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Mass Transport Vehicle Routing Problem (MTVRP) and 
the Associated Network Design Problem (MTNDP) 

ABSTRACT  

This research studies a new class of dynamic problem MTVRP 
where n vehicles are routed in real time in a fast varying environ-
ment to pickup and deliver m passengers when both n and m are big. 
The problem is very relevant to future transportation options involv-
ing large scale real-time routing of shared-ride fleet transit vehicles. 
Traditionally, dynamic routing solutions were found as static ap-
proximations for smaller-scale problems or using local heuristics for 
the larger-scale ones. Generally heuristics used for these types of 
problems do not consider global optimality. A hierarchical method 
to solve the MTVRP in three different stages has been developed. 
Within the optimization process, a particular case of Network De-
sign Problem (NDP) is solved. This paper introduces MTVRP and 
presents a scheme to solve it. Then, it describes the associated Mass 
Transport Network Design Problem (MTNDP) and solves the prob-
lem. The computational complexities as well as the results are com-
pared. 

1- DESCRIPTION OF MTVRP 

Complex systems of fleet management, fleet control and vehicle routing problems 
(VRP) have widely been treated, but sometimes the problems treated have no ap-
plication in the real world because they are too complex an have to be oversimpli-
fied in order to be studied, as stated by (Bodin 1990) and (Chen et al. 2003). In our 
case, the problem treated has no restrictions in terms of the formulation itself and 
can be applicable to a wide range of different areas. 
 
 A well-known problem with parallels to MTVRP is the dial-a-ride prob-
lem. (Savelsberg 1995) reviewed the various approaches used in the research com-
munity and they divide the pickup and delivery problems into static and dynamic, 
with and without time windows. But in any case, demand is introduced in real 
time while vehicles are already being routed; in other words, the pattern of de-
mand is fully defined before scheduling takes place. Nevertheless, the assumption 
that all trips are known in advance may be reasonable in some situations. For ex-
ample, freight companies face the problem of matching a fleet of vehicles to cur-
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rent and future demand, but in these cases demand, fleet size, service times, travel 
times, and travel costs are known a priori. On the other hand, in a dynamic ap-
proach such as MTVRP nothing is known about the demand a priori, therefore the 
system should be able to respond to the demand as it appears in real time.  
 
 Approaches that rely on vehicle routes found as in a static VRP problem 
(for goods delivery) and modifying it for real-time passenger demand have been 
proposed in the past. A study by (Jaw et al.1986) used a sequential insertion heuris-
tic algorithm for the dial-a-ride problem. The work of (Horn 2001) is also of par-
ticular interest to our research. This study models a multimodal system comprised 
of taxis, demand-responsive services and conventional timetabled services, such 
as buses or trains. 
 Recent research by the authors (Cortes, 2003) has developed a new de-
mand-responsive transit system design called High Coverage Point to Point Tran-
sit (HCPPT). The algorithms therein tackled the problem primarily in a decom-
posed manner, with local control using heuristic operational rules containing 
notions of optimal directions. A question arises in Cortes’ HCPPT model, on how 
much the system’s performance can be improved by changing the vehicle de-
ployment patterns.   This aspect was pre-specified in that work (the vehicles were 
assigned to operate in areas).  Whether a periodic re-optimization using an appro-
priate class of simplified optimal formulations would improve the HCPPT per-
formance motivated this research.   A second issue, perhaps more important in-
volved the transfer points in the system, which were also pres-specified in that 
research.  Our further research quickly arrived at the need for developing a class 
of algorithms that are fundamental to passenger transport with a large fleet of tran-
sit vehicles which are not assigned to lines or schedules. 

2- METHODOLOGY 

Generally heuristics used for dynamic routing problems do not consider specifi-
cally global optimality. A procedure to solve the “MTVRP” through three differ-
ent stages, which seeks optimality by performing a hierarchical optimization is 
presented in this section. 
 
 But the fact that the routing decisions are taken in real time does not al-
low the problem to have a closed form. Then, the optimization problem treated 
cannot be solved with a normal classical optimal control formulation because the 
formulation does not explicitly enumerate search directions at any of the solution 
points. .  Thus a question arises on how well the optimization schemes perform.  
Simulation of the optimization schemes seems to be the only viable way to study 
this.  Due to the dimensions of the problem and the nonlinearities in the costs 
(passenger costs in vehicle rerouting depends on the load in the vehicles), mi-
crosimulation is the plausible tool within this analysis. 
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 For the sake of brevity, it is not possible to enter into the details of each 
of the three stages, but it is important to give an overview of each of them in order 
to understand the whole process. Therefore, a brief introduction of each of the 
stages is presented. Then, since the part having more interest from an Operations 
Research point of view is the MTNDP, this paper focuses on this part, presenting 
the details of the formulation and describing the solution scheme. Finally, solu-
tions are presented for several examples and conclusions are extracted. 

•  STAGE 1- NETWORK AGGREAGTION In the first stage of this procedure 
the demand is grouped into zones in order to diminish the complexity of the 
network.  Each zone has associated with it: a) One Centroid (similar to 
Centroids in planning models) and b) groups of passengers willing to go from 
its origins to its destinations. The topological form and distribution of these 
zones is very important and can be crucial in the quality of the solution. As 
noted above, this part of the procedure is not explained in-depth in this paper.  

•  STAGE 2- MTNDP - Solution of the “Mass Transport Network Design 
Problem” Solution of an acceptable static problem, which is a simplification the 
proposed dynamic one in the aggregated network described above. This paper 
focuses on this stage of the procedure and it is further explained below.  

•  STAGE 3- LMTVRP Solution of the “Local Mass Transport Vehicle 
Routing Problem” The solution to MTNDP is introduced under the form of bus 
routes and frequencies or “density of buses” for each path.  Once the buses 
have an initial position, a local routing scheme takes place for each zone (taken 
independently). The number of buses being low, known vehicle routing 
heuristics are used to route the vehicles. The cost function coded is similar to 
the one used by (Cortes, 2003) where the cumulative travel time of passengers 
in the system is considered. Again, this part of the process is not presented in 
detail in this paper. 

3- MASS TRANSPORT NETWORK DESIGN PROBLEM 

3.1- FORMULATION 

 
Consider a network represented by the directed graph G (N, A), with node set N 
and arc set A.   The arcs here can be viewed as “global vehicle corridors” between 
nodes which represent “areas” (or even transfer hubs) in a large urban area.  The 
intent is to find the “flow” (or frequency) of vehicle movement on these corridors, 
and to find how many vehicle travel on paths that go over such “nodes”, so that a 
global estimate can be made for mass transport vehicle movements.  Note that the 
actual vehicle movements may involve local rerouting of these vehicles on actual 
network links for passenger and pick-up and delivery, as handled by the stage-3 of 
the scheme.  The global path and flow solution and the associated vehicle deploy-
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ment (mass transport network design) can then be used as the starting solution or 
the solution that set the global parameters for the LMTVRP problem (stage-3).  
One can also view MTNDP as solving the trunk route movement problem, if these 
vehicles are to have non-reroutable trunk route travel and re-routable local travel 
as in the HCPPT problem (Cortes, 2003).  The following discussion now focuses 
on these global “paths” and vehicle flows on them.  Though we use the term 
“stops” as in the standard transit network design problem, these are not actual bus 
stops but are rather areas (represented by nodes) where vehicles enter the local 
streets or terminals rather than travel through as in express transit corridors.  Thus 
the solutions would tell us how many vehicles travel from which areas in a large 
urban network to which other areas, at what type of frequency.  The design thus 
provides us vehicle “routes” which can be viewed similar to bus lines or services 
in a bus network design problem, but are referring to global vehicle route corridors 
rather than bus lines or services with set schedules and frequencies. 
 
Consider a set of the paths ( ijkp  being the kth path starting at node i and finishing 
at node j).  Some of the routes might have sub routes, which have both its origin 
and destination coinciding with intermediate vehicle stops of the longer vehicle 
routes. Let us call the long route “parent” and the sub route “child”. For the sake 
of clarity, Figure 2 draws a simplified example of paths ijkp , 'ijkp ''ijkp  starting at 

node i and ending at node j and paths lmnp  and 'lmnp  starting at node l and ending 

at node m. In this example, ijkp is a parent of lmnp . 
 
There are three sets of constraints: (1.1) continuity constraint; (1.2) link capacity 
constraint and (1.3) total fleet constraint (vehicle availability).  The formulation 
for MTNDP is the following: 
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ijkp = kth  path between node i and node j 

ijkr = rate of vehicles on path ijkp  (vehicles/unit time) 

ijx = rate of demand from node i to node j (passengers/unit time) 
lmn
ijktt = in-vehicle travel time from l to m using lmnp , child of ijkp  (unit time) 

lmn
ijkwt = waiting time from l to m using lmnp , child of ijkp (unit time) 

lm
ijkf = fraction of demand lmx  traveling on ijkp , parent of lmnp  
lmn
ijkδ = 1 if lmnp  is a child of ijkp , = 0 otherwise 
a
ijkφ = 1 if  ijkp goes over link a, = 0 otherwise 

 C = Vehicle capacity (passengers / vehicle) 
 

A close examination of the details would reveal some similarities be-
tween the MTNDP formulation and the well known Network Design Problem 
(NDP), studied by (Mandl 1980), (Hasselstrom 1981), (Ceder and Wilson 1986), 
(Baaj and Mahmassani 1994), (Bahnhart et al. 1998) and (Van Nes 2003), among 
others. But there exist differences between MTNDP and NDP that make our prob-
lem easier to solve. MTNDP is not a subset or a simplified version of NDP; rather, 
these are just two different problems. The primary difference is that NDP is geared 
towards finding a network design that is immediately followed by frequency set-
ting and scheduling, whereas the MTNDP finds a solution at an abstract (or aggre-
gate) level composed of transit “flows”. Furthermore, the solution to MTNDP vio-
lates some of the basis for NDP, for example MTNDP identifies a situation 
without considering the return of the transit vehicles to the starting point of the 
vehicle route. The flow for each line “appears” at the origin of the line, and then 
travels along the route, picking up and dropping off passengers and later “disap-
pears” at the destination (or terminus) of the line. Note that this would be impossi-
ble to implement in the real world, but its solution is what gives global optimality 
in the p[resent of local routing optimization. 

 
In terms of the theoretical details, NDP presents a concave (Newell 1972) 

and multiobjective objective function arising from the fact that it tries to minimize 
both passenger and operator cost. Therefore, in the case of NDP, the tradeoffs 
among the conflicting objectives need to be addressed because it is multi-
objective. But in MTNDP, only the passenger costs are minimized, therefore the 
objective function is simpler. Also, we do not accept transfers. Another difference 
is that the combinatorial explosion originating from the discrete nature of NDP is 
not present in MTNDP because its variables are continuous. Also, the network 
taken into account for MTNDP is an aggregated one; therefore the sizes of the 
networks needed are relatively small compared to the networks solved by re-
searchers working on NDP (Barnhart et al 1988). Finally, our problem aims to 
create a transit system from scratch, whereas, in general, the most conventional 



7       Pagès and Jayakrishnan 

NDP schemes starts from an already created system adding new lines and/or 
changing the existing ones to optimize the system. 
  
To further explain, imagine a “rate of passengers” willing to travel from the ori-
gins to the destinations.  The solution for MTNDP is the vehicle “lines” and the 
associated frequencies to perform these operations with a minimum user cost. 
Therefore, our interest is to find the “lines” (which can be viewed as loose collec-
tion of fleet vehicles operating in some corridors) and vehicle frequencies between 
each OD pair, minimizing the travel time of users with two restrictions: a given 
fleet size (a), a maximum capacity for the vehicles (b).  The length of the routes 
and the frequencies of the vehicles identify the vehicle deployment and 
trunk/express travel patterns in different areas of a real world network.  In the next 
section, the steps performed to find a solution are described and an example is 
presented. 
 
3.2- SOLUTION SCHEME 
 
 MTNDP is a minimum cost flow problem consisting of two levels. In the 
first level (we call it “Passenger Flow Problem” or PP) there are passenger flows, 
which are explicitly present in the objective function. In the second level (we call 
it “Transit Problem” or TP) there are vehicle flows (or “empty seats” flows).  The 
iterative solution scheme is presented in Figure 1 and further explained below. 
 

 
Fig. 1. Solution Scheme for MTNDP  

Transit Problem (TP)
Find Bus flows s.t.  Fleet constraint

Inputs: Fleet Demand

Outputs:
Bus flows

Passenger Flow Problem (PP) (min multicommodity flow problem) 
Find Passenger flows. Fleet constraint relaxed

Inputs: Bus flows 
and Costs

Calculate costs 
(in vehicle tt and wt)

Outputs:
Pax flows

Compute total cost
Set one anchor r’
{Compute grad-sensitivity
For each pair r’ and r’’
Find max}
Increase flow
Check fleet constraint
Send flow

Transit Problem (TP)
Find Bus flows s.t.  Fleet constraint

Inputs: Fleet Demand

Outputs:
Bus flows

Passenger Flow Problem (PP) (min multicommodity flow problem) 
Find Passenger flows. Fleet constraint relaxed

Inputs: Bus flows 
and Costs

Calculate costs 
(in vehicle tt and wt)

Outputs:
Pax flows

Compute total cost
Set one anchor r’
{Compute grad-sensitivity
For each pair r’ and r’’
Find max}
Increase flow
Check fleet constraint
Send flow
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 Note that the TP is solved only once at the beginning of the procedure. 
Then, at each iteration a different PP is solved by changing the vehicle rates in the 
solution of the TP in the direction that decreases the MTNDP’s objective function. 
The method first solves the TP heuristically. The heuristic consists on three parts.  
  
 1) First a “feasible initial solution” is found by setting each vehicle to its 
“minimum desired rate”. From each node i to each other node j  only the shortest 
path is considered and its rate is set equal to the rate of demand of passengers 
traveling from i to j, multiplied by the cost of traveling from i to j and divided by 
the capacity of vehicle units(the number of seats in each vehicle).    The solution 
obtained under the “minimum fleet needed” step is feasible because all the con-
straints are satisifed, but it is sub optimal because each passenger (nodal O-D pair) 
is using a line with the termini at the two nodes. On the other hand, under this so-
lution, all vehicles are full all the time. Hence,the number of vehicles needed in 
this solution (let us call it F1) is expected to be lower than the optimal solution.  
 2) Secondly routes are integrated. For each arc of each parent route, the 
rate of vehicles for the parent route is set equal to the maximum of the sums of all 
the rates needed for all child routes. The operation is performed for all parent 
routes with a maximum preset number of links, starting by the parent route with 
the highest number of child routes. The procedure checks the fleet constraint at 
each increase of vehicle flows. This step of the process eliminates redundant lines 
and creates empty space in parent line’s vehicles.  Let us call the fleet size needed 
in this step of the process F2.  In any case F1 < F2, but neither is larger than the 
maximum fleet size (N) fixed in the MTNDP formulation. 

 3) Finally, routes are truncated. Once rates for all parent routes are set, 
child routes are not needed anymore. But, if all child routes were cancelled, the re-
sulting network would only be composed of high frequency parent routes and the 
fleet constraint might be violated. Equilibrium between parent routes and child 
routes is achieved here by canceling the child routes which have a lower rate than 
a predefined value and setting the rest of the child rates to a variable fraction of its 
previous rate. Let us call the fleet size used in this situation F3. Note that F3 > F1 
and F3 < F2. Again, none of the fleet sizes are larger than the maximum fleet size 
N. 

 
Once the above heuristic is completed, the PP problem can be optimized. The 
original network topology is changed to take into account the operational restric-
tions of the vehicles introduced in our model. First of all, transfers are not al-
lowed. Secondly, we are routing vehicles as if they were taking part of a public 
transportation service line, therefore passengers who are traveling in a sub-path of 
any longer path can enter into a vehicle that is serving the bigger path but not vice 
versa. An “expanded” network depicting these phenomena is built, for use in the 
linear multicommodity flow optimization in the PP problem that follows . Each 
OD is represented by a super sink and a super source, corresponding to one com-
modity and each considered path is represented separately.  
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The TP solution allows the computation of the expected passenger waiting time 
for each line. A matrix with all the waiting times for each line is computed and is 
fed into PP, explained in the herewith. 
  
 As noted above, the solution for the TP through the heuristic described 
above is a set of routes and its associated frequencies. Note that, for a given set of 
vehicle rates, the waiting times for all routes are known and the PP associated to 
MTNDP becomes a linear multicommodity minimum flow cost problem, dealing 
only with a unique set of variables: passenger flows. Linear Multicommodity 
minimum flows problems have been solved in the past either with partitioning 
methods, resource directive decomposition or price directive decomposition. 
Lately other algorithms have been developed such as the interior point methods 
(Karmarkar 1984). According to (Kennington 1978), (Ali et al. 1980) and (Ahuja 
1993) price directive decomposition methods perform better when a lot of com-
modities are considered; therefore a variant of this method has been implemented 
in this research.  
 
 Price directive decomposition eliminates the bundle constraints in the 
matrix by placing prices to these constraints and introducing them into the objec-
tive function. The resulting system is a relaxed “minimum flow cost problem” for 
each commodity. The problem has a dual variable for each arc ( aw ) correspond-

ing to the continuity constraint and a dual variable for each commodity ( kσ ) cor-
responding to the link capacity constraint. Following this formulation, a pricing 
problem is solved at each step. If the complementary slackness conditions hold, 
then the solution is optimal and the procedure stops, if not, a new pricing problem 
is solved until an optimal solution is found. Interested readers on this method are 
directed to (Kennington and Helgason 1980) and (Kim and Barnhart 1999).  

 
 Once PP has been solved, we have an initial feasible solution. From this 
point, a particular implementation of a steepest descent method has been coded to 
optimize the problem.   The essential idea behind our gradient-search is that each 
solution of TP gives one point in the solution space and the objective value for the 
MTNDP problem presented in section 3.1.  The optimization finds the gradient us-
ing a perturbation of the solution and the global optimization proceeds using a 
steepest descent method.  The reason why this procedure is selected is that the TP 
solution can be found relatively easily using the LLMCFP scheme.   This explains 
the need for us to split the optimization problems to two subproblems, PP and TP.  
The procedure is as follows: 
 
 



10       Pagès and Jayakrishnan 

4- COMPUTATIONAL RESULTS 

Seven different network sizes were studied. Table 1 reports the topology of the 
networks (number of links and number of commodities) and shows the computa-
tional time taken by CPLEX and by our algorithm to solve PP.  
 
Then, the whole MTNDP was solved for two of the networks. Tables 2 and 3 re-
port the objective function and the computational times taken to solve MTNDP 
(for different values of λ and number of iterations).  

Table 1 Solutions for Passenger Problem in MTNDP  

Solution time (sec) Links Commodities 
CPLEX PP Benefit (%) 

5 9 0.37 0.0001 0.03 
18 225 1.22 0.03 2.46 
28 1471 5.26 0.46 8.75 
34 3346 20.56 2.23 10.85 
44 19401 370 205 55.41 
56 100466 930 500.8 53.85 

 
It is difficult to compare the results attained by other researchers with our studies 
because the nature of the problem as well as the nature of the networks studied by 
others is different. But we have compared the computational time taken by our 
method with the computational time taken by CPLEX. We can conclude that the 
benefit of using our algorithm becomes bigger for larger networks. 

Table 2 Solution values for MTNDP. 9-Commodity Example 

∆r 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 

ITER 2 15 25 45 75 2 5 7 10 
MTNDP  4 57 89 132 173 4 7 10 11 
OF  189.83 169.98 164.97 162 160.87 178.603 164.91 162.37 160.25 

Table 3 Solution values for MTNDP. 24-Commodity Example 

∆r 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 

ITER 15 25 45 75 100 5 7 10 15 
MTNDP  19 34 53 84 113 7 11 14 23 
OF  588.61 588.55 588.42 588.35 588.35 588.55 588.49 588.4 588.4 

 
As expected, the time needed in our method to find an accurate solution for 
MTNDP is much higher. 
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5- CONCLUSIONS 

 
 This paper identifies a problem called the “Mass Transport Vehicle Rout-
ing Problem” (MTVRP). The proposed solution scheme for MTVRP concerns the 
solution of an associated problem called “Mass Transport Network Design” 
(MTNDP). In this paper a description of MTNDP was presented and a solution for 
it was characterized. Then solutions to several examples are presented. It is diffi-
cult to compare the results obtained with our code and the results obtained with 
other authors because the examples and the nature of the problems treated are dif-
ferent, but for the cases treated so far, our code seems to obtain optimality faster 
than the solutions found using straight implementations with available software. 
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