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Monetary Policy Shocks, Inventory Dynamics, and Price-Setting Behavior∗

YongSeung Jung† Tack Yun‡

April, 2005

Abstract

In this paper, we estimate a VAR model to present an empirical finding that an unexpected
rise in the federal funds rate decreases the ratio of sales to stocks available for sales, while
it increases finished goods inventories. In addition, dynamic responses of these variables
reach their peaks several quarters after a monetary shock. In order to understand the ob-
served relationship between monetary policy and finished goods inventories, we allow for
the accumulation of finished goods inventories in an optimizing sticky price model, where
prices are set in a staggered fashion. In our model, holding finished inventories helps firms
to generate more sales at given their prices. We then show that the model can generate
the observed relationship between monetary shocks and finished goods inventories. Fur-
thermore, we find that allowing for inventory holdings leads to a Phillips curve equation,
which makes the inflation rate dependent on the expected present-value of future marginal
cost as well as the current period’s marginal cost and the expected rate of future inflation.
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1 Introduction

Much of business cycles literature has emphasized that inventory behavior is an important
factor in understanding the character of the aggregate business fluctuations. An impor-
tant research topic on inventory behavior is why the inventory investment is procyclical.
Recent works in the literature on inventory behavior also have stressed that it is important
to explain why inventory investment is not more procyclical over phases of business cycles.
For example, Bils and Kahn (2000) shows that manufacturer’s finished goods inventories
are less cyclical than shipments.

In this paper, we analyze the role of monetary policy shocks in generating the observed
sluggish adjustment of inventory stocks. To this end, we estimate a vector autoregression
for a set of selected aggregate variables, which includes the ratio of sales to the stock
available for sales as well as the real GDP, the inflation rate, and the federal funds rate.
We then show that the real GDP and the ratio of sales to stocks increase in response to
an expansionary monetary shock. Besides, the expansionary monetary shock decreases
the stock of finished goods inventories measured at the end of each period, while its dy-
namic responses reach their minimum several quarters after the monetary shock. In an
attempt to understand such behaviors of inventories in response to monetary shocks, we
present a dynamic stochastic general equilibrium model. In this model, firms set prices as
in the staggered price-setting model of Calvo (1983) and hold finished goods inventories
to facilitate sales. Hence, our model incorporates the partial equilibrium model of Bils
and Kahn (2000) into a complete dynamic general equilibrium model with nominal price
rigidity, which permits quantitative analysis on the effect of monetary shocks.

The reason for the inclusion of the nominal price rigidity is associated with the cyclical
behavior of the real marginal cost over business cycles. It has been known in recent liter-
ature on business cycles that the nominal price rigidity can induce procyclical movements
of the real marginal cost in response to demand shocks, as discussed in Rotemberg and
Woodford (1999). Besides, the observed sluggish behavior of finished goods inventories
requires the procyclical movements of marginal costs to make production more expansive
during booms than during recessions. The price stickiness is therefore included in our
model as a mechanism to generate the procyclical movements of the real marginal costs in
response to the monetary policy shocks.

Our findings can be summarized as follows. First, it has been emphasized in the recent
literature on the Phillips curve that the current period’s inflation depends the aggregate
real marginal cost as well as the expectation about the next period’s inflation in a canoni-
cal closed-economy version of the classic Calvo model. In relation to this, we show that the
current period’s inflation rate depends on the expected present-value of the next period’s
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marginal cost as well as the current period’s marginal cost in the forward-looking Phillips
curve equation when a fraction of firms make decisions on their prices and inventories at
the same time. This is because when firms hold inventories, the opportunity cost of selling
one unit in the current period is the expected present-value of the next period’s marginal
cost.

Second, we find that under both of a high depreciation of the inventory stock and a
high elasticity of demand with respect to the stock available for sales, our model can gen-
erate the observed inventory dynamics in response to a monetary policy shock. The reason
for this is because up to the first-order approximation, a sufficiently high depreciation rate
helps to avoid excessive fluctuations of the finished-goods inventory in the model with only
sale-expansion benefits from the inventory holdings.

Third, we take into account adjustment costs, which take place when a sales-stock
ratio deviates from its fixed target ratio. We then demonstrate that the inclusion of such
adjustment costs in the model helps to match the observed variability of the finished goods
inventories, if one wants to assume a small depreciation of the inventory stock. In par-
ticular, a key specification of the linear-quadratic cost function approach to the inventory
behavior is the inclusion of the quadratic costs for deviations of sales-stock ratio from
its fixed target ratio, as discussed in Ramey and West (1999). Besides, the quadratic
adjustment costs described above reflect that holding inventories allows firms to satisfy
their demands, which cannot be backlogged. Our findings therefore indicate that a joint
specification of stock-out costs and sales-expansion benefits as incentives for holding fin-
ished goods inventories helps to understand the observed behavior of the finished goods
inventories, for those goods that have small depreciation.

It is now worthwhile to compare our model with a set of existing studies on inven-
tory behavior. For example, Hornstein and Sarte (2001) and Chang, Hornstein, and Sarte
(2004) have studied optimizing sticky price models with inventories. However, our analysis
differs from theirs in two aspects. First, their models have used the staggered price-setting
of Taylor (1980), while our model builds on the staggered price setting of Calvo (1983).
Second, the analysis of Chang, Hornstein, and Sarte (2004) relies on a partial equilibrium
industry model, whereas our analysis is based on a dynamic stochastic general equilibrium
model. In addition, the primary concern of Hornstein and Sarte (2001) is the production
smoothing of inventory in the presence of the increasing short-run marginal cost, while
we focus on sales-expansion benefits of inventory holding without relying on the upward-
sloping marginal cost. Christiano (1988) also studies a real business cycle model with
inventories, in which inventory stocks are included in production functions as a production
input. In our model, however, changes in inventories shift demand curves of differentiated
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goods, given their prices.
The rest of our paper is organized as follows. In section 2, we discuss how a monetary

policy shock is identified on the basis of a VAR for a set of selected aggregate variables.
In section 3, we develop a sticky price model in which a fraction of firms accumulate their
finished goods inventories. In this section, we discuss the effect of holding finished goods
inventories on the Phillips curve equation on the basis of log-linearized equilibrium condi-
tions. In section 4, we report simulation results from the model and compare them with
the observed effects of monetary shocks on inventory dynamics. Section 5 summarizes our
conclusion.

2 Effects of a Monetary Policy Shock on Inventory Dynamics

We begin our analysis by estimating the effects of a monetary policy shock on inventory
dynamics. In order to identify a monetary policy shock, we estimate a unrestricted VAR for
selected aggregate variables and then impose a set of structural restrictions on the variance-
covariance matrix of its residual vector, which has been widely used in the literature since
the work of Sims (1980).

The choice of variables included in the VAR is made to reflect the requirement that
one can see the effects of monetary policy on the key aggregate variables and inventory
dynamics at the same time. Hence, the sample we use in this paper consists of the U.S.
quarterly time series on the real GDP, the GDP deflator inflation rate, the ratio of sales to
stocks, the finished goods inventory stock measured at the end of period, and the federal
funds rate over the period 1967:1 - 1996:4.1 The unrestricted VAR we estimated in this
paper can be then written as

Xt = Γ0 +
4∑

k=1

ΓkXt−k + ut, (2.1)

where Xt is p×1 vector and {Γk}4
k=0 is a set of p×p matrices, ut is a p×1 residual vector,

and p is the number of variables in the VAR.
In order to identify monetary policy shocks, we follow the identification strategy em-

ployed in Christiano, Eichenbaum, and Evans (2001). More explicitly, the monetary policy
of the central bank is described as follows:

rt = f(Ωt) + ert, (2.2)
1The finished goods inventory stock is the real (manufacturing) finished inventories (end of period,

chained 2000, B.E.A.) divided by population. The ratio of sales to stock is constructed by using real
inventory-sales ratio for finished goods inventories (chained 2000, B.E.A.). Real GDP, sales-stock ratio,
and inventory stock are logged for the purpose of comparison with numerical solutions to the theoretic
model analyzed in this paper.
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where rt is the federal funds rate, f is a linear function, Ωt is the information set at
period t, and ert is the monetary policy shock. Here, we identify the federal funds rate as
the monetary policy instrument. As an example of such an identification scheme, we can
choose an ordering of the variables in Xt of the form:

Xt = [πt, log Yt, log
St

At
, log Lt, rt]′, (2.3)

where π is the inflation rate, Y is the output, S
A is the sales to stock ratio, and L is the

inventory stock. The relationship between Xt and the vector of true shocks, denoted by
et, is assumed to satisfy

D−1Xt = Γ̃0 +
4∑

k=1

Γ̃kXt−k + Det, (2.4)

where D is a 5 × 5 lower triangular matrix with the diagonal terms equal to 1, {Γ̃k}4
k=0 is

a set of 5× 5 matrices, and et is a 5 × 1 vector of serially uncorrelated shocks with mean
zero and diagonal variance-covariance matrix. The fifth element of et is then identified as
a monetary policy shock, which is denoted by ert.

For a concrete example of the identification of elements in the matrix D, we can use the
variance-covariance matrix of the residual vector ut. Suppose that variances of elements
of et are assumed to be one. Comparing (2.1) with (2.4), one can see that the following
relationship holds:

Ω = DD′, (2.5)

where Ω ( = E[utu
′
t]) denotes the variance-covariance matrix of residuals.2 Since D is

assumed to be a lower triangular matrix, we can apply a Cholesky decomposition to the
variance covariance matrix of ut in order to identify the elements of the matrix D.

Figure 1 reports impulse responses to an expansionary monetary shock. An expan-
sionary monetary shock increases the rate of inflation, real GDP, and the ratio of sales
to stocks, while it decreases the inventory stock of finished goods measured at the end of
period. Besides, one can see that the sales-stock ratio as well as the inflation rate and real
GDP show hump-shaped responses to an expansionary monetary policy shock, while the
finished goods inventory stock displays U-shaped responses to the same shock.

3 The Model

This section presents a dynamic stochastic general equilibrium model with nominal price
rigidity and inventory holding. Money is assumed to play only a role of unit of account,

2Refer to Christiano, Eichenbaum, and Evans (1999) for detailed explanation about identification pro-
cedures for monetary shocks.
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following recent literature on sticky price models.3 It is also assumed that it takes one
period for private agents to observe monetary shocks. We do this to make the information
set of households and firms consistent with the identification strategy for monetary shocks
described in the previous section. Specifically, when It denotes the information set at
period t, we assume that It includes all the past monetary policy shocks other than the
monetary policy shock at period t. Hence, private agents do not observe the realization at
period t of the monetary policy shock when they form their expectation about Xt+1 based
on It, which is denoted by Et[Xt+1],

3.1 Firms

We assume that there are two classes of goods, depending upon whether to accumulate
finished goods inventories. In what follows, goods that require accumulating their inven-
tories are called “inventory goods”, while goods that do not hold inventories are called
“non-inventory goods”.

3.1.1 Demand Functions of Firms

Households and government purchase both two classes of goods for their consumption in
each period t = 0, 1, · · ·, ∞. Specifically, an index of the two classes of goods is defined as

St = (γ
1
φ S̄

φ−1
φ

t + (1− γ)
1
φ S̃

φ−1
φ

t )
φ

φ−1 , φ > 0, (3.1)

where S̄t denotes the aggregate sales at period t for firms that hold inventories, and S̃t

denotes the aggregate sales at period t for firms that do require inventories. During each
period, households minimize the total cost of obtaining St, which in turn leads to the
following demand curves:

S̄t = γ(
P̄t

Pt
)−φSt; S̃t = (1− γ)(

P̃t

Pt
)−φSt, (3.2)

where P̄t denotes the price index for goods holding their inventories and P̃t denotes the
price index for goods that do not hold inventories. The aggregate price index, denoted by
Pt, is now given by

Pt = (γP̄ 1−φ
t + (1− γ)P̃ 1−φ

t )
1

1−φ . (3.3)

Furthermore, there is a continuum of differentiated goods for each type of goods classes.
Households purchase differentiated goods in the retail market and combines them into

3See, for example, Woodford (2003) for cashless economy in models with nominal rigidities.
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composite goods using a Dixit-Stiglitz (1977) aggregator. More explicitly, S̄t is defined as
an index of differentiated goods:

S̄t = (
∫ 1

0
(
Ajt

At
)

θ
εi (S̄jt)

εi−1

εi dj)
εi

εi−1 ; εi > 1; 0 ≤ θ ≤ 1; (3.4)

where S̄jt denotes differentiated goods of type j in the inventory goods class and Ajt is the
stock of firm j available for sales at period t. In addition, the parameter θ measures the
elasticity of demand with respect to the amount of the stock available for sales and εi is
the elasticity of demand for an individual firm with respect to its own price. In particular,
as the parameter θ takes a higher value between 0 and 1, holding inventory stock creates
a larger effect on sales at given prices of goods.

Before proceeding, it is worth discussing two features of the specification of the aggre-
gator described in (3.4). The reason for the inclusion of the stock available for sale in the
aggregator is that holding finished inventories helps firms to generate greater sales at a
given price, following Bils and Kahn (2000). The key difference from their model, however,
is that holding finished goods inventory facilitates sales only when its stock available for
sale is higher than the average level in the economy.

Households minimize the total cost of obtaining differentiated goods indexed by a unit
interval [0, 1], taking as given their nominal prices P̄jt. The cost-minimization then gives
a demand curve of the form:

S̄jt = (
Ajt

At
)θ(

P̄jt

P̄t
)−εiS̄t, (3.5)

where the price index for differentiated goods in non-inventory goods class, denoted by P̄t,
is defined to be

P̄t = (
∫ 1

0
(
Ajt

At
)θ(P̄jt)1−εidj)

1
1−εi . (3.6)

Similarly, demand curves of differentiated goods in the non-inventory goods class is

S̃jt = (
P̃jt

P̃t

)−εnS̃t, (3.7)

where output and price indices of the non-inventory goods class, respectively, are defined
as

S̃t = (
∫ 1

0
(S̃jt)

εn−1
εn dj)

εn
εn−1 ; P̃t = (

∫ 1

0
(P̃jt)1−εndj)

1
1−εn , εn > 1. (3.8)

3.1.2 Cost Function of a Representative Firm

Consider a firm that purchases material inputs and labor services to produce differentiated
goods of type j. It produces output using the following production technology:

Qjt = min{Mjt

sM
,

ZtHjt

1− sM
}, (3.9)
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where SM is the share of material, ν is the elasticity of value-added output with respect
to capital, Qjt denotes the output level at period t of firm j, Hjt denotes the number of
hours hired by the firm, and Mjt is the real amount of material inputs4. In addition, the
fixed coefficient technology specified in (3.9) implies that the value-added production of
firm j is

Yjt = ZtHjt. (3.10)

The logarithm of the aggregate technology process is also assumed to follow an AR(1)
process:

zt = ρzzt−1 + ezt; 0 ≤ ρz < 1, (3.11)

where zt (=log Zt) denotes the logarithm of the aggregate productivity at period t and ezt

denotes an i.i.d. white noise with the mean zero and standard deviation σz.
Furthermore, labor services are free to move across individual firms and between two

sectors. Factor prices are also assumed to be fully flexible. Individual firms therefore
have an identical cost function for producing one unit of value-added output, as long as
they have a constant returns to scale technology for value-added output. In particular,
note that constant returns to scale production technologies (3.9) and (3.10), along with
full flexibility of factor prices in perfectly competitive factors market, make the unit cost
for the value-added output independent of output levels of individual firms. Specifically,
letting Vt denote the unit cost for the value-added output, the unit cost for value-added
output is given by

Vt =
Wt

Zt
, (3.12)

where Wt denotes the real wage rate at period t.
So far, we have made no distinction between firms holding inventories and firms not

holding inventories. From now on, we assume that production technologies for individual
firms have an identical functional form, except the share parameter of material inputs
denoted by sM . Specifically, the share parameter sM is set to be sM = s̄M for firms that
hold inventories and sM = s̃M for firms that do not hold inventories. Hence, real marginal
costs at period t of real gross output can be written as

M̄Ct = s̄M + (1− s̄M )Vt; M̃Ct = s̃M + (1− s̃M )Vt, (3.13)

where M̄Ct denotes the real marginal cost of firms that hold inventories and M̃Ct denotes
the real marginal cost of firms that do not hold inventories.

4See, for example, Rotemberg and Woodford (1995), Bils and Kahn (2000) and Woodford (2005) for
the use of the fixed coefficient technology of the type we use in this paper.
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3.1.3 Price Setting of Firms Holding Inventories

Having described demand and cost functions of firms, we now discuss pricing decisions of
firms that hold inventories. In doing so, we first specify the evolution of the stock available
for sales and profit flows of individual firms. The stock of firm j that is available for sales
evolves over time according to

Ajt = (1− δa)(Ajt−1 − S̄jt−1) + Qjt, (3.14)

where Ajt denotes the stock of firm j and δa denotes the depreciation rate of stocks, which
reflects storage costs. The realized profit flow at period t of firm j holding its inventories
is therefore given by

Φjt = (
Ajt

At
)θ(

P̄jt

P̄t
)1−εS̄t − M̄CtQj,t, (3.15)

where St is the aggregate amounts of real sales at period t, and S̄t is defined as

S̄t = γ(
P̄t

Pt
)−φSt. (3.16)

Furthermore, we assume that the price-setting of firms follows a variant of staggered
price-setting of Calvo (1983), which allows for indexation. Specifically, during each period,
a fraction of firms, (1 − αi), are allowed to re-optimize, while the other fraction of firms,
αi, do not. In particular, those firms that do not optimize at period t determine their
prices at period t by multiplying a common indexation factor to their previous period’s
prices. Thus, the price at period t of firms that re-optimize at period t− k can be written
as

P̄t−k,t = Ῡt−k,tP̄
∗
t−k, (3.17)

where P̄t−k,t is the price at period t of firms that re-optimize at period t− k, P̄ ∗
t−k is the

price at period t− k of firms that re-optimized at period t− k. In addition, Ῡt−k,t is the
indexation factor at period t, which is determined by an indexation rule.5 Here, firms
that hold inventories update their indexation factor by multiplying the previous period’s
inflation to their previous period’s indexation factor:

Ῡt−k,t = (
P̄t−1

P̄t−2
)ξῩt−k,t−1, (3.18)

for k = 1, · · ·, ∞ and where Ῡt−k,t−k = 1. The parameter ξ measures the degree of
indexation, which takes a constant value between 0 and 1. Then, combining equations

5Refer to Christiano, Eichenbaum and Evans (2001), Smets and Wouters (2002), and Woodford (2003)
for the modified Calvo-type staggered price-setting, which allows for indexation of prices to past inflation.
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(3.6), (3.17), and (3.18), we can see that the price level at period t under the Calvo type
staggered price-setting can be written as

P̄ 1−ε
t = (1− αi)

∞∑

k=0

αk
i (

At−k,t

At
)θ(Ῡt−k,tP̄

∗
t−k)

1−εi , (3.19)

where At−k,t denotes the stock at period t of finished inventories of firms that set their
price at period t− k.

Next, we formulate profit maximization problems of firms as dynamic programming
problems. Since firms make pricing and investment decisions at the same time, firms
that re-optimize at period t may have different value functions, depending on the most
recent time period that they re-optimized. In order to allow for such a possibility, let
V 0,k(At−k,t−1, P̄

∗
t−k, X̄t) denote the value function at period t of firms, which re-optimize

their prices at period t and had their previous price changes at period t − k. Here, X̄t

denotes the aggregate state vector at period t. Then, firms that re-optimize at period t

solve the following profit maximization problem:



V 0,k(At−k,t−1, P̄
∗
t−k, X̄t) = maxAt,t,Qt,t,P̄ ∗t

(At,t

At
)θ( P̄ ∗t

P̄t
)1−εiS̄t − M̄CtQt,t

+ωt,t((1− δa)(At−k,t−1 − (At−k,t−1

At−1
)θ(

Ῡt−k,t−1P̄ ∗t−k

P̄t−1
)−εiS̄t−1) + Qt,t −At,t)

+Et[dt,t+1(αiV
1(At,t+1, P̄

∗
t , X̄t+1) + (1− αi)V 0,1(At,t+1, P̄

∗
t , X̄t+1))],


 (3.20)

where ωt,t denotes the Lagrange multiplier for (3.13) and At−k,t−1 is the real amounts of
stocks at period t− 1 of firms that set prices at period t− k.

The first order conditions for the dynamic programming problem (3.20) can be sum-
marized as follows. The first-order condition for the output is given by

ωt,t = M̄Ct. (3.21)

The first-order condition for the stock can be written as

ωt,t = θ
S̄t,t

At,t
+ Et[dt,t+1(αiV

1
1 (At,t+1, P

∗
t , X̄t+1) + (1− αi)V

0,1
1 (At,t+1, P

∗
t , X̄t+1))], (3.22)

where S̄t,t denotes the real sales at period t of firms that re-optimize at period t. The
first-order condition for the price-setting is

(εi − 1)
S̄t,t

P̄t
= Et[dt,t+1(αiV

1
2 (At,t+1, P̄

∗
t , X̄t+1) + (1− αi)V

0,1
2 (At,t+1, P̄

∗
t , X̄t+1))]. (3.23)

We now move on to envelop conditions. It follows from (3.20) that differentiating
V 0,k(At−k,t−1, P̄

∗
t−k, X̄t) with respect to P̄ ∗

t−k yields

V 0,k
2 (At−k,t−1, P̄

∗
t−k, X̄t) = εi(1− δa)

M̄CtS̄t−k,t−1

P̄ ∗
t−k

. (3.24)
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The value function at period t of firms that re-optimized at period t− k can be written as
follows:




V k(At−k,t−1, P̄
∗
t−k, X̄t) = maxAt−k,t,Qt−k,t

(At−k,t

At
)θ(

Ῡt−k,tP̄
∗
t−k

P̄t
)1−εiS̄t − M̄CtQt−k,t

+ωt−k,t((1− δa)(At−k,t−1 − (At−k,t−1

At−1
)θ(

Ῡt−k,t−1P̄ ∗t−k

P̄t−1
)−εiS̄t−1) + Qt−k,t −At−k,t)

+Et[dt,t+1(αiV
k+1(At−k,t, P̄

∗
t−k, X̄t+1) + (1− αi)V 0,k(At−k,t, P̄

∗
t−k, X̄t+1))],




(3.25)
where V k(At−k,t−1, P̄

∗
t−k, X̄t) is the value function at period t of firms that re-optimized at

period t − k. Differentiating (3.25) with respect to P̄ ∗
t−k and then setting ωt−k,t = M̄Ct,

we also have the following envelop condition:

V k
2 (At−k,t−1, P̄

∗
t−k, X̄t) = εi(1− δa)

M̄CtS̄t−k,t−1

P̄ ∗
t−k

− (εi − 1) S̄t−k,t

P̄t
+

Et[dt,t+1(αiV
k+1
2 (At−k,t, P̄

∗
t−k, X̄t+1) + (1− αi)V

0,k
2 (At−k,t, P̄

∗
t−k, X̄t+1))].

(3.26)

Having derived the first-order and envelope conditions for price-setting described above,
we will combine them to yield the optimization condition for the price-setting at period t

of firms that hold finished goods inventories. First, substituting equation (3.24) evaluated
at t + 1 into (3.26) and then rearranging, we can obtain a difference equation for partial
derivatives of value functions with respect to the price re-optimized at period t− k:

V k
2 (At−k,t−1, P̄

∗
t−k, X̄t) = − S̄t−k,tΓt−k(t)

P̄ ∗
t−k

+ εi((1−αi)MStS̄t−k,t+(1−δa)M̄CtS̄t−k,t−1)

P̄ ∗
t−k

+

αiEt[dt,t+1V
k+1
2 (At−k,t, P̄

∗
t−k, X̄t+1)],

(3.27)

where Γt−k(t) is defined as

Γt−k(t) = (εi − 1)
Ῡt−k,tP̄

∗
t−k

P̄t
. (3.28)

Then, a successive forward iteration of equation (3.27) leads to

V k
2 (At−k,t−1, P̄

∗
t−k, X̄t) =

−Et[
∑∞

j=0 αj
idt,t+j

S̄t−k,t+j

P̄ ∗
t−k

(Γt−k(t + j)− εiMSt+j)] + εi(1−δa)M̄CtS̄t−k,t−1

P̄ ∗
t−k

,
(3.29)

where limt→T Et[αT
i dt,t+T V T

2 (At−k,t+T , P̄ ∗
t−k, X̄t+T )] = 0. It then follows from (3.29) that

the partial derivative of the value function at period t + 1 with respect to the price re-
optimized at period t can be written as

V 1
2 (At,t+1, P̄

∗
t , X̄t+1) =

−Et+1[
∑∞

j=1 αj
idt+1,t+j

S̄t,t+j

P̄ ∗t
(Γt(t + j)− εiMSt+j)] + εi(1−δa)M̄Ct+1S̄t,t

P̄ ∗t
.

(3.30)

Furthermore, substituting (3.24) into (3.23) and then rearranging, the first-order condition
for the price-setting at period t described in (3.23) can be rewritten as

αiEt[dt,t+1V
1
2 (At,t+1, P̄

∗
t , X̄t+1)] =

S̄t,t

P̄ ∗
t

(Γt(t)− εi(1− αi)MSt). (3.31)
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As a result, substituting (3.30) into (3.31) and then rearranging, one can see that the
optimization condition for the price-setting at period t can be written as

∞∑

k=0

αk
i Et[dt,t+kS̄t,t+k(

Ῡt,t+kP̄
∗
t

P̄t+k
− εi

εi − 1
MSt+k)] = 0, (3.32)

where MSt+k is the expected present-value of the next period’s real marginal cost:

MSt+k = (1− δa)Et+k[dt+k,t+k+1M̄Ct+k+1]. (3.33)

It is noteworthy that MSt+k is included in the profit maximization condition (3.32), which
reflects that holding finished goods inventories leads firms to take into account the expected
present value of the next period’s marginal cost, rather than the current period’s marginal
cost.

We now discuss the optimization condition for the stock available for sales at period
t. It follows from the two value functions described above that the partial derivatives of
value functions with respect to the previous period’s stocks can be written as

V k
1 (At−k,t−1, P

∗
t−k, X̄t) = ωt−k,t(1− δa)(1− θ

St−k,t−1

At−k,t−1
), (3.34)

V 0,k
1 (At−k,t−1, P̄

∗
t−k, X̄t) = ωt,t(1− δa)(1− θ

St−k,t−1

At−k,t−1
), (3.35)

for k = 1, 2, · · ·, ∞. Next, substituting period (t+1) versions of equations (3.34) and
(3.35), with k = 1, into (3.22) and then setting ωt,t+1 = ωt+1,t+1 = M̄Ct+1 in the resulting
equation, we find that the optimization condition for the stock of firms that re-optimize
at period t can be written as

M̄Ct = θ
S̄t,t

At,t
+ MSt(1− θ

S̄t,t

At,t
). (3.36)

Similarly, optimization conditions for stocks of firms that re-optimized at period t− k are

M̄Ct = θ
S̄t−k,t

At−k,t
+ MSt(1− θ

S̄t−k,t

At−k,t
), (3.37)

for k = 1, 2, · · ·, ∞. To the extent that the real marginal cost is independent of output
levels of individual firms, one can see from (3.36) and (3.37) that sales-stocks ratios are
identical across individual firms in each period t = 0, 1, · · ·, ∞. Hence, the following
equation holds for the aggregate sales-stock ratio:

M̄Ct = θ
S̄t

At
+ MSt(1− θ

S̄t

At
). (3.38)
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3.1.4 Price Setting of Non-Inventory Goods Producing Firms

Having described the price-setting of firms that hold inventories, we will discuss the profit
maximization of individual firms that do not hold their finished goods inventories. As we
did in the previous section, this section assumes a variant of the staggered price setting
of Calvo(1983), which allows for indexation. Specifically, during each period, a fraction of
firms, (1 − αn), are allowed to re-optimize, while the other fraction of firms, αn, do not.
In the absence of inventories, the price level at period t under the Calvo-type staggered
price-setting can be written as

P̃ 1−εn
t = (1− αn)(P̃ ∗

t )1−εn + αn(Υ̃t−1,tP̃t−1)1−εn , (3.39)

where P̃ ∗
t denotes the optimal price at period t of firms resetting prices at period t in the

non-inventory goods sector and the indexation factor Υ̃t−1,t is defined as Υ̃t−1,t = ( P̃t−1

P̃t−2
)ξ.

Furthermore, the profit maximization problem of firms resetting prices at period t is
given by

∞∑

k=0

αk
nEt[dt,t+k((

Υ̃t,t+kP̃
∗
t

Pt+k
)1−εn − M̃Ct+k(

Υ̃t,t+kP̃
∗
t

Pt
)−εn)S̃t+k], (3.40)

where S̃t denotes the aggregate sales at period t of the non-inventory goods sector. The
optimization condition for the optimal price at period t can be then written as

∞∑

k=0

αk
nEt[dt,t+kS̃t,t+k(

Υ̃t,t+kP̃
∗
t

P̃t+k

− εn

εn − 1
M̃Ct+k)] = 0. (3.41)

3.2 Phillips Curve Equation

In this section, we consider a Phillips curve equation for the aggregate inflation rate on
the basis of log-linear approximations to the pricing equations of firms.6 In doing so, we
first log-linearize (3.19) around the steady state with constant prices to yield

p̄t = (1− αi)
∞∑

k=0

αk
i (p̄

∗
t−k + ξ(p̄t−1 − p̄t−k−1) + (at−k,t − at)), (3.42)

where p̄t and p̄∗t−k are log deviations of P̄t and P̄ ∗
t−k from their steady state levels, respec-

tively. The second-term of the right-hand side of (3.42) results from log-linearizing the
indexation factor (3.18). Note that the sum of individual stocks leads to the aggregate
stock:

at = (1− αi)
∞∑

k=0

αk
i at−k,t. (3.43)

6Refer to King, Plosser and Rebelo (1988a, 1988b) for the log-linear approximation technique used in
this paper.
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Hence, substituting (3.43) into (3.42) and then subtracting the resulting equation’s period
(t− 1) version from its period t version, we have

p̄∗t − p̄t =
αi

1− αi
(π̄t − ξπ̄t−1), (3.44)

where π̄t (= log P̄t - log P̄t−1) denotes the inflation rate of the inventory goods sector. In
addition, log-linearizing (3.32) around the steady state with constant prices leads to

∞∑

k=0

(αiβ)kEt[p̄∗t − p̄t+k + ξ(p̄t+k−1 − p̄t−1)− m̄st+k] = 0, (3.45)

It then follows from (3.45) that we can obtain a linear difference equation of the form:

p̄∗t − p̄t = −αiβξπ̄t + (1− αiβ)mst + αiβEt[π̄t+1 + (p̄∗t+1 − p̄t+1)], (3.46)

where mst denotes the log-deviation of MSt from its steady state value. Thus, substituting
(3.44) into (3.46), one can obtain a linear difference equation for the inflation rate of the
inventory goods sector of the form:

π̄t − ξπ̄t−1 = κ̄mst + βEt[π̄t+1 − ξπ̄t], (3.47)

where κ̄ = (1−αi)(1−αiβ)
αi

.
Next, we turn to the derivation of the Phillips curve for the inflation rate for the non-

inventory goods. In the similar way as we did above, log-linearizing (3.39) and (3.41)
and then rearranging leads to a linear difference equation for the inflation rate of the
non-inventory goods sector:

π̃t − ξπ̃t−1 = κ̃m̃ct + βEt[π̃t+1 − ξπ̃t], (3.48)

where π̃t (= log P̃t - log P̃t−1) is the inflation rate of the non-inventory goods sector, and
κ̃ = (1−αn)(1−αnβ)

αn
.

In order to obtain a Phillips curve equation for the aggregate inflation rate, we add up
two linear difference equations (3.47) and (3.48) so that the Phillips curve can be written
as

πt =
ξ

1 + ξβ
πt−1 +

γκ̄

1 + ξβ
mst +

(1− γ)κ̃
1 + ξβ

m̃ct +
β

1 + ξβ
Et[πt+1], (3.49)

where the aggregate inflation rate, denoted by πt, is defined as a weighted average of
inflation rates of inventory and non-inventory goods:

πt = γπ̄t + (1− γ)π̃t. (3.50)
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Before going further, recall that real marginal costs of gross outputs can be expressed
in terms of real unit costs of value-added outputs. In order to express the aggregate
Phillips curve equation in terms of the unit cost of the aggregate value-added output, we
log-linearize real marginal costs of firms. Specifically, log-linearizing (3.13) around the
steady state with constant prices then implies that log-deviations of the real marginal cost
of gross output can be expressed in terms of the real unit cost of the value-added output:

m̄ct = (1− µ̄s̄M )vt; m̃ct = (1− µ̃s̃M )vt, (3.51)

where m̄ct (= log M̄Ct - log M̄C), m̃ct (= log M̃Ct - log M̃C), and vt = log Vt - log V .
In addition, µ̄ (= 1

M̄C
) and µ̃ (= 1

M̃C
) denote steady state markups for inventory goods

and non-inventory goods firms. It also follows from (3.33) that the log-deviation of the
expected present-value of the next period’s real marginal cost is

mst = Et[λt+1 − λt + m̄ct+1], (3.52)

where λt (= log Λt - log Λ) is the log-deviation of the marginal utility of consumption.
Substituting (3.52) into (3.48) and then (3.51) into the resulting equation, we now express
the Phillips curve equation in terms of real unit cost of the aggregate value-added output:

πt =
ξ

1 + ξβ
πt−1 + κ0Et[vt+1] + κ1Et[λt+1 − λt] + κ2vt +

β

1 + ξβ
Et[πt+1], (3.53)

where vt denotes the log-deviation of the real unit cost of the aggregate value-added output.
Here, coefficients κ0, κ1, and κ2 are defined as

κ0 =
γκ̄(1− µ̄s̄M )

1 + ξβ
; κ1 =

γκ̄

1 + ξβ
; κ2 =

(1− γ)κ̃(1− µ̃s̃M )
1 + ξβ

,

where the parameter γ denotes the output share of the inventory goods sector. Similarly,
the Phillips curve for the non-inventory goods can be written as

π̃t =
ξ

1 + ξβ
π̃t−1 + κ̃0vt +

β

1 + ξβ
Et[π̃t+1], (3.54)

where k̃0 is defined as k̃0 = κ̃(1−µ̃s̃M )
1+ξβ . In sum, we can find that a joint decision on the

price-setting and the inventory holding has the current period’s inflation rate depend on
the expected present value of the next period’s real unit cost, given the expected rate of
the next period’s inflation.7

7Refer to Gali and Gertler (1999) and Sbordone (2002) for the specification of the New Keyensian
Phillips curve and its empirical tests.
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3.3 Inventory Dynamics

In order to derive a linearized law of motion for the inventory stock, we first consider log-
linear approximations to the optimization condition for the stock-sales ratio. Specifically,
log-linearizing (3.38) leads to

s̄t − at =
1

1− (1− δa)β
m̄ct − (1− δa)β(µ̄− 1)

(1− (1− δa)β)(µ̄− (1− δa)β)
mst, (3.55)

where s̄t and at are logarithmic deviations of the aggregate sales S̄t and the aggregate stock
At from their steady state values, respectively. In addition, m̄ct (= log M̄Ct - log M̄C)
denotes the log deviation of the real marginal cost at period t, while mst (= log MSt -
log MS) denotes the log-deviation of MSt from its steady state value.8 Then, substituting
(3.52) into (3.55) and then plugging (3.51) into the resulting equation, one can express the
ratio of sales to stocks in terms of the aggregate real unit cost and changes in the marginal
utility of consumption:

s̄t − at = b0vt − b1Et[vt+1]− b2Et[λt+1 − λt], (3.56)

where b0, b1, and b2 are defined as

b0 =
1− µ̄s̄M

1− (1− δa)β
; b1 =

(1− δa)β(µ̄− 1)
(µ̄− (1− δa)β)

b0; b2 =
(1− δa)β(µ̄− 1)

(µ̄− (1− δa)β)(1− (1− δa)β)
.

Furthermore, note that Ȳt = γ( P̄t
Pt

)−φYt. Equation (3.3) also implies that γ( P̄t
Pt

)1−φ =

γ + (1 − γ)P−(1−φ)
rt , where Prt (= P̄t

P̃t
) is the ratio between price levels of inventory and

non-inventory goods sectors. Thus, we have Ȳt = γ[γ + (1− γ)P−(1−φ)
rt ]

φ
1−φ Yt. As a result,

log-linearizing this equation leads one to express the aggregate value-added output of the
inventory goods sector in terms of the aggregate value-added output and relative price:

ȳt = yt − (1− γ)φprt. (3.57)

We now turn to the discussion of how to obtain a law of motion for the aggregate
inventory stock. The aggregate inventory stock measured at the end of period t, denoted
by Lt, is defined as Lt = At - S̄t. It also follows from (3.9) and (3.14) that the aggregate
stock available for sales is At = (1 − δa)Lt−1 + 1

1−sM
Ȳt. Thus, combining these two

equations, we have the following equation:

Lt = ((1− δa)Lt−1 +
1

1− sM
Ȳt)(1− S̄t

At
). (3.58)

8It follows from (3.24) and (3.27) that the steady state equilibrium condition can be written as M̄C -

MS = θ S̄
A

(1−MS). Since MS = (1−δa)βM̄C, it implies that θ S̄
A

= 1−(1−δa)β
µ̄−(1−δa)β

. This steady state relation

is used to calculate the coefficient for mst in (3.55).
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Log-linearizing this equation and then substituting (3.57) into the resulting equation leads
to a linear difference equation for the inventory stock of the form:

lt = ρlt−1 +
1

(1− s̄M )sa
yt − (1− γ)φ

(1− s̄M )sa
prt − (

ss

sl
)(s̄t − at), (3.59)

where sa = A
Y , sl = L

Y , ρ = (1− δa) sl
sa

, s̄t = log S̄t

S̄
, lt = log Lt

L , and at = log At
A . It is then

clear from (3.59) that it is necessary to have a law of motion for prt. Hence, substituting
Prt = P̄t

P̃t
into the definition of Pt specified in (3.3), we have

prt = prt−1 +
1
γ

(πt − π̃t). (3.60)

3.4 Households

The preference at period t of the representative household is represented by

Et

∞∑

k=0

βk [
(Ct+k − bCt+k−1)1−σ − 1

1− σ
− H1+χ

t+k

1 + χ
], σ > 0, χ > 0, (3.61)

where 0 < β < 1 denotes the discount factor, Ct is an index of consumption goods, and
Ht is the number of hours worked at period t. We assume that the parameter b takes a
positive value, in order to allow for habit formation in consumption preferences. The flow
budget constraint at period t of the representative household can be therefore written as

Ct + Et[dt,t+1
Bt+1

Pt+1
] =

Bt

Pt
+ WtHt + Φt − Tt, (3.62)

where Bt+1 denotes a portfolio of nominal state contingent claims in the complete contin-
gent claims market, dt,t+1 is the stochastic discount factor for computing the real value at
period t of one unit of consumption goods at period t+1, Wt is the real wage rate, Tt is the
real lump-sum tax, and Φt is the real dividend income. Then, the first-order conditions
for consumption and labor supply can be written as

Λt = Et[(Ct − bCt−1)−σ − βb(Ct+1 − bCt)−σ], (3.63)

Hχ
t = WtΛt, (3.64)

where Λt is the Lagrange multiplier of the budget constraint (3.62). The optimization
condition for bond holdings is

dt,t+1 = β
Λt+1

Λt
. (3.65)
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Hence, if Rt represents the risk-free (gross) nominal rate of interest at period t, the absence
of arbitrage at an equilibrium gives the following Euler equation:

βEt[Rt
Λt+1

Λt

Pt

Pt+1
] = 1. (3.66)

Having described the optimization conditions of the household’s utility maximization,
their log-linear approximations are discussed. Log-linearizing the Euler equation around
the steady state with a zero inflation rate leads to

Et[λt+1 − λt + rt − πt+1] = 0, (3.67)

where λt (= log Λt - log Λ) denotes the log-deviation of the marginal utility of consumption
at period t from its steady state level, rt is the log deviation of the nominal interest rate
from its steady state level, and πt denotes the inflation rate at period t. The marginal
utility equation under the habit formation of consumption specified in (3.63) gives an
intertemporal equation:

ct = −(1− b)(1− βb)
σ(1 + βb)

λt +
b

1 + βb2
ct−1 +

βb

1 + βb2
Et[ct+1], (3.68)

where ct (= log Ct - log C) denotes the logarithmic deviation of consumption from its
steady state value.

3.5 Social Resource Constraint

In order to obtain the aggregate market clearing condition, we begin with the aggregate
dividend income, which is defined as the aggregate sales minus the aggregate costs of
both production and holding inventories. Specifically, the aggregate dividend income is
defined as Φt = St - WtHt - Mt. In addition, the aggregate inventories at the end of
period t, denoted by Lt, can be written as Lt = (1 − δa)Lt−1 + Qt - St, where Qt is the
aggregate real gross output at period t. Substituting this equation into the definition of
the aggregate dividend and then setting Yt = Qt - Mt in the resulting equation, we find
that the aggregate dividend income can be rewritten as

Φt = −(Lt − (1− δa)Lt−1) + Yt −WtHt, (3.69)

In the meanwhile, the government’s flow budget constraint at period t is defined as

Et[dt,t+1
Bt+1

Pt+1
] =

Bt

Pt
+ Gt − Tt. (3.70)
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Then, substituting (3.69) and (3.70) into the period budget constraint of the representative
household (3.62), one can see that the aggregate market clearing condition can be written
as

Yt = Ct + Gt + Lt − (1− δa)Lt−1. (3.71)

Having described the aggregate market clearing condition, we now discuss the rela-
tionship between the aggregate value-added output and the aggregate production inputs.
First, note that demand curves for value-added outputs of individual firms are Ȳjt =

(Ajt

At
)θ( P̄jt

P̄t
)−εȲt and Ỹjt = ( P̃jt

P̃t
)−εỸt, where Ȳt = γ( P̄t

Pt
)−φYt and Ỹt = (1− γ)( P̃t

Pt
)−φYt

9. In
addition, the demand for the value-added output of firm j should be equal to its output
in an equilibrium. Hence, adding up market clearing conditions across firms yield Zt

∆̄t
H̄t

= γ( P̄t
Pt

)−φYt and Zt

∆̃t
H̃t = γ( P̃t

Pt
)−φYt. Here, ∆̄t and ∆̃t denote measures of relative price

distortion for inventory goods and non-inventory goods respectively:

∆̄t =
∫ 1

0
(
Ajt

At
)θ(

P̄jt

P̄t
)−εdj; ∆̃t =

∫ 1

0
(
P̃jt

P̄t
)−εdj. (3.72)

Thus, market clearing conditions for each class of goods can be added to yield the following
aggregate production function:

Yt =
Zt

∆t
Ht, (3.73)

where Ht = H̃t + H̄t and the aggregate relative price distortion is defined as

∆t = γ∆̄t(
P̄t

Pt
)−φ + (1− γ)∆̃t(

P̃t

Pt
)−φ. (3.74)

We now log-linearize the aggregate production function to express the aggregate real
unit cost in terms of value-added output. Here, it should be noted that up to its first-
order log-linear approximation, measures of relative price distortions turn out to be zero,
following the literature.10 Thus, log-linearizing the aggregate production function yields
yt = zt + ht, when ht and yt denote the log-deviation of the aggregate hours and real GDP
from their steady state values, respectively. In addition, substituting (3.12) into (3.64) and
then log-linearizing the resulting equation leads to χht = vt + zt + λt. Hence, combining
these two equations, the aggregate unit cost can be expressed in terms of the aggregate
value-added output as follows:

vt = χyt − (1 + χ)zt − λt. (3.75)
9The amount of demand for the value-added output of each firm differs from its sales. But M̄jt is

proportional to Ȳjt because of the fixed coefficient technology in (3.9). Thus, the demand function of each
firm in inventory goods sector has the same functional form as that of its total sales.

10Refer to Christiano, Eichenbaum and Evans (2001) and Schmitt-Grohé and Uribe (2004) for detailed
explanations about log-linear approximation to measures of relative price distortion under the Calvo pricing.
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Besides, log-linearizing the aggregate market clearing condition (3.71) leads to

ct =
1
sc

yt − sg

sc
gt − δasl

sc
(lt − (1− δa)lt−1), (3.76)

where sc is the share of consumption in real GDP, sg is the share of government expendi-
tures in real GDP, and sl is the steady state ratio of inventory to real output.

Finally, the monetary policy rule is assumed to follow a variant of Taylor (1993) rule
with partial adjustment of the form:

rt = ρrrt−1 + (1− ρr)(φππt + φyyt) + ert, (3.77)

where ρr is the partial adjustment parameter, φπ measures the responsiveness of the policy
interest rate with respect to inflation rate, and φy measures the responsiveness of the policy
interest rate with respect to real output.

4 Simulation Results

4.1 Calibration and Estimation

The computation of a numerical solution to the model requires assigning numbers to
parameters of the model. Specifically, parameters of the model are partitioned into three
classes. For the first class of parameters, we simply choose their values. For example, we
set σ = 1 and χ = 1, which imply a logarithmic utility function for consumption and a
quadratic function for the hours worked. We also set β = 0.99, which assumes that the
average yearly real interest rate is 4 %. The other parameter values that belong to the
first class are specified in Table 1.

The parameter values of the second set are chosen to match the impulse responses of
the key variables estimated from the VAR we discussed in the previous section. In order
to see this, let ζ be the vector of the model parameters that we estimate, while Ψ(ζ) is a
mapping from ζ to the model impulse responses. Ψ̂ is the corresponding impulse responses,
which are estimated from the VAR we have discussed. Then, estimates of ζ, denoted by ζ̂

are the solution to the following minimization problem:

min
ζ

(Ψ̂−Ψ(ζ))′V −1(Ψ̂−Ψ(ζ)),

where V is a diagonal matrix whose diagonal elements are sample variances of the elements
of Ψ̂11. In sum, the first and second sets contain σ, χ, b, β, αi, αn, ξ, θ, s̄M , δa, sr (= S̄

A),

11Refer to Christiano, Eichenbaum and Evans (2001) and Altig, Christiano and Eichenbaum (2004) for
a detailed discussion about how to estimate a subset of parameter values minimizing a measure of the gap
between model and estimated impulse responses.
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µ̃, ρr, φπ, and φy, whose values are summarized in Table 1.
The third set of parameter values are then determined by using steady state equilibrium

conditions, given the first two sets of parameter values. Hence, we now briefly discuss how
one can use the steady state equilibrium conditions to assign numbers to the second set of
parameters. The first-order condition for the stock becomes θsr = 1−β

µ̄−(1−δa)β at the steady
state with constant prices, which in turn implies

µ̄ = (1− δa)β(1− 1
θsr

) +
1

θsr
; εi =

µ̄

µ̄− (1− δa)β
, (4.1)

where the second equation is obtained from the steady state version of the pricing equation
for firms that hold inventories, (1−δa)βεi = (εi−1)µ̄. Besides, note that the real unit cost
of the value-added output, denoted by V , satisfies the following steady state relations:

V =
1− µ̄s̄M

µ̄(1− s̄M )
=

1− µ̃s̃M

µ̃(1− s̃M )
, (4.2)

where µ̃ is the steady state markup for firms that do not hold inventories.12 The first
equality of this equation is then used to compute a value of V . We also use the second
equality to compute the share of material inputs for firms that do not hold inventory goods:

s̃M =
1− V µ̃

(1− V )µ̃
. (4.3)

Furthermore, the law of motion for the aggregate stock at the steady state with constant
prices turns out to be 1

1−s̄M
= δasa + (1 − δa)ss. Given that ss = sr sa, we solve this

equation to yield

ss =
sr

(1− s̄M )(δa + (1− δa)sr)
; sa =

1
(1− s̄M )(δa + (1− δa)sr)

. (4.4)

The steady state ratio of inventory to the value-added output therefore can be written as

sl =
L

Y
= sa − ss. (4.5)

The steady state share of consumption in output, denoted by sc, is given by

sc = 1− sg − δasl. (4.6)

In sum, we can use equations (4.1) - (4.6) to compute values of V , µ̄, εi, s̃M , sa, ss, sl,
and sc given the first set of parameter values, while the first set of parameter values is
reported in Table 1.

12Note that the second equality results from the assumption of labor’s free movement across sectors.
The next equation then implies that 0 ≤ s̃M < 1 requires 1 < µ̃ ≤ 1

V
. We therefore use this restriction

when we choose a value µ̃.
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4.2 Results

In this section, we report quantitative implications of the model we described.13 In par-
ticular, we ask if the model can generate observed dynamic responses of the sales-stock
ratio and the finished goods inventories in response to a monetary policy shock. Further-
more, we do this for models with and without adjustment costs. Here, adjustment costs
take place when the sales-stock ratio deviates from its fixed target, while the equilibrium
conditions for the model with adjustment costs are summarized in Appendix A.

Figure 2 demonstrates impulse responses to an expansionary monetary policy shock
from the model without adjustment costs and compares them with estimated impulse re-
sponses from the VAR discussed in section 2. Figure 2 indicates that one needs a high
level of depreciation in order to match the estimated impulse responses when there are no
adjustment costs. It also shows that an exogenous fall in the interest rate increases real
output, the inflation rate and the ratio of sales to stocks but decreases the inventory stock
of finished goods. This is consistent with the observed impulse responses from the VAR.

Figures 3 and 4 report impulse responses of models with adjustment costs, responding
to an expansionary monetary policy shock14. Figures 3 and 4 are constructed under the
constraint that the depreciation rates of inventories are small. Specifically, we restrict the
depreciation rate in an interval between 0 and 0.01 for Figure 2 and set the depreciation
rate equal to zero for Figure 4. Figure 3, in particular, does not show hump-shaped re-

13In order to obtain a numerical solution, we define a 10 × 1 column vector kt = [ πt, yt, s̄t − at, lt,
rt, ct, vt, π̃t, λt, prt ]′. We then use 10 equilibrium conditions to yield Ẽt [ m0kt+1+m1kt+m2kt−1 +
c0ωt+1+c1ωt ] = 0. Here, m0, m1, and m2 are 10 × 10 matrices and c0 and c1 are 10 × 2 matrices.
The order of equations is (3.53), (3.68), (3.56), (3.59), (3.77), (3.76), (3.75), (3.54), (3.67), (3.60). We
employ a method of undetermined coefficients to solve the model, given the informational restriction that
the monetary policy shock at period t is observable only for 5th equation. See, for example, Christiano,
Eichenbaum, and Evans (2001) and Christiano (2001) for the method of undetermined coefficients in the
presence of informational differences across equilibrium conditions.

14Figures 2 and 3 use monetary policy parameter values, which are obtained by minimizing the gap
between model and estimated impulse responses as we discussed. Figure 4, however, uses the policy
parameters, which are estimated on the basis of U.S. data. Specifically, we use GMM to estimate a variant
of Taylor rule (1993), which allows for partial adjustment. The sample covers U.S. time series on real GDP,
GDP deflator, 10 year T-bonds yield, commodity price index, and the federal funds rate over the period
1960:1 - 1997:4, which are all taken from the Citibase data set. In addition, real GDP has been logged and
detrended by HP filter, while the inflation rate is identified with logarithmic difference of GDP deflator.
The result of our estimation of a monetary policy rule can be written as

rt = 0.905 rt−1+ (1− 0.905) (1.694 πt+ 0.614 yt) + ert,
(0.034) (0.435) (0.266)

where numbers in parenthesis are standard errors. The set of instruments is { rt−2, rt−3, rt−4, πt−2,
πt−3, πt−4, yt−2, yt−3, yt−4, rt−2, rt−3, rt−4, lst−2, lst−3, lst−4, pct−2, pct−3, pct−4 }, where lst is the
difference between 10 year treasury-bonds yield and federal funds rate and pct is the logarithmic difference
of commodity price index.
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sponses of real output to an expansionary monetary shock. Hence, we assume a certain
degree of consumption habit persistence when we generate model impulse responses in Fig-
ure 4. Figure 4 then indicates that the model with adjustment costs can generate dynamic
responses of the selected variables consistent with the estimated ones from the VAR.

Furthermore, it should be noted that one needs a very high level of nominal price rigid-
ity to match the estimated impulse responses of the aggregate inflation rate. For example,
we set αn = αi = 0.93, 0.97, and 0.96 in order to match the observed variability of the
dynamic responses of the aggregate inflation rate.

5 Conclusion

We have investigated if a sticky price model with inventories can explain the observed
dynamic responses of finished goods inventories in response to a monetary policy shock. We
have demonstrated two alternative modeling strategies to match the observed variability of
finished goods inventory dynamics in response to monetary policy shocks. One is to assume
a large depreciation of the inventory stock in the absence of any additional mechanism to
avoid excessive responses of inventories. The other is to assume a combination of a small
depreciation rate and adjustment costs from deviations of sale-stock ratio from its target.

Next, we discuss future research directions associated with the present paper. In this
paper, we analyze only a variant of Calvo-type staggered price-setting. A reason for
this is to investigate the effect of holding inventories on the specification of the forward-
looking Phillips curve equation. However, it would be interesting to analyze the inventory
dynamics in a sticky price model with a staggered price-setting other than the Calvo pricing
used in this paper and then compare it with the one presented in this paper. An example is
to analyze the inventory dynamics in a sticky price model with the Taylor-type staggered
price-setting as in the model of Chang, Hornstein and Sarte (2004). Furthermore, as we
noted earlier, the model in this paper requires a large degree of nominal price rigidity in
order to match the observed variability of the aggregate inflation rate. Hence, it would be
interesting to put additional mechanisms into the model, in order to match the observed
variability of the inflation rate under a smaller degree of nominal price rigidity than the
one used in this paper. An apparent remedy for this would be the inclusion of firm-
specific capital in the model, as discussed in Altig, Christiano and Eichenbaum (2004) and
Woodford (2005). In particular, they show that when firm-specific capital is introduced
into sticky models with the Calvo pricing, a lower level of nominal price rigidity is required
to match the Phillips curve relation observed in the U.S. data. Another candidate would
be the inclusion of nominal wage rigidity as in the model of Erceg, Henderson and Levin
(1999). Finally, we have focused on the cyclical behavior of finished goods inventories. It
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is, however, noteworthy that finished goods inventories takes only a small share of total
inventories, as discussed in Ramey and West (1999). In addition, finished goods inventories
and work-in-progress inventories may respond to an interest rate shock in a different way.
Hence, it would be interesting to extend our analysis to models with various types of
inventory holdings.
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Table 1
Parameter Values

Parameter Values Description and definitions
Fig. 1 Fig. 2 Fig. 3

Subset of parameters whose values are chosen
σ 1 Inverse of inter-temporal substitution
χ 1 Inverse of elasticity of labor supply
β 0.99 Time discount factor
sM 0.5 Share of material inputs in gross output
ξ 0.99 Degree of indexation
γ 0.5 Output share of inventory goods sector
φ 0.5 Substitution elasticity of two sectors
S̄
A 0.63 Average sales-stock ratio
µ̃ 1.8 1.8 1.04 Markup of non-inventory goods
b 0 0 0.76 Degree of habit persistence

Subset of parameters whose values are estimated
δa 0.58 0.01 0 Depreciation rate of inventory

(0.03) (0.02)
τ 0 0.66 5.80 Share of adjustment costs in total costs

(0.03) (0.0002)
ρr 0.85 0.85 0.91 Partial adjustment coefficient

(0.01) (0.01) (0.03) in interest rate rule
φπ 1.50 1.00 1.69 Responsiveness to inflation rate

(0.04) (0.04) (0.44) in interest rate rule
φy 0.60 0.70 0.61 Responsiveness to output gap

(0.01) (0.02) (0.27) in interest rate rule
α 0.93 0.97 0.96 Fraction of firms that re-optimize

(0.01) (0.01) in each period
θ 0.89 0.37 0.80 Elasticity of demand for goods with

(0.03) (0.03) (0.0002) respect to stocks

Note: Fig. 1 is a model with a large depreciation. Fig. 2 is a model with a small depreciation

and adjustment costs. Fig. 3 is a model with zero depreciation and adjustment costs. Fig.

3 assumes habit persistence in consumption, while Fig. 1 and Fig 2. do not. Numbers in

parenthesis are standard errors.
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Appendix

A Model with Adjustment Costs of Deviations of Sales-Stock Ratio from its
Fixed Target

In this section, we briefly highlight changes of equilibrium conditions induced by the inclu-
sion of adjustment costs in the model. When we include adjustment costs for sales-stock
ratio into the model, the realized profit flow at period t of firm j that holds inventories
can be written as

Πjt = (
Ajt

At
)θ(

P̄jt

P̄t
)1−εS̄t − M̄CtQj,t − τ

2
(Aj,t − ψ(

Ajt

At
)θ(

P̄jt

P̄t
)1−εS̄t)2A−1

t , (A.1)

where τ is coefficient of adjustment costs and ψ is the inverse of steady state sales-stock
ratio. The third term of this equation corresponds to the adjustment costs of sales-stock
ratio. Hence, the profit maximization problem at period t for firms that re-optimize at
period t is given by

V 0,k(At−k,t−1, P̄
∗
t−k, X̄t) = maxAt,t,Qt,t,P̄ ∗t


(At,t

At
)θ( P̄ ∗t

P̄t
)1−εiS̄t − M̄CtQt,t − τ

2 (At,t − ψ(At,t

At
)θ( P̄ ∗t

P̄t
)−εiS̄t)2A−1

t

+ωt,t((1− δa)(At−k,t−1 − (At−k,t−1

At−1
)θ(

Υt−k,t−1P̄ ∗t−k

P̄t−1
)−εiS̄t−1) + Qt,t −At,t)

+Et[dt,t+1(αiV
1(At,t+1, P̄

∗
t , X̄t+1) + (1− αi)V 0,1(At,t+1, P̄

∗
t , X̄t+1))].




(A.2)

Besides, the value function at period t of firms that re-optimize at period t − k can be
written as follows:

V k(At−k,t−1, P̄
∗
t−k, X̄t) = maxAt−k,t,Qt−k,t


(At−k,t

At
)θ(

Υt−k,tP̄
∗
t−k

P̄t
)1−εiS̄t − M̄CtQt−k,t − τ

2At
(At−k,t − ψ(At−k,t

At
)θ(

Υt−k,tP̄
∗
t−k

P̄t
)−εiS̄t)2

+ωt−k,t((1− δa)(At−k,t−1 − (At−k,t−1

At−1
)θ(

Υt−k,t−1P̄ ∗t−k

P̄t−1
)−εiS̄t−1) + Qt−k,t −At−k,t)

+Et[dt,t+1(αiV
k+1(At−k,t, P̄

∗
t−k, X̄t+1) + (1− αi)V 0,k(At−k,t, P̄

∗
t−k, X̄t+1))].




(A.3)
As we did in the text, we can show that the optimal pricing equation from the profit
maximization problem (A.1) can be written as

∞∑

k=0

αk
i Et[dt,t+kS̄t,t+k(

Υt,t+kP̄
∗
t

P̄t+k
+

τψεi

εi − 1
At,t+k

At+k
(1− ψ

S̄t,t+k

At,t+k
)− εi

εi − 1
MSt+k)] = 0. (A.4)

The optimization conditions for stocks can be written as

M̄Ct = θ
S̄t−k,t

At−k,t
+ MSt(1− θ

S̄t−k,t

At−k,t
)− τ(

At−k,t

At
− ψ

S̄t−k,t

At
)(1− θψ

S̄t−k,t

At−k,t
), (A.5)
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for k = 0, 1, · · ·, ∞.
Having described optimization conditions of firms, we derive a Phillips curve equation

as we did in the text. The Phillips curve equation then can be written as

πt =
ξ

1 + ξβ
πt−1 + κ0Et[vt+1] + κ1Et[λt+1 − λt] + κ2vt +

β

1 + ξβ
Et[πt+1], (A.6)

where κ0, κ1, and κ2 are defined as

κ0 =
γρ0κ̄(1− µ̄s̄M )

1 + βξ
; κ1 =

γρ0κ̄

1 + βξ
; κ2 =

(1− γ)κ̃(1− µ̃s̃M ) + γκ̄ρ1(1− µ̄s̄M )
1 + βξ

.

In addition, coefficients ρ0 and ρ1 are defined as

ρ0 = 1− µ̄τψβ(1− δa)(µ̄− 1)
(1− (1− δa)β + µ̄(1− θ)τ)(µ̄− (1− δa)β)

; ρ1 =
µ̄τψ

1− (1− δa)β + µ̄(1− θ)τ
.

Besides, log-linearizing (A.5) for each firm and then summing up resulting equations leads
to

s̄t − at =
m̄ct

1− β(1− δa) + µ̄(1− θ)τ
− β(1− δa)(µ̄− 1)mst

(1− (1− δa)β + µ̄(1− θ)τ)(µ̄− (1− δa)β)
. (A.7)

Given the relationship between marginal costs of gross output and unit costs of value-added
output, this equation can be rewritten as follows:

s̄t − at = b0vt − b1Et[vt+1]− b2Et[λt+1 − λt], (A.8)

where b0, b1, and b2 are defined as

b0 =
1− µ̄s̄M

1− (1− δa)β + τ(1− θ)µ̄
; b1 =

β(µ̄− 1)b0

µ̄− (1− δa)β
; b2 =

b1

1− µ̄s̄M
.

As a result, equations (3.53) and (3.56) are replaced by (A.6) and (A.8) respectively, when
we take into account adjustment costs of sales-stock ratio.
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