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Abstract of the Thesis

Prostate Cancer Classification Based on Gene

Expression and Splicing Profiles

by

Meng Meng

Master of Science in Statistics

University of California, Los Angeles, 2016

Professor Yingnian Wu, Chair

The purpose of this study was to propose a method for classifying prostate cells

into specific diagnostic categories based on their gene expression and exon inclu-

sion level and compare their performance in classification. In order to build a

concise statistical model with meaningful biological information, we combining

univariate analysis with multivariate analysis with LASSO regularization for vari-

able selection. Missing data is an important problem for exon inclusion level in

our data. We apply two imputation methods and compare their results. Our ques-

tions in concern were answered by error rates of 100 iterations of cross-validation

in testing after training. We found: (1) Exon inclusion level has a much stronger

prediction ability than gene expression on our data by making lower error rates

(p-value=1.29e-11 for exon inclusion level imputed by median and 2.20e-16 for

exon inclusion level imputed by KNN); (2) The model built on exon inclusion

level is more concise with less variables than that built on gene expression (p-

value=8.15e-6); (3) Imputation methods on exon inclusion level does not affect

classification results (p-value=5.37e-1).
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CHAPTER 1

Introduction

Prostate cancer remains the most frequently diagnosed cancer world wide and

is the second leading cancer of men in the United States. According to recent

estimates, it accounts for 33% of cancer diagnosed and 6% of cancer death of men

worldwide[1][2]. Besides the high death rates, prostate cancer is also an indolent

disease and hidden for years for patients. Current prognostic indicators including

clinical stage, bioppsy Gleason grade (a measure of tumor differentiation), and

serum PSA levels are not accurate in clinical prediction. The clinical heterogeneity

of prostate cancer indicates the molecular heterogeneity among tumors. Therefore,

it is urgent to find good biomarkers for early clinical diagnosis and treatment.

RNA-Seq has recently become an attractive method of choice in the studies

of transcriptomes. It uses deep-sequencing technologies and provides more pre-

cise measurement of levels of transcripts and their isoforms than other methods,

such as microarray. These methods allow the simultaneous monitoring of expres-

sion levels and splicing profiles of thousands of genes[5][10], and therefore propels

the computational analysis using machine learning techniques. These analysis ex-

tract patterns and build classification models from gene expression and alternative

splicing data and aid the prediction[8][7][3] and prognosis[12][4] of cancer.

Gene expression reveal the overall picture of change, but does not address

the complex events that occur within individual genes in a given sample. As

many as 80% genes undergo a process called alternative splicing (AS) which gen-

erates multiple mRNA isoforms and contributes the proteomic diversity in higher
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eukaryotes[13][9]. One of the big advantage of RNA-Seq over microarray is to

accurately measure AS. The occurrence of many diseases, including cancer, comes

along with increases of AS that contribute to their pathogenesis. Mutations can

also affect AS by changing gene sequences that control the binding of slicing fac-

tors or in splice enhancer or inhibitor sequences. It has been estimated that 15%

of point mutations that cause human genetic disease affect splicing[6]. We there-

fore incorporate features from AS by including exon inclusion levels, which is the

percentage of gene isoforms that include the exon in our classification. Our results

show exon inclusion level outperform gene expression in accuracy of classification

and generate a more concise model with less variables than gene expression with

higher performance in classification.

This paper is arranged as following: Chapter 2 introduces statistical meth-

ods for variable selection including univariate logistic regression and multivariate

selection using LASSO regularization, which will be used for variable selection

and classification for cancer data. In chapter 3, we introduce our data set, which

includes gene expression and exon inclusion level, and methods for missing data

inputation. Then a two-round feature selection method is presented for vari-

able selection and followed by cross-validation. Finally we present our model for

prostate cancer classification with variables selected from gene expression and

exon inclusion level. Chapter 4 provides discussion and conclusion.
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CHAPTER 2

Statistical Methods

2.1 Logistic Regression

Logistic regression is widely used to model independent binary response data in

medical and epidemiologic studies. The crucial limitation of linear regression is

that it cannot deal with dependent variables that are binary. Logistic regression

uses link function to transform the continuous output from the linear predictor to

fall between 0 and 1. The model for logistic regression is

logit(πi) = β0 + β1xi + ...+ βpxp (2.1)

where

logit(πi) = log
πi

1− πi

(2.2)

The right hand side of equation 2.2 is called log-odds of πi. Odds is the ratio of

the probability to its complement. As πi goes down to zero the odds approach

zero and the logit approaches −∞. At the other extreme, as πi approaches one

the odds approach +∞ and so does the logit. Thus, logits map probabilities from

(0,1) to the entire real line.

The main idea behind bivariate logistic regression is the distribution of bino-

mial variable Yi with parameter πi and ni, which can be written as

Yi ∼ B(ni, πi) (2.3)
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where yi is the realization of Yi that take the value 0,1,...,ni. If the ni observations

in group i are independent and have the same probability πi of having the attribute

of interest, then the probability distribution function of Yi is given by

Pr{Yi = yi} =

(

ni

yi

)

πyi
i (1− πi)

1−yi (2.4)

for yi = 0, 1, ..., ni. Here π
yi
i (1−πi)

1−yi is the probability of obtaining yi successes

and ni − yi failures after ni trials of Bernoulli experiment with probability πi in

some specific order, and the combinatorial coefficient is the number of ways of

obtaining yi successes in ni trials.

For example, in cancer diagnosis, the number of patients getting cancer can be

treated as a binomial variable, πi will be the probability that patient has cancer,

and yi will be the dichotomous outcome with 1 as cancer, and 0 as no cancer.

Features used for diagnosis, such as gene expression, will be treated as variables

in the regression model.

2.2 LASSO

The name LASSO is an acronym for Least Absolute Selection and Shrinkage

Operator. Given a linear regression with predictors xi and response value yi for

i = 1, 2, ..., N , the LASSO solves the L1 penalized regression problem by finding

β = {βj}, j = 1, 2, 3, ..., p that minimize the sum of a loss and a penalty

β̂LASSO = min
β∈Rp

‖y −Xβ‖2 + λ‖β‖1 (2.5)

where λ is the complexity parameter which controls the amount of shrinkage.

There is no penalty if λ equals to zero, and big penalty if λ goes larger.

The idea behind LASSO is to minimize the sum of squares with a constraint
∑

βj < s. Another popular shrinkage method is called ridge regression, which

4



uses L2 penalty instead of L1 penalty for coefficient shrinkage.

β̂Ridge = min
β∈Rp

‖y −Xβ‖2 + λ‖β‖2
2

(2.6)

The problem looks similar, but their solution behave very differently. Compared

with usual regression, which solves the unconstrained least squares problem, Lasso

and ridge regression estimate constrain the coefficient vector to lie in some geomet-

ric shape centered around the origin. However, when λ = 0, β̂LASSO = 0, LASSO

is able to perform variable selection by shrinking coefficients towards exactly 0.

This makes LASSO substantially different from ridge regression.
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CHAPTER 3

Classification

3.1 Introduction to Data

This data consists of 30 observations of gene expression and exon inclusion levels

from normal cells in normal prostate, and 15 observations of gene expression

and exon inclusion levels from normal cells adjacent to prostate tumors. Each

observation contains measures of 57150 gene expressions, and 56612 exon inclusion

levels.

Gene expression is measure by RNA-Seq which provides more accurate mea-

surement of levels of transcripts and their isoforms. In a standard workflow of

an RNA-Seq experiment, RNAs of interest in the sample are firstly fragmented

and reverse-transcribed into complementary DNAs (cDNAs). Then the obtained

cDNAs are then amplified and subjected to Next Generation Sequencing (NGS).

Finally the reads generated are mapped to a reference genome and the number of

reads aligned gives the measure of gene expression levels. The value of each gene

expression is a non-negative number.

Figure 3.1: Diagram for alternative splicing.
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Inclusion level of an exon is estimated as

Ψ̂ =
I/lI

I/lI + S/lS
(3.1)

where I is the counts of reads of inclusion isoforms that connecting the upstream

splice junction, the alternative exon itself and the downstream splice junction, and

S is the counts of reads of skipping isoforms that directly connects the upstream

exon to the downstream exon. Refer to 3.1 for illustration. lI and lS are the

effective lengths of the inclusion isoform and skipping isoform. The counts of

reads of inclusion isoforms I can be assumed following a binomial distribution[11],

written as

I|Ψ ∼ Binomial(n = I + S, p = f(Ψ) =
lIΨ

lIΨ+ lS(1−Ψ)
) (3.2)

Under the binomial assumption, the inclusion level Ψ is affected by the number

of reads n and the proportion of reads of the exon inclusion isoforms from total

reads after length normalization.

3.2 Univariate Analysis

3.2.1 Univariate variable selection

Univariable analysis tests the association of one explanatory variable with the

dependent variable at a time without worrying about other variables. This is

essential in order to shortlist variables for multivariable analysis in case of a large

number of explanatory variables. It helps to exclude the variables that do not

show any significant association with the outcome from further analysis.

We feed each gene and exon for all observations into logistic regression to

perform univariate analysis. In total, 57150 (number of genes)+56612 (number of

exons) times of univariate logistic regression are executed. For each run of logistic

regression, we record the p-value as the measure of the significance of the variable
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(gene/exon) in predicting the response. P-value is an important measurement in

hypothesis testing. It is the probability of obtaining the value of the test statistic

at least as extreme as obtained, given the null hypothesis is true. Here our null

hypothesis is the coefficient of the variable (gene/exon) in logistic regression is

zero. A low p-value means that there is little chance that the null hypothesis is

true, which mean there is a statistically significant association between the tested

variable and the response.

3.2.2 Normalization for gene expression

As we mentioned earlier, the data value for gene expression is a non-negative

number, while for exon, the inclusion level falls in [0,1]. In order to compare

gene and exon on the same level and more importantly combine them together

for future multivariate analysis, we need to normalize gene expression by scaling

its values in between 0 and 1. We use min-max normalization to perform linear

transformation on the original data. Suppose xmin and xmax are the minimum

and maximum of variable x, the normalized value for xi is calculated by

x′

i =
xi − xmin

xmax − xmin

Min-max normalization preserves the relationship among the original values. We

normalize the top 100 variables selected by univariate analysis in this way.

3.2.3 Missing data imputation for exon inclusion level

Missing data sometimes is unavoidable in data collection. About 38% of the 56612

exons have at least one of 45 observations missing in our exon inclusion data. The

missingness is due to miss-detection of certain exon in the inclusion isoform and

the skipping form. After univariate analysis, the missing rate among the selected

100 exons decreases to 10%, which indicates most of the exons with missing values

are not statistically significant in predicting cancer. We therefore focus on missing
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data imputation on the selected exons.

Before we jump into methods for missing data imputation, an important task is

to know the reason for missing. There are generally three data missing mechanism:

• Missing Completely At Random (MCAR). Here missing completely at ran-

dom means the missing of a variable is independent of itself and other vari-

ables. This is an ideal situation and rare in real data. A common approach

is removing the cases with missing values which won’t bias the inference.

• Missing at random (MAR). Most missingness is not completely at random.

The missing of the variable is dependent on other variables but itself.

• Not Missing At Random (NMAR). The missing value depends on the vari-

able that is missing. Data that’s NMAR can be difficult to analyze properly.

Currently approaches to analyzing NMAR data include the use of selection

models and pattern mixtures.

The missing type of exon inclusion level is Missing At Random (MAR), because

the missingness is due to the low abundance of the gene transcript, which is not

related to the exon inclusion level. There are 90% of exons with complete data for

all observations. Among the remaining exons, 90% of them have missing values

less than 50%. We apply two imputation methods: imputation with median, and

imputation with KNN on exon data. The impact of the methods are evaluated in

later classification.

The reason we choose median is the distributions of exons are skewed, there-

fore, median would be a good indication for missing values. In this imputation

method, missing value is replaced with median of the variable, where median is

the middle point of the variable.

The idea for KNN missing data imputation is quite similar with KNN clas-

sification, in which the class label is determined by k nearest neighbors. The
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algorithm for KNN imputation is:

• Compute the Euclidean distance between variable with missingness and all

other complete variables. Find the k-closest variables.

• Replace missingness with the average of the corresponding entries of k-

closest variables.

This method is quite simple in principle but is effective and often preferred over

some of the more sophisticated methods. The disadvantage is that it does not

model the variation of the imputed value and therefore the uncertainty of the

imputed value is underestimated.

3.3 Multivariate Selection

We choose top 100, 300, and 500 variables from both gene and exon by sorting

their p-value from small to large in univariate analysis. For the top 100 variables,

the cut-off p-value is 1.20e-3 for gene, and 5.50e-3 for exon. For the top 300

variables, it is 3.29e-3 for gene, and 1.43e-2 for exon. For the top 500 variables,

it is 4.36e-3 for gene, and 2.36e-2 for exon. We further run 100 iteration of cross-

validation using top 100, 300, and 500 variables for both gene expression and exon

inclusion level, and find similar error rates among each of the three groups (For

gene, mean=0.261 for top 100 variables, mean=0.304 for top 300 variables, and

mean=0.22 for top 500 variables; for exon, mean=0.087 for top 100, 200 and 500

variables). Therefore, these models lead to similar outcome. For simplicity of the

model, we select the top 100 variables as the input for the multivariate analysis.

We refer to the 100 variables of exons selected by univariate analysis with me-

dian imputation and KNN imputation as Exonmedian and ExonKNN , respectively,

and the 100 variables of genes selected by univariate analysis with normalization

as Genenorm. There are 45 observations for each of Exonmedian, ExonKNN , and

10



Genenorm. The response variable is 1 or 0 depending on the whether the pa-

tient has cancer or not. Among the 45 observations, 30 of them are from normal

prostate cells and are labeled 0 in response, and the remaining 15 observations

are from cells adjacent to prostate tumor and are labeled 1 in response.

We perform 100 iterations of training and testing on Exonmedian, ExonKNN

and Genenorm, as well as the combination of Genenorm and each of imputed exon

data. In each iteration, half of the data are randomly chosen as training set and

the remaining as testing set. Then we use the ”glmnet” package in R to implement

the training process through cross-validation. During training, ”glmnet” fits the

regularization path on 100 different values of λ. The decision of which λ is the best

is a tradeoff between low error rates and amount of shrinkage and up to the user.

Here we chose λ that minimize the cross-validation error. We calculate the error

rates for normal prostate cells , cells adjacent to prostate tumors, and both cells.

We use group1, group2 and group1+group2 as notations in the graph respectively.

Error rate is measured by the number of miss-classification observations divided

by the total number of observations being classified.

Fig.3.2 is the boxplot summary of 100 iterations of classification error rates

for Genenorm and exon imputed by median Exonmedian, as well as combination of

Genenorm and Exonmedian. The three columns show error rates among three cell

groups using exon, gene, and exon+gene as classification variable, respectively.

We run t-test to test the statistical significance of the difference among the three

columns. We get p-value=1.29e-11 in test between the first column and the second

column, and p-value=8.16e-3 between the second and the third column. Both p-

values are smaller than 0.05, which indicates exon is much better than gene in

predicting prostate cancer in terms of classification error.

Fig.3.3 show the summary of 100 iterations of classification error rates for

Genenorm, exon imputed by KNN ExonKNN , and combination of Genenorm and

ExonKNN . The configuration is the same with Fig.3.2 except we use ExonKNN
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instead of Exonmedian in classification. In order to compare the prediction ability

of gene and exon imputed by KNN, we perform the similar two t-tests as before,

and get p-value= 2.20e-16 for the test between exon and gene and p-value=3.00e-

16 between exon+gene and gene for all the observations, which again verifies

variables selected from exon is better predictor than those selected from gene.

The bench effect in gene expression may affect the prediction accuracy. Because

exon inclusion levels are calculated from the isoform counts of the same individ-

uals, exon inlucsion level calculation can remove bench effect in the transcript

expression.

The above two experiments both indicate variables selected from exon inclu-

sion level have much better prediction than those selected from gene expression.

We are further curious about whether the method for imputation affects the pre-

diction ability of exon inclusion level. The advantage of KNN imputation is that

it takes into consideration the correlation structure of the data and easily treat

instance with multiple missing values without creating a predictive model for each

attribute with missing data. While median imputation is robust to outliers due

to the nature of median, especially in our case the variables have skewed distri-

bution. We perform a two sample t-test between the error rates of Exonmedian

and ExonKNN over all observations, and get p-value= 5.37e-1, which shows no

statistical significance of the difference. Another t-test is performed between the

combination of each imputed exon inclusion level with gene expression, namely

Exonmedian+Genenorm vs. ExonKNN+Genenorm, we get p-value=8.86e-4, which

shows a significance of the difference. It is interesting that when combined with

gene expression, exon inclusion level with KNN imputation shows a stronger pre-

diction ability than with median imputation. It is possible that variables in gene

expression and exon inclusion level imputed by KNN are more correlated with

each other and LASSO punishes correlation and shrinks the correlated ones. In

the future analysis and our prediction model, we will use exon inclusion level

12



imputed by KNN as exon data.

We further compare the number of non-zero coefficients selected by LASSO

for exon, gene, and the combination of exon and gene in the 100 iterations of

training. Fig.3.4 shows the distribution for the number of variables selected from

gene, exon, and combination of gene and exon after 100 iterations. ANOVA test

gives p-value=3.14e-5, which shows the difference of the number of coefficients

among the three groups is significant. We further compare the significance of

difference between each of the two groups by performing two sample t-tests and

get p-value=8.15e-06 for exon (6.2) vs. gene (7.8), p-value=7.01e-5 for gene (7.8)

vs. exon (4.2) + gene(2.8), and p-value=9.24e-1 for exon (6.2) vs. exon (4.2) +

gene (2.8). The number in the parenthesis is the average of number of variables

selected. These p-values show that variables selected from exon are more effective

in building concise model than those from genes.

3.4 Prediction Model

In this section, we build three classification models using all the observations from

the data.

The top 100 variables selected from gene expression by univariate analysis is

used to build the first model. Different from the training and testing, we use

multivariate analysis with LASSO regularization to train a model using all the

45 observations of the 100 variables in one shot. 12 genes are selected using λ

minimizing the classification error. Fig.3.5 visualizes the 12 genes with non-zero

coefficients. Each row represents one gene, and each cell is colorized based on the

level of gene expression, ranging from red for the lowest value through green for the

highest value. Data was normalized with mean zero for better visualization. We

can observe a dissimilarity of color between the first 20 columns which represents

cells from normal prostate and the remaining 15 columns which represents cells

13



Figure 3.2: Cross validation and error rates of prostate cancer classification where

missing values of exon inclusion level are imputed by median.
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Figure 3.3: Error rates of prostate cancer classification where missing value of

exon inclusion level is imputed by KNN.
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Figure 3.4: The distribution of the number of non-zero coefficients selected by

multivariate analysis using LASSO regularization for exon, gene, and the combi-

nation of exon and gene in 100 iterations of training.
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adjacent to prostate tumors.

The second model is based on exon inclusion levels, we use the top 100 variables

selected from exon inclusion level by univariate analysis and imputed by KNN

imputation. 11 out of 100 exons are selected in the prediction model. Fig.3.6 is the

heatmap for the selected exons. Each row represents one exon, the first 30 columns

are observations of cells from normal prostate, and the remaining 15 columns are

observations of cells adjacent to prostate tumors. The color represents the level

of exon inclusion level. The difference of color is significant between the normal

group and the tumor group for each exon, which verifies that these variables are

distinctive features for classification.

Finally we combine the data from the first two models to construct the third

model. 100 variables of gene expression and 100 variables of exon inclusion level

with 45 observations are used to train the model. 7 out of 100 variables are selected

from gene and 10 out of 100 variables are selected from exon. Fig.3.7 shows

the visualization of these variables. The first 10 rows represent exons, and the

remaining 7 rows represent genes. The dissimilarity of color shows these features

have distinctive values among the two classification groups, and are important for

classification.
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Figure 3.5: Heatmap of genes selected by model trained on 30 gene samples from

normal cells and 15 gene samples from cells adjacent to prostate cancer. Each row

represents one gene, and each cell is colorized based on the level of expression of

that gene in the sample.
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Figure 3.6: Heatmap of exons selected by model trained on 30 exon samples from

normal cells and 15 exon samples from cells adjacent to prostate cancer. Each

row represnets one exon, and each cell is colorized based on the level of inclusion

level of that exon in the sample.
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Figure 3.7: Heatmap of exons and genes selected by model trained on 30 exon and

gene samples from normal cells and 15 exon and gene samples from cells adjacent

to prostate cancer. Each row represents one exon or gene, and each cell is colorized

based on the level of inclusion level of that exon or gene in the sample.
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CHAPTER 4

Discussion and Conclusion

In this paper, a method for classifying prostate cells into specific diagnostic cate-

gories are proposed. We use gene expression and exon inclusion level as two types

of features in the classification. We construct the classification model by running

two rounds of variable selections. In the first round, univariate analysis using

logistic regression is applied to select variables that are significant in prediction

the categories. Also we found this step largely contributes to missing data im-

putation for exon inclusion level through dropping variables with most missing

values. Top 100 variables from both gene and exon are selected as input for the

second round of multivariate analysis with LASSO regularization. In this step, we

apply two imputation methods to solve missing data problem in exon inclusion

level and compare their performance. The results show no statistical significant

difference between error rates of model built on exon inclusion level imputed by

the two methods (p-value=5.37e-1), but KNN imputation shows a stronger pre-

diction ability than median in the combined data by generating lower error rates.

(p-value=8.86e-4). We choose KNN as imputation method for further analysis.

We then compare the performance of variables selected from gene expression, exon

inclusion level imputed by KNN, and the combination of gene with exon inclusion

level imputed by KNN. ANOVA test on error rates after 100 iterations of cross-

validation shows significant difference among the three models (p-value=3.14e-5).

The average error rate is 18% for gene, 9% for exon, and 10% for combination of

gene and exon. Further two group t-tests also show a significant difference of error
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rates for gene vs. exon (p-value=8.149e-06), gene vs. gene+exon (p-value=7.01e-

5), but no significant difference for exon vs. gene+exon (p-value=9.24e-1). This

indicates exon inclusion levels are better predictors than gene expression for classi-

fication of prostate tumor patients in our data. Also the model constructed using

exon inclusion level is more concise with less variables than that built on gene

expression.

For future work, first, we would like to apply our method on a larger data

set, since our current one contains only 30 non-patients and 15 patients, also the

imbalance number of the two groups may impair the generalization ability of our

model. Second, it is interesting we find the two imputation methods we used in

this paper do not affect the performance of exon inclusion level in classification,

but more imputation methods need to be tested to draw conclusion about the

influence of imputation. Third, we would like to add histone modification, DNA

methylation or somatic mutation in the survival prediction model. Finally, when

read counts are small, the exon inclusion level estimation is not as reliable as

estimation from large read counts, therefore, modeling estimation uncertainty of

exon inclusion level in the prediction model will be a good way to solve this

problem.
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