Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

A battle with superbugs : New compounds and targets against drug-resistant pathogens

Abstract

Drug-resistant pathogens throughout the world, in first and third world countries, create a continual burden on public health. With global emergence of multiply-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and parasites like Plasmodium falciparum, there is a distinct need for the development of novel anti-infectives to target these infections. Our data encompasses interdisciplinary links between pharmacology, natural product chemistry, infectious disease pathogenesis and innate immunity. We have (I) characterized novel antibiotics as new classical-type antibiotics, (II) identified a significant virulence factor, alpha-toxin, in MRSA and characterized its potential as a therapeutic target and (III) investigated a pathogen-specific cAMP-dependent protein kinase (PKA) regulatory subunit as a possible therapeutic target in the treatment of P. falciparum. From this multi-dimensional approach, we have identified potent antibacterial therapies. Our data highlights the ocean as an extremely rich resource of chemically diverse scaffolds. Here, we comprehensively characterize four marine-derived chemical scaffolds, marinopyrrole, napyradiomycin, etamycin and nosiheptide for their potent antibacterial activities against contemporary strains of multi-drug resistant MRSA. Further, in this work, we identify a potential MRSA virulence factor inhibitor. Diflunisal, a known and commonly used non-steroidal anti-inflammatory agent, was predicted via virtual screening to inhibit the production of a pore-forming S. aureus toxin. Our data emphasizes the potent anti-virulence properties of diflunisal and identifies a wide range of supplementary anti-bacterial and anti-virulence properties that could prove extremely useful in treating virulent and pathogenic MRSA infections. Finally, we investigate the PKA regulatory subunit of P. falciparum to identify pathogen-specific features that may be implicated in its roles in malarial parasite development, host invasion and pathogenesis. We conclude it to be a valid therapeutic target by identifying species-specific differences parasitic and mammalian isoforms that may prove useful in the development and engineering of therapeutic inhibitors. This work highlights three novel approaches to anti- pathogen research where we pinpoint valid therapeutic targets and potential therapies in the ongoing battle against emerging superbugs

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View