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ABSTRACT OF THE DISSERTATION 
 
 

Mobile and Stationary Computer Vision Based Traffic Surveillance Techniques for 
Advanced ITS Applications 

 
     By 
     Meng Cao 

 

Doctor of Philosophy, Graduate Program in Electrical Engineering 
University of California, Riverside, March 2009 

Professor Matthew Barth, Chairperson 
 

During the past decade, new sensing technologies, such as inductive loops, laser 

range scanners, radar detectors and computer vision sensors have been greatly enhanced 

and applied to the Intelligent Transportation System (ITS) area. Among all these sensor 

systems, computer vision-based approaches are one of the most popular and promising 

techniques used in ITS for traffic evaluation and management, driver assistance, as well 

as other safety related research. This is primarily due to the advantages of easy 

maintenance, high flexibility, and low cost for traffic scene monitoring and analysis.  

Many stationary vision sensors have been already installed near the roadway, particularly 

at intersections. In addition, more and more vision sensors are now being installed on 

mobile vehicles, in order to have real time surrounding traffic information. This 

dissertation focuses on both mobile and stationary computer vision based traffic 

surveillance techniques, including the development of a new vision sensor, a survey and 
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development of vision algorithms, as well as their applications in three different aspects 

of ITS areas with high quantitative requirements. These areas are outlined in further 

detail below. 

Portable Loop Fault Detection  

For many years, it has been difficult to quantitatively measure real-time freeway 

traffic conditions. Numerous research projects have been carried out in traffic 

surveillance; for example, the Freeway Performance Measurement System (PeMS) 

operated by Caltrans and UC Berkeley collects, processes, aggregates, and examines 

traffic data primarily through loop detectors buried beneath the freeway. This type of 

stationary embedded loop sensor system provides a point measurement for the traffic 

flow, roadway occupancy and average speed. By aggregating these directly measured 

traffic data, they can be used to estimate and provide a larger picture of the traffic 

conditions in certain area. However, the results obtained from embedded loop sensors are 

not entirely reliable. The embedded loop data delivered to a Traffic Management Center 

(TMC) may contain errors at one or more sensors, and between the loop detector and the 

TMC database. As a result, loop fault detection is important. In this dissertation, a 

stationary-vision based technique has been developed as part of a Portable Loop Fault 

Detection Tool (PLFDT). This work is complementary to recent research focusing on 

aggregated faulty loop data at a macroscopic level (the macroscopic level generally 
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considers a large roadway network as consisting of links (roadways) and nodes (e.g., 

intersections)). The objectives of the PLFDT is to develop a real time, multi-lane, 

multi-vehicle tracking system for freeways using video cameras as the baseline 

measurement technique to compare the loop detection signal for direct fault detection for 

inductive loop system.  

Localized Traffic Density Measurement 

The embedded loop sensor system provides a direct measurement to traffic flow, 

roadway occupancy and average speed (only for double-loop detector). This type of 

sensor network does not directly measure traffic density; instead it can only be estimated. 

In this dissertation, we have developed systematic techniques to measure traffic 

conditions by utilizing both on- and off-board computer vision systems. A unique 

development technique is a combined computer vision and Global Positioning System 

(GPS) equipped mobile traffic surveillance system to measure localized traffic density. In 

addition, we correlate the localized density measurement with estimates from embedded 

loop sensor system using a space-time diagram. Experiments have shown the 

complementary nature of these sensing techniques. Further, most traffic surveillance 

computer vision algorithms and techniques are typically based on observing vehicles 

from stationary rectilinear cameras mounted near roadways. For many applications, some 

of the key tasks include extracting traffic information such as average traffic speed, flow, 
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and density. However, less research has been carried out in observing and generating the 

localized traffic map around specific vehicles in the traffic stream. In this dissertation, we 

have developed a vision-equipped vehicle test bed for traffic surveillance purposes and 

have experimentally demonstrated the generation of localized traffic density from video 

processing and synthesizing. In contrast to the off-board surveillance systems (e.g. 

embedded loop sensor networks and stationary vision monitoring system), this type of 

on-board surveillance system provides a temporal- and spatial- continuous measurement 

of the localized traffic density.  

One of the key components developed is an Orthogonal Omni-directional Vision 

(OODV) System that has been developed to observe lane-level activity surrounding a 

vehicle, as well as the ability to observe the surrounding roadway geometry. This vision 

system uses a special catadioptric mirror providing a 360 degree orthogonal view of the 

environment. It is different from other catadioptric mirror-based Omni-directional vision 

systems in that it directly provides an orthogonal image without the need of warping a 

polar-coordinate based image to a perspective view. Based on this unique OODV, a 

roadway traffic surveillance system was designed and implemented. It consists of three 

major components:  

 A GPS stamped roadway traffic data collection technique;  

 Post video processing that includes automatic vehicle detection/tracking with the 
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ability to correct using interactive tools; 

 A traffic parameter (localized density) estimation process. 

Combined with a GPS receiver that provides approximately 2 - 3 meters spatial 

resolution, this traffic surveillance system can be applied not only in several traffic 

applications which require localized traffic density/flow/average speed measurements, 

but also in some other applications that require detailed roadway geometry acquisition, 

and vehicle activity analysis. Based on experimentation, it has been shown that the 

designed mobile surveillance system reports a high detection rate under the dynamic 

freeway environment in the experiments, with assistance from a human interactive 

detection module.  

In order to have a better understanding of dynamic traffic conditions, we have 

incorporated this localized traffic density measurements into a Dynamic Roadway 

Network Database (DRND), which has been developed to fuse the roadway traffic data 

and the probe vehicle data. We believe that with the increasing use of on-board vision 

sensors, more and more localized traffic information samples can be reported to this type 

of database. The combinational analysis of temporal-spatial variable density and the 

embedded loop sensor data will provide a better and more reliable method for traffic 

condition estimation and prediction.  

Bicycle Safety Support System 
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In addition to these new traffic data collection/analysis techniques and verification 

process, computer vision techniques are being applied in safety studies as well. In the 

third part of this dissertation, stationary vision based observations have been made of the 

timing of bicyclists’ intersection crossing maneuvers, to support of efforts in improving 

traffic signal timing to accommodate the needs of bicyclists. Video recordings were made 

of bicyclists’ crossings and the video images were processed to extract the bicyclists’ 

trajectories. These were synchronized with video images of the traffic signals so that the 

timing of the bicyclists’ maneuvers could be determined relative to the signal phases.  

The processed data have yielded cumulative distributions of the crossing speeds of 

bicyclists who did not have to stop at the intersection and the start-up times and final 

crossing speeds of the bicyclists who had to cross from a standing start. This study 

provides a foundation in recommendation of minimal green signal time in terms of safety 

purpose.  

The key contributions of this dissertation are: 

 A unique OODV System has been designed and developed; 

 A vision based systematic approach for developing a mobile traffic surveillance 

system has been proposed and implemented; 

 A time-space diagram based flow calculation method from localized density has 

been proposed and experimentally verified;  
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 A stationary-vision based technique has been developed as part of a Portable 

Loop Fault Detection Tool (PLFDT) to provide baseline data; and 

 A stationary vision-based intersection monitoring system has been developed for 

the quantitative study of bicyclist crossings at signalized intersections.  
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1. Introduction 

1.1 Computer Vision as A Powerful Tool in ITS 

In recent years, computer vision sensors have become increasingly important for 

many Intelligent Transportation System applications, mainly due to their fast response, 

easy installation, simple operation and maintenance, high flexibility, low cost, and their 

ability to monitor wide areas. Object detection and tracking is one of the major research 

areas in computer vision. One significant application of object detection and tracking is 

traffic video analysis, which is part of a variety of Intelligent Transportation System 

applications. Two of the most widely researched transportation applications relate to 

traffic surveillance systems and driver assistant systems [55].  

In general, systems developed for traffic surveillance purposes aim at having a 

understanding of the real time traffic conditions, which require the analysis of the static 

environment (from a stationary vision sensor to monitor an area of interest) and the 

detection of static or moving obstacles, such as vehicles, bicycles, and pedestrians. Image 

processing and computer vision techniques are being applied to the analysis of video 

sequences of traffic, in order to extract traffic information, such as vehicle counting, 

vehicle classification, speed measurement, traffic flow, and so on. Most of these systems 

are based on fixed position installations, such as at urban intersections and along 

freeways. They offer considerable improvements over existing infrastructure-based traffic 

surveillance systems, such as embedded loop sensor systems and microwave detector 

systems. 
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In addition to these stationary monitoring systems, there has been increased use of 

“mobile” sensors. With the improvements in on-board vision sensor technology together 

with other technologies such as GPS technology and increasing mobile computational 

power, vehicle-based vision sensor systems are increasingly prevalent for the purpose of 

observing a vehicle’s immediate “sensed” surroundings, as a major component of driver 

assistant systems. Vision sensors can provide a great amount of information about the 

surrounding environment, but the scenes can be complex and highly demanding. 

Typically with computer vision techniques, different physical quantities need to be 

measured and pattern recognition needs to be applied before useful information can be 

delivered to the driver. Example subtasks include [6]: 

1) Determining the vehicle’s position relative to the lane and checking for obstacles 

on the path or known road signs (for road following/keeping); 

2) Recognizing specific vehicles’ characteristics and computing the time-to-impact 

(for vehicle platooning); 

3) Sensing multiple lanes and detecting obstacles (for passing vehicles and collision 

avoidance); 

4) Measuring the distance among parked vehicles (for automatic parking); and 

5) Determining the position and following the movements of the driver’s eye and 

head (for driver-status monitoring). 
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Thus, computer vision techniques are becoming powerful tools in ITS applications to 

better understanding traffic conditions so that roadway travel can be made as efficient as 

possible (i.e., traffic surveillance systems) and in providing information surrounding 

vehicles so that driving can be made as safe as possible (i.e., driver assistant systems).  

1.2 Problem Statement 

Although large investments have been made and are continuing to be made in 

transportation infrastructure, inefficient (and often unscientific) transportation 

management and traffic control fail to keep pace with increases in population and car use 

(i.e., increased demand typically measured in Vehicle Miles Traveled). This results in 

roadway congestion. To minimize the impacts of congestion, it is becoming increasingly 

important to accurately measure real-time roadway-traffic conditions and manage it.  

During the past decade, numerous research projects have been carried out in traffic 

surveillance in terms of measuring traffic performance (e.g. [1][2]). A traffic surveillance 

system will typically evaluate traffic conditions based on the following key parameters:  

 Traffic flow Q:  the rate at which vehicles pass a given point on the roadway, 

and is normally given in terms of vehicles per hour; 

 Traffic density K: refers to the number of vehicles present on a given length of 

roadway and given in terms of vehicles per mile or vehicles per kilometer. 

 Average speed V: also called the space mean speed, and can be found by 

averaging the individual speeds of all of the vehicles in the study area. 

These parameters are defined in the 2D space of time and position (i.e., locations 
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along the roadways). Currently, most of the traffic surveillance systems obtain data at 

specific locations at different times of the day. An example is the California statewide 

loop sensor system (e.g., PeMS). The system collects real-time traffic flow, and 

occupancy data directly from loop detectors embedded in California’s freeways and 

makes it available for transportation management, research, and commercial use. Figure 

1.1 illustrates the locations of embedded loop sensors (the small dots) embedded in the 

freeways around Sacramento, California, United States, which is displayed on Google 

Map.  

 

Figure 1-1 Embedded loop sensors displayed on Google map 

This statewide sensor system consists of over 28,000 sensors located on major 

freeways. Most of these traffic sensors are inductive loops, embedded in the pavement. 

The collection, aggregation and analysis of these embedded loop data provide a 

systematic way to estimate the macroscopic level traffic conditions (see details in Chapter 
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2). However, these loop detector data are not entirely reliable. The loop detector data 

delivered to a Traffic Management Center (TMC) may contain errors created at one or 

several sensors, as well as in the communication between the loop detector and the TMC 

database. Therefore, loop fault detection is critical. Loop fault detection at a high level is 

done usually through an analysis of aggregated loop data [42]. Such an approach is 

indirect, and the faults that can be detected are usually large scale problems such as 

electric or communication system faults. This is actually one of the limitations to the 

macroscopic and mesoscopic approaches.  

Only the detection at the control cabinet level can directly detect the fault(s) in 

hardware and software, isolate them from the communication fault, and correct the faults 

permanently. Data at this level can either be the ones processed by loop detector cards, 

which will be loop ON/OFF time instances or occupancies; or the raw loop pulse signal 

before the loop card. More importantly, an independent data source or baseline data 

needs to be obtained so that the loop detector readings can be validated against the 

baseline data. Obviously, computer vision sensors and stationary computer vision 

techniques are one of the best choices for providing such baseline measurements.   

In this dissertation, a stationary-vision based technique has been developed as part of 

a Portable Loop Fault Detection Tool (PLFDT). This work is complementary to recent 

research focusing on aggregated faulty loop data at a macroscopic level. The objectives 

of the PLFDT is to develop a real time, multi-lane, multi-vehicle tracking system for 

freeways using video cameras as the baseline measurement technique to compare the 

loop detection signal for direct fault detection for inductive loop system.  
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As mentioned above, the traffic parameters estimated from embedded loop sensor 

system are space discontinuous: they are only spatial samples along the roadway. The 

cumulated traffic parameters (traffic flow and occupancy) and their derivatives (e.g., 

traffic density) from the embedded loop based surveillance system only have meanings 

from the view of statistics. By aggregating these space discontinuous traffic data over 

space and time, we can describe a larger picture of the traffic conditions over a range of 

roadways during a certain time period. However, there are missing details in between the 

embedded loop sensors along the roadway. Thus, it will be useful and meaningful to 

develop a mobile traffic surveillance system to obtain the spatial and temporal continuous 

traffic condition. Obviously, vision sensors and computer vision techniques are the best 

choices to equip such a mobile traffic surveillance system because of its low costs, high 

flexibility, and the ability to monitor a wide range of areas.    

In past decade, a lesser amount of research in ITS applications has been carried out 

in observing traffic conditions around specific moving vehicles in the traffic stream. 

Trivedi et al. [56] introduced a Dynamic Panoramic Surround Map (DPSM) generation 

technique based on two omni-directional vision sensors on the vehicle. However this 

DPSM is generated as part of a driver assistant system, not mainly for traffic surveillance 

purposes. Monitoring the roadway traffic based around a moving vehicle can be 

considered as a good complement to the existing loop sensor surveillance systems since it 

provides both time and space varying traffic data. As illustrated in Figure 1-2, a mobile 

traffic surveillance system has the ability of direct measurement to the region in between 

embedded loop sensors. Those parameters estimated from a mobile traffic surveillance 
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system are very useful to model and predict the traffic conditions at a range of roadway 

locations rather than at specific points. Further, relationships can be established between 

the traffic parameters obtained from vision sensor equipped mobile traffic surveillance 

system with the embedded loop sensor based surveillance system for complementary data 

fusion. This can be viewed as a two-level problem. First, we have to verify that mobile 

traffic data can be related to the loop sensor data. Second, with the increasing mobile 

traffic data collection, it is important to setup a model to fuse, estimate, and analyze the 

traffic data obtained from mobile surveillance system and loop sensor system. In this 

dissertation, we focus on the first level.  

 

Figure 1-2 Mobile traffic data is complementary to the loop sensor data  

Today’s computer vision systems used for traffic surveillance can be grouped into 

two primary categories: those employing conventional rectilinear cameras (see, e.g. [3]) 

and those employing omni-directional cameras that make use of hyperbolic or spherical 
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mirrors (see, e.g. [5]). The rectilinear camera uses a simple geometric projection relation 

and most of the algorithms are designed on the basis of this perspective projection. 

However, the field of view is typically quite narrow (approximately 30 ~ 45 degrees). 

Therefore it is difficult to monitor the entire surrounding area with a single camera. On 

the other hand, an omni-directional camera based on hyperbolic or spherical mirrors can 

observe the 360 degree surroundings and thus provide a much wider angle of view than 

rectilinear cameras. For example, this property makes it possible to monitor an entire 

intersection with a single camera. However, the images resulting from these vision 

systems often require a preprocessing step to convert these images from a 

polar-coordinate to a perspective view prior to analysis [5].  

In this dissertation, we introduce a novel design for a unique Omni-Directional 

Vision Sensor (ODVS), which can be used for the mobile vision based traffic 

surveillance. Prototype systems that employ these mobile ODVS provide another view 

point on roadway traffic conditions which can readily be integrated with embedded loop 

sensor based stationary traffic surveillance systems.    

 In addition to traffic surveillance systems, computer vision techniques can also be 

applied to detect and track vehicle/bicycle/pedestrians for safety applications. To support 

efforts to improve traffic signal timing to accommodate the needs of bicyclists, stationary 

vision based observations have been made of the timing of bicyclists’ intersection 

crossing maneuvers. Video recordings were made of bicyclists’ crossings and the video 

images were processed to extract the bicyclists’ trajectories. These were synchronized 

with video images of the traffic signals so that the timing of the bicyclists’ maneuvers 
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could be determined relative to the signal phases. The processed data have yielded 

cumulative distributions of the crossing speeds of bicyclists who did not have to stop at 

the intersection and the start-up times and final crossing speeds of the bicyclists who had 

to cross from a standing start. This study provides a foundation in recommendation of 

minimal green signal time in terms of safety purpose.  

1.3 Contributions of the Dissertation 

The primary objective of this dissertation research is to develop methodologies and 

systems based on both mobile and stationary vision sensors, in order to accommodate the 

requirement of quantitative measurements in several advanced ITS applications. The 

dissertation has several major contributions as listed below: 

 A unique OODV System has been designed and developed to observe 

lane-level activity surrounding a vehicle, as well as the surrounding roadway 

geometry. This vision system uses a special catadioptric mirror providing a 360 

degree orthogonal view of the environment without the need of warping a 

polar-coordinate based image to a perspective view. 

 The mathematical description of the OODV projection model has been 

developed, which has provided a foundation for utilizing the unique properties 

of the OODV system.  

 A systematic approach for developing a mobile traffic surveillance system has 

been proposed. Both OODV and rectilinear vision sensors, as well as GPS 

devices (providing relative and absolute position information) have been 



 10

integrated to generate a surrounding traffic density map.  

 A novel method using a time-space diagram approach has been proposed to 

relate the localized traffic density obtained from the mobile traffic surveillance 

system to the aggregated traffic flow obtained from an embedded loop sensor 

system.  

 A stationary-vision based technique has been developed as part of a Portable 

Loop Fault Detection Tool (PLFDT). Vision sensor is utilized as an 

independent source to provide baseline data to compare against the loop 

detection system output. 

 A stationary vision-based intersection monitoring system has been developed 

for the quantitative study of bicycle crossings at signalized intersections. The 

detailed, accurate measurements of bicycle crossing times represent an 

unprecedented quantification of bicycle behavior and bicyclists’ needs, 

providing the foundation for defining signal timing.   

1.4 Organization of the Dissertation 

The Dissertation is organized as follows: Chapter 2 reviews background and related 

work, including: embedded loop sensor network systems, vision-based vehicle detection 

algorithms and vehicle tracking algorithms, loop fault detection algorithms, as well as the 

studies of bicyclist intersection crossing maneuvers. In Chapter 3, we focus on the vision 

system and object detection algorithms developed for surveillance and safety purposes. 

First the OODV system is introduced, followed by the mathematical derivation of the 
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OODV projection model. Then the OODV based vehicle detection, tracking algorithm 

are presented. Lastly, a rectilinear vision based vehicle detection and tracking algorithm 

are introduced as well. Chapter 4 describes the developed mobile traffic surveillance 

system, the localized density and speed estimation, as well as the integration with 

embedded loop sensor traffic flow data. Some of the analytical results of the data fusion 

process are also given. In Chapter 5, both hardware and video processing software of the 

loop fault detection toolkits are introduced. The comparison results from video and 

physical loop signal are also presented. Chapter 6 describes the studies of the bicyclists’ 

intersection crossing maneuvers from video analysis. We conclude the dissertation and 

describe potential future work in Chapter 7. 
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2. Background and Literature Review 

2.1 Roadway Traffic Surveillance Systems 

2.1.1 Three Levels of Traffic Data Representation 

Roadway traffic data can be broken into three scales: 

1). Macroscale: 

The macroscale level generally considers a large roadway network as consisting of 

links (roadways) and nodes (e.g., intersections). Link-level traffic data such as average 

speed, flow, occupation are estimated by the infrastructure based roadway sensors (such 

as embedded loop sensors). Macroscale traffic data [1] provides important cue for path 

planning, which is usually based on some optimality such as shortest distance or shortest 

traverse time and least energy consumption.  

2). Microscale:  

The microscale level typically considers things at the vehicle level. A variety of 

techniques [2] are proposed to locate, detect, and track a target vehicle from different 

sensors. Actually, microscale traffic data can be combined and processed to form the 

macroscale traffic data. 

3). Mesoscale: 

The mesoscale level is a level in-between the micro- and macro-scales. A particular 

freeway may have a variety of features: multiple lanes, off-ramps, etc. In the driving 

assistance problem, these mesoscale traffic data greatly help vehicle action such as 
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passing other vehicles, pulling off to the side of the roadway, moving out of the way of 

emergency vehicles, getting in and out of specialty lanes (e.g., high occupancy toll lanes), 

and being in the correct lane to exit.  

 A typical traffic surveillance system usually consists of two components: a sensor 

based traffic data collection system, and a raw data process and evaluation system. An 

example is the statewide inductive loop sensor system embedded on the California 

freeways, and the Freeway Performance Measurement System (PeMS), a systematic 

processing and analysis tool which is based on the raw data from the loop sensor network. 

In the following sections, we present a brief introduction of these systems. 

2.1.2 Embedded Loop Data Collection Infrastructure 

A loop sensor detector [3] is an inductive coil of wires buried in the freeway. 

Whenever a vehicle passes over the loop, the inductance changes and the detector can 

sense this. The length of time that the inductance changes, or the time that the detector is 

on, is a function of the speed and length of the vehicle. The detector can count the total 

number of vehicles which have passed in a unit of time as well as the average time which 

the detector is on. These are referred to as the flow and the occupancy. A loop sensor 

detector provides the direct measurements of flow and occupancy every 30 seconds. 

Usually each lane has an individual loop sensor detector and several loop sensor detectors 

distributed at different lanes at same position along the road are logically collected by a 

Vehicle Detection Station (VDS), which measures the roadway traffic in a single 

direction.  
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Figure 2-1 below gives a very simple overview of the general scheme to collect loop 

data starts at the individual detectors.                  

 

Figure 2-1 Loop data collection process [3] 
 

The steps below [3] describe the stages that the data go through when being passed 

through a typical collection infrastructure.  

 The loop detectors are connected to a cabinet on the side of the road and the 

cabinet is connected to the district office via some communications equipment.  

 The data are collected in the district from the loop detectors by a device called a 

Front End Processor (FEP). The FEP is just a collection mechanism for the data 

(corresponding to a physical machine).  
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 The TMC Server that is in charge of the data collection gets the data from the 

FEP, parses it, filters it, and decides whether the data is valid or not. In addition, 

the processed data is written into a database in the District TMC.  

 The processed data at the District TMC are also sent via the network to the 

centralized PeMS database.  

2.1.3 PeMS System 

The primary function of the PeMS system [3] is to process detector data. The PeMS 

system receives measurements (flow and occupancy) every 30 seconds. Figure 2-2 

illustrates an overview of the data process of PeMS system starting from the smallest 

details, the raw data, and moving towards the higher layers. The green boxes represent 

data that is either collected or stored. The pink boxes represent offline analysis and 

various factors and parameters. The gray boxes are the real-time grinding steps. 

The details of each step of the entire process are discussed as below [3]: 

 In the first step, PeMS system receives the raw, 30-second data from the district 

TMC servers and stores it in the local database.  

 The 30-second data are aggregated into 5 minute samples. This is done per lane. 

This data are referred to as the 5-min data with holes. A hole is any sample that 

is missing. A hole can occur when a detector doesn't report data.  
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Figure 2-2 Overview of the data process of PeMS system [3] 

 A number of parameters are calculated offline from this 5-minute data set. For 

example, g-factors used to compute speed.  

 The next step is to fill in all of the holes in the data. After this step, a complete 

set of 5-minute data with all of the holes filled in is obtained.  
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 The 5-minute lane-by-lane data are then aggregated across lanes to form a 

logical station for the location (e.g., VDS).  

 The 5-minute aggregate data values are then aggregated to hourly aggregate data 

samples. The hour aggregate data samples are then aggregated to daily data 

samples. The daily loop data samples are then aggregated across spatial 

dimensions.  

2.2 Review of Vision Based Vehicle Detection Algorithms 

Vision-base vehicle detection is actually very challenging due to significant variance 

within class variables. For example, vehicles may vary in shape, size, and color. Vehicle 

appearance depends on its pose and is affected by nearby objects. Illumination changes, 

complex outdoor environments (e.g. shadows), unpredictable interactions between traffic 

participants, and cluttered background are difficult to control. With the purpose of 

monitoring the traffic, vehicle detection algorithms need to process the frames real-time 

or at least close to real-time.  

These algorithms and techniques are often based on:  

2.2.1 Knowledge Based Methods 

Knowledge-based methods employ a priori knowledge to hypothesize vehicle 

locations in an image. The useful information can be used includes symmetry [7], color 

[8], shadow [9], corners [10], horizontal/vertical edges [11], texture [12] and vehicle 

lights [13].  
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2.2.2 Motion Based Methods 

The Knowledge-based methods discussed above use spatial features to distinguish 

between vehicles and background. Another important cue that can be used is the relative 

motion obtained via the calculation of optical flow. Approaching vehicles at an opposite 

direction produce a diverging flow, which can be quantitatively distinguished from the 

flow caused by the car ego-motion [14]. On the other hand, departing or passing vehicles 

produce a converging flow. In contrast to dense optical flow, “sparse optical flow” 

utilizes image features, such as corners [15], local minima and maxima [16], or “Color 

Blob” [17]. Although it can only produce a sparse flow, feature based method can provide 

sufficient information for vehicle detection 

2.2.3 Some Other Algorithms 

(1). Template-based methods apply predefined patterns of the vehicle class and 

perform correlation between the image and the template. A rather loose template was also 

used in [18], where the hypothesis was generated on the basis of road position and 

perspective constraints. The template contained a priori knowledge about vehicles: “a 

vehicle is characterized by a rectangular bounding box which satisfies specific aspect 

ratio constraints”.  

(2). Statistic model-based methods learn the characteristics of the vehicle class from 

a set of training images which capture the variability in vehicle appearance. Usually, the 

variability of the non-vehicle class (background) is also modeled to improve performance 

[19].  
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(3). Neural network classifier methods; in [20], Principal Component Analysis (PCA) 

was used for feature extraction and Neural Networks (NNs) for classification. All the 

vehicle candidates were scaled to 20x20, then this 20x20 scaled image was divided into 

25 4x4 small windows. PCA was applied on every sub window and the output of the 

“local PCA” was provided to a NN to verify the hypothesis.  

(4). Background subtraction methods [21][22][23][24], are a much more common 

technique for vehicle detection. Most of the background subtraction methods are used 

with stationary cameras which rely on a fixed background or prior knowledge of the type 

of action taking place. The main goal is to subtract the road background from the current 

image, thereby easily detecting any moving object. One of the key problems is how to 

extract the background adaptively under different lighting conditions. For a stationary 

camera, since the background is relatively static, moving objects can be segmented from 

the background just by frame differencing followed by some type of thresholding. Simple 

thresholding can result in partial extraction of moving objects. If the threshold is too low, 

camera noise and shadows will produce spurious objects; whereas, if the threshold is too 

high, some portions of the objects in the scene will fail to be separated from the 

background. Hence, morphological operations are used to reconstruct incomplete targets 

and to remove extraneous noise. If the video streams are acquired by a camera mounted 

on a moving platform, then they have to utilize a stabilization algorithm in order to 

compensate the camera motion. Thresholding and morphological operations are carried 

out on the stabilized frames to detect the motion regions.  
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2.3 Review of Vision Based Vehicle Tracking Algorithms 

The trajectory of a moving vehicle is also very important because the vehicle 

trajectories are collected over a length of roadway and segmentation of time, rather than 

at a single point and a fixed time. The additional information from the vehicle trajectories 

could lead to improved incident detection, both by detecting stopped vehicles within the 

camera's field of view and by identifying lane change maneuvers or 

acceleration/deceleration patterns that are indicative of incidents beyond the camera's 

field of view. The vehicle tracking system can also produce individual vehicle data (e.g., 

spacing, velocity, acceleration), which could lead to better traffic flow modeling and an 

improved understanding of driver behavior. Another important reason to do vehicle 

tracking is to bypass the relatively time consuming operation of vehicle detection on a 

certain image frames because a traffic surveillance and management system requires to 

process the traffic video in real-time.  

Thus, after segmenting the traffic image frame and localizing the vehicle, the 

segmented vehicle with their bounding boxes and centroids are expected to be tracked in 

the next several frames. 

The evaluation of any vehicle tracking algorithm depends on the degree of those 

features representing the target vehicle can be extracted from the surroundings. The most 

common features used in the object tracking algorithm are color and shape. On the other 

hand, the distortions of features caused by the projection model of vision sensor also need 

to be considered.  

These techniques can be grouped into the following categories:  



 21

2.3.1 Region Based Tracking Algorithms 

In the approach described in [57][58], the vehicles are detected and represented as a 

bounding box or a “blob” and then are tracked over a sequence of frame using different 

criterion. Typically, this method initialized by the background subtraction or inter-frame 

subtraction algorithm to extract the foreground objects.  

2.3.2 Contour Based Tracking Algorithms 

The basic idea of this approach [59] is to have a representation of the active contour 

of the target vehicle. This approach is based on some active contour models and will have 

less computational complexity comparing with the region-base methods.  

2.3.3 Feature Based Tracking Algorithms 

In above sections, the vehicle is represented and tracked as a whole while in this 

approach, several features such as color statistic, distinguishable corners, lines, etc. are 

chosen to represent a vehicle. In [60], the vehicle tracker builds statistical models for the 

target vehicle in color and shape feature spaces and continuously evaluates each of the 

feature spaces by computing the similarity score between the probabilistic distributions of 

the vehicle and model. Based on the score, the final location of the target is determined 

by fusing the potential locations found in different feature spaces together.  

2.3.4 3D Model Based Tracking Algorithms.  

In this approach, the 3D geometric descriptions of vehicle are assumed to be 



 22

established. The correspondence between the image features and the 3D model features 

are also determined. One of the advantages of the model-based methods is that the 

vehicle pose, which is a critical parameter in vehicle activity analysis, is examined. In 

[61], an efficient pose refinement methods based on a point-to-line segment distance was 

proposed to refine the vehicle’s pose parameters.   

2.4 Review on Loop Fault Detection Systems 

A systematic document review on loop fault detection through faulty data at different 

aggregation level was conducted in [42]. The characteristic of this approach is to apply 

various statistical analysis methods to the aggregated loop data to figure out possible 

faults in the loop detection system. Since this approach is indirect, the faults that can be 

detected are usually large scale problems such as electric or communication system faults. 

These cannot tell exactly what the fault is, appearing at which point of which loop 

detection system. This is one of the limitations to the macroscopic and mesoscopic 

approaches. Besides, communication faults are co-mingled with the loop detection 

system fault. For the remainder of this review, the low level loop fault detection is the 

focus of attention. 

Many operating agencies use specialized loop testers to assess the quality of the 

wiring [43][44]. However, these tools bypass the controller and the loop sensors. 

Therefore, they do not analyze the entire detector circuit, nor do they analyze the circuit 

in operation. To this end, most operating agencies employ simple heuristics, for example, 

manually checking the loop sensor indicator light when a vehicle passes over a loop. 
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Such tests are typically employed when the loop detectors are installed close to the 

control cabinet. Many practitioners and some researchers [44][45][46] formalized this 

heuristic by examining if the time series of 30 second average flow and occupancy is 

within a statistical tolerance. 

In [48], Chen and May addressed the fault detection problem for a single loop. They 

used the number pulses to replace the vehicle counts to verify the loop data. Therefore, if 

a pulse is broken, it would cause a data problem. They developed an automated loop fault 

detection system using aggregated data.  Their method is to examine the detector 

ON/OFF time instant. Unlike conventional aggregate measures, their approach was 

sensitive to errors such as "pulse breakups", where a single vehicle registered multiple 

detections because the sensor output flickered off and back on. This was the main 

disadvantage to use vehicle count from a single loop for fault detection: one could not 

isolate other loop fault from the pulse flickering problem. 

Low level loop data correction traces back to the Freeway Service Patrol study in 

1990s [47][49]. It looked at the transition time measures in sub-second of dual loop 

stations with the 20ft distance between upstream and downstream loops. It observed 

some faults in low level data including:  

 missing data; 

 a matching error which results in unreasonable occupancy and speed; 

 on-time and off-time not always being related; 

 no-flow and no-speed but with positive occupancies; 

 existing pulses in both up and down streams; 
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The author mentioned that some causes of the abnormal phenomenon could be 

explained as a vehicle's changing lane. However, there was no systematic diagnosis in 

[48] for those faults, nor systematic methods for data correction. 

In [50], Skabardonis et al use dual loop information to detect loop fault. This paper 

focuses on the evaluation of loop sensors and the detection of cross-talk. It was 

developed for off-line data analysis but could possibly be used for on-line applications in 

the future. The operation procedure is summarized in three steps: 

 Record a large number of vehicle actuations during free flow traffic; 

 For each vehicle, match actuations between the upstream and downstream loops 

in the given lane; 

 Take a difference between the matched upstream and downstream on-times and 

examine the distribution on a lane-by-lane basis. Assuming that the loops are 

functioning properly, only a small percentage of the differences should be over 

1/30 seconds. Otherwise, the “cross-talk” fault is announced. 

The idea of using dual loop speed traps to identify the detector errors is also used in 

[50]. At free flow, the on-time difference and the off-time difference should be the same 

if there is no hardware problem. So if they are not the same, there may be a hardware 

and/or software problem. However, such an assumption is not true for non-free-flow. 

Developing a portable tool for systematic and direct loop fault detection and 

correction from the control cabinet level has not been reported in the literature to our 

knowledge.  
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2.5 Review on the Studies of Bicyclist Intersection Crossing Maneuvers 

It is not easy to collect quantitative microscopic data about bicycling, and only 

limited resources have been available to support efforts to collect such data.  This has 

tended to limit the breadth and depth of the information available in the literature. 

The most directly relevant prior work is the 1995 review paper by Wachtel et. al., 

which summarized a variety of preceding studies to point toward signal timing 

recommendations [52]. The data cited directly in the paper are relatively limited and are 

described only in terms of mean crossing times and speeds.  In the absence of more 

detailed data it is difficult to know how to apply the findings more widely.  The second 

relevant work is the 2005 TRB paper by Rubins and Handy [53], which summarizes an 

extensive set of bicyclist crossing observations in Davis, CA.  These data, which 

represent total crossing times at intersections of varying widths, show significant scatter, 

making it challenging to use them as the basis for specific signal timing 

recommendations.  Regressions showed the mean value of crossing time as a function of 

crossing width, and the authors derived estimates of fixed start-up time and crossing 

speed from these ensemble statistics.  They focused on 2%ile and 15%ile statistics for 

formulating their recommendations, but the full distributions of crossing times were not 

reported, which makes it impossible to apply other percentile criteria based on their data. 
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3. OODV System and Video Processing Algorithm 

As mentioned in Chapter 1, computer vision techniques have become a powerful tool 

for a variety of ITS applications, such as traffic surveillance systems and other safety 

applications. In this chapter, we describe a unique Orthogonal Omni-Directional Vision 

(OODV) system that has been developed and utilized in our mobile traffic surveillance 

system. A unique motion compensated background subtraction algorithm for vehicle 

detection in OODV videos is then introduced, followed by a description of a dynamic 

feature grouping based vehicle tracking algorithm [40] that is applied in the following 

three chapters. 

3.1 The Design of OODV System 

3.1.1 The Structure of the OODVs 

The OODVs consists of a special catadioptric mirror, a CCD camera and a computer, 

as shown in Figure 3-1(a) and (b). Digital cameras are used, which use the IEEE-1394 

standard to transmit both data and power. The image data are purely digital, eliminating 

the need for analog frame grabbers typically used for NTSC video capture. The 

catadioptric mirror and digital camera are mounted together inside an acrylic-cast plastic 

tube with a black needle coming out at the center of the mirror, pointing along the optical 

axis of the camera to eliminate any internal reflection in the tube. Image data are stored 

and processed using a 2.0GHz Core2 Duo, 2.0GB RAM computer with 1TB of disk 

space. This allows for parallel processing of threads and a robust way to flush the live 

video sequence onto hard drive for post processing when needed. 
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The catadioptric mirror allows for a 360 degree view with 124 degree 

downward-looking field of view. It was designed using ray tracing techniques, allowing 

that the distance between any 3D points in any plane perpendicular to the camera’s 

optical axis to be a linear function of the corresponding pixel distance in the image. This 

unique perspective projection model provides a lot of properties similar to the 

conventional rectilinear cameras using perspective projection. The orthogonal images 

captured from this OODVs can be used for high-speed (e.g real-time) applications 

requiring 360 degree view. Figure 3-2 shows the comparison of the images captured from 

the OODVs and hyperbolic ODV. 

(a):  (b):  

Figure 3-1 (a) Layout of the OODV; (b) OODV used in the project 

 

Figure 3-2 Comparison of OODV image with hyperbolic ODV image 
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3.1.2 Characterization of the OODV Projection Model 

In optics, catadioptics refers to the devices consisting of curved mirrors and lenses. 

These systems have many advantages compared with conventional rectilinear vision 

sensors, for instance, they can obtain a much wider angle of view. Ishiguro, et al. 

pioneered the design of these sensors [32]. In [33], Baker and Nayar derived the complete 

class of single-lens single-mirror catadioptric sensors, in which some general mirrors 

were discussed such as spherical, hyperboloid mirrors. All these mirrors preserve the 

fixed viewpoint constraint. In some other cases, this constraint is broken to satisfy some 

special projection relationships. Andrew Hicks [34][35] presents two families of mirrors 

that preserve the geometry of a plane perpendicular to their axis of symmetry, using the 

pinhole and orthographic models respectively. In this research, the mirror used in the 

OODVs is similar to those described by Hicks in his work.  

 

Figure 3-3 Geometry of the OODV 

 Figure 3-3 illustrates the geometry of the OODV. Using a pin-hole modeling 

approach, a ray starts from the view point of the camera, goes through one point in the 
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CCD array, hits the point ),( yx on the mirror, and then intersects the reference plane. We 

define u  as the CCD distance from the point to the center of CCD, and )(ud  as the 

corresponding real world distance between the center of the reference plane and the point 

of the reflected ray on the mirror. Eqn.3-1 has been developed (see ) as the mathematical 

description for the mirror surface so that u  and )(ud  satisfy uaud )( , where a  is a 

constant  
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Eqn.3-1 mathematically describes the surface shape of the mirror. Based on this 

initial model, the surface of the mirror )(xy , the parameter t , the camera focal length f , 

and the designed scale parameter a  are related. Thus the image view can be designed 

based on the parameters in Eqn.3-1. However for such a differential equation; there is no 

closed-form solution. Eqn.3-2 shows the numerical version of the Eqn.3-1 (see Appendix 

A for the derivation), which can be solved and simulated.  
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       (Eqn.3-2) 

Figure 3-4 and Figure 3-5 shows the simulation of the 3D display and cross-section 

of the OODV mirror shape, created through the numerical method described in Eqn.3-2. 

The initial conditions are: 15,6,54,34)0(,0  tfayx . The step 001.0x . 

Figure 3-6 illustrates two images created using the ray tracing rendering technique based 

on the OODV system, whose mirror is created by the numerical method as shown in 

Figure 3-4 and Figure 3-5. The physical model of the checker board is placed on a 

perpendicular plane to the optics axis in the OODV coordinate system. This rendering 

process shows the OODV generates the desirable imaging properties, hence, proves 
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Eqn.3-1 & Eqn.3-2 mathematically describe the mirror shape well. 

 

Figure 3-4 3-D Reconstruction of the OODV mirror shape   

 
Figure 3-5 Cross-section simulation of the OODV mirror shape 

 

 
Figure 3-6 Rendered images of checker board using the OODV projection model 
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3.1.3 Some Discussion on the OODV Projection Model 

For some planes other than the reference plane, as in Figure 3-3, we consider a plane 

with a different depth ry )0( . )(ud in the reference plane and )(' ud in the plane ( ry )0( ) 

correspond to the same line u  in the CCD array. From the geometrical relationship, we 

have  

           
)()(

)(
)

)()(
()('

xy

rx
ua

xy

rxy
u

uxy

rx
a

xy

r
aud










      

             ]
)()()0(

)()0(
[

)0(

)0(

xy

rx
uar

xyy

xyy
ua

y

ry 








              (Eqn.3-3) 

In Eqn.3-3, we can see that )(' ud is the summation of the approximate perspective 

part and the distortion part. From the expression, it makes sense that:  

1) when yxu ,, are fixed, the depth Z  increases (equal to r increases), the distortion 

also increases;  

2) if depth Z is fixed, the increasing u makes yx, increase, which finally results in 

increased distortion.  

This can also be verified by the simulated distortion map shown in Figure 3-7(a) & 

(b). The distortion of each pixel in the rendered image is created based on the distortion 

part in Eqn.3-3. All the parameters settings remain the same except the depth of imaging 

plane. As we see in Figure 3-7, the distortion is distributed like a special shape, getting 

rid of a conic from a column, with small distortion in the middle and larger one at the 

edge. Since the mirror is 360 degree symmetric, the distortion is determined by the 

distance D  between the pixel and the image center, rather than the position of the pixel. 

In addition, the distortions in (b) are generally larger than those in (a) because of a larger 
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depth Z .  

(a): (b):  

Figure 3-7 Graphical display of the imaging distortion map (a and b have different depth) 

For a particular depth Z , the distortion can be modeled only by several polynomial 

coefficients. Using 2nd order polynomial curve fitting as an example, the distortion can be 

represented as ''' 2 cDbDaDistortion  , where D  is the distance between the pixel and 

the center of the image. Usually we consider D as a function of CCD distanceu : )(uDD  . 

This is less complicated comparing with the theoretical distortion part in Eqn.3-3 and the 

coefficients ',',' cba can be found easily by curve fitting techniques. By exploring more 

than 100 different planes paralleling to the reference plane, the coefficients ',',' cba  can 

be determined by a linear relationship with depth Z . 

 Thus the OODV projection relationship can be modeled as a sum of a perspective 

projection and a polynomial residue: 

             ]')(')('[)( 2 cuDbuDau
A

Z
ud          (Eqn.3-4)      

where vZwa ' , qZpb ' , nZmc ' , 

nmqpvw ,,,,,  are constants and can be obtained from the line fitting. Z is the depth and 

)(uD is the pixel distance.u is the corresponding CCD distance and A is a constant. 
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3.1.4 Highlights of the OODV Projection Model 

 The Eqn.3-3 can be simplified as below:  
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 Eqn.3-5 shows the mirror makes the OODV approximate a perspective projection 

with the view point at ))0(,0( yA , even though it is not a true perspective projection.  

3.2 OODV-Based Vehicle Detection Algorithm 

The wide field of view (FOV) of the OODV, as well as its orthogonal projection 

property, makes it suitable for observing not only surrounding vehicles and other objects, 

but also to observe roadway infrastructure as the OODV equipped vehicle travels down 

the roadway. In this dissertation, we have carried out a variety of experiments with this 

type of sensor. For example, a truck-trailer has been mounted with four of these unique 

OODVs on the top of each corner, as shown in Figure 3-8 (a), driving on the freeway to 

collect the traffic data. Figure 3-8 (b) illustrates the recorded roadway traffic video data, 

and the 3D display about the field of view is given in Figure 3-8 (c), which is generated 

by 3D rendering.  

To accommodate this type of downward-looking OODV videos, a motion 

compensated background subtraction based vehicle detection algorithm has been 

proposed. Figure 3-9 illustrates the flow chart of this method. The basic idea is making 

use of the unique geometric projection model of the OODV to compensate for the spatial 
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motion of the moving platform. In addition, luminance compensation is applied by 

computing the mean of brightness in the background region to make the background 

stable in consecutive frames.  

(a):  

(b): (c):  

Figure 3-8 OODV based roadway experiment setup 
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Figure 3-9 Flow chart of the OODV based vehicle detection algorithm 

To stabilize the ground plane background, a ground plane motion compensation 

algorithm was proposed in [39], but this method is applied to the applications where the 

conventional rectilinear camera is mounted in the front or rear of the car such that the 

points on the ground plane have different scene depth.  However in our application, the 

optical axis of the OODV is perpendicular to the ground and the view angle is 

Video input GPS Data 

Frames with GPS data 

Luminance compensation 

Motion compensation 

Background subtraction 

Object region: Threshold +Morphology 

Dynamic clustering 

Tracking the next k 
frames 

Surrounding traffic information calculation 

Background region 

Lane position estimation 

Lane-level Occlusion Analysis 

Lane Fitting 

Surrounding traffic map generation 
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downward-looking. These properties ensure that all the points on the ground plane have 

the same depth. According to the special geometric projection relationship of the OODV 

mentioned, the spatial motion compensation of the frame becomes the pixel shifting in 

the frame which is much easier to be implemented. The shift distance in the background 

can be obtained directly from the vehicle moving distance in the real world using 

Eqn.3-6: 

AZ

distGND
distPIX

_
_               (Eqn.3-6) 

where A is the projection parameter for the OODV, which has been obtained in the 

calibration process. DistGND _  is the driving distance of the truck in a certain time-slot. It 

can be computed directly from the GPS data as in Eqn.3-7.  

                     GPSprevcurr VttDistGND  )(_          (Eqn.3-7) 

The sudden change of brightness has been considered while doing gray-scale 

compensation. Let ucur _ be the mean brightness of the background region in the current 

frame and uprev _ be the mean brightness of the background region in the previous frame. 

Then the brightness change in the region without moving objects equals to uprevucur __  . 

Then after the spatial motion compensation and luminance compensation, we have a 

temp frame as given in Eqn.3-8. 

      )__(),_(),(' uprevucurjdistPIXiIjiI prevcurr      (Eqn.3-8) 

The background in ),( jiIcurr
 and ),(' jiIcurr

 is supposed to be the same and the difference 

image can be obtained using Eqn.3-9. The image is then segmented into the background 

region where the gray values in the difference image are less than a threshold, as shown 
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in Figure 3-10(a), and the foreground region where the gray values are large than the 

threshold, as shown in Figure 3-10(b).  

                )),('),((),( jiIjiIabsjiDiff currcurr         (Eqn.3-9) 

A simple threshold operation on the difference image can result in partial extraction 

of surrounding vehicles. If the threshold is too low, noise and shadows could be detected 

as vehicles; whereas, if the threshold is too high, some portions of the vehicles will be 

classified as the background. Hence, morphological operations are used to reconstruct 

incomplete objects and to remove extraneous noise. 

 To detect objects from the foreground image, the classic K-mean clustering algorithm 

has been modified so that it can dynamically determine the number of clusters to be 

grouped. The grouping criterion is the pixel distance from each foreground point to the 

centroid of each cluster. 

Vehicle occlusions analysis is another important issue in the surveillance system. 

Occlusions will result in the failure of vehicle detection and further degrade the accuracy 

of vehicle tracking, classification, and counting. Generally, shadows and optical 

projection effects are the major factors to cause vehicle occlusion. These vehicle 

occlusions can be simply grouped into three classes: 1) One vehicle is classified as two 

different vehicles; 2) Two or more vehicles are classified as one vehicle; and 3) The 

vehicle is missing.  

In this research, lane structure is used to eliminate the occlusions. First, each detected 

vehicle is marked with the lane index. If the centroids of two detected vehicle are close 

enough in the same lane, then we can consider them as the same vehicle. Figure 3-11 
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illustrates how the lane information helps to eliminate the occlusions in case 1). In case 2), 

two vehicles in the consecutive lanes may probably be detected as one vehicle if they are 

overlapping with each other. Thus if the bounding box of a detected vehicle is larger than 

two times the lane width, it is reasonable to consider it as a potential occlusion. Further, 

color information in the HSV color space is used to confirm whether it is an occlusion. 

Figure 3-12 illustrates such an example of the case 2) occlusions. As shown in Table 3-1, 

we have processed a 2000-frame sample video which is captured by the instrumented 

truck going straight down in the middle of a 6-lane freeway without lane changing and 

turning. Through the lane structure occlusion analysis, the false detection in case 1) and 2) 

are greatly reduced.  

Lane markings provide the most important roadway geometry information for 

lane-level traffic analysis and navigation tasks. Lane detection is performed based on the 

following assumption: on the flat ground, the intensity of the lane marker area is much 

brighter than that in the lane areas.  

In [38], these bright sections are extracted by comparing the pixel intensities with 

their neighboring pixels at a distance m, where m represents the width of lane markers. 

The value of m could be obtained in the calibration process. Only those pixels whose 

intensities are brighter than both of their left- and right-m neighbor pixel over a threshold 

are classified as lane markers. This classifying criterion can be represented as: 



 

 

,0

),,(),(
),(

jidjid
jiu mm  

otherwise
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      where                  
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(a):  (b):  
Figure 3-10 (a).Background image and (b) Foreground image 

   
Figure 3-11 Occlusion analysis in case (1) 

   
Figure 3-12 Occlusion analysis in case (2) 

 
 Frame Total 

Vehicle 
Detected 
Vehicle 

False detection 
(case 1,2) 

Missing 
(Case3) 

Detection 
rate 

W/O Lane level 
Occlusion 
Analysis 

2000 15253 11074 2473 1706 72.6% 

W/ Lane level 
Occlusion 
Analysis 

2000 15253 12749 718 1786 83.7% 

Table 3-1 Comparison rate with and without lane-level occlusion analysis  
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Since sometimes part of the lane markers are occluded by vehicles, the above process 

is performed in the background image obtained in the previous sub-section. Then, 

morphological operations are used to enhance the lane markers and to remove the noise. 

Binarization is performed on the enhanced image:  

                 





,0

,1
),( jir      

otherwise

jiu 0),( 
                  (Eqn.3-11) 

The lane maker areas are usually space continues in the background image except 

that part of it is occluded by vehicle. Thus a recursive connected components analysis and 

labeling process is performed. 

In the ideal case, all the pixels in a lane are connected and are labeled by the same 

number. However, usually, one lane is cut by the existence of the on-road vehicles; thus, 

centroid information is used to explore the vertical correlation. Finally, polynomial curve 

fitting is used to extract the sketch of lane information. Figure 3-13 illustrates the entire 

process of the lane detection; (a) shows the original frame; (b) presents the rough lane 

marker detection results; (c) indicates the enhanced image after noise removing; (d) 

illustrates the finally result using polynomial model to fitting the lane curve.  

 When a vehicle is detected, 96.8% of the vehicles can be classified into the correct 

lane it is driving in, based on the same 2000-frame video test with occlusion analysis. 
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(a):             

(b):   

      

       (c):  

(d):  
Figure 3-13 Lane structure detection process  
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3.3 Rectilinear Camera-Based Vehicle Detection and Tracking 

Algorithm 

 In recent years, various vehicle detection and tracking algorithms have been 

introduced based on the rectilinear camera model. The majority of approaches are either 

based on background subtraction or feature tracking and grouping. Background 

subtraction methods are straight-forward, but have high variability based on illumination 

conditions. On the other hand, feature based approach usually obtain feature’s trajectories 

by tracking the detected corner feature and grouping them based on the analysis of the 

trajectories. However, it is difficult to maintain robust feature trajectories for a long time.  

 In [40], Kim proposed an object detection and tracking approach that combines the 

background subtraction algorithm and the feature tracking and grouping algorithm. The 

highlights of this approach are:  

 background subtraction is used as an additional cue for robust feature detection 

and tracking, and vice versa;  

 It proposes a robust multi-level feature grouping algorithm in order to handle 

different sizes of objects, such as vehicles and bicycles in the traffic scene. 

 the dynamic feature grouping algorithm produces a high quality of object 

trajectory, in compare with the previous approaches that produce trajectories 

simply by linking the center of the object. 

This algorithm has been experimentally proven its robustness under different 

environment, such as at a congested intersection, freeway, etc. This method is adopted in 

the video processing part of all the three applications described in the following three 
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chapters, including virtual loop vehicle detection in the loop fault detection application 

(see Chapter X), forward vehicle detection in mobile traffic surveillance system (see 

Chapter Y), as well as high quality trajectory production in the intersection bicycle 

detection application (see Chapter Z). All of these applications have had reliable results.  

A summary of this algorithm is given below: 

 Background Subtraction: A temporal median approach is combined with 

alpha-blending to update the pixel intensities to find the background. To 

compensate the sudden illumination change, an illumination correction 

procedure is provided as well. Eqn.3-12 describes the background update 

equation, where Ic() is an illumination-correction function and Nt is the temporal 

median of the recent frame:  
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 Feature Tracking and Grouping: the Harris corner feature are detected in the 

foreground region and is tracked by a cross-correlation template matching 

method. Then a multi-level grouping is applied, where low-level corner features 

are first grouped into small clusters and then clusters are grouped into object. A 

Bayesian reasoning is applied to determine the corner feature’s membership by 

considering the following parameters: p – the proximity between the feature and 

cluster; r – history of falling in the same background subtraction blob region; m- 

motion history; t – trajectory’s maximum disparity; c – previous cluster 

membership. Eqn.3-13 describes the Bayesian reasoning equation: 
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               (Eqn.3-13) 

 Trajectory generation: the position and shape of the object is determined by the 

positions of all its member corner feature and all trajectories are computed in the 

3D space (the image position is projected into the real-world coordinates, 

assuming a predetermined height).  

Figure 3-14 shows a nice example of vehicle detection and trajectory generation 

results under the presence of shadows, using the methodology [40] described in this 

section. 

 

Figure 3-14 An example of vehicle tracking under the presence of shadows 
 

 



 45

4. Stationary Vision Based Portable Loop Fault 
Detection Tool (PLFDT) Development1 

4.1 Vision Sensor Provides Baseline Data  

As described in Chapter 1, a systematic approach to detecting faulty traffic detector 

loops is crucial to traffic operation, traveler information, and corridor management. 

Traffic detection systems are widely used for traffic management and control in 

California. The statewide loop sensor system consists of over 28,000 sensors located on 

the mainline and ramps, and grouped into 8,000 vehicle detector stations (VDS). 

However, loop data are not reliable. The loop data delivered to a TMC may contain error 

created at a point or several points between the loop detector and the TMC database, 

which presents a great challenge. To solve this problem, it is necessary to take a 

systematic approach. This approach is composed of three complementary tasks:  

 loop fault detection;  

 faulty loop data correction/imputation; and  

 loop detection system maintenance.  

Loop fault detection at the high level is done usually through an analysis of 

aggregated loop data. Such approach is indirect, and shortcomings are obvious: (a) data 

aggregation in time and space would smear the faulty problem; and (b) a communication 

fault caused by data error/loss make it impossible to isolate the loop fault detection 

problem. Only the detection at the control cabinet level can directly detect the fault(s) in 

                                                        
1 This work was conducted at California PATH as a joint research with Lu, Kim, Varaiya, Horowitz and Palen, and 
described in the Proc. 88th TRB Annual Meeting, 2009 [63]  
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hardware and software, isolating them from the communication fault, and correct the 

faults permanently.  

As listed in [42], the loop faults to be diagnosed at the microscopic level include 

hardware, software and installation problems, and loop card faults. Those faults appear as: 

mis-assignment, temporary data missing, crosstalk, absence of data or constant for a 

period of time, broken cable, chattering, broken card, card sensitivity being too high or 

too low, broken pulse, mismatch of ON/OFF time instances between upstream and 

downstream loops for dual loop stations.  

This is the only level that one could conduct direct loop fault detection and isolate 

the loop faults from possible other system faults. Data in this level can either be the ones 

processed by loop detector card, which will be loop ON/OFF time instances or 

occupancies; or the raw loop pulse signal before the loop card. The main characteristics 

of those data are that (a) they do not pass any communication media and thus there is no 

possibility of communication fault which usually pollutes or looses the data stream; (b) 

all the raw information is available with a proper interface with the control cabinet; (c) 

real-time data are available; and (d) most importantly, an independent data source or 

baseline data could be obtained at this level thus loop fault detection could be conducted 

by comparing the loop detector reading with these data. Obviously, vision sensor is the 

best choice to provide the baseline data, due to its easy installation, operation and 

maintenance, high flexibility, low costs and their ability to monitor wide areas. 
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4.2 Development of Portable Loop Fault Detection Tool (PLFDT) 

The PLFDT, as shown in Figure 4-1, is designed for systematic loop fault detection 

at the control cabinet level. A loop detector(s) could be identified as being suspicious 

from a higher level data analysis in TMC/PeMS. The suspicious loops will then be 

diagnosed further using the portable tool. The tool will enable the operator to use 

independent video stream of traffic measurements for comparing with the suspicious loop 

detector data. This portable tool will be designed to achieve the following objectives: 

 determination of the exact fault type and causes in the detection system 

 on-site diagnosis of faults on: 

 mis-assignment 

 malfunctioning such as misfiring 

 inappropriate card sensitivity settings 

 inductance variation due to temperature and humidity 

 broken loop circuit due to  

 improper installation 

 road surface maintenance 

 fatigue 

 Facilitate on-site detector precision evaluation and calibration. 
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4.2.1 Overall System Structure of the PLFDT 

 
Figure 4-1 Overall system structure 

The system development includes hardware, software and algorithm development. 

Our hardware setup consists of the following components: 

 Mobile trailer which can be towed to the site near the suspicious loop location 

 Retractable pole with a PTZ (Pan-Tilt-Zoom) camera mounted on it 

 Two laptop computers with the Linux operating system 

 Computer A to capture video images, process them in realtime and send out the 

result via IEEE 802.11b wireless 

 Computer B to interface with a loop detector card, receive the video processing 

data from Computer A through IEEE 802.11b wireless, and to compare the 

synchronized signals for loop fault detection; 
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4.2.2 Mobile Pole for Roadside Video Camera Mounting 

 

Figure 4-2 Mobile retractable pole setup 

A mobile pole for the roadside camera setup has been developed as in Figure 4-2. 

The mobile trailer has four retractable folding legs for supporting the platform for 

leveling and robustness. The Pan-Tilt-Zoom camera is mounted on top of the mobile pole 

and looks at the loop for vehicle tracking to obtain ground truth. The PTZ parameters can 

be controlled using the remote controller or using control software running under 

Microsoft Window System through the RS-232 serial port interface. This setup process is 

necessary for the camera to view the loops on the ground and to display on the computer 
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screen so that a virtual loop can be overlaid on the actual loop. 

 

Figure 4-3 Interfacing with control cabinet and smart card 

4.2.3 Interface with Control Cabinet 

A loop card receives raw analog signals from each loop circuit, processes them with a 

physical oscillator and amplifier, and outputs traffic signals. Loop cards can be divided 

into two types: single-layer and multi-layer output cards. Single-layer output cards have 

only two outputs (the vehicle count and occupancy), that results from processing the 

input signal from the loop circuit. For example, Sarasota GP5 and Reno 222 cards are 

single-layer output ones that are widely used. There is no direct interface port with those 

cards. Instead, their signals are directly fed into the controller. The output form the card 

to the controller is either 1 or 0 without the lower level signal available. The low level 

signal is more attractive than the binary data for several reasons: (a) it can be used for 

extracting vehicle signatures for re-identification; (b) it tells if the sensitivity of the card 
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is properly adjusted; (c) it tells if any algorithm in the card has a flaw; and, (d) most 

importantly, we can remove time delay incurred in the traffic controller.  Multi-layer 

output or Smart Cards, such as the 3M Canoga and IST cards, have multi-level output 

information including the start detection times, the occupancy, the vehicle count, fault 

status, and even the inductance intensity signals calculated from the frequency. A smart 

card has a built-in RS232 interface port, and thus lower level signal can be obtained. We 

chose a smart card, 3M Canoga C922, which is compatible with 332 Traffic Control 

Cabinet and both 170 and 2070n controller, for our current development. The update rate 

for the 3M Canoga C922 card is 13Hz.  

4.3 Vision Based Multi-lane Vehicle Tracking Software Development 

The software has the following two components: 

 High precision synchronization of the timers on the two computers through 

wireless communication; 

 Real-time multi-lane and multi-vehicle tracking using the video camera, and 

matching signals from the two data streams, which are described respectively in 

this section. 

4.3.1 Synchronization of the two Computers with Wireless Communication 

The two data streams (from the loop and the video camera) include timestamps for 

matching. Potential faults are diagnosed by comparing the matched data pairs. The video 

processing data and the loop data are collected with time stamps in two different 
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computers. Therefore, computer system time synchronization is critical. 

We use wireless-based (UDP) synchronization tool developed by the California 

PATH to synchronize the two computers within 1 millisecond difference. The procedure 

is described as follows: 

Step 1: Computer A send a signal packet, MSG1, to Computer B containing its 

current system time, say Start_TIME. 

Step 2:  When Computer B receives the signal packet MSG1, it immediately sends 

back the acknowledge signal packet, MSG2, to Computer A, which 

contains: 

a) the Start_TIME from the packet it received 

b) the current system time on Computer B at the time of receiving the packet 

from Computer A, say Rcv_TIME 

Step 3:  Computer A gets the acknowledge message, MSG2, and marks the current 

system time when it received MSG2 from Computer B. Then, the round trip 

time R1 of data passing is calculated by subtracting the Start_TIME from 

the current system time.  The clock skew between the two computers are 

then estimated by comparing Rcv_TIME with (Start_TIME+0.5*R1).  

Step 4:  Computer A sends a time setting packet to Computer B with the clock skew 

and Computer B adjusts its system time accordingly. 

The above process is iterated for 100 times and the average round trip time is used to 

estimate the clock skew.  According to our experiment, the resulting clock skew is far 

less than 1 millisecond. It is a much more accurate and reliable way to synchronize the 
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two computers than other affordable methods, such as using GPS units. 

4.3.2 Real-Time Multi-lane Vehicle Tracking Algorithm  

We have designed a computer vision system to obtain baseline measurements to 

compare. The whole system consists of three parts: 

 a camera (Canon VC50i pan-tilt-zoom communication camera); 

 a moving platform; and 

  Linux-based video processing software 

The Canon VC50i camera provides a wide range of view by panning through a broad 

reach of 200 degree, tilting of 120 degree, as well as a 26x optical zooming. It provides 

superior camera optics that a good quality of images can be obtained even with 

challenging illumination conditions, such as strong shadow cast that causes too high 

image contrast. An Intel Pentium Core laptop computer equipped with a USB frame 

grabber was used for video data processing.  

There are many commercial vision-based vehicle detection systems (“virtual loop 

detectors”) also available. However, most virtual loop detectors are based on the 

background subtraction algorithm. They normally use frontal-view video images to avoid 

difficulties caused by occlusions and to get better lane positioning. Since our application 

requires the camera on the roadside, it is difficult to adopt those systems. 

We applied the rectilinear camera based vehicle tracking algorithm described in 

Section 3.3 to detect and track vehicles in multiple lanes at the same time. The algorithm 

combines the background subtraction algorithm with the feature tracking and grouping 
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algorithm to better handle the occlusion problem. The developed algorithm is more robust 

to shadow and occlusions than conventional virtual loop detectors and, thus, better 

separates between lanes. An example detection result is shown in Figure 4-4. We see that 

the upper-left background subtraction result cannot separate the vehicles in multiple lanes 

but the newly developed algorithm can correctly localizes them. 

An example placement of a “virtual loop” over the loop mark on the ground is shown 

in Figure 4-5. The trajectories of all the vehicles in the image are estimated, and the 

virtual loop is triggered by analyzing the trajectories. 

The software was developed under Linux environment using the OpenCV library.  

The algorithm runs on a Pentium Core processor (1.83GHz) in real-time at 10 fps.  The 

details of the image processing algorithm are described in [40]. 

 
Figure 4-4: An example feature tracking2 

 
Figure 4-5: Virtual loop is triggered when a vehicle reaches it 

                                                        
2 The video tracking algorithm part was developed by Dr. Kim 
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The 10Hz update rate is frequent enough to avoid any missing vehicle count due to 

high vehicle speed.  For example, when a vehicle moves at 70 mph or 31.3 m/s, and 

loop length 2m and vehicle length 4m, the total crossing length for a vehicle starting on 

upstream edge and leave at downstream edge is: 2+2*4 =10m. Thus the expected 

duration is 10.0/31.3 =0.32s. If the video camera update rate is 10 Hz, there are at least 

several frames of the video where the vehicle is on the virtual loop.  In addition, even if 

a fast vehicle passes through the virtual loop between the frames, we can still infer 

vehicle’s passage by analyzing the continuous trajectory that the vision algorithm 

provides. 

4.4 Comparison of Physical Loop and Virtual Loop 

Figure 4-6 illustrates the system structure developed to graphically monitor and 

compare the loop information. The instantaneous physical loop information and virtual 

loop information packets are processed and formatted as follows: 

 

Thus the physical loop packet and virtual loop packet are matched based on the time 

stamp. However, the packet update rate from the vision system and that from Canoga 

card are different. The update of information packet for a vehicle over the virtual loop in 

the vision system is about 10 fps. The maximum update rate from the Canoga card is 

around 13 Hz. So this is not a one-to-one matching. On the other hand, the messages 

from both sides could possibly have some delay due to wireless communication or some 
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other unknown reasons. To solve this problem, two First-In-First-Out (FIFO) buffers 

were built on the cabinet computer. One is used to store virtual loop packets from vision 

system and the other is used to store the physical loop packets from the Canoga card. 

With those two buffers, two initially synchronized computers can work independently as 

long as the data is time stamped. Each packet from the video computer (which has a 

lower update rate) is matched with the physical loop packet which has the closest time 

stamp by looking up their buffer. This approach significantly increases the reliability of 

the system. 

 

Figure 4-6 Software structure and interaction between the two laptops 

4.5 Experiment Data Analysis 

Tests have been conducted at an experimental intersection at PATH Headquarters, 
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RFS, U.C. Berkeley. A 3M Canoga 922 card was connected to a 322 traffic control 

cabinet to read the raw loop inductance data directly from the physical loop, as shown in 

Figure 4-7(a). It also transfers these loop information to the laptop through the RS-232 

serial cable as shown in Figure 4-7 (b). The 3M Canoga 922 card could read at most two 

physical loops at the same time.  

(a):  (b):  

Figure 4-7 Laptop RS232 serial interface with C922 3M Canoga Card 

On the other side, the vision system was set up as illustrated in Figure 4-2. The 

camera was mounted on the top of the trailer pole to look downward towards the loop 

detectors at the RFS test intersection. The camera’s intrinsic parameters were estimated 

by using the Camera Calibration Toolbox for Matlab [65]. The extrinsic parameters are 

estimated by a simple external calibration algorithm which uses a single rectangle [41]. 

USB 300mW WiFi adapter with 9dBi and 5dBi antennas were used for reliable wireless 

communication with about 800m distance coverage.  

Figure 4-8 shows the vehicle detection and tracking process. A virtual loop is turned 

on (as highlighted) when the vehicle ellipse hits the loop rectangle in the world 

coordinates in the vision system.  

We extensively tested the system at the Richmond Field Station at UC Berkeley and 
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all of the vehicles passing through the intersection have been detected from both virtual 

loop system and physical loop system based on the observation. Note that it is a 

particularly difficult environment for video processing due to heavy moving shadow of 

trees movements by a strong wind. The packet buffer described in the previous section 

makes the synchronization only have an average error of 0.0436 seconds, which means 

an error of 1.16 meters in space if the vehicle runs at 60 mps. Figure 4-9 (a-e) shows the 

comparison of detections from virtual loops and physical loops when the vehicle is 

running at different speeds. The red bars represent the virtual loops' on/off information 

and the blue bars indicate the inductance changes of the physical loops. Each column 

shows a pair of results for the corresponding virtual and physical loop. The reference 

origin time in the four sub-figures is exactly the same. The x axis represents the time 

domain with the number of packets as a unit. Since the vision algorithm works at around 

10Hz, each packet is about 0.1s long. In our experiment, two loops were monitored. The 

exact physical loop size was 2 meters in width by 1.8 meters in length. Considering the 

vehicle's physical length, the efficient length of a regular sedan is around 6 meters.  

(a):  (b):  

Figure 4-8 Visual loop in the video stream 
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              (a) vehicle speed at 5mph                    (b) vehicle speed at 15mph 

 

              (c) vehicle speed at 25 mph                  (d) vehicle speed at 45 mph 

 

              (e) vehicle speed at 50mph 

Figure 4-9 Comparison of the virtual loops and physical loops data 
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In Figure 4-9, we see that at a low speed, such as 5 mph in (a), 15 mph in (b) and 25 

mph in (c), the physical loop data is bell-shaped, while at high speed, such as 45 mph in 

(d) and 50 mph in (e), it is shown as a signal pulse. The vertical is the inductive intensity 

variation calculated based on variation of the pulse frequency of the loop as a vehicle 

passing over relative to the inductance of absence of vehicles. It can be observed that as 

the vehicle speed increases, the occupancy time decreases. At the speed of 50mph, the 

duration only lasted for two time steps. Even in higher speed, it is expected that, the 

vehicle over loop can still be caught due to internal resent frequency of the loop. For the 

vehicle tracking over virtual loop with video, the time instant for virtual loop ON can still 

be guaranteed due to continuous tracking in advance. Note that the inductance intensities 

of the two nearby loops are different even for the same vehicle passing at the same speed. 

This implies a practical challenge in directly using the inductance data as the only vehicle 

signature for re-identification over different loops. 

4.6 Conclusions 

  In this chapter, we presented the research and development of a portable tool for 

systematic loop fault detection at the control cabinet level, in which vision sensor and 

vision based vehicle detection and tracking technique plays an important role, serving as 

an independent source to provide baseline data for comparison. Experimental tests up to 

50mph of a vehicle speed demonstrated that this concept is feasible in operating in 

real-time. Continuous tracking of the vehicles (using the unique vehicle tracking 

algorithm described in Section x) from further the upstream of the loop guaranteed that 



 61

the vehicle is reliably caught over a loop even at a high speed. An effective and reliable 

synchronization and data communication scheme was also presented.  
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5. Mobile Traffic Surveillance System Using a Unique 
OODV Sensor 

5.1 On-Board Vision Sensor to “Sense” Soundings   

Vehicle-based vision sensor systems are developed for the purpose of determining 

the vehicle’s position relative to its immediate “sensed” surroundings. The original 

drivers of developing the video-based object detection and tracking system are the 

autonomous driving and driver assistance systems. These different applications require 

cameras to be mounted at different places on the vehicle. Figure 5-1 shows the view 

angle coverage of cameras at different mounting positions. Figure 5-2 shows different 

applications with cameras at different mounting positions:  

 Automatic Parking Systems typically need forward and rear looking 

cameras; 

 Lane-Departure Warning/ Lane Changing Assistance System need side or 

forward-looking cameras;  

 Forward Collision Avoidance Systems need forward-looking cameras; and 

Blind Spot Detection Systems need side-looking cameras. 

These systems are mainly designed for providing more information about the driving 

surroundings to the driver for purposes of safety. For example, Bertozzi et al. in [54] 

provides a comprehensive survey of the use of computer vision techniques in intelligent 

vehicles. Approaches for obstacle and pedestrian detections are described and analyzed. 

Recently, a number of researchers have considered lane detection and tracking as the 
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main purpose for on-vehicle vision system [62]. This is really an important and 

challenging vision-based application, because:  

 The system process should operate in real-time;  

 The system must robustly identify lane markers, even though they may have 

a variety of appearances, even across small regions.  

 The system must minimize as many assumptions as possible in the 

processing.  

Most of the research and development deal with obstacles in front, side vehicles and 

lanes in isolation, and less has provided full surrounding scenarios together. On the other 

hand, almost all of the previous work focuses on the driver assistant system and there is a 

less research in developing a system that is for the purpose of observing and evaluating 

the localized traffic conditions.  

 

Figure 5-1 View angle of on-vehicle cameras 
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Figure 5-2 Different applications of on-vehicle cameras 

In recent years, there has been an increasing interest in omni-directional vision 

sensing in the roadway environment. Traditionally, forward and backward looking 

rectilinear vision sensors are used to detect the surrounding vehicles for potential 

collision avoidance as well as the lane information for navigational purposes. However, 

the narrow field of view limits the applications of rectilinear cameras, since it is often 

important to observe 360 degree of surrounding environment as well as the ground plane. 

In [36], Gandhi and Trivedi give a good review on the capture of vehicle surroundings 

using video inputs and describe a novel method to create a Dynamic Panoramic Surround 

(DPS) map using stereo and motion analysis of videos from a pair of hyperboloid 

mirror-based omni-directional cameras. This system can be applied in real-time systems 

for driver assistance or off-line for studying vehicle behavior. Most of these 

omni-directional vision sensors obtain a 360 degree of panoramic surrounding views and a 

transformation process is required to unwarp the polar-coordinate image to the perspective 

view. 

In this research, aiming at measuring the spatial and temporal varying traffic data 

(mainly focus in local density and average speed), a novel OODV system based roadway 
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traffic surveillance system has been designed and implemented. It consists of three major 

components:  

 A GPS stamped roadway traffic data collection technique;  

 Post video processing that includes automatic vehicle detection/tracking with the 

ability to correct using interactive tools; 

 A traffic parameter (localized density) estimation process. 

5.2 Vision Based Mobile Traffic Surveillance System 

5.2.1 Localized Traffic Map Captured with On-vehicle Vision Sensors 

By mounting two OODV sensors (for details, refer Chapter 3) on the back corners of 

a box truck and a single forward-looking rectilinear camera (Point Grey Dragonfly 2 

digital camera) on the top of truck box, as shown in Figure 5-3, the surveillance system 

could be used to observe not only surrounding vehicles and other objects, but also to 

observe roadway infrastructure as the vehicle travels down the roadway. This roadway 

infrastructure includes lane markings, barriers, pavement defects (e.g., potholes), and 

other items lying on the ground plane. These observations can also be combined with 

high-accuracy position and speed information provided by differential GPS receivers.  

In this experiment, the optical axis of each OODV is carefully adjusted to be 

perpendicular to the ground plane, providing a top-down view of freeway ground map. 

Figure 5-4 illustrates a snapshot of the recorded roadway traffic video data; Each OODV 

gives a view of its side of the road, as well as a rear side view. OODV calibration is 

performed offline in the laboratory to determine the system parameters (details refer to 
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next section). Combined with the accurate height measurement, the relationship between 

the OODV pixel coordinate and OODV camera coordinate can be determined. The 

motion compensated background subtraction based method (described in Section 3.2) has 

been applied to detect the moving vehicles in the OODV image domain. The forward 

rectilinear camera adopted a different detection algorithm, which is based on the dynamic 

feature detection and grouping algorithm as described in Section 3.3. Once the vehicle is 

detected, its center point is transformed from its image domain to the camera coordinate 

system, and finally transformed to the vehicle coordinate, with the assumption that the 

vehicle is at a fixed height. The three frames captured simultaneously by OODVs and 

rectilinear camera are processed independently and the results can be fused to provide a 

full description about the localized traffic map around the truck. By carefully calibration, 

the three cameras in the mobile traffic surveillance system provide a 130 (feet) by 85 

(feet) monitoring area on the ground plane. The top-down and lateral display about the 

field of view is given in Figure 5-5.  

 The following coordinate systems are used to create the full description of the 

surrounding traffic map, as illustrated in Figure 5-6: 

A) Vehicle Coordinate System: this is the main reference system for the surrounding 

traffic map. All the vehicle positions calculated from each vision sensor in their camera 

coordinate systems are transformed into the vehicle coordinate system to remove dual 

detection and create the surrounding traffic map. The origin O is placed in the center of 

the vehicle projection on the ground. The X axis points to the right side of the vehicle and 

Y axis points to the front of the vehicle. Z axis points to the ground upwardly.   
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Figure 5-3 Vision sensor and GPS-equipped vehicle 

 

Figure 5-4 Captured roadway image data 
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Figure 5-5 Top-down and lateral display about the field of view 

 
        Figure 5-6 Coordinate systems used in the mobile traffic surveillance system  

 B) OODV Camera Coordinate System: The OODVs are well aligned to be 

perpendicular to the ground plane, so the origin of the each OODV coordinates, denoted 

as O1 and O2 in Figure 5-6, is placed in the center of the OODV mirror. The X axis and 

Y axis are along the edges of the truck box (cube): X axis points to the right of the truck 

box and Y axis points to the front of the truck box. Z axis is up-to-down perpendicularly 

pointing to ground.  

   C) Rectilinear Camera Coordinate System: the rectilinear camera is looking forward 

and slightly pointing downward. The origin O3 is illustrated in Figure 5-6. The Z axis is 

O4 O1 

O2 
O3 

O 
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along the optical axis of the camera, pointing to the forwarding area of the vehicle. X axis 

and Y axis form a perpendicular plane to the optical axis, with X axis points to the right 

side of the vehicle.  

 D) Rectilinear Camera Auxiliary Coordinate System: by extrinsic calibration, we can 

build a relationship between the rectilinear camera coordinate system and a real-world 

coordinate system, with the origin placed on the ground plane. However, the origin of the 

vehicle coordinate system O is on the back of the rectilinear camera and thus is invisible 

in the image. As a result, it is very difficulty to collinear the real-world coordinate system 

with the vehicle coordinate system in the calibration process. Thus we introduce an 

auxiliary coordinate system, which serves as a bridge between the camera coordinate 

system and the vehicle coordinate system. Its origin O4 is placed on the ground in front 

of the vehicle. The X axis and Y axis are in parallel with the X axis and Y axis of the 

vehicle coordinate system, pointing to the right side and front side respectively. Z axis 

points upwardly on the ground plane.  

 E) Image Plane Pixel Coordinates: defined in the image domain and represented by 

pixel positions.   

5.2.2 Calibration of the Vision Sensors  

A). OODV Calibration 

 Section 3.1 provides a theoretical analysis for the projection model of OODV. We 

conclude that it approximates a pin-hole based perspective projection with the view point 

at the mirror center. The distortion component is eliminated in this application because 
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the processing is performed in the image domain. However, we do need to know the 

relationship between the OODV image plane coordinate and the OODV camera 

coordinate, because the position of the vehicle center will be projected to the vehicle 

coordinate to generate the surrounding traffic map. As described in Section 3.1, the 

OODV system has a linear scaling property that in a perpendicular plane of the OODV 

optical axis, the length of an arbitrary line is actually the product of the pixel length of its 

image and a scaling parameter. A different perpendicular plane has a different scaling 

parameter. Thus the main purpose of OODV calibration is to find the relationship 

between this scaling parameter and the depth of the perpendicular plane.  

This process is performed offline in the laboratory. In our experiments, 

characterization is completed by capturing images of OODV with varying heights from a 

gridded plane perpendicular to the sensor’s optical axis, see Figure 3-2, Left. The 

relationship is then determined by extracting the grid’s pixel coordinates from the images 

and comparing it to real world’s coordinates. The size of the grid is 2 (feet) ×2 (feet). 12 

images were taken by the ODVS with different depths between the gridded planes to the 

OODV. For a fixed distance, 28 points were chosen in the gridded plane to find their 

corresponding points in the images. 

 When the focal length f and the distance from the gridded plane to camera d is 

fixed28 points were selected for each in the image. We used the ray-tracing technique to 

find their corresponding 3D real-world point. In Figure 5-7(a), the blue line shows the 

relationship between the pixel distance and the real-word distance and the red line is the 

linear fitting of this relationship using Least Square (LS) error criterion (see Appendix B), 
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which means the slope of the fit line actually equals to the scaling parameter for the 

particular depth.   

For 12 different depths d from the gridded plane to the camera, we repeat the above 

process 12 times and thus we can get 12 different scaling parameters. Figure 5-7 (b) 

illustrates the relationship between scaling parameters and depth.  

The center of the mirror is defined to be the origin of the OODV coordinate system. 

The Z axis is the optical axis of the camera, pointing down to the ground. The X axis and 

Y axis are lying in the tangent plane of the mirror, but the direction of X- and Y- axis can 

be arbitrary, because it is 360 degree symmetrical. Suppose (X,Y,Z) is a point in the 

OODV camera system, (x,y) will be its image point. From the geometry relationship and 

linear relationship of the mirror, we have the correspondence between the (X,Y,Z) and 

(x,y) as follow:  

AZ

X
x   ,  

AZ

Y
y              (Eqn.5.1) 

where Z is the scene depth and A is the system parameter implying the OODV structure 

information and intrinsic transformation information.  

The scaling parameters relationship of OODV is determined in the laboratory and the 

height of the OODV mounting position is accurately measured before the experiment. 

The calculated scaling parameter can also be verified by measuring the length and width 

of the parallel lines in the parking lot. The OODV is 360 degree symmetrical, thus we can 

align the X-axis and Y-axis to be along with the edges of the box truck (considered as a 

cube). Figure 5-8 (a) shows the projection of the coordinates in the OODV image plane.  
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Figure 5-7 (a) Linear fitting for the scaling parameter for a particular depth (b) Relationship between 

the scaling parameters and depth 
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 (a)  (b)  

Figure 5-8 (a) OODV coordinates re-projection in the OODV image plane (b) Auxiliary coordinates 

re-projection in the rectilinear image plane 

B) Rectilinear Camera Calibration 

A variety of calibration algorithms have been proposed in the past decade to find the 

intrinsic and extrinsic parameters for the rectilinear camera [41]. The intrinsic parameters 

determined by the internal properties of the camera (such as principle point, focal length, 

etc.) describe the transformation between image plane and camera plane. Extrinsic 

parameters then determine the transformation between the camera plane and the real 

world coordinates. Vanishing points of an image usually contain important information 

for the camera calibration. For example, in [41], Kim revisits the geometry of the 

vanishing point and proposed an extrinsic parameter estimation algorithm based on a 

single rectangle. This simple algorithm has been proven to provide a competitive 

accuracy compared with the complex and state-of-the-art calibration algorithm. This 

method is suitable for the requirement of extrinsic calibration for the roadway mobile 

video applications. To apply this method, the only thing required is manually drawing 

two sets of parallel lines in the image plane which forms a rectangle in the real world. 
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Once you measure the width or length of the rectangle in the real world, you can 

determine the transformation matrix from camera coordinates to the real world 

coordinates. In the roadway mobile application, this is easy to achieve, because lane 

markers provide a natural way to define parallel lines in the scene and the width of the 

lane is typically 12 feet. On the other hand, this method also provides a potential efficient 

way to automatically estimate the vehicle pose by real time vanishing point extraction 

through a lane detection technique.    

Figure 5-8 (b) shows the re-projected auxiliary coordinates in the image plane. The 

auxiliary coordinate system is defined in the forward looking area of the vehicle and the 

Y axis is always collinear with the heading direction of the vehicle. Thus there is only 

translation between the auxiliary coordinate system and vehicle coordinate system.  

In this experiment, the intrinsic parameters are estimated offline using the Matlab 

tool box [65]. The calibration of extrinsic parameters is performed by taking the vehicle 

into a scene with a number of parallel lines in the direction of the vehicle axes. A 

rectangle is manually created in the image and the translation vector between auxiliary 

coordinate system and vehicle coordinate system is carefully measured. Thus a position 

of a detection vehicle in the forward view video can be transformed through auxiliary 

coordinate to the vehicle coordinate, in order to create the surrounding traffic map.    

5.2.3 Video and GPS Data Acquisition 

As illustrated in Figure 5-3, a portable GPS receiver (E-TEK EB85A) has been used 

to capture the GPS signal, and two OODVs and one rectilinear camera have been used to 
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capture video data simultaneously. The capture rate is 3-4 records per second for GPS 

data and 8-10 fps for video data. Both of the datasets are indexed by a timestamp each in 

millisecond. A post data fusion process is applied, so that each frame in the video stream 

is tagged with the timestamp, instantaneous speed, longitude, and latitude data. 

 

Figure 5-9 GPS trajectories of the test trip on Google Earth 

 A freeway segments between Riverside, California, United States and Corona, 

California, United States along State Route-91 is selected as the test region. The length of 

the test segment is approximately 20 miles one way, which covers 21 effective VDS on 

westbound SR-91 and 25 VDS on eastbound SR-91. 12 round trips have been taken to 

collect the mobile traffic data in a four-day test period. The trip times were well 

distributed from early morning to late afternoon, in order to cover all different traffic 

conditions including morning rush hour, afternoon rush hour, and free flow traffic.   
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5.2.4 Localized Traffic Map Generation from Video Post Processing 

Traffic parameter estimation is the key goal for this traffic surveillance system. This 

requires the mobile surveillance system report two outputs for each processed frame: 1) 

the number of vehicles detected from the three vision sensors; 2). the average relative 

speed of all the detected vehicles in the scene. To simply the problem, we assume that the 

instrumented vehicle is always following the traffic and thus assume the average relative 

speed of surrounding vehicles is zero. This also means the instrumented vehicle speed 

measured from the on-board GPS is used to represent the average absolute speed of all 

vehicles in the scene.  

To ensure error-free detection, we applied an interactive image processing tool to 

manually confirm the detected vehicles, removing false positives and adding a negative 

truth of each vehicle. The detection and tracking was then done automatically based on 

the methods described in Section 3.2 and Section 3.3 for OODV video and rectilinear 

video respectively, but any visible detection errors were fixed manually using the 

interactive tool. We manually go through all the video data we collected in the 

experiment.  

The video data is processed at full rate, but only report a localized density 

measurement every a second.   

Each vision sensor is processed by individual vehicle detector. The OODV based 

vehicle detector maintains a list of pixel locations for the centers and bounding box of the 

detected vehicles. As illustrated in Figure 5-10, there are overlapped region for OODV 

stream in the rear side of the instrumented vehicle, so the same vehicle can be possibly 
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detected by both of the OODV detector as shown in Figure 5-10. Both the center and 

bounding box of the detected vehicles in OODV streams are projected to the vehicle 

coordinate system (assuming a fixed height, say 1 meter in this application). An 

automatic counting process is performed by eliminating the dual detected vehicle if one 

re-projected center locates inside of another bounding box and the overlapped region of 

bounding box is larger than half area of either bounding box. The font vehicle detector 

maintains an object trajectory in the Auxiliary Coordinate System, thus the position of the 

object is transformed to the Vehicle Coordinate System for every reported frame. An 

automatic overlapping checking process is performed by determining whether the object 

falls into a bounding box of the OODV stream. Through the above procedure, the 

localized density was reported every second.  

 

Figure 5-10 Duplicated detection in multiple sensors 
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5.3 Dynamic Roadway and Vehicle Traffic Data Integration 

5.3.1 Dynamic Roadway and Vehicle Database Architecture 

As stated in Chapter 1, general traffic conditions can be represented by the following 

parameters: traffic flow rate (volume), average speed, and traffic density (concentration). 

These parameters are related for uninterrupted flow: flow rate equals to the product of 

density and speed. Their definitions are as below: 

Parameter Definition Equation 

Density K the number of vehicles N in a section 
with length L from an instantaneous 
photograph 

LNK /  

Flow rate Q the number of vehicles M observed from 
a fixed location during time T. 

TMQ /  

Space Mean  
Speed V 

average speed of all vehicles 



n

i
iv

n 1

1
 

Table 5-1 Traffic Parameters definition and equations   

 The embedded loop sensor system described in Section 2.1 provides a way to 

measure the flow rate at different locations along roadways. The mobile traffic 

surveillance system equipped with GPS and vision sensors, described in this dissertation, 

provides a way to measure the localized density.  

In order to incorporate the above two quantitative measurements of roadway traffic 

conditions from embedded loop sensor system and mobile surveillance system, a 

dynamic roadway and vehicle data architecture has been designed at CE-CERT, as shown 

in Figure 5-11. The embedded loop data from the PeMS database is reported to the 

Roadway Database. This database provides a great support for many applications, such as 
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eco-friendly navigation, navigational mobility index, and dynamic eco-driving. On the 

other hand, probe data from other on-board sensors (e.g., GPS) is reported to the Vehicle 

Database as well, which can be used in applications such as vehicle activity studies, 

active vehicle tracking, emission analysis, etc. The data from Roadway Database and 

Vehicle Database can also be integrated and analyze together, for some other applications, 

such as shared-use vehicle system and city dynamic traffic management. This 

architecture provides a system level integration of roadway data and vehicle data from a 

variety of sensors to benefit a variety of applications.  

 

Figure 5-11 Dynamic roadway and vehicle data architecture 

 The temporal-spatial variable traffic parameters (localized density / average speed, 

number of lanes) obtained from the vision processing module of the instrumented vehicle 
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will be filled into the roadway database as well for future post-processing and analysis, 

which is explained and discussed in the following section. 

5.3.2 Relationship between Loop Data and Mobile Traffic Data 

To better understand the relationship between loop sensor data and mobile traffic 

data, we examine the density K and flow Q from another point of view [66]. Figure 5-12 

illustrates a time-space diagram including the trajectories of vehicles traveled between 

locations [0, L] during time period [0, T]. Section 5.3.1 introduced the concept of density 

over a section of road for a specific time as the number of vehicles observed in a 

photograph of the section with length L, as shown in Figure 5-12 the green bar with time 

difference infinitesimal 0dt . The concept of flow at a fixed position as the number of 

vehicles observed over a period of time T, as show in Figure 5-12 the yellow bar with 

length infinitesimal 0dl .  

By multiplying the numerator and denominator of the equation of density by a small 

differential of time, we obtain:  

Ldt

Ndt

L

N
k                  (Eqn.5-2) 

 Referring to Figure 5-12, the denominator of Eqn.5-2 is the area of the green bar 

as shown. If we ignore the possibility that the vehicle trajectories enter and leave the 

green bar from bottom and top side, which is logically impossible, the numerator of 

Eqn.5-2 represents the total vehicle time (vehicle-hour) spent inside the green bar. Thus 

we can view the density K as total time in time-space region (veh-hrs) divided by “area” 

of time-space region (mile-hrs). 



 81

 
Figure 5-12 Time-space diagram 

Using the same analysis process, we multiply the numerator and denominator of the 

equation of flow by a small differential of space, we get: 

Tdl

Mdl

T

M
Q                   (Eqn.5-3) 

Referring to the blue bar in Figure 5-12, flow rate Q can be explained as total 

distance in time-space region (veh-mile) divided by “area” of time-space region 

(mile-hrs).  

Eqn.5-2 and Eqn.5-3 provide another view toward density and flow. More 

importantly, the advantage of this explanation is that it can be applied to arbitrary 

time-space region over L and T (even non-rectangular).  

If we define the total time in time-space region R as )(Rt  and the total distance in 
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time-space region R as )(Rd , then the ratio of flow over density of region R is: 

)(
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nndt

dtv

Rt

Rd

RK
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i
i

n

i
i

 




       (Eqn.5-4) 

 Eqn.5-4 implies that flow equals to the product of density and average speed, for an 

arbitrary region in the time-space diagram.  

The above explanation is also useful in aggregating the localized density over time 

and space. The red line in the time-space diagram represents a trajectory of our 

vision/GPS equipped mobile vehicle. Each snapshot in the read bar at a fixed time t 

contains information about the local density; we can then define the density over the red 

bar region as the total vehicle time spent in the red bar divided by the “area” of the red 

bar, as 

                       
TL

tk

TL

kdt
K ii





 

''
           (Eqn.5-5) 

 where 'L  represents the length of the local observation area and ik represents the 

local density at time it .  

 As described above, the best way to characterize the density and flow over a length 

[0, L] during time [0, T], is by observing the full trajectories of all the vehicles. However 

this is difficult to accomplish. Loop sensor systems observe traffic at a fixed positions 

over continuous time to record samples of flow rate, as shown in Figure 5-12 (blue bar) 

and the mobile traffic surveillance system captures samples of localized density, as shown 

in Figure 5-12 (red bar). Thus if we view the traffic time-space diagram a random field, 

then loop sensor data are samples over time at fixed locations and the mobile data are 
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samples over variable space and time.   

 Traffic conditions over a certain region are very dynamic. Of course, the more 

mobile data we have, the better they describe the traffic conditions in the region. The 

more loop detectors we have, the better they describe the traffic. It does not make sense 

to compare one sample from a loop sensor system and one from mobile traffic 

surveillance system, but it does make sense to compare them statistically as a whole. In 

other words, theoretically, one traffic parameter described for a time-space region, should 

satisfy the same distribution, no matter how it is measured, i.e, from a loop detector 

sensor system or from a mobile surveillance system. Based on experiments described in 

the next section, this has been verified by comparing the 5-mins flow rate Q, which is 

measured directly from a loop detector sensor system and the calculated and scaled value 

through localized density measurement by the mobile surveillance system.  

5.3.3 Experiment Verification 

 As described in Section 3.2, we took 12 test trips between Riverside and Corona, in 

Southern California, United States along the State Route-91, which is approximately 20 

miles one way and covers 21 VDS on westbound SR-91 and 25 effective VDS on 

eastbound SR-91. The trips have been taken in a consecutive four-day period and trip 

times were well selected to distribute from early morning to late afternoon, in order to 

cover all different traffic conditions including morning rush hour, afternoon rush hour, 

and free flows.   

 We selected 8 VDS each on westbound and on eastbound for data comparison. The 
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selected VDS are roughly uniformly distributed along SR-91 and the distance between 

adjacent VDS is between 2.2 miles and 2.7 miles. Table 5-2 shows the details of the VDS 

information: 

Direction vds_id Name Abs PM 

Westbound 801559 14th Ave 57.33 

Westbound 801543 Arlington 55.15 

Westbound 801527 Adams 52.99 

Westbound 801511 Tyler 50.34 

Westbound 801496 Pierce 48.15 

Westbound 811332 E.Grand 44.23 

Westbound 810854 E.Lincoin 41.93 

Westbound 811314 Green River 40.12 

Eastbound 811309 Green River 40.03 

Eastbound 801464 Smith 42.09 

Eastbound 811325 E Grand 44.10 

Eastbound 811389 Buchanan 47.34 

Eastbound 811400 Tyler 49.84 

Eastbound 801523 Jackson 52.06 

Eastbound 801541 Arlington 54.62 

Eastbound 810110 Pachappa 56.73 

 
Table 5-2 List of VDS that is used for comparison 
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The primary traffic parameter we examine is flow Q. From the historical data of a 

VDS in the loop detector sensor system, we can plot the distribution of flow Q over speed 

for a certain space (position of the loop detector) and time (5-mins aggregated flow data 

over the 4-day test period) region. On the other hand, we can calculate a sample flow 

from the measured localized density and speed by the mobile surveillance system. What 

is examined is whether the calculated flow-speed pair satisfies the distribution given by 

historical data from the loop sensor system.  

Here is the method we calculate flow from mobile traffic data: suppose that the 

surveillance vehicle passes VDS A,B,C at time At , Bt , Ct  respectively, we wish to 

calculate the density between A and C during time period  CA tt ,  by using Eqn.5-5 from 

the localized density reported by the vision processing module. The instrumented vehicle 

follows the traffic all the time, thus the average speed of all vehicles is estimated by the 

time mean of the instrumented vehicle’s GPS-derived speed. The flow rate is calculated 

by the speed-density-flow relationship: 

                 vkq   

 The VDS are selected so that the distance between A and C is around 5 miles, so it 

will take approximately 5 minutes in travelling from A to C at speed 60 mph. The latitude, 

longitude information for each VDS is compared with the trajectory of the instrumented 

vehicle in order to extract the exact timestamp that the instrumented vehicle passes point 

A and point B, as well as the duration time AC tt  . Then the calculated flow in AC tt   is 

scaled to 5 minutes by linear scaling, noted as Q’.  

We plot the 12 calculated flow-speed pairs (one for each trip) into the historical 
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distribution (from the 4-day test period) of 5-mins aggregated flow-speed diagram at each 

VDS. We repeat the same process over all 12 samples (test trip) at 16 VDS sites, with the 

results shown in Figure 5-13 and Figure 5-14. It can be seen that most calculated flow 

matches the flow distribution very well, except for the VDS 810854. In PeMS, VDS 

810854 is claimed as a mainline type in the VDS index page, however in its description 

page, it is announced that VDS810854 only receives loop data from LDS 813863 (HOV 

type), which made a great confusion. However, when we go back to the videos, it is a 4 

lane freeway segments with one HOV lane. This error may result from a system error 

from the embedded loop sensor system.   

Speed-Flow relationship for VDS801559
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Speed-Flow relationship for VDS801543
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Figure 5-13 (Part A) Mobile and loop data comparison results for Westbound VDS 
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Speed-Flow relationship for VDS801527
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Speed-Flow relationship for VDS801511
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Speed-Flow relationship for VDS801496
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Figure 5-13 (Part B) Mobile and loop data comparison results for Westbound VDS 
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Speed-Flow relationship for VDS811332
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Speed-Flow relationship for VDS810854
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Speed-Flow relationship for VDS811314
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Figure 5-13 (Part C) Mobile and loop data comparison results for Westbound VDS 
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Speed-Flow relationship for VDS811309
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Speed-Flow relationship for VDS801464
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Speed-Flow relationship for VDS811325
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Figure 5-14 (Part A) Mobile and loop data comparison results for Eastbound VDS 
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Speed-Flow relationship for VDS811389
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Speed-Flow relationship for VDS811400
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Speed-Flow relationship for VDS811523
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Figure 5-14 (Part B) Mobile and loop data comparison results for Eastbound VDS 
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Speed-Flow relationship for VDS801541
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Speed-Flow relationship for VDS810110
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Figure 5-14 (Part C) Mobile and loop data comparison results for Eastbound VDS 
 

5.4 Conclusions 

In this chapter, we implemented a vision-based roadway traffic surveillance system 

installed on moving platform. A surrounding traffic map has been generated though the 

video analysis both in the OODV stream and rectilinear video stream. The localized 

traffic density estimated from the implemented mobile traffic surveillance system in this 



 92

section is very useful to model and predict the traffic conditions at a range of roadway 

rather than a certain point. In addition, we theoretically explain the relationship between 

the loop traffic data and mobile traffic data measured from our mobile traffic surveillance 

system and experimentally verified the relationship. The work in this section provides a 

solid foundation in the promising potential data fusion of the roadway and vehicle traffic 

data.  
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6. Vision Based Quantitative Measurements of Bicyclist 
Intersection Crossing Times3 

6.1 Computer Vision as a Reliable Method for Quantitative 
Measurements 

As we indicated in Chapter 1, some safety applications in ITS area require reliable 

quantitative measurements over a large set of traffic data, which is very difficult and 

insufficient to be collected and processed manually.  

A good example is the need for Caltrans to determine how to specify the minimum 

green signal intervals throughout the state to give bicyclists sufficient time to cross wide 

arterials from a standing start.  

If bicyclists could be detected reliably at intersection approaches and clearly 

distinguished from motor vehicles, it would be possible to modify the signal timing so 

that the bicyclists would receive longer green times than the motor vehicles. In this way, 

the longer green intervals would only be triggered when bicyclists are present, 

minimizing the negative effects on mainline green time. Unfortunately, this is not within 

the current state of the art, so bicyclists and motor vehicles will be receiving the same 

green signal time for the foreseeable future. This increases the urgency of determining the 

minimum length of green that is really needed by the bicyclists, since this green interval 

will have to apply all the time, with or without bicyclists being present.  

In order to make intelligent decisions about the length of green intervals to 

accommodate bicyclists, several kinds of information are needed:  
                                                        
3 This work was conducted at California PATH as a joint research with Shladover, Kim, Sharafsaleh and Li, and 
described at Proc. Transportation Research Board, 2009 [64] 
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 time needed for bicyclists to start up from a stop after their signal turns green; 

 speed of bicyclists crossing a wide arterial, once they have reached their cruising 

speed; 

 dependence of bicyclist crossing times on street width; 

 dependence of crossing time on road geometry details (grade, arterial crown); 

 dependence of crossing time performance on bicyclist demographics (especially 

age); and 

 effects of shortened green time on mainline traffic conditions, with both           

coordinated and independent signals. 

Unfortunately, all the above information requires quantitative measurement on a 

large set of bicycle traffic data, either created on manual tabulation of bicyclist crossing 

times using stopwatches or sensor based data collection and processing. Once again, 

vision sensors become the best choice due to their easy installation, operation and 

maintenance, high flexibility, low costs and their ability to monitor wide areas. In 

addition, the development of computer vision techniques, especially the object detection 

and tracking techniques, makes it possible that efficient automatic video processing (at 

least, computer-aided processing) provides a reliable quantitative measurements. 

6.2 Data Collection and Processing Approach 

6.2.1 Bicyclist Traffic Data Collection 

The quantification of bicyclist crossing behavior relied on digital video recording and 

offline video image processing of the bicyclist movements. A video camera was mounted 
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on top of a mast at a height of 6 – 7 m, atop a trailer which was parked near the subject 

intersection.  The location of the trailer was chosen to provide a clear view of the 

bicyclist crossing path, with the camera height selected to be high enough that passing 

vehicles could not occlude the view of the bicyclists.  A second video camera was 

mounted at a height of 2 - 3 m, with a view of the traffic signal head governing the 

bicyclist crossing movement. 

An embedded computer (PC/104) equipped with an MPEG hardware compression 

board was used to convert the analog video signals into pairs of MPEG video clips.  The 

video clips were synchronized to have less than 33 ms (one scan) error.      

The two intersections that were selected for the data collection reported here were El 

Camino Real and Park Blvd. in Palo Alto, CA, which was recommended by the City of 

Palo Alto as the crossing with the highest bicyclist volume there, and Telegraph Ave. and 

Russell Street in Berkeley, CA where the Russell St. bicycle boulevard crosses the major 

arterial Telegraph. The Palo Alto site is at one of the entrances to the Stanford University 

campus and therefore serves primarily Stanford students and employees, generally a 

population of young adults.  The Berkeley site provides a more diverse population of 

bicyclists, including school-age children and more mature adults, in a more residential 

area.  The El Camino crossing has a total width of 125 ft, while the Telegraph crossing 

is 84 ft. wide, providing another source of variation between the two data sets.          
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Figure 6-1 Video data collection sites at Telegraph and Russell in Berkeley (left) and Park Blvd. and 

El Camino Real in Palo Alto (right) 

Figure 6-1 shows Google Earth views of the two intersections where data were 

collected and fully analyzed.  The aerial views give an indication of the camera 

locations and fields of view relative to the intersections and the directions of bicyclist 

crossings that were recorded.   

6.2.2 Data Processing 

After the video data have been recorded in the field, they are analyzed in the 

laboratory to extract the information of interest.  The image processing system 

automatically detects moving objects in the video and generates their trajectories [40].  

There are many challenges for fully automated detection, such as poor image resolution 

on the far side of the image and difficulty in discriminating bicyclists from pedestrians 

and other vehicles.  To ensure error-free detection, we used an interactive image 
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processing tool.  An operator manually confirmed, repositioned or manually marked the 

initial position of each bicyclist. The tracking was then done automatically but any visible 

tracking errors were fixed manually using the interactive tool.  A screen shot of the 

interactive tool, with the image processing system's symbols identifying the bicyclists 

with a thick ellipse, is shown in Figure 6-2. Note the superimposed image of the traffic 

signal from the second video camera, visible in the upper left corner of each image.  An 

image processing tool was used to extract the signal phase from the image patch, and the 

result was shown to the user to ensure that the phase detection is correct. 

 

 
Figure 6-2 Bicyclists tracking results 

 
The error of the crossing time since the beginning of the green signal phase is less 

than 100 ms.  The trajectories may contain some errors from the conversion from image 

to world coordinates (calibration errors) and/or tracking errors due to poor image 

resolution.  Such an error can be up to 1 m within the intersection box and even larger 

behind the stop bar on the far side of the intersection, where the image resolution is poor.  

Therefore, determining the crossing starting time from the trajectory alone may result in 

errors, but this is not a major concern because we are primarily interested in the timing 
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relative to the green signal onset. 

The output of the video image processing software, as applied using the playback 

tool, is a plot of the location of the bicyclist crossing the intersection versus time.  The 

traffic signal phase information is used to establish the reference time.  The start of the 

green phase is defined as time zero for each crossing trajectory, and the times of the 

yellow and red onsets are marked by vertical yellow and red lines on the plots.  An 

example of the plot that is generated for each bicyclist crossing is shown in Figure 6-3. 

 
Figure 6-3 Example of extraction of needed values for standing start from bicyclist trajectory plot 

Figure 6-3 shows a standing start by a bicyclist, with the trajectory indicated by the 

solid blue curve.  The stop bar on the far side of the intersection where the bicyclist had 

to wait before starting to cross is at location -41 m and the curb line on the near side of 
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the intersection, representing completion of the crossing, is at -3 m.   The vertical 

yellow line indicates the yellow onset after about 15.5 s of green, and the vertical red line 

indicates the red onset 3 s later. 

This bicyclist started moving about 3 s after the signal changed to green, and reached 

full speed of 5.9 m/s (defined graphically by the tangent to the trajectory curve) about 7 s 

after the start of the green phase.  In order to provide a single concise representation of 

standing starts that can be generalized to intersections of arbitrary width; we have defined 

the “offset time” as the intersection of the full crossing speed tangent with the line 

representing the start of the crossing.  In this example, that offset time is 5.5 s, and this 

complete crossing maneuver is described most concisely in terms of that offset time and 

the final crossing speed of 5.9 m/s (13.6 mph). 

6.3 Analysis of Bicyclist Crossing Data 

The data collection system was used throughout the daylight hours for two days in 

Palo Alto and three days in Berkeley.  In Palo Alto, 320 bicyclist crossings were 

observed, but only 265 of these produced usable data, with complete enough trajectories 

for analysis.  Of the usable crossings, 188 were from standing starts and 77 were from 

rolling starts, the latter indicating that the signal was already green when the bicyclist 

arrived at the stop bar to begin the crossing.  In Berkeley, 439 usable crossings were 

recorded in both directions of travel, with 279 standing starts and 160 rolling starts.  The 

Berkeley site had more unusable crossings because of difficult lighting conditions in the 

late afternoon and a wider range of complicated bicyclist maneuvers that were not readily 
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classifiable. 

The standing start and rolling start cases were analyzed separately because of their 

different implications for signal timing. The standing starts are important for determining 

the length of the minimum green interval, and are therefore the primary focus of the 

analysis. The rolling starts could be considered as inputs to decisions about the length of 

the yellow and all-red intervals, but Caltrans believes that those must be determined 

based on other considerations.  The key attribute of the rolling start crossings is the 

crossing speed, the distribution of which is shown in Figure 6-4.  The superimposed 

lines on the cumulative distribution plot show the 10%, 20% and 50%ile values, 

indicating potential criteria for consideration in signal timing.  It was interesting to note 

that the values of these key percentile values were approximately 4 mph faster for the 

Palo Alto bicyclists (primarily young adult commuters) than for the more diverse 

Berkeley bicyclists.  There was a further contrast between the speeds of the eastbound 

and westbound bicyclists at the Berkeley intersection based on the grade on Russell Street.  

Westbound bicyclists approached the intersection on a -3.4% grade while eastbound 

bicyclists approached on a +2.5% grade, leading to a difference of 2 mph in their median 

speeds, 4.5 mph in their 80%ile speeds and 5.5 mph in their 90%ile speeds.  
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Figure 6-4 Cumulative distributions and histograms of speed of rolling start bicycles (mph)  

The statistics of the standing start bicyclist crossings are most important for selecting 

the length of the green interval.  The distributions of the offset times and of final steady 

speed of crossing are shown in Figure 6-5 and Figure 6-6 respectively.  A scatter plot of 

these samples for the Palo Alto bicyclists was generated to visualize potential correlations 

between these parameters.  Fortunately, and somewhat surprisingly, there was virtually 

no correlation between them so that they can be treated as independent variables, 

simplifying the development of recommendations for signal timing. 

Figure 6-5 shows a strong concentration of offset times in the range of 4 to 8 seconds 

for the Palo Alto bicyclists, which is considerably longer than the start-up times reported 

by Wachtel, et.al. in the same city, while the Berkeley bicyclists were concentrated in the 

range of 2 to 5 seconds.  The median value was about 6.5 s, and the 80th and 90th %iles 
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were about 8.3 and 9.3 s respectively in Palo Alto, while the corresponding values were 

about 3 seconds less in Berkeley. These values are this large for three reasons:   

 they are counted from the green onset, accounting for the time the bicyclists 

need to recognize that the signal has changed;  

 at times of heavy bicycle traffic, the bicyclists are queued behind the stop bar 

and the bicyclists further back in the queue cannot start until the preceding 

bicyclists have moved out of their way, accounting for some of the larger 

sampled values; and  

 they represent the intersection of the constant speed tangent curve with the 

starting location from Figure 6-4, rather than the actual start-up time.  This final 

point is an important distinction, which is needed when the results from one 

intersection have to be applied to an intersection with a significantly different 

width. The offset time is the component of the crossing time that is independent 

of intersection width.   

The faster offset times in Berkeley were initially somewhat surprising, particularly 

considering that their rolling start crossing speeds were significantly slower.  

Examination of the video data indicated that the Berkeley bicyclists were much more 

likely to start crossing before they had a green signal (which none of the Palo Alto 

bicyclists did).  In the end, it appears that the Palo Alto bicyclists had to be considerably 

more cautious about starting their intersection crossing because they were crossing a 

wider street with heavier and much faster traffic and they had poorer visibility of that 

crossing traffic from their starting position.  The offset times in Berkeley were 
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significantly different for the two directions of travel, with the westbound bicyclists 

having significantly lower mean and variance in their offset times.  Closer inspection of 

the Berkeley intersection revealed that eastbound bicyclists had clearer visibility of the 

approaching cross traffic on the near side of Telegraph Ave. (southbound) most of the 

time because of a bus stop at the corner, encouraging them to start crossing when no cars 

were visible on Telegraph during its yellow phase, but that visibility could be blocked 

when a bus was stopped there, leading to some longer offset times as well. 

 
Figure 6-5 Cumulative distributions and histograms of offset times for standing start bicyclist 

crossings  
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Figure 6-6 Cumulative distributions and histograms of final crossing speed for standing start bicyclist 

crossings (mph)  

Figure 6-6 shows that the final crossing speeds of the Palo Alto bicyclists were 

clustered in the range of 10 to 18 mph, with only a few outliers at significantly higher 

speeds, while the Berkeley bicyclists were mainly clustered from 7 to 11 mph.  The 

median speed in Palo Alto was 13.3 mph, with 10 and 20%ile values of about 10.5 and 

11.5 mph respectively, which were about 4 mph faster than the corresponding values 

observed in Berkeley, an indication of the different demographic composition of the 

bicycling population at these two intersections.  In [52] the 10%ile bicyclist speeds were 

described as 8 mph for casual adults and 6 mph for children.  The speeds reported here 

are direct measurement of the actual final cruising speed rather than an average speed that 

includes some of the start-up transient.  The final crossing speeds for the standing start 
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bicyclists in Berkeley were very similar for the two directions of travel, since the 

intersection is flat even though the approach blocks have significant grades. 

As a cross-check on the independence of the offset time and final crossing speed 

measurements, we have also plotted the distributions of the total time that the bicyclists 

took to cross the 125 foot width of El Camino Real at Park Blvd from a standing start.  

These are shown in Figure 6-7, indicating a median crossing time in excess of 13 s, with 

the 80 and 90%iles at about 15 and 16.5 seconds respectively.  These are all larger than 

the sum of the current minimum green plus yellow plus all-red intervals at this 

intersection (7 + 3 + 1 = 11 s).  That minimum setting is only meeting the needs of the 

fastest 20% of the bicyclists.  

Using the values of offset time and final crossing speed, the crossing time can be 

estimated as: 

Crossing Time = Offset time + (Width in ft./Crossing speed in mph) * 0.68 

Using the measured median values of offset time and crossing speed, the crossing 

time estimate is: 

Crossing time = 6.5 + (125/13.3)*0.68 = 12.9 s (compared to 13.3 s measured in data) 

Similarly, focusing on the 20% slowest bicyclists, we use the 80%ile of offset time 

and 20%ile of crossing speed to estimate crossing time as: 

Crossing time = 8.3 + (125/11.5)*0.68 = 15.7 s (compared to 15 s measured in data) 

Finally, for the 10% slowest bicyclists, we use the 90%ile of offset time and 10% of 

crossing speed to estimate crossing time as: 
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Crossing time = 9.3 + (125/10.5)*0.68 = 17.4 s (compared to 16.5 s measured in data). 

 

 
Figure 6-7 Distributions of total time for bicyclists to cross El Camino Real from a standing start 

The video data include direct observations of the traffic signal cycles at the 

intersection at the times that bicyclists were crossing.  Figure 6-8 shows the distribution 

of the duration of the green phase for Park Blvd., with each sample representing one 

bicyclist crossing.  This signal is traffic actuated, rather than operating on a fixed cycle, 

and the green duration ranged from 10 to 37 s.  Clearly most of the bicycle traffic occurs 

when there is also significant vehicular traffic triggering the detectors to extend the green 

phase beyond its minimum duration.  The colors on the histogram indicate the signal 

phase when the bicyclist completed the crossing.  Obviously, the shorter duration green 

cycles caused a significant proportion of the bicyclists to complete their crossing in 

yellow and red.  This plot indicates the desirability of at least 13 s of green to enable 

Time, s 



 107

most bicyclists to complete their crossing in the green at this intersection.  The 

analogous distribution for Russell Street is shown in Figure 6-9.  Here, an even larger 

majority of the bicycle traffic was crossing when the green phase was more than adequate 

to meet their needs, and only a few of the bicyclists had to complete their crossing in the 

red when the green phase was only 7 s long.   

 
Figure 6-8 Distribution of duration of green phase (s) when bicyclists were crossing El Camino at 

Park Blvd. 
 

It is also useful to understand how far into the signal phases the bicyclists are 

completing their crossings, which is illustrated in Figure 6-10 for Park Blvd.  In this plot, 

time zero is the yellow onset and samples with positive times indicate crossings 

completed prior to the yellow onset.  There is a 3 s yellow interval at this intersection, 

and the samples from -3 to 0 indicated a crossing completed in the yellow, while the 

samples for larger negative values indicate crossings completed in the red phase, as much 
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as 4 s after the red onset (3 seconds after El Camino traffic has received a green signal). 

 
Figure 6-9 Distribution of duration of green phase (s) when bicyclists were crossing Telegraph at 

Russell St. 
 

 
Figure 6-10 Completion times of bicyclist crossings from standing start, relative to yellow onset 
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6.4 Summary 

In this study, a data set of bicyclist traffic video has been collected, and a vision 

aided accurate measurements of bicyclist crossing times has been performed. This video 

data reported here represent an unprecedentedly rich description of bicyclist intersection 

crossing behavior, particularly with respect to traffic signal phase. Based on the analyzed 

results from the vision based quantitative measurements, key findings from these 

observations were: 

 Even within a relatively homogeneous population of bicyclists, there was a wide 

range of speeds and start-up offset times; 

 The bicyclist speeds and offset times were not correlated with each other, so their 

statistics could be analyzed independently; 

 Start-up times were significantly longer than reported in previous studies, but we 

believe that our data are more accurate representations of reality because they are 

based on the individual bicyclist trajectories rather than being derived indirectly 

from ensemble statistics with large variability.  A start-up time of at least 9 

seconds was needed to represent the 90%ile of bicyclists crossing a high-speed, 

high-density arterial with limited visibility, while about 6 seconds was needed to 

represent a comparable percentile of bicyclists crossing a medium-density arterial 

with moderate-speed traffic and better visibility; 

 About 90% of the primarily young adult commuter bicyclists in Palo Alto reached 

a steady cruising speed of at least 16.8 km/h during their crossing, while the 

comparable statistic for the more diverse bicyclists in Berkeley was 11.2 km/h.  
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This steady cruising speed is the parameter that has to be used to extrapolate the 

data to other intersections with different street widths; 

 Grades on the roadways approaching the intersection significantly influence the 

speed of bicyclists making rolling approaches, particularly in the upper speed 

percentiles.  An average grade around 3% led to a difference of 3 km/h in the 

median speed and 8.8 km/h in the 90%ile speed of the bicyclists approaching 

from opposite directions.  Higher crowns on the surface of the street being 

crossed may also increase the offset time and the final crossing speed; and 

 The contrasts between the Palo Alto and Berkeley data indicate the sensitivity of 

bicyclist crossing time statistics to differences in the bicycling population and the 

physical and operational characteristics of the intersection being crossed.  

Considerations such as the speed and density of the crossing traffic, the crown of 

the road surface and the ability of the bicyclists to see the cross traffic from their 

starting position can have a significant influence on the time needed to traverse an 

intersection. 

 
This study provides a solid foundation for defining bicycle signal timing.   
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7. Conclusions and Future Work 

This chapter provides a summary and conclusions of the dissertation, as well as 

possible future work.   

7.1 Conclusions 

 This dissertation describes a vision and GPS equipped mobile traffic surveillance 

system that was developed to specifically obtain localized traffic conditions. It involves 

the development of a unique OODV system, the derivation of the mathematical 

description of the OODV projection model, the OODV based vehicle detection algorithm, 

the generation of the localized traffic map, the methodology of generating the traffic flow 

from localized density, the explanation of the relationship between the mobile traffic data 

and loop sensor data, and the experiment verification about this relationship.  

 The original goal of this research is to make use of mobile computer vision 

techniques to provide a direct measurement to the spatial and temporal varying traffic 

data, as a complement to existing traffic monitoring systems, such as a loop detector 

sensor system. We want to quantitatively prove and show that the mobile traffic data 

obtained from the mobile traffic surveillance system have some internal relationship with 

the loop data and the integration of the loop data and mobile traffic data will potentially 

provide a better understanding of the traffic conditions. The developed system has 

successfully met this goal and has been demonstrated for the initial trip testing between 

Riverside and Corona, in Southern California, United States along State Route-91.  
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 The developed OODV system, in comparison against the rectilinear vision system, 

provides a much wider 360 degrees orthogonal view and in comparison against the other 

catadioptric vision systems, and eliminates the need of warping a polar-coordinate image 

to a perspective view. This OODV system has been theoretically and experimentally 

proven to approximate a perspective view with the view point locating at the center of the 

mirror.  

Based on this unique OODV, a roadway traffic surveillance system was designed and 

implemented. It consists of three major components: 1) A GPS stamped roadway traffic 

data collection technique; 2) Post video processing that includes automatic vehicle 

detection/tracking with the ability to correct using interactive tools; and, 3) A traffic 

parameter (localized density) estimation process. Based on initial experimentation, the 

designed OODV system reports a 83.7% detection rate under the dynamic freeway 

environment. To achieve a higher detection and tracking accuracy, a human interactive 

detection module also has been implemented and added as an option to the OODV-based 

roadway traffic surveillance system.  

 The relative positions of detected vehicles in the surrounding environment have been 

represented in the vehicle coordinate system, to generate the surrounding traffic map, 

which contains localized traffic information.  

 A theoretical explanation about the relationship between loop data and mobile data is 

introduced. The traffic parameters are re-defined in the time-space diagram and thus a 

calculated method of traffic flow is proposed based on the localized traffic density and 

velocity. Experiments have verified this explanation by showing the traffic flow 
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calculated from the measurement of localized density stratify the flow distribution pattern 

measured directly from loop data.  

 In addition, several other conclusions from this dissertation can be made: 

 1). A vision based portable loop fault detection tool has been developed for the 

systematic loop fault detection at the control cabinet level. The experimental results show 

that the vehicle tracking technologies performs well as the baseline measurement in the 

portable tool for the loop fault diagnosis.  

 2). Vision techniques have been more and more involved in the safety applications in 

the ITS area. A quantitative bicycle travel time measurement system has been developed, 

to support the efforts in improving the traffic signal timing for the needs of bicyclists. The 

processed data have yielded cumulative distributions of the crossing speeds of bicyclists 

who did not have to stop at the intersection and the start-up times and final crossing 

speeds of the bicyclists who had to cross from a standing start. This study provides a 

foundation in recommendation of minimal green signal time in terms of safety purpose. 

7.2 Publications Resulting From This Research 

[1]. Meng Cao, Anh Vu, Matthew Barth, “A Novel Omni-Directional Vision Sensing 

Technique for Traffic Surveillance”, the 10th International IEEE Conference on 

Intelligent Transportation Systems, Seattle, Sept. 2007 

[2]. XY Lu, Zu Kim, Meng Cao, Pravin Varaiya, “Portable Loop Fault Diagnosis Tool 

Development for Control Cabinet Level”, 2009 Annual Meeting of the Transportation 

Research Board, January 10-15, in Washington, D.C., 2009 
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[3]. Steven Shladover, Zu Kim, Meng Cao, M. Sharafsaleh, “Bicyclist Intersection 

Crossing Times: Quantitave Measurement Relative to Signal Phasse”, 2009 Annual 

Meeting of the Transportation Research Board, January 10-15, in Washington, D.C., 

2009 

[4]. Anh Vu, Meng Cao, Matthew Barth, “Depth Map Reconstruction using Dual 

Collinear Optical Axis Catadioptric Cameras”, submitted to IEEE Intelligent Vehicles 

Symposium, 2009 

7.3 Future Work 

Thus far, only a few experimental spatial and temporal roadway traffic data have been 

collected, within limited time and region. Further long-term and extensive traffic videos 

should be collected and processed in future research. In this dissertation, the videos are 

processed in a combined automatic and interactive method, in order to ensure error free 

detection. This requires a huge operational work of a human operator. Thus, more robust 

and reliable computer vision techniques are worthy to be explored to provide complete 

automatic processing. In addition, with the collection of new roadway traffic data, the 

quantitative relationship and fusion model should be determined between the loop data 

and mobile data.   
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Appendix A 

Derivation of Eqn.3-1 

For the pin-hole model, as illustrated in Figure 3-3 , the ray starts from the view 

point of the camera; goes through one point in the CCD array; hits the point ),( yx  on 

the mirror and then reflects; the reflected ray intersects the reference plane.  We define 

u as the CCD distance from the hitting point to the center of CCD, and )(ud as the 

corresponding real world distance between the center of the reference plane and the 

hitting point of the reflected ray and reference plane.  ,,, are also defined as in the 

Figure 3-3.  

The goal is to find a mathematical description for the mirror surface so that u and 

)(ud satisfy: uaud )( , where a  is a constant.  

The following equations can be derived from the geometrical relationship in Figure 

3-3: 

dx
dytan                    (Eqn. A-1) 

x
ty tan                   (Eqn. A-2) 

xud
y

 )(tan                 (Eqn. A-3) 

 2  

)tan()2tan(             (Eqn. A-4) 

                         
)(tan1

)2tan(2
2 




        (Eqn. A-5) 

 Substitute (Eqn. A-1), (Eqn. A-2), (Eqn. A-3) into (Eqn. A-5), we have: 
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 Substitute (Eqn. A-7) into (Eqn. A-6) and simplify, we have 
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 Eqn. A-8 mathematically describes the surface shape of the mirror, however for such 

a differential equation; there is not a close form solution. The only way to create such a 

shape is by using the numerical method.  

 We define 
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Appendix B 

Least Square Error Line Fitting 

Suppose the signal model is banns ][ , where a  and b are the parameters to be 

estimated. Here I tried to minimize the squared difference between the given data x[n] 
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and the assumed signal data. The Least Square error criterion means minimizing the 

following: 





N

n

nsnxJ
1

2])[][()(  

Here the parameters to be estimated are vectors as Tba ),( , so we have  

                          Hs   
where H is the know N×2 matrix. So we have: 
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The gradient is: 
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