Population based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high grade serous ovarian cancer
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Population based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high grade serous ovarian cancer

Published Web Location

http://dx.doi.org/10.1101/19011924
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Abstract: Purpose: The known EOC susceptibility genes account for less than 50% of the heritable risk of ovarian cancer suggesting other susceptibility genes exist. The aim of this study was to evaluate the contribution to ovarian cancer susceptibility of rare deleterious germline variants in a set of candidate genes. Methods: We sequenced the coding region of 54 candidate genes in 6385 invasive EOC cases and 6115 controls of broad European ancestry. Genes with an increased frequency of putative deleterious variants in cases verses controls were further examined in an independent set of 14,146 EOC cases and 28,661 controls from the ovarian cancer association consortium and the UK Biobank. For each gene, we estimated the EOC risks and evaluated associations between germline variant status and clinical characteristics. Results: The odds ratios (OR) associated for high-grade serous ovarian cancer were 3.01 for PALB2 (95% CI 1.59 – 5.68; P = 0.00068), 1.99 for POLK (95% CI 1.15 – 3.43; P = 0.014), and 4.07 for SLX4 (95% CI 1.34-12.4; P = 0.013). Deleterious mutations in FBXO10 were associated with a reduced risk of disease (OR 0.27, 95% CI 0.07 −1.00, P=0.049). However, based on the Bayes false discovery probability, only the association for PALB2 in high-grade serous ovarian cancer is likely to represent a true positive. Conclusions: We have found strong evidence that carriers of PALB2 deleterious mutations are at increased risk of high-grade serous ovarian cancer. Whether the magnitude of risk is sufficiently high to warrant the inclusion of PALB2 in cancer gene panels for ovarian cancer risk testing is unclear; much larger sample sizes will be needed to provide sufficiently precise estimates for clinical counselling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item