condition are 43 
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strongly associated with the probability of a fatal crash type, with direct associations for single-1 
vehicle fatal crashes. 2 
 3 

Table 5:  Model Comparison (Single-Vehicle) 4 

Variables AL only 
Model 

GA only 
Model 

MS only 
Model 

SC only 
Model 

Three-State 
Model 
(AL, 

 GA, SC) 

Four-State 
Model 

(AL, GA, 
MS, SC) 

AL     -0.1855 -0.1984 
MS      -1.3453** 
SC     -0.1167 -0.0836 
JUNCTION -1.2158** -2.1473**   -0.8078** -0.9922** 
LW -0.5111** -0.835** -0.4282* -1.0576** -0.5407** -0.4630** 
PSW  -0.3506* -0.7045  -0.0542 -0.1087 
GSW    -0.1247* -0.0475 -0.0463 
PSW*GSW     -0.0676* -0.0622* 
LCURV 1.5906** 1.7437** 0.8562 1.1555** 0.7880** 0.7255** 
STRAIGHT  1.5662**     
CREST    -1.5341** -1.7264** -1.5389** 
DOWNa 0.8342*      
LCURV*VCREST     2.5199** 2.2686** 
RHR67 1.8195  1.6633**  1.1581* 1.3314** 
ADT     -0.0965* -0.1078** 
LU_C    -2.5984** -1.3722** -1.4298** 
DARKUNLIT 1.3682** 1.1195** 1.6260** 1.3523** 1.3101** 1.3135** 
HR_DEEPSLEEP   2.0741* 2.0821 1.8318* 1.9744** 
HR_EMb 2.8888**      
RESTRAINT  -1.1604**     

** Significant level < 0.05 5 
*   Significant level < 0.1 6 
a Note:   1 if direction of slope is down (negative), 0 otherwise. 7 
b Note:   1 if crash occurred between 12a.m. – 6 a.m., 0 otherwise. 8 
 9 
 10 
Practical Application 11 
Safety engineers can apply fatal crash type prediction models as a unique tool for safety 12 
improvement projects and can use the models to specifically focus on reducing fatalities and 13 
serious injuries.  Since current assessment techniques do not always incorporate crash types, the 14 
use of predictive models can complement current procedures to identify candidate 15 
countermeasure applications.  It is helpful for safety engineers to know whether a candidate 16 
improvement location tends to have higher likelihood of a major fatal crash type based on the 17 
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existing road design characteristics.  This assessment can occur on newer roads that do not have 1 
a substantial crash history if these roads are built in a manner consistent with others in the region.  2 
 Assume that a high-crash location has been previously identified using regional analysis 3 
procedures and that the road is a rural two-lane highway.  This two-lane rural road segment has a 4 
known history of single-vehicle crashes that result in fatalities or serious injury.  One specific 5 
location on this road has the existing characteristics as shown in Table 6 along with the estimated 6 
results for the probability of a single-vehicle fatal crash at the example study location based on 7 
the existing conditions, and the two proposed improvement conditions, B1 and B2. 8 
 9 
 10 

Table 6:  Sample Problem -- Existing Road Conditions for Georgia Site 11 

Existing Condition Status Variables  
Road segment? Yes JUNCTION = 0 
Alabama? No AL = 0 
South Carolina? No SC = 0 
Lane width 11 ft LW=11 
Paved shoulder width 0 ft PSW = 0 
Graded shoulder width 8 ft GSW = 8 
Roadside hazard rating 5 RHR67 = 0 
ADT 3,000 vehicles per day ADT = 3 

Land use  Driveways not for 
commercial use LU_C = 0 

Driving during 1am to 3am?    No HR_DEEPSLEEP = 0 
Curve to the left?   Yes LCURV = 1 
Crest? No CREST = 0 
Daylight, dark with lighting, 
dusk or dawn conditions - DARKUNLIT = 0 

Dark without supplemental 
street lights - DARKUNLIT = 1 

   Evaluation Results  

 
Lane  

Width  
(ft) 

Paved 
Shoulder 

Width 
(ft) 

Graded Shoulder 
Width (ft) 

Probability of Single-
vehicle fatal crash 

Daylight Dark No 
Lighting 

Existing 11 0 8 0.70 0.90 
Plan: B1 12 0 8 0.57 0.83 
Plan: B2 11 3 5 0.45 0.75 

 12 
Evaluation conclusion: 13 

• Proposed plan B2, shoulder improvement, is the recommended countermeasure under the 14 
context of single-vehicle fatal crash outcome reduction.  15 

• Since the physical improvements have less influence on single-vehicle crashes during 16 
dark conditions, it may be appropriate to enhance the location (particularly at horizontal 17 
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curve locations) with other countermeasures that specifically increase safety during dark 1 
conditions. 2 

• Due to the increased risk due to the lack of safety restraint use by at-fault drivers, it is 3 
recommended that the use of safety restraints be promoted.   4 

• Though the probability models provide indications regarding the effectiveness of 5 
improvements, the final improvement decisions should be based on cost/benefit analysis, 6 
as well as other potential conditions not available for assessment in the model 7 
development.  8 

 9 
Application Limitation 10 
The correct use of logit model results can be problematic if it is not clear how the models should 11 
be used and what limitations should be applied for use of the models.  This study focuses on fatal 12 
crashes where at least one person was fatally injured.  It is not appropriate to generalize the 13 
modeling results to crashes at all injury levels.   The models developed for this study include 14 
a limited number of contributing factors.   There are other potential factors that could influence 15 
fatal crashes, but these variables are not included in the model due to a variety of reasons.  For 16 
example, the random fatal crash database may have some variables that are not well populated 17 
and therefore do not provide significant effects.  It is also possible that there may be influential 18 
variables that are not available in the standard crash database or the supplemental database used 19 
for this study.  20 
  21 
CONCLUSIONS 22 
The use of statistical models to predict how a candidate countermeasure can help to reduce a 23 
specific type of crash can be valuable.  The research team evaluated a wide variety of statistical 24 
models and determined that a logit model is a suitable tool for determining the probability of a 25 
crash and, by doing so, would help determine how to reduce the crash probability.  Many options 26 
are available for estimating crash severity, frequency, and type. This paper specifically evaluates 27 
crash type. Since rural two-lane roads have a high number of single-vehicle crashes, the crash 28 
type evaluated extensively in this research was a single-vehicle run-off-road crash.  F or the 29 
single-vehicle crashes, the following observations were identified: 30 
 31 

• Single-vehicle fatal crashes in Mississippi did not have similar contributing factors than 32 
similar crashes in the other three states, so the cross-section model for single-vehicle 33 
crashes only applies to Alabama, Georgia, and South Carolina. This is likely due to a 34 
Mississippi data quality issue. 35 

• There are a w ide variety of variables that influence a s ingle-vehicle fatal crash in the 36 
three states.  T hese include location, lane width, shoulder width and type, horizontal 37 
curve direction, crest vertical curves present, horizontal and vertical geometric 38 
interactions, roadside hazard rating, traffic volume, driveway type, lighting conditions, 39 
and crash time. 40 

• Individual single-vehicle models for the four states have similar influences, and 41 
consistently critical influences for fatal crashes in all four states include lane width, 42 
horizontal curve direction, and lighting conditions. 43 

• For the Georgia-only model, the use of safety restraints and lighting conditions were 44 
critical factors associated with single-vehicle fatal crashes. 45 
 46 
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Potential countermeasures that can be evaluated using the single-vehicle fatal crash type 1 
model are categorized as follows:  2 

• Geometric alignment improvements;  3 
• Widening of lanes or pavement widths;  4 
• Adding or widening graded or stabilized shoulder; and  5 
• Widening or improvement of clear zones.   6 

 7 
These countermeasure categories are also recommended in a previous countermeasure 8 

evaluation study that focused on fatal crashes at rural roads in Georgia. For that project, the 9 
countermeasure recommendations were based on expert panel opinions (14).  The independent 10 
recommendations from the previous study closely align with the roadside hazard rating, the 11 
graded/paved shoulder condition, and the horizontal and vertical curve variables (each 12 
contributing to crashes as determined through the use of the statistical models).  The 13 
corroboration of these two independent assessment techniques solidifies the creditability of both 14 
the expert opinions and the statistical models.   15 
 16 
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