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Obtaining Critical Values for Test of Markov

Regime Switching

Valerie K. Bostwick and Douglas G. Steigerwald

Department of Economics

University of California, Santa Barbara

October 20, 2012

Abstract

For Markov regime-switching models, testing for the possible presence of

more than one regime requires the use of a non-standard test statistic. Carter

and Steigerwald (forthcoming, Journal of Econometric Methods) derive in de-

tail the analytic steps needed to implement the test of Markov regime-switching

proposed by Cho and White (2007, Econometrica). We summarize the im-

plementation steps and address the computational issues that arise. A new

command to compute regime-switching critical values, rscv, is introduced and

presented in the context of empirical research.
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1 Introduction

Markov regime-switching models are frequently used in economic analysis and are

prevalent in a variety of fields including finance, industrial organization, and business

cycle theory. Unfortunately, conducting proper inference with these models can be

exceptionally challenging. In particular, testing for the possible presence of more

than one regime requires the use of a non-standard test statistic and critical values

that may differ across model specifications.

Cho and White (2007) demonstrate that, due to the unusually complicated na-

ture of the null space, the appropriate measure for a test of more than one regime in

the Markov regime-switching framework is a quasi-likelihood ratio (QLR) statistic.

They provide an asymptotic null distribution for this test statistic from which crit-

ical values should be drawn. Because this distribution is a function of a Gaussian

process, the critical values are not easily obtained from a simple closed-form distri-

bution. Moreover, the elements of the Gaussian process underlying the asymptotic

null distribution are dependent upon one another. For this reason the critical values

depend on the covariance of the Gaussian process and, due to the complex nature of

this covariance structure, are best calculated using numerical approximation. In this

article we summarize the steps necessary for such an approximation and introduce

the new Stata command, rscv, which implements the methodology to produce the

desired regime-switching critical values for a QLR test of only one regime.

We focus on the case of a simple linear model with Gaussian errors, but the QLR

test and the rscv command are generalizable to a much broader class of models. This

methodology can be applied to models with mulitple covariates and non-Gaussian
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errors. It is also applicable to regime-switching models where the dependent variable

is vector valued, although the difference between distributions must be in only one

mean parameter. Although most regime-switching models are thought of in the

context of time-series data, we provide an example in Section 5 of how the QLR test

can be used in cross-section models. However, there is one notable restriction on the

allowable class of regime-switching models. Carter and Steigerwald (2012) establish

that the quasi-maximum likelihood estimator created by the use of the quasi-log-

likelihood is inconsistent if the covariates include lagged values of the dependent

variable. For this reason, the QLR test should be used with extreme caution on

autoregressive models.

The article is organized as follows. In Section 2 we describe the unusual null

space that corresponds to a test of only one regime versus the alternative of regime-

switching. In Section 3 we present the QLR test statistic, as derived by Cho and

White, and the corresponding asymptotic null distribution. We also summarize the

detailed analysis in Carter and Steigerwald describing the covariance structure of

the relevant Gaussian process. In Section 4 we describe the methodology used by

the rscv command to numerically approximate the relevant critical values. We also

present the syntax and options of the rscv command and provide sample output.

We illustrate use of the rscv command with an application from economic literature

in Section 5. Finally, we conclude with some remarks on the general applicability of

this command and the underlying methods.

3



2 Null Hypothesis

Specification of a Markov regime-switching model requires a test to confirm the

presence of multiple regimes. The first step is to test the null hypothesis of a single

regime against the alternative hypothesis of Markov switching between two regimes.

If this null hypothesis can be rejected, then the researcher can progress to estimation

of Markov regime-switching models with two, or more, regimes. The key to con-

ducting valid inference is then a test of the null hypothesis of a single regime, which

yields an asymptotic size equal to or less than the nominal test size.

To understand how to conduct valid inference for the null hypothesis of only a

single regime, consider a basic regime-switching model

yt = θ0 + δst + ut, (1)

where ut ∼ i.i.d.N (0, σ2). The unobserved state variable st ∈ {0, 1} indicates

regimes: in state 0, yt has mean θ0, while in state 1, yt has mean θ1 = θ0+ δ. The se-

quence {st}nt=1 is generated by a first-order Markov process with P (st = 1|st−1 = 0) =

p0 and P (st = 0|st−1 = 1) = p1.

The key is to understand the parameter space that corresponds to the null hypoth-

esis. Under the null hypothesis there exists a single regime, with mean θ∗. Hence

the null parameter space must capture all the possible regions that correspond to a

single regime. The first region corresponds to the assumption that θ0 = θ1 = θ∗,

which carries with it the implicit assumption that each of the two regimes is observed

with positive probability: p0 > 0 and p1 > 0. The non-standard feature of the null
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space is the inclusion of two additional regions, each of which also correspond to a

single regime, with mean θ∗. The second region corresponds to the assumption that

only regime 0 occurs with positive probability, p0 = 0, and that θ0 = θ∗. Note that

in this second region, the mean of regime 1, θ1 is not identified, so that this region

in the null hypothesis does not impose any value on θ1 − θ0. The third region is a

mirror image of the second region, where now the assumption is that regime 1 occurs

with probability 1: p1 = 0 and θ1 = θ∗ The three regions are depicted in Figure 1.

The vertical distance measures the value of p0 and of p1 and the horizontal distance

measures the value of θ1 − θ0. Thus the vertical line at θ1 = θ0 captures the region

of the null parameter space that corresponds to the assumption that θ0 = θ1 = θ∗

together with p0, p1 ∈ (0, 1). The lower horizontal line captures the region of the

null parameter space where p0 = 0 and θ1 − θ0 is unrestricted. Similarly, the upper

horizontal line captures the region of the null parameter space where p1 = 0 and

θ1 − θ0 is unrestricted.

θ1 − θ0 = 0
p1 = 0

p0 = 0

Figure 1: All three regions of the null hypothesis H0 : p0 = 0 and θ0 = θ∗; p1 = 0
and θ1 = θ∗; or θ0 = θ1 = θ∗ together with local neighborhoods of p1 = 0 and
θ0 = θ1 = θ∗.
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The additional curves that correspond to the values p0 = 0 and p1 = 0 play a

crucial role in guarding against the misclassification of a small group of extremal

values as a second regime. In Figure 1 we depict the null space together with local

neighborhoods for two points in this space. These two neighborhoods illustrate the

different roles of the three curves in the null space. Points in the circular neigh-

borhood of the point on θ1 − θ0 = 0 correspond to processes with two regimes that

have only slightly separated means. On the other hand, points in the semicircular

neighborhood around the point on p1 = 0 correspond to processes in which there

are two regimes with widely separated means, one of which occurs infrequently. As

one is often concerned that rejection of the null hypothesis of a single regime is due

to a small group of outliers, rather than multiple regimes, including these boundary

values reduces precisely this type of false rejection. Consequently, a valid test of the

null hypothesis of a single regime must account for the entire null region and include

all three curves.

3 Derivation of the Critical Values

3.1 Quasi-Likelihood Ratio Test Statistic

To implement a valid test of the null hypothesis of a single regime, a likelihood

ratio statistic is needed. When considering the likelihood ratio statistic for a Markov

regime-switching process, Cho and White find that the necessary inclusion of p0 = 0

and p1 = 0 in the parameter space creates significant difficulties in the asymptotic

analysis. These difficulties lead them to consider a quasi-likelihood ratio (QLR)
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statistic for which the Markov structure of the state variable is ignored and {st} is

instead a sequence of i.i.d. random variables.

This i.i.d. restriction allows Cho and White to consider only the stationary

probability, P (st = 1) = π, where π = p0/(p0 + p1). Because π = 1 if and only if

p1 = 0 (and π = 0 if and only if p0 = 0), the null hypothesis for a test of one regime

based on the QLR statistic is expressed with three curves. The null hypothesis is,

H0 : θ0 = θ1 = θ∗ (curve 1), π = 0 and θ0 = θ∗ (curve 2), π = 1 and θ1 = θ∗ (curve

3). The alternative hypothesis is H1 : π ∈ (0, 1) and θ0 $= θ1.

For our basic model in (1), the quasi-log-likelihood analyzed by Cho and White

is

Ln

(
π, σ2, θ0, θ1

)
=

1

n

n∑

t=1

lt
(
π, σ2, θ0, θ1

)
, (2)

where lt (π, σ2, θ0, θ1) := log ((1− π) f (yt|σ2, θ0) + πf (yt|σ2, θ1)) and f (yt|σ2, θj) is

the conditional density with j = 0, 1. Define
(
π̂, σ̂2, θ̂0, θ̂1

)
to be the parameter values

that maximize the quasi-log-likelihood function. Let
(
1, σ̃2, ·, θ̃1

)
be the parameter

values that maximize Ln under the null hypothesis that π = 1. The QLR statistic is

then

QLRn = 2n
(
Ln

(
π̂, σ̂2, θ̂0, θ̂1

)
− Ln

(
1, σ̃2, ·, θ̃1

))
. (3)

3.2 Asymptotic Null Distribution

The asymptotic null distribution of QLRn will be largely determined by the

behavior of the statistic in the area of the null region near to π = 1. Note that this

region of the null space is equivalent to the space near π = 0, where the identification
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problem is reversed (θ1 is not identified) but the behavior of the asymptotic null

distribution is identical. We will also discuss the behavior of the distribution in the

area of the null region near to θ0 = θ1 = θ∗, however that region is less critical, as it

only affects the behavior of the asymptotic null distribution when π = 1/2.

In the null region near to π = 1 the distribution is complicated by the fact that

θ0 is not identified, so changes in the value of θ0 will not alter the distribution. In

consequence, while we expect θ̂1 and σ̂2 to be close to their population values when

π̂ is close to 1, there is no expectation that θ̂0 will be close to its true population

value.

To derive the asymptotic null distribution for the region corresponding to π = 1,

first consider θ0 as fixed at some value θ′0. The distribution of QLRn in this region is

then simply χ2 with one degree-of-freedom. Let this distribution, when θ0 is fixed at

θ′0, be expressed as G (θ′0)
2, where G (θ′0) ∼ N (0, 1). As the value θ′0 is arbitrary, the

distribution of QLRn depends on the stochastic process formed from the sequence of

χ2 random variables, each indexed by a particular value of θ0. Moreover, because the

estimates of (π, σ2, θ1) that maximize the likelihood for any two values of θ0 = {θ′0, θ′′0}

are calculated from the same sample, the elements of this sequence must be dependent

upon each other. Therefore, the corresponding sequences G (θ′0)
2 and G (θ′′0)

2 are

dependent.

Additionally, we must consider the estimation of π. Because maximization of the

likelihood can yield a π̂ > 1, the fact that π is a probability implies that π̂ should be

subject to the boundary condition, π ≤ 1. When we impose this boundary condition

on π̂, the asymptotic null distribution of QLRn is no longer a χ2 process. To see this,
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note first that the boundary condition π ≤ 1 implies that if π̂ > 1, then the estimate

of π is truncated back to π̂ = 1 and QLRn = 0. Thus, when the boundary condition

is imposed, the asymptotic null distribution of QLRn has a point mass at 0. To

understand the remainder of the null distribution, we have that the estimator π̂ is

asymptotically equal to 1+cG (θ0), where c is a positive constant, which implies that

if π̂ < 1 then G (θ0) < 0. Hence the remainder of the null distribution is governed by

the negative part of the Gaussian process G (θ0).

Let Θ define the set of all possible values of θ0. The procedure of first maximizing

Ln for a fixed value of θ0 and then obtaining the supremum over Θ, yields the

asymptotic null distribution (Cho and White, 2007, Theorem 6(a), p. 1692)

QLRn ⇒ sup
Θ

(min [0,G (θ0)])
2 . (4)

We have thus far only considered the behavior of QLRn in a neighborhood of the

null region corresponding to π = 1. When the error term is normally distributed, as

in our basic model (1) with ut ∼ i.i.d.N (0, σ2), then the asymptotic null distribution

of QLRn is not determined solely by this null region. If θ0 is sufficiently close to θ1

and π = 1
2 , then the asymptotic null distribution has an additional term (Cho and

White, 2007, Theorem 6(b), p. 1692),

QLRn ⇒ max

[
[max (0, G)]2 , sup

Θ

[
G (θ0)−

]2
]
, (5)

where G is a standard Gaussian random variable that is correlated with G (θ0) and

G (θ0)− := min [0,G (θ0)].
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The critical value for a test based on the statistic QLRn thus corresponds to

a quantile for the largest value over max (0, G)2 and supΘ

[
G (θ0)−

]2
. In order to

determine this quantity one must account for the covariance among the elements of

G (θ0) as well as their covariance with G. The structure of this covariance is derived

in detail by Carter and Steigerwald. We next present a summary of these derivations

for the single equation linear model given in (1).

3.3 Gaussian Process Covariance

Since the Gaussian process G (θ0) arises from the behavior of QLRn in a neigh-

borhood of the null region π = 1, Carter and Steigerwald first consider the score of

π evaluated at (1, σ2, θ0, θ∗) (the population values under the null hypothesis that

π = 1),

S (θ0) =
∂

∂π
lt

∣∣∣∣
(1,σ2,θ0,θ∗)

.

Note that because S (θ0) ∼ N (0,V (θ0)), the standardized process G (θ0) is given by

the scaled score function

G (θ0) = V (θ0)
− 1

2 S (θ0) .

Because the process G (·) is a Gaussian process, the dependence among the ele-

ments of G (·) is captured by the covariance among the elements of G (·). If θ0 and θ′0

denote two distinct elements of the process G (·), then the covariance E [G (θ0)G (θ′0)]

is derived from the covariance E [S (θ0)S (θ′0)] as

E [G (θ0)G (θ′0)] = V (θ0)
− 1

2 V (θ′0)
− 1

2 E [S (θ0)S (θ′0)] . (6)
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Carter and Steigerwald use this fact to derive the covariance for the single equa-

tion linear model in (1) where the score is

S (θ0) = 1− exp

[
(θ0 − θ∗)

σ2

(
yt −

θ0 + θ∗
2

)]
.

They derive the asymptotic variance of S (θ0),

V (θ0) =

(
e

1
σ2 (θ0−θ∗)

2

− 1− (θ0 − θ∗)
2

σ2
− (θ0 − θ∗)

4

2σ4

)−1

,

and show that the covariance of the score, E [S (θ0)S (θ′0)], equals V (θ0)V (θ′0) times

the following term

e
1
σ2 (θ0−θ∗)(θ′0−θ∗) − 1− (θ0 − θ∗) (θ′0 − θ∗)

σ2
− (θ0 − θ∗)

2 (θ′0 − θ∗)
2

2σ4
.

Because the regime-specific parameters θ0 and θ∗ enter E [S (θ0)S (θ′0)] and V (·)

only through η = θ0−θ∗
σ , the covariance of the Gaussian process can therefore be

written as

E [G (θ0)G (θ′0)] =
eηη

′ − 1− ηη′ − (ηη′)2

2(
eη2 − 1− η2 − η4

2

) 1
2
(
e(η′)

2 − 1− (η′)2 − (η′)4

2

) 1
2

, (7)

where η′ = θ′0−θ∗
σ . The quantity supΘ

[
G (θ0)−

]2
that appears in the asymptotic null

distribution is determined by this covariance. Since the regime-specific parameters

enter (7) only through η, a researcher does not need to specify the parameter space

Θ to calculate supΘ

[
G (θ0)−

]2
. All that is required is the set H that contains the
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number of standard deviations that separate the regime means.

Finally, in order to fully capture the behavior of the asymptotic null distribution

of QLRn, we must also account for the covariance between G and G (θ0). Cho and

White show that Cov (G,G (θ0)) =
(
eη

2 − 1− η2 − η4

2

)− 1
2
η4.

4 The rscv Command

The syntax of the rscv command is

rscv
[
, ll(value) ul(value) r(value) q(value)

]

where ll and ul are the lower and upper limits of the interval H, r is the number

of simulation replications, and q is the desired quantile. If no options are specified,

rscv returns the critical value for a size 5 percent QLR test corresponding to a

regime separation of ±1 standard deviation calculated over 100,000 replications. In

this section, we describe the simulation process used to obtain these critical values

and how each of the rscv command options affect those simulations.

Due to the complexity of the covariance structure underlying the asymptotic null

distribution, the quantiles needed to obtain critical values for the QLR test are best

calculated using numerical approximation. For a QLR test with size 5 percent, the

critical value corresponds to the .95 quantile of the limit distribution given on the

right side of either (4) or (5). Because the dependence in the process G (θ0) renders

numeric integration infeasible, we construct the quantile by simulating independent

replications of the process. As the covariance of G (θ0) depends only on an index η,

we do not need to simulate G (θ0) directly. Instead we simulate GA (η), which we will
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construct to have the same covariance structure as G (θ0). The process GA (η) will

therefore provide us with the correct quantile, while relying solely on the index, η.

To construct GA (η) for the covariance structure in (7) recall that, by a Taylor-

series expansion, eη = 1 + η + η2

2! + · · · . Hence, for {εj}∞j=0 ∼ i.i.d.N (0, 1):

∞∑

j=3

ηj√
j!
εj ∼ N

(
0, eη

2 − 1− η2 − η4

2

)
.

Using this fact, our simulated process is constructed as

GA (η) =

(
eη

2 − 1− η2 − η4

2

)− 1
2
J−1∑

j=3

ηj√
j!
εj,

where J determines the accuracy of the Taylor-series approximation. Note that the

covariance of this simulated process, E
[
GA (η)GA (η′)

]
, is identical to the covariance

structure of G (θ0) in (7).

We must also account for the covariance between G and G (θ0). Cho and White

establish that this covariance corresponds to the term in the Taylor-series expansion

for j = 4. For this reason we set G = ε4 so that Cov (G,G (θ0)) = Cov
(
G,GA (η)

)
.

The critical value that corresponds to (5) for a test size of 5 percent is therefore the

.95 quantile of the simulated value

max

{
[max (0, ε4)]

2 ,max
η∈H

[
min

(
0,GA (η)

)]2
}
. (8)

The rscv command executes the numerical simulation of (8) by first generating

the series {εj}Jj=0 ∼ i.i.d.N (0, 1). For each value in a discrete set of η ∈ H, it then
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constructs GA (η) =
(
eη

2 − 1− η2 − η4

2

)− 1
2 ∑J−1

j=3
ηj√
j!
εj. The command then obtains

the value mr = max
{
[max (0, ε4)]

2 ,maxη
[
min

(
0,GA (η)

)]2}
corresponding to the

right side of (5) for each replication (indexed by r). Let
{
m[r]

}R

r=1
be the vector of

ordered values of mr calculated in each replication. The command rscv returns the

critical value for a test with size q from m[(1−q)R].

For each replication, rscv calculates GA (η) at a fine grid of values over the interval

H. To do so, we must specify three quantities: the intervalH (which must encompass

the true value of η), the grid of values over H (given by the grid mesh), and the

number of desired terms in the Taylor-series approximation, J . To understand the

interplay in specifying these three quantities, suppose that θ0 is thought to lie within

3 standard deviations of θ1. The interval is H = [−3.0, 3.0] and with a grid mesh

of 0.01, the process is calculated at the points (−3.00,−2.99, . . . , 3.00). Because the

process is calculated at only a finite number of values the accuracy of the calculated

maximum increases as the grid mesh shrinks. For this reason the command rscv

implements a grid mesh of 0.01, as recommended in Cho and White (2007, p. 1693).

Given the grid mesh of 0.01 and the user-specified interval H, we must de-

termine the appropriate value of J . To do so, consider the approximation error,

ξJ,η =
(
eη

2 − 1− η2 − η4

2

)− 1
2 ∑∞

j=J
ηj√
j!
εj. We want to ensure that, as J increases, the

variance of ξJ,η is decreasing towards zero. Carter and Steigerwald show that, for large

J , Var (ξJ,η) ≤ e2J log η−J log J . They therefore reccomend that (maxH |η|)2 /J ≤ 1/2.

Cho and White select J = 150 and consider a maximal value of η = 5, so η2/J ≤ 1/6.

The command rscv implements a value of J such that, for the user-specified interval

H, (maxH |η|)2 /J ≤ 1/2.
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The rscv command also allows the user to specify the number of simulation

replications and the desired quantile. Note that for large values of H and the default

number of replications (r = 100, 000), the rscv command may require more memory

than a 32-bit operating system can provide. In this case, the user may need to

specify a smaller number of replications in order to calculate the critical values for

the desired interval, H. Critical values derived using fewer simulation replications

may be stable only to a single significant digit. Table 1 depicts the results of rscv

for a size 5 percent test over varying values of ll, ul, and r.

Table 1: Critical values for linear models with Gaussian errors
H [−1, 1] [−2, 2] [−3, 3] [−4, 4] [−5, 5]

100,000 4.9 5.6 6.2 6.7 7.0
Replications

10,000 4.9 5.6 6.2 6.6 7.1

Nominal level 5 percent; grid mesh of .01.

5 Example

We present an example, derived from the economics literature, that delineates the

key features of the QLR test and the associated rscv command. Most importantly,

we made clear the restrictions that must be imposed on the model to form the QLR

test statistic. Our example is derived from Bloom, Canning, and Sevilla (2003),

who test whether the large differences in income levels across countries are better

explained by differences in intrinsic geography or by a regime-switching model of

multiple equilibria with poverty traps. To this end, the authors use cross-sectional

data to analyze the distribution of per capita income levels for countries with similar
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exogenous characteristics and test for the presence of multiple regimes.

Unlike the simple model, (1), that we have considered up until now, Bloom et al.

present a model that includes several added complexities that are commonly used in

regime-switching applications. These additions include covariates with coefficients

that vary across regimes, as well as error variances that are regime-specific. The

authors also allow the regime probabilities to depend on the included covariates. We

will show how to properly construct the QLR test statistic for this type of complex

model and how to use the rscv command to derive the corresponding critical values.

Bloom et al. propose a model of regime-switching between two equilibria. Regime

1 occurs with probability p(x) and corresponds to countries that are in a poverty trap

equilibrium:

y = µ1 + δ1x+ ε1 , V ar(ε1) = σ2
1. (9)

Regime 2 occurs with probability 1− p(x) and corresponds to countries in a wealthy

equilibrium:

y = µ2 + δ2x+ ε2 , V ar(ε2) = σ2
2. (10)

In both regimes, y is log Gross Domestic Product (GDP) per capita and x is ab-

solute latitude, which functions as a catchall for a variety of exogenous geographic

characteristics.

This model is slightly different from a Markov regime-switching model in that the

authors are looking at different regimes in a cross-section, rather than over time. For

this reason, the probability of being in either regime is stationary and the unobserved

regime indicator is an i.i.d. random variable. These modifications correspond exactly
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to those made by Cho and White to create the quasi-log-likelihood, so that in this

model the log-likelihood ratio and the QLR are one and the same.

Given this model, we can write the quasi-log-likelihood as

Ln

(
p, σ2, δ, µ1, µ2

)
=

1

n

n∑

i=1

li
(
p, σ2, δ, µ1, µ2

)
,

where li (p, σ2, δ, µ1, µ2) := log ((1− p) f (yi|σ2, δ, µ1) + pf (yi|σ2, δ, µ2)) and f (yi|σ2, δ, µj)

is the conditional density for j = 1, 2. The QLR statistic is then

QLRn = 2n
(
Ln

(
p̂, σ̂2, δ̂, µ̂1, µ̂2

)
− Ln

(
1, σ̃2, δ̃, ·, µ̃2

))
. (11)

Note that we have simplified the model in (9) and (10) in three ways. First, we

do not allow for the regime probability, p, to depend on the exogenous character-

istics, x. Second, we restrict the variance of the error terms to be the same across

regimes such that εj ∼ N(0, σ2) ∀ j.1 Finally, note that the model in (9) and (10)

includes a covariate, latitude, in addition to the regime-specific intercept. Carter

and Steigerwald show how the asymptotic null distribution of the QLR test does

not depend on any included covariates, however, it does require that the difference

between regime distributions be in only the intercept, µj. Therefore, while Bloom

et al. allow the coefficient on latitude to vary across regimes, we require a constant

coefficient, δ = δ1 = δ2. These restrictions are all necessary for the asymptotic null

distribution in (4) and (5) to hold. Without these restrictions, the asymptotic null

1Bloom et al. assume normally distributed errors but the QLR test also allows for any error
distribution within the exponential family.
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distribution of the QLR test statistic is unknown and the critical values derived by

the rscv command are not applicable.

Modifying the quasi-log-likelihood in this way does not diminish the validity of

the QLR as a test of a single regime for the model in (9) and (10). Note that

under the null hypothesis of one regime there is necessarily only one error variance,

only one coefficient for each covariate, and a regime probability equal to 1. Thus,

under the null hypothesis, the QLR test will necessarily have the correct size even

if the data is accurately modeled by a more complex system. Following a rejection

of the null hypothesis using this restricted quasi-log-likelihood, the researcher can

then confidently proceed to estimate a model with regime-specific variances and

coefficients, if desired.2

Using the same Penn World Table3 and CIA World Factbook4 data as in Bloom

et al., we fit a model under the null hypothesis of a single regime and under the al-

ternative of two regimes and estimate the corresponding log-likelihood values. These

estimates and the resulting QLR test statistic are shown in Table 2.

Finally, we use the command rscv to calculate the critical value for the QLR

test of size 5 percent. We allow for the possibility that the two regimes are widely

separated and set H = [−5, 5]. The command and output are shown below.

2With a more complex data generating process these restrictions may however lead to an increase
in the probability of failing to reject a false null hypothesis and, hence, a decrease in the power of
the QLR test.

3Summers, R., and A. Heston. (1991). ”The Penn World Table (Mark 5): An Expanded Set of
International Comparisons, 1950-1988,” Quarterly Journal of Economics 106, 327-368.

4The World Factbook 2009. Washington, DC: Central Intelligence Agency, 2009.
https://www.cia.gov/library/publications/the-world-factbook/appendix/appendix-f.html. Lati-
tude data for countries appearing in the 1985 Penn World Tables and missing from the CIA World
Factbook comes from https://www.google.com/.
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Table 2: qlr test of two regimes vs. one regime
Single Regime Two Regimes

Regime I Regime II
Constant (µ1, µ2) 6.928 6.533 7.815
Latitude (δ) 0.041 0.045
SD of error (σ) 0.802 0.599
Probability of Regime I (p) 0.228
Log likelihood (Ln) -182.1 -180.0
QLRn 4.3

. rscv ,ll(-5) ul(5) r(100000) q(0.95)

7.051934397

Given that this critical value of 7.05 exceeds the QLR statistic of 4.3, we cannot

reject the null hypothesis of a single regime.

This result is consistent with the findings of Bloom et al., although they use a

different method to obtain the necessary critical values. They report a likelihood ratio

and the corresponding critical values for a restricted version of their model where

the regime probabilities are fixed (p does not depend on x). Using this restricted

model, the authors do not reject the null hypothesis of a single regime. At the time

that Bloom et al. were published, researchers had yet to successfully derive the

asymptotic null distribution for a likelihood ratio test of regime-switching. For this

reason, the authors employ Monte Carlo methods to generate their critical values

using random data generated from the estimated relationship given by the model in

(9) and (10). The primary disadvantage of this approach is that the derived critical

values are then dependent upon the authors’ assumptions concerning the underlying
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data generating process.

Bloom et al. go on to report a likelihood ratio test of a single regime model

against the unrestricted model with latitude-dependent regime probabilities. Using

the unrestricted model, the likelihood ratio and simulated critical values allow the

authors to reject the null hypothesis in favor of the alternative of two regimes. Be-

cause the null distribution derived by Cho and White applies only to the restricted

QLR presented in (11), we are unable to use the QLR test, and hence the rscv

command, to obtain the critical values necessary to evaluate this unrestricted test

statistic.

6 Discussion

For the case of a simple linear model with Gaussian errors, we provide a method-

ology and a new command, rscv, to construct critical values for a test of regime-

switching. Despite the complexity of the underlying methodology, the execution of

rscv is relatively simple and merely requires the researcher to provide a range for the

standardized distance between regime means. We demonstrate in Section 5 both how

these methods can be generalized to a very broad class of models and the restrictions

necessary to properly estimate the QLR statistic and utilize the rscv critical values.
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