UC Berkeley

Earlier Faculty Research

Title

Eco Passes: An Evaluation of Employer-Based Transit Programs

Permalink

https://escholarship.org/uc/item/3t2037jb

Author

Shoup, Donald C.

Publication Date

2004-09-01

Eco Passes: An Evaluation of Employer-Based Transit Programs

Donald C. Shoup
Department of Urban Planning
University of California, Los Angeles
Los Angeles, California 90095-1656
310-825-5705
shoup@ucla.edu

Funded by a UCTC Year 15 Research Grant

Transit agencies have found a new way to increase ridership: offer Eco Pass programs that cater to specific user groups. In these programs, a transit agency sells to groups the right for all of their members to ride public transit without paying a fare. Because all members of the group can ride free, they ride public transit more often. These Eco Pass programs have been developed for universities, workplaces, and the home. Previous research has examined university program s, and has shown that they increase transit ridership, reduce vehicle travel, and reduce parking de mand. The largest potential Eco Pass market is for *workplace* transit programs, but there have be en few studies of these programs. This research examines the cost-effectiveness of workplace transit-pass programs. It explains how the programs work, examines the programs' effects on empl oyee transit ridership and parking demand, calculates the programs' cost-effectiveness, and recommends that cities should reduce the parking requirements at sites that provide Eco Pass programs. A study of Eco Passes in the Silicon Valley found that an employer who spends \$1 a year to provide Eco Passes for employees can save between \$46 and \$1,938 on the capital cost of providing the parking spaces required for commuters. In-lieu Eco Passes appear to be an excellent investment.

Eco Passes: An Evaluation of Employer-Based Transit Programs

Several transit agencies—in Dallas, Denver, Salt Lake, and San Jose, for example—offer employers the option to buy "Eco Passes," which give all their employees the right to ride free on all local transit lines. This arrangement reduces to zero the employees' marginal cost of riding public transit and therefore makes transit (in terms of perceived money cost) similar to driving a nd parking free. Because many commuters won't ride transit even when it is free, the transit age ncies' cost per Eco Pass holder is low, and the agencies can therefore sell the Eco Passes at a sur prisingly low price. In California's Silicon Valley, the Santa Clara Valley Transportation Author ity (SCVTA) charges between \$5 and \$80 a year per employee for Eco Passes, depending on the employer's location and number of employees (see Table 10-1). The passes allow unlimited free rides on any SCVTA bus or rail line, seven days a week.

Table 10-1

The price of an Eco Pass is much lower than that of a conventional pass. Because freque nt riders often buy the conventional passes, transit agencies must price them on the assumption t hat buyers will use them frequently. The price of an Eco Pass is much lower because employers buy the Eco Passes for all commuters regardless of whether they ride transit. The SCVTA's pric e for its Eco Pass ranges from 1 to 19 percent of the price for its conventional pass (\$420 a year).

A numerical example can help explain Eco Pass pricing. Suppose a firm with 100 emplo yees offers conventional transit passes for all commuters who do not take a free parking space. The price of a conventional transit pass is \$400 a year, and 20 commuters choose to ride public tr ansit. In this case, the firm pays \$8,000 a year for 20 conventional passes (\$400 per employee x 20 employees), which amounts to \$80 a year per employee (\$8,000 a year ÷ 100 employees). If, however, the transit agency charges \$80 a year per employee for Eco Passes for all 100 commute rs, it receives the same \$8,000 a year for the Eco Passes (\$80 per employee x 100 employees) that it would receive from the sale of 20 conventional passes at \$400 a year.

Although firms pay the same total amount for 100 Eco Passes or 20 conventional passes, Eco Passes offer a key advantage. With conventional passes, a firm offers commuters free parking *or* free transit. With Eco Passes, the firm can offer everyone free parking *and* free transit; the refore, even commuters who normally drive to work may ride transit occasionally. The firm's co st of offering Eco Passes to all commuters is no higher than the cost of offering conventional passes only to commuters who don't take a free parking space. Offering Eco Passes to all commuters is also simpler than determining who qualifies for a conventional pass each month.

If an employer offers Eco Passes to everyone rather than conventional passes only to non drivers, transit ridership should increase, and this may increase the transit agency's cost of provi ding service. But if the transit system has excess capacity on its buses and trains—and most A merican transit systems do—its costs will not increase, and the system will become more efficien t, with a lower cost per rider. Only 27 percent of the seats on American public transit are regular ly occupied. If Eco Passes induce more commuters to ride public transit, they may be filling ot herwise empty seats.

Cost-Effectiveness of Eco Passes

We can estimate the cost-effectiveness of Eco Passes by comparing their cost with what t hey save on parking. Two of the cities served by the SCVTA—Mountain View and Palo Alto—have in-lieu parking fees, which allow us to estimate the savings on required parking (see Chapte r 9). For the cost-effectiveness comparison I will make two sets of assumptions: one conservative and the other optimistic. In the conservative case, all the assumptions are chosen to show high costs and low savings from the Eco Passes. In the optimistic case, all the assumptions are chosen to show low costs and high savings. Table 10–2 shows the two estimates.

Table 10-2

In 2002, Mountain View charged \$26,000 per required parking space not provided, and P alo Alto charged \$50,994 (row 1 of Table 10-2). Because Mountain View requires 3 parking sp aces per 1,000 square feet of office space, and Palo Alto requires 4 spaces per 1,000 square feet, developers must pay an in-lieu fee of \$78 per square foot of office space in Mountain View if the y do not provide the required parking and \$204 per square foot in Palo Alto (row 3).

A survey of Silicon Valley commuters before and after their employers offered Eco Passe s found that commuter parking demand declined by approximately 19 percent. In this case a cit y could reduce the parking requirement by 19 percent for office developments that offer Eco Passes for all commuters (row 4). If the Eco Passes reduce parking requirements by 19 percent, they reduce the capital cost of parking by \$15 per square foot of office space in Mountain View and by \$39 per square foot in Palo Alto (row 5).

Firms in Silicon Valley pay between \$5 and \$80 a year per employee for Eco Passes (ro w 6). If there are 4 employees per 1,000 square feet of office space (row 7), Eco Passes therefor e cost from 2ϕ to 32ϕ a year per square foot of office space (row 8). The advantage is obvious: for every square foot of office space, spending between 2ϕ and 32ϕ a year on Eco Passes will re duce the one-time capital cost of required parking by between \$15 and \$39.

We can convert these per-square-foot figures into the potential capital savings per annual dollar spent for Eco Passes. With the conservative assumptions, the Eco Passes cost 32ϕ a year (the high annual cost) and save \$15 for required parking (the low capital savings). In this case, spending \$1 a year for Eco Passes will save \$46 on the initial capital cost of providing the required parking (row 9). With the optimistic assumptions, Eco Passes cost only 2ϕ a year and save \$39. In this case, spending \$1 a year for Eco Passes will save \$1,938 on the cost of required parking.

These two cases suggest that a developer who spends \$1 a year for in-lieu Eco Passes (aft er the building is constructed and is earning money) saves between \$46 and \$1,938 on the initial capital cost of required parking—an incredible bargain even under conservative assumptions. Al though the building will supply 19 percent fewer parking spaces, the Eco Passes reduce parking demand by 19 percent, and the smaller parking supply will satisfy demand. Beyond reducing par king demand, the Eco Passes also provide a new fringe benefit to every employee in the building.

Row 10 shows the annual cost of Eco Passes as a percent of the capital cost saved for the required parking. With conservative assumptions, the annual cost for Eco Passes is 2.2 percent of the capital savings for required parking. With optimistic assumptions, the annual cost is only 0. 1 percent of the capital savings. If the developer's cost of capital is above 2.2 percent a year, the Eco Passes will therefore save more on annual interest payments for parking than they cost in an nual payments for transit. In-lieu Eco Passes are a good investment.

These estimates refer only to Mountain View and Palo Alto, but the low cost of reducing parking demand compared with the high cost of increasing the parking supply shows that Eco Pa

sses can greatly reduce the cost of meeting a parking requirement. Both estimates also understat e the cost-effectiveness of Eco Passes because they refer only to capital costs. Since there will be e fewer parking spaces to operate and maintain, Eco Passes will also reduce operating and maint enance costs for the required parking, which average about \$500 a year per space for structured p arking. Finally, developers who provide the in-lieu Eco Passes can still offer free parking to al 1 commuters who want to drive, because the reduced parking supply will meet the reduced parking demand. All else equal, most employees would prefer to work for a firm that offers free parking and free public transit than for a firm that offers only free parking, and the free transit passes are therefore a tax-exempt fringe benefit that helps attract and retain workers.

Benefits of Eco Passes in Lieu of Parking Spaces

Providing Eco Passes in lieu of required parking converts an up-front capital cost for park ing spaces into an annual subsidy for transit, and many developers may want to make this trade. The Eco Passes can yield benefits for developers, property owners, employers, commuters, transit agencies, and cities. A brief description of the benefits to each party shows that everyone can win from the in-lieu Eco Pass arrangement.

Developers and property owners. Some developers may hesitate to provide fewer parkin g spaces than the city requires because they fear that it will make a project less desirable to tenan ts. Eco Passes can skirt this obstacle: by luring some commuters from cars to transit, Eco Passes should reduce parking demand, and free transit for all tenants should increase the project's mark etability. Eco Passes can also help a developer to meet traffic mitigation requirements, reduce a project's environmental impacts, and perhaps lead to a speedier approval process.

Conventional in-lieu fees give developers no site-specific benefit beyond permission to b uild without providing the required parking. The public parking spaces financed by in-lieu fees benefit all developers in the surrounding area, not just the developers who pay for them. In cont rast, Eco Passes provide a site-specific benefit (free transit for all employees in the development) to the developers who buy them, and nothing to other developers. For this reason, developers m ay be more willing to buy in-lieu Eco Passes than to pay conventional in-lieu fees that finance pu blic parking structures everyone can use.

Fewer parking spaces also translate into savings after a building is constructed. The capit al cost of parking is a heavy fixed burden for a new building that has yet to be leased. The annua l cost of Eco Passes, in contrast, varies with the number of workers in the building, so the cost is low if the building is half-empty. Paying a variable cost for Eco Passes instead of a fixed cost fo r parking spaces can therefore reduce the developer's risk, and improve the feasibility of project finance.

Developers and building owners can offer the Eco Passes to all commuters in a building, and this added amenity should allow higher rents. Alternatively, they can transfer the cost of the Eco Passes to employers by requiring all tenants to offer Eco Passes to their employees. Either way, Eco Passes can be more profitable than free parking.

Employers. By shifting some commuters from cars to transit, Eco Passes can save employers some of the money they now spend to subsidize parking. The added fringe benefit of free transit for all commuters will also help recruit workers. Eco Passes are a tax-deductible expense for employers and a tax-free benefit for commuters. Employers will earn higher profits if they save more on reduced parking subsidies than they spend for Eco Passes.^{xi}

Commuters.

Eco Passes clearly benefit commuters who ride transit to work, and commuters who usual

ly drive to work can consider the passes a form of insurance for days when their cars aren't avail able. Eco Passes offer commuters day-to-day flexibility in commuting; public transit is always a n option, not a long-term commitment. Commuters can also use their Eco Passes for nonwork tri ps. In the Silicon Valley survey, 60 percent of commuters reported using their Eco Passes for pu rposes other than commuting, with an average of four nonwork trips a month.

Public transit agencies. Eco Passes are a demand-side transit subsidy paid for by the pri vate sector. If cities allow developers to provide Eco Passes instead of required parking spaces, Eco Pass sales will increase. The reduction in parking subsidies will finance the Eco Passes and will provide a reliable revenue source for transit agencies. Transit planners can also increase ser vice to sites where developers make long-term commitments to purchase Eco Passes because the demand for transit will be higher where all commuters can ride free. These service improvement s will benefit all riders, not just Eco Pass holders, and they may attract additional riders who pay the full fare.

Cities. Parking requirements increase the supply of parking whereas Eco Passes increase the demand for public transportation. Providing Eco Passes in lieu of required parking will there fore convert a supply-side subsidy for cars into a demand-side subsidy for transit. The appropria te reduction in required parking depends on how much Eco Passes reduce parking demand, and c ities should specify the reduction they will grant for offering Eco Passes rather than oblige devel opers and landowners to seek a variance in the parking requirement. Like other zoning variances, parking variances are not granted routinely and must be supported by evidence; the burden of p roof is shifted to the developer, who must prove that some parking spaces will not be needed. A special study to provide data supporting the application for a parking variance may cost several t housand dollars, with no guarantee that the variance will be granted. If cities specify the by-righ t reduction in parking requirements they will give to developers who offer Eco Passes, parking d emand management will become more feasible and profitable. Seattle, for example, reduces the parking requirement for a development by up to 10 percent if transit passes are provided to all e mployees and if transit service is within 800 feet of the development.

Cities can offer bigger reductions in required parking in transit-oriented developments (T ODs) because Eco Passes will reduce parking demand more at sites with better transit service. In these areas, substituting Eco Passes for parking spaces will allow higher density without more vehicle traffic. A survey of TODs in California, however, found that cities did *not* reduce the parking requirements in 7 of the 11 of sites studied. Many cities appear to assume that more transit will not reduce parking demand and, conversely, that more parking will not reduce transit demand.

Eco Passes in lieu of parking spaces can significantly reduce the cost of TODs because p arking spaces are more expensive in denser areas. A study by the California Department of Tran sportation points out the higher burden of parking requirements in TODs:

Increased densities in TODs, coupled with the goal of improving accessibility for pedestrians to transit stations, often means building structured parking garages. P arking spaces in structures can cost from \$10,000 to \$30,000 each, compared to a bout \$5,000 per space for surface parking. . . . These increased costs can negativel y affect the financial feasibility of projects, even if they are otherwise profitable. Hence, if the design and location of TODs enable a reduction in the number of par king spaces needed, the cost savings can be significant. xiii

If cities do not reduce the number of spaces required in a TOD commensurate with the increased cost per space in structures, the cost of the required parking will be higher in a TOD than in a co

nventional development. Suppose, for example, a city requires 4 spaces per 1,000 square feet of floor area in a conventional development, and the developer's cost of surface parking is \$5,000 p er space; the cost of the required parking is thus \$20 per square foot of floor area (4 x \$5,000 \div 1,000). Suppose also the city requires only 2 spaces per 1,000 square feet in a TOD, and the developer's cost of structured parking is \$20,000 per space; the cost of the parking required for a TO D is thus \$40 per square foot of floor area (2 x \$20,000 \div 1,000), or twice the cost in a conventional development. Allowing a TOD developer to offer low-cost Eco Passes in lieu of high-cost parking spaces can thus improve the TOD's financial feasibility.

A study of travel patterns in California found that, in practice, TOD employers are far mo re likely to offer commuters free parking than a transit subsidy. In Los Angeles, for example, 89 percent of all commuters who worked in a TOD in Hollywood were offered free parking, while o nly 19 percent were offered a transit subsidy. In Orange County, 87 percent of commuters in a TOD in Anaheim were offered free parking, while only 8 percent were offered a transit subsidy. In San Diego, 83 percent of commuters in a TOD in Mission Valley were offered free parking, while only 17 percent were offered a transit subsidy. The TODs were also embedded in regions where free parking was the norm, and this free parking elsewhere had a major influence on the TOD residents' travel behavior. Among TOD residents, only 5 percent of those whose employers offered free parking rode transit to work, while 45 percent of those whose employers did *not* offer free parking rode transit. TODs will have little effect on travel behavior if parking remains free everywhere, even in the TODs themselves, and transit remains expensive.

Providing Eco Passes instead of parking spaces will increase transit ridership, reduce the cost of transit-oriented development, improve urban design, reduce the need for variances, and re duce traffic congestion, air pollution, and energy consumption. These benefits will come at low cost if the transit system has excess capacity, as most do. Furthermore, cities that offer the in-lie u option will encourage job growth because development costs will be lower than in neighboring cities that require parking spaces with no in-lieu alternative. Reducing the demand for parking will also shift land from parking spaces to other uses that employ more workers and generate mo re tax revenue.

In-lieu Eco Passes are simpler than conventional in-lieu parking fees because they elimin ate the need to construct, operate, and maintain parking structures. Cities can enforce property o wners' obligations to purchase the in-lieu Eco Passes by imposing covenants or conditional use p ermits on land for which the required parking is not provided. The transit agencies will have a st rong financial incentive to ensure that property owners buy the required Eco Passes, and they can help in the enforcement process, since their contracts at each site will automatically show wheth er property owners are fulfilling their obligations. xvi

Transit Passes Instead of Parking Spaces for Various Land Uses

The preceding calculations refer to providing transit passes at employment sites. But citi es can also allow transit passes instead of parking spaces at other land uses, such as universities, theaters, stadiums, hotels, and apartments.

Some universities contract with their local transit agencies to accept their student (and in some cases staff) ID cards as transit passes. The ID cards function as Eco Passes and reduce the demand for parking on campus. These programs are generically known as Unlimited Access, an d they have spread rapidly during the past decade. Unlimited Access programs do not provide free transit; instead, they are a new way to pay for transit. The university pays the transit agency, and all eligible members of the university community ride free. When UCLA began its Unlimit

ed Access program in 2000, for example, the faculty/staff bus mode share for commuting to cam pus rose from 8.6 percent before the program began to 20.1 percent afterward. The number of fa culty/staff bus riders increased by 134 percent, and the number of solo drivers fell by 9 percent. xviii If universities offer these Unlimited Access programs, cities can waive some of the required parking the universities would otherwise have to build.

A similar arrangement can be offered for stadiums that offer free transit passes to all ticke t holders. The University of Washington has a contract with Seattle Metro that allows stadium ti ckets to serve as transit passes on the game day. Between 1984 (the year before the program beg an) and 1997, the share of ticket holders arriving at Husky Stadium by transit increased almost fi ve times (from 4.2 percent to 20.6 percent). Including a transit pass in the ticket price is particularly appropriate for any land use where the peak parking demand occurs infrequently, perhaps only a few days each year. Building enough parking to meet this peak demand is extremely wast eful because additional public transit service can be provided on event days to serve the peak at a far lower cost. Although not related to the issue of parking requirements, public transportation was free to all passengers with tickets for the games during the 2004 Athens Olympics, and atten dees used public transportation for almost all their trips. Tickets to concerts and athletic events a lso serve as transit passes on the event day in many German cities. Because season ticket holder s have a free transit pass for every event, they have a stronger incentive to consider public transport as an alternative, and their savings on paying for parking can be considerable.

The transit-in-lieu-of-parking arrangement can be extended to all manner of land uses. H otels that offer transit passes to every guest, for example, may attract more visitors who don't bri ng cars. Guests can avoid the hassle and expense of renting a car, reinforcing tourists' willingne ss to try public transit in a new city where they don't have a car. Even without any regulatory in centive, some hotels already offer free shuttles to popular destinations or offer guests free tokens on public transit. More hotels will begin to offer free transit passes if cities reciprocate by reducing their parking requirements. Coronado, California, for example, reduces the parking requirements for hotels and motels that offer free transit tickets to guests.^{xx}

A city can also reduce parking requirements for apartment developers who offer free tran sit passes for residents. The Centre Area Transportation Authority in State College, Pennsylvani a, charges about \$100 a year per apartment (depending on location) to give all residents transit p asses for the lines serving their apartment buildings. Participating developers are encouraged to i nclude transit amenities in their site designs (bus shelters and bus pull-off lanes). Apartment ow ners advertise these transit passes as one of the amenities they offer. The apartment transit passes a attract tenants who own fewer than the average number of cars and are appropriate in areas with good transit service and a smaller parking supply.

Finally, a city can require developers to reduce parking demand if they want to provide m ore parking spaces than the zoning requires. If the minimum parking requirement for an office b uilding is 4 spaces per 1,000 square feet, for example, and a developer wants to provide 5 per 1,0

00, a city could require the developer to offer Eco Passes at the site in exchange for permission to build the extra spaces. This would not restrict the maximum number of parking spaces, but developers would have to try to reduce parking demand before they received permission to increase the parking supply. Offering transit passes could reduce parking demand enough that a develop er would no longer want to provide more than the required number of spaces.

In summary, a small annual outlay for transit passes can substantially reduce the large ca pital cost of required parking at many land uses. This new in-lieu option will save money for de velopers and employers, give commuters a new choice, fill empty seats on public transit, and red uce traffic congestion and air pollution.

TABLE 10-1 ECO PASS PRICE SCHEDULE

Santa Clara Valley Transportation Authority
(annual price per employee)

		Number of employees			
Employer's location	<u>1-99</u>	100-2,999	3,000-14,999	<u>15,000+</u>	
Downtown San Jose	\$80	\$60	\$40	\$20	
Areas served by bus and light rail	\$60	\$40	\$20	\$10	
Areas served by bus only	\$40	\$20	\$10	\$5	
Source: Santa Clara Valley Transportation Authority, 2001.					

i .

See the SCVTA's website www.vta.org/eco_pass.html for details of the Eco Passes. The Eco Pass's price includes a guaranteed ride home. On any day they ride transit to work, commuters are entitled to a free taxi ride home in the event of illness, emergency, or unscheduled over ertime. The public transit systems in Boulder and Denver, Colorado, and Salt Lake City, Utah, of fer similar Eco Pass programs.

ii .

Eco Passes avoid the problem of "adverse selection." The concept of adverse selection w as developed in the context of insurance coverage. Adverse selection describes the tendency for people with a greater potential of loss to purchase more insurance. This tendency leads to higher loss payments, and then to higher insurance premiums for everyone who is insured. Similarly, a dverse selection increases the cost of conventional transit passes sold to the public. Because freq uent transit riders often buy monthly passes, transit agencies must price these passes on the assu mption that passholders are frequent riders. There can also be adverse selection among employe rs. Firms with many commuters who ride transit will have an incentive to buy the Eco Passes, and this will tend to increase the transit operators' cost.

iii .

In the example, 20 percent of commuters opt for the conventional transit passes. Because all commuters get Eco Passes, and not just those who ride transit every day, the daily transit ride rship may increase. Although some commuters who had opted for the conventional transit passes rather than parking spaces may begin to drive to work on some days, those who previously drove to work every day may begin to ride transit occasionally.

iv .

See Federal Transit Administration (1998) for data on annual passenger miles and annual vehicle revenue miles for public transit systems in the U.S. Dividing the 17.5 billion passenger miles traveled on bus transit in 1997 by the 1.6 billion vehicle revenue miles of service on bus transit gives an average occupancy of 10.9 passenger miles per bus mile $(17.5 \div 1.6 = 10.9 \text{ passengers per bus})$. Dividing the average bus occupancy of 10.6 passengers by the average bus capacit y of 40 seats gives an average seat occupancy of 27 percent $(10.9 \div 40 = 27 \text{ percent})$; that is, if al 1 passengers are seated during their trips, only 27 percent of bus seats are occupied. This calculat ion overestimates the number of bus seats that are occupied because some passengers stand rathe r than sit. An average bus occupancy of 10.9 passengers may seem low, but Davis and Diegel (2 002, Table 2.11) estimated that the average bus occupancy was only 9.2 passengers in 2000. Nat urally, some transit vehicles are packed at rush hours, but this must be a small percentage of all transit vehicle-miles for the average occupancy to be only 27 percent. If Eco Passes increase rider ship during the hours when capacity must be increased to carry more riders, the marginal cost of the additional riders can be high.

v. See Table 9-4 for the cities's in-lieu fees in 2002.

vi. Santa Clara Valley Transportation Authority (1997).

vii

Suppose the Eco Pass costs \$80 a year per employee. If there are 4 employees per 1,000 square feet of office space, the Eco Passes cost \$320 a year per 1,000 square feet of office space $(4 \times \$80)$, or $32 \not\in 4$ a year per square foot of office space $(\$320 \div 1,000)$. The SCVTA charges the highest price of \$80 a year per employee only in downtown San Jose, and the highest price elsew here is only \$60. The table thus overstates the highest cost of Eco Passes in Mountain View and Palo Alto by 33 percent, and the calculations in Table 10-2 are even more conservative.

viii. Mary Smith (1999, 535). This estimate excludes property taxes.

ix

If the off-street parking requirements satisfy the commuter demand for free parking, empl oyers have enough spaces to offer everyone free parking. If cities offer a reduction in parking re quirements equal to the reduction in parking demand caused by the in-lieu Eco Passes, the requir ed parking supply still meets the demand for free parking, but everyone also can ride transit for f ree.

X

The developers who pay the conventional in-lieu fees to finance public parking structure s thus inadvertently subsidize their competition, who also benefit from the public parking spaces.

xi .

For example, if the Eco Passes cost \$40 a year per employee and they reduce the demand for commuter parking by 19 percent (as found in the Silicon Valley), the Eco Passes save more t han \$40 a year per employee on parking subsidies if the firm had been spending more than \$211 a year per employee to subsidize parking (because reducing a parking subsidy of \$211 a year by 19 percent saves \$40 a year). Many firms spend far more than this break-even value of \$211 a year (\$17.60 a month) per employee to subsidize parking.

- xii. California Department of Transportation (2002, Appendix B).
- xiii. California Department of Transportation (2002, 1).
- xiv. Lund, Cervero, and Willson (2004, 88).
- xv. *Ibid.* (64).

xvi

Employees will also know whether their employer continues to offer the Eco Passes, and they might report an employer who failed to comply with a covenant to provide Eco Passes.

xvii

Universities have given their programs a variety of names—such as BruinGO, ClassPass, SuperTicket, and UPass. See Brown, Hess, and Shoup (2001) for a survey of 35 Unlimited Acc

ess programs. There were more than 60 programs by 2002.

xviii. Brown, Hess, and Shoup (2003).

xix. University of Washington Transportation Office (1997).

XX

"The parking requirement for a hotel or motel facility may be reduced by the City during parking plan review by up to twenty percent if . . . complimentary transit tickets are provided to customers and employees, free use of bicycles is similarly provided, and telephones, faxes, comp uters with modems, and other business machines are readily available on site" (Section 86.58.23 0E of the Coronado Municipal Code). Many hotels in German cities have also arranged for their hotel guest identification to serve as a transit pass.

xxi. Portland TriMet (2002, 3-11).