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Abstract:  Dominant properties of various kinds can be defined for distributions including 
trends, strong seasonality, business cycles, and a persistent component.  We say that in the joint 
distribution of X and Y, conditional on W has a common factor if W is a dominant component, 
but it does not appear in the copula, only in the conditional marginal distributions for X and Y.  
An application is discussed involving national income and consumption and a business cycle 
indicator.  The results suggest that the marginals vary with the business cycle but not the copula. 
 
JEL Codes:  C32, C53



1.  Introduction 

 This paper will initially consider common factors in a linear, bivariate framework and 

then ask if similar concepts can be extended for use with conditional distributions.  For the start, 

it is important to have the idea of a “dominant property” (DP).  In what follows, for a pair of 

random processes, tt YX , , say,  tt YX +  is used as a convenient notation to denote the more 

general sum 

mtt AYX ++                                                                      (1) 

where A, m are some constants and 0≠A  .  Some assumed properties are:  

If  tX  has DP and tY  does not, then  tt YX +  will have the DP.   

If  tt YX , both do not have a DP, then tt YX + will not have the DP.   

Finally, it will generally be the case that if tX  and tY  both have a common DP, then 

tt YX +  has this DP. 

 Some of the usual examples of dominant properties are: 

i. A trend in mean (either deterministic or stochastic) 

ii. A strong seasonal component (either deterministic or stochastic); 

iii. A strong business cycle component; 

iv. Smooth transitions or distinct breaks in mean; 

 A persistent process (denoted I(1)) dominates a non-persistent process, denoted I(0). 

It has become the common practice to think of I(1) to be a unit root process, of a narrowly 

defined form, and I(0) to be a stationary linear process, such as an ARMA series, but again this is 

not necessary. 

2.  Common Factors 

 A particularly interesting case involving dominant properties and common factors is in 

the form 
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where tW has the DP,  tt ZZ 21 ,  do not have the DP, and 0≠A   is some constant.  From the rules 

given above, both  tt YX ,  will have the DP but  tttt AZZAYX 21 −=−  will not have the DP.  

Thus, with this construction, a linear combination of two variables with a strong property may 

not have the property. 

 If the DP is a trend, the variables are said to be “co-trending,” if it is a break process, the 

variables are “co-breaking.”  From (1) it follows, however, that the breaks need not be 

simultaneous, as 0≠m is allowed.  Furthermore, if tW  is a business cycle component, the 

variables are “co-cyclical,” and if tW  has a strong seasonal, they can be thought of as being “co-

seasonal.”  Finally when  tW  is I(1) but the linear combination is I(0), they have been called “co-

integrated.”  For a recent discussion of the co-cyclical literature, see Issler and Vahid (2001). 

3.  Conditional Distributions and Conditional Copula 

 The models considered in the previous section are relevant for the conditional expectation 

of a distribution, and are therefore somewhat limited in ambition.  Similar examples can be 

constructed for the conditional variance.  For a complete description of a relationship between 

random variables; however, one needs to consider a joint distribution.  In our analysis of the joint 

distribution, we will employ a theorem of Sklar (1959), who showed that a bivariate density 

function can be decomposed into three parts: the two univariate marginal densities and a 

“copula” density. Suppose we concentrate just on the bivariate relationship between X and Y, 

conditional on W; then 

)|)|(),|(()|()|()|,( WWyFWxFkWyfWxfWyxf YXYXXY =                             (2) 

where k is the conditional copula density function.  As an example, when X and Y are 

conditionally independent given W, 1)|,( ≡Wyxk .  In this special case, k is not dependent on W, 

although the marginals may still be dependent on W.  Such situations will be of interest later on. 

 Equation (2) shows Sklar’s theorem for density functions; the original theorem applied 

more generally to distribution functions: 

)|)|(),|(()|,( WWyFWxFCWyxF YXXY =                                        (3) 

where  XYF is the joint conditional distribution function of X, Y,  XF  is the conditional marginal 
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distribution function of X, and similarly  YF  is the conditional marginal distribution function of 

Y.  Sklar showed that there will always be a function C, called the copula distribution function, 

so that (3) holds.  Taking the partial derivative of (3) with respect to x, and then y, gives (2).  

Function C itself is a cumulative distribution function, namely, a cumulative distribution function 

of two conditionally Uniform(0,1) distributed random variables.  If X and Y are both continuous 

random variables, the copula is unique, and is the joint distribution conditional on W, of the 

random variables u and v which are defined as )|( WxFu X= and )|( WyFv Y= . 

The copula function represents the dependence between X and Y after taking out the 

effects of the marginals, which may be different, see Joe (1997) and Nelson (1999).  What makes 

the copula important is that the marginal distributions and linear correlations determine the joint 

distribution of a set of random variables only if the latter are elliptically distributed, such as 

normally or t-distributed random variables.  If this is not the case, the copula will take the place 

of the correlations.  For discussion, see, for example, Embrechts, McNeil and Straumann (1999, 

2001).  Note, however, that the copula has a link to rank correlations.  Kendall’s τ for the 

dependence between X and Y is defined as 

}0))(Pr{(}0))(Pr{(),( <−−−>−−= jijijiji YYXXYYXXYXτ  

for ji ≠  where ),( ii YX is a pair of observations from the joint distribution of  X and Y.  Now 

[ ]� � −=−=
1

0

1

0
.1),(41),(),(4),( vuCEvudCvuCYXτ  

where C is the copula of the joint distribution X and Y.  While the copula is a two-dimensional 

entity, Kendall’s τ is a univariate measure of dependence between X and Y.  It can similarly be 

shown that Spearman’s rank correlation coefficient, Sρ , is equal to 

[ ]� � −=−=
1

0

1

0
.3123),(12),( uvEvuuvdCYXSρ  

Returning to the discussion in the previous section, if W has a dominant property, then 

the equivalent of equation (1) in distributions would be that the marginal densities of 

)|(),|( WyfWxf YX  are not independent of W.  Thus, W does have an impact somewhere in the 

density.  However, the equivalent of the linear common factor situation could be that the 
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relationship between X and Y as expressed by the copula density function does not depend on W.  

This will discussed in Section 5, but one may already note the above-mentioned special case in 

which X and Y are conditionally independent given W. 

4.  Examples of Dominant Properties in Distribution 

 A process tX  can be said to have a seasonally varying distribution if it has a time-

varying density )(xft  but, when measured monthly, 

)()( 12 xfxf tt +−  

is small, using some suitable norm for densities.  A plausible pseudo-norm is the Kullback-

Leibler Criterion, see White (1994) for instance.   tX  could be used as a conditioning variable in 

the common factor framework outlined above. 

 Similarly, a sequence of time-varying densities )(xft could be called “trending” if )(xft  

stochastically dominates (to order one)  )(xfs  for all t > s; i.e. )()( xFxF st >  for all x, t > s where 

)(xFt  is the distribution function corresponding to the density )(xft .  If  tT  is a random variable 

drawn from such a distribution, it might be called a trend and have a variable with a dominant 

property. 

 If ft(x) takes the form ),( txf θ  where tθ  is some vector of parameters which are not 

necessarily constant, the densities can be called “breaking” if 00 , ttt ≤=θθ , )( 01 θθθ ≠=t , 

0tt > .    There could be several breaks and they could be caused by other variables taking 

particular values.  A variable tW  drawn from the distribution can be called a breaking process 

and used as a conditioning variable. 

 If  tB  is a process that is closely linked with the business cycle, such as a coincident 

indicator, then it can be used directly as a common factor in conditional distributions.  

 There are several ways that persistence can be defined.  A useful way is to define a 

process tW  as being persistent if ),( ntt WWF +  ≠ )()( ntt WFWF + as n becomes large.  This can 

potentially be tested using some of the measures of dependence discussed in Joe (1997).  If tW  is 

a persistent process, it can be used as a conditioning variable and it will have a dominant 

property. 
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 The class of possible processes with dominant properties can be extended further to 

include “long-memory processes” for example, but these will not be considered here. 

 Tests for the existence or not of a particular dominant property will exist in some cases, 

such as for first-order stochastic dominance, but others will need to be developed. 

 Dominant factors need not be treated individually and a group of different trending 

variables, say, or a trend and a seasonal can be used jointly as conditioning variables.  Further, 

other variables without dominant properties can also be included in the conditioning set.  These 

extensions do complicate the picture and make analysis more difficult, although possibly more 

realistic.  We leave such questions to be considered with the analysis of particular applications. 

5.  Common Factors in Distributions 

Definition:  Let  tX  and tY  be a pair of processes.  Then a process tW  will be considered as a 

dominant property, or a common factor in distribution, if the marginals  )|( tt WxF  and 

)|( tt WyF  both do depend on tW  but the copula  )|,( ttt Wvuk  ),( tt vuk=  does not depend on 

tW .   

Thus, the effect of tW  on ( tt yx , ) is through the marginal distributions but not through their 

relationship.   Although this could happen with any conditioning variable, it is particularly 

noteworthy for common factors.  Thus, for example, a pair of variables could have marginals that 

vary seasonally, but their relationship, as characterized by the copula, does not vary seasonally.  

Similarly, a pair could have marginal distributions that change with the business cycle, not just in 

means but many quantities, yet the conditional copula density does not vary with the business 

cycle.  Such possibilities lead to interesting interpretations for economic series.  Again, suitable 

tests need development. 

6.  Application 

As an empirical example for the ideas presented above we present here an analysis of the joint 

distribution of income and consumption, with a business cycle index variable as a possible 

common factor. Income and consumption are two of the most widely studied macroeconomic 

variables, and they both are known vary individually over the business cycle. The relationship 
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between these variables has also been widely studied, though to our knowledge no stylized facts 

regarding the behavior of the conditional dependence between these variables over the business 

cycle are available. Our investigation as to whether a business cycle index variable is a common 

factor in the distribution of consumption and income may alternatively be thought of as a test for 

whether the dependence between these two variables changes over the business cycle. 

6.1  Data and Model  

We used monthly data from January 1967 to November 2001 on U.S. real per capita disposable 

income (denoted tY ) and U.S. real per capita consumption on nondurables (denoted tC ). The 

business cycle indicator used was the Stock and Watson experimental coincident index1 (denoted 

tB ). As will be seen in the model, these variables appear in log-difference form. 

We specified linear models for the conditional means of the two series and autoregressive 

conditional heteroscedasticity (ARCH) models of Engle (1982) for the conditional variance. Our 

choice of specification for the marginal densities was guided by our desire to allow for 

conditional non-normality. Two of the most common deviations from normality are fat tails 

(excess kurtosis) and asymmetry or skewness. Two distributions that are commonly used to 

allow for excess kurtosis are the Student’s t and the generalized error distribution (GED). Both of 

these distributions have been generalized to allow for skewness, and we selected the skewed 

Student’s t of Hansen (1994) for its simplicity and its past success in modeling economic 

variables. The skewed t distribution has two parameters: one for skewness and one for tail 

thickness. The distribution has the property that it is not elliptical and is thus suitable for the 

present situation, in which the conditional copula is applied as the measure of conditional 

dependence between the two variables.  The functional form of the skewed t density is given 

below. 

 

                                                           
1 The data on consumption and income were taken from the St. Louis Federal Reserve web page, 
http://www.stls.frb.org/fred. The business cycle index series was taken from Jim Stock’s web page, 
http://ksghome.harvard.edu/~.JStock.Academic.Ksg/xri/0201/xindex.asc. 
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We used the Akaike Information criterion (AIC) and goodness-of-fit tests to find appropriate 

models for the each of the conditional moments of the two series. Since the two marginal 

densities and the copula define a joint distribution, the natural estimation method is maximum 

likelihood. We employ the multi-stage maximum likelihood estimator presented in Patton 

(2001b). Multi-stage estimation allows us to first estimate the marginal distributions separately, 

and then model the copula which greatly simplifies the estimation of the model. The final models 

and parameter estimates are presented below; standard errors are provided in parentheses, and 

parameters significant at the 5% level are marked with an asterisk. We used the modified logistic 

transformation, Λ, to keep the skewness parameter, λt, in (-1,1) at all times. 
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No dynamics in the degrees of freedom parameter in the consumption density model 

were found, and so it was modeled as being constant. Many of the coefficients on the business 

cycle index variable in the conditional moment specifications were significant at conventional 

levels, confirming that both consumption and income vary over the business cycle. Although not 

all of the coefficients on the tB  terms are significant at the 5% level, these variables were needed 

for the model to pass the specification tests employed to check the adequacy of the proposed 

model. We conducted the hit tests proposed in Patton (2001a) to check for the goodness-of-fit of 

the above specifications, and found evidence that they are adequate. The hit test results are not 

presented here in the interests of brevity but are available upon request. 

In our search for the best specification of the conditional copula for these two variables, 

we considered eight alternative conditional copula functional forms: normal, Clayton, rotated 

Clayton, Gumbel, rotated Gumbel, Plackett, Frank and the symmetrised Joe-Clayton. The first 

seven of these are presented in Joe (1997) and Nelsen (1999), while the eighth was introduced in 

Patton (2001a). Each of these copulas implies a different type of dependence between the 

variables. For example, the Clayton copula would fit best if negative changes in consumption 

and income are more highly correlated than positive changes; the Gumbel and the rotated 

Clayton would fit best in the opposite situation. The Plackett and Frank copulas are symmetric, 

like the normal, but imply slightly different dependence structures.  Without any economic 

theory to guide us on the choice of dependence structure, it becomes an empirical question to 



 
9

find the best fitting model. 

We estimated constant versions of these copulas, and the Gumbel was found to provide 

the best fit in terms of the log-likelihood value. We proceeded to use the Gumbel copula for the 

time-varying conditional copula specifications. The forms of the Gumbel copula cumulative 

distribution function and probability density function (Cgumbel and kgumbel respectively) are given 

below. 
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We allowed the parameter of the Gumbel copula, κ, to vary through time, setting it to be a 

function of the change and squared change in the business cycle index variable, and the average 

distance between the ‘transformed’ residuals, tU  and tV . This average distance is a measure of 

the degree of dependence between the variables over the last six months2, as under perfect 

positive dependence it always equals zero, under independence it is equal to one-third in 

expectation, and under perfect negative dependence it is equal to one-half in expectation. 
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The Gumbel copula parameter must be greater than or equal to one at all times, and we constrain 

the evolution equation for κt to ensure that this is the case. 

We computed the covariance matrix of the parameter estimates of the joint distribution 

                                                           
2 We also experimented with averaging over the preceding 12 and 24 months and found no significant improvement 
over using only 6 months. 
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model, and present the results for the copula parameters in Table 6.1. 

 

Table 6.1: Copula parameter estimates and standard errors 

 
 
 

Coefficient 

 
 

Standard error

 
 

t-statistic 

 
Log-

likelihood 

Constant conditional copula 

Constant 1.0977 0.0361 2.7064* 7.9785 

Time-varying conditional copula 

Constant (γ0) 0. 2883 0.2106 1.3694 

 ∆logBt (γ1) 0. 0329 0.1040 0.3167 

 ∆logBt
2 (γ2) 0. 0490 0.0490 0.9987 

 Σ|u-v| (γ3) -0. 0913 0.5870 -0.1555 

8.5526 

* This t-statistic is for the test of the null hypothesis that the parameter equals one (rather than 

zero), which corresponds to independence of the two variables. 

 

As Table 6.1 shows, none of the coefficient estimates of the variables used in the evolution 

equation for the conditional copula parameter are significant, and the joint test time variation in 

the copula is non-significant also cannot be rejected (a likelihood ratio test yielded a p-value of 

0.7655). This suggests that the conditional dependence between consumption and income is 

constant, however we are able to reject the hypothesis that the variables are independent at the 

5% level. Most interestingly, our results suggest that the business cycle index variable is not 

important in describing the dependence between these two series, and thus may be a common 

factor in distribution for consumption and income. 

It should be noted that for us to conclude with certainty that the dependence structure 

between these variables is independent of the business cycle we would need to try all possible 

functions of the business cycle index variable, not just the quadratic specification used above. It 

is of course possible that some other function of the business cycle index variable does influence 
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the conditional dependence structure. Further, the results may be sensitive to the choice of Bt 

versus, say, Bt-1, or any other lag of Bt, or possibly the vector [Bt, Bt-1, …, Bt-p]. While we found 

no evidence that Bt affected the conditional copula, in unreported results we did find moderate 

evidence that Bt-1 was important for the conditional copula. Thus our conclusion is affected by 

the choice of lag on the business cycle index variable. 

Overall, our preliminary results on this question give some support to the claim that the 

impact of the business cycle on the joint distribution of consumption and income is through the 

marginal distributions and not through their dependence structure, making it a “common factor in 

distribution” for consumption and income. 

7.0 Conclusion 

The paper proposes a definition for common factors in conditional distributions that is the 

analogy to that used in the linear context of the first and second moments.  A wide variety of 

possible dominant factors are suggested and an application is presented concerning the income 

and consumption relationships over the business cycle.  We find some evidence that a business 

cycle indicator variable is a common factor in the distribution of consumption and income. Many 

questions in this are remain unresolved, both concerning testing and also some properties of the 

common factor representation in particular cases.  They are left for further research. 



 
12

 

References 
 
Embrechts, P.A., A. McNeil, and D. Straumann (1999):  Correlation:  Pitfalls and Alternatives.  

RISK 12 (5), 11-21. 
 
Embrechts, P.A., A. McNeil, and D. Straumann (2001):  Correlation and Dependence Properties 

in Risk Management: Properties and Pitfalls, in M. Dempster ed., Risk Management: 
Value at Risk and Beyond, Cambridge University Press. 

 
Engle, Robert F., 1982, Autoregressive Conditional Heteroscedasticity with Estimates of the 

Variance of U.K. Inflation, Econometrica, 50, 987-1007. 
 
Hansen, Bruce E., 1994, Autoregressive Conditional Density Estimation, International Economic 

Review, 35(3), 705-730. 
 
Issler, J.V. and F. Vahid (2001): “Common Cycles and the Importance of Transitory Shocks to 

Macroeconomic Aggregates.”   Journal of Monetary Economics 47, 449-475. 
 
Joe, H. (1997): Multivariate Models and Dependence Concepts.  Chapman and Hall: London. 
 
Nelson, R.B. (1999): An Introduction to Copulas.  Springer: Berlin. 
 
Patton, A. J. (2001a): Modelling Time-Varying Exchange Rate Dependence Using the 

Conditional Copula, Working Paper 2001-09, Department of Economics, University of 
California, San Diego. 

 
Patton, A. J. (2001b): Estimation of Copula Models for Time Series of Possibly Different 

Lengths, Working Paper 2001-17, Department of Economics, University of California, 
San Diego. 

 
H. White (1994):  Estimation, Inference, and Specification Analysis.  Cambridge University 

Press: New York. 




