Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Sub-wavelength resonant structures at microwave and optical frequencies

Abstract

Sub-wavelength scale resonant structures have been at the forefront of physics and engineering in the past decade. They offer a path for creation of new materials and great advancements in the field of photonics. This dissertation deals with design, fabrication and characterization of sub -wavelength resonant structures. In the first part, we investigate the application of passive sub-wavelength resonators in meta-materials --- materials that have electromagnetic properties otherwise unattainable in nature. We develop a technique for characterization of negative index meta-materials by free-space measurement of the phase change in the meta-material. We also discuss the application of sub-wavelength resonators to highly efficient antenna design. In the second part of the dissertation we focus on active sub-wavelength resonant structures, specifically nanolasers. We present a first truly sub-wavelength nanolaser operating at the room temperature and later investigate cryogenic operation of this laser design. We also offer a new, highly compatible, fabrication approach that could enable the integration of nanolasers in various silicon photonic devices. Lastly, we show a coaxial nanolaser that offers some new and truly unique features. For one it is the first sub-wavelength laser that operates at continuous wave at room temperature. More importantly, it exhibits single mode, thresholdless lasing at cryogenic temperatures. We discuss the significance and the implications of these results

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View