Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Spectrally efficient underwater acoustic communications : channel characterization and design aspects for OFDM

Abstract

In this dissertation, we consider design aspects of spectrally efficient underwater acoustic (UWA) communications. In particular, we first focus on statistical characterization and capacity evaluation of shallow water acoustic communications channels. Wideband single-carrier and multi-carrier probe signals are employed during the Kauai Acoustic Communications MURI 2008 (KAM08) and 2011 (KAM11) experiments, to measure the time-varying channel response, and to estimate its statistical properties and capacity that play an important role in the design of spectrally efficient communication systems. Besides the capacity analysis for unconstrained inputs, we determine new bounds on the achievable information rate for discrete-time Gaussian channels with inter-symbol interference and independent and uniformly distributed channel input symbols drawn from finite-order modulation alphabets. Specifically, we derived new bounds on the achievable rates for sparse channels with long memory. Furthermore, we explore design aspects of adaptive modulation based on orthogonal frequency division multiplexing (OFDM) for UWA communications, and study its performance using real-time at-sea experiments. Lastly, we investigate a channel estimation (CE) method for improving the spectral efficiency of UWA communications. Specifically, we determine the performance of a selective decision directed (DD) CE method for UWA OFDM-based communications

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View