
UC Berkeley
Other Recent Work

Title
Addiction and Present-Biased Preferences

Permalink
https://escholarship.org/uc/item/3v86x53j

Authors
O’Donoghue, Ted
Rabin, Matthew

Publication Date
2002-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3v86x53j
https://escholarship.org
http://www.cdlib.org/


Working Paper No.  E02-312

Addiction and Present-Biased Preferences

Ted O’Donoghue
Cornell University

Matthew Rabin
University of California, Berkeley

February 2002

Abstract
We investigate the role that self-control problems — modeled as time-inconsistent, present-biased
preferences —and a person’s awareness of those problems might play in leading people to develop and
maintain harmful addictions. Present-biased preferences create a tendency to over-consume addictive
products, and awareness of future self-control problems can mitigate or exacerbate this over-
consumption, depending on the environment. Our central concern is the welfare consequences of this
over-consumption. Our analysis suggests that for realistic environments self-control problems are a
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1. Introduction

Over the years, researchers from a variety of fields have investigated the consumption of harmful

addictive products, such as cigarettes and alcohol, in an attempt to understand why people develop

and maintain seemingly destructive addictions. Recently, economists such as Becker and Murphy

(1988) have studied rational-choice models of addiction. These models make the natural assump-

tion that people are forward-looking and take into account how current consumption of addictive

products will affect their future well-being. But since these models assume in addition that people

are ‘‘100% rational’’, they a priori rule out a variety of explanations for addictive behavior that

many observers consider important. Most non-economists — and we suspect many economists as

well — do not view rational-choice models of addiction to be a fully adequate description of why

people develop and maintain harmful addictions.

In this paper, we investigate the role that self-control problems — and a person’s awareness of

those problems — might play in harmful addictions. We delineate the ways in which self-control

problems might lead to suboptimal over-consumption of an addictive product. But our main con-

cern is the welfare consequences of this over-consumption, and in particular determining whether

self-control problems are a plausible source of severely harmful addictions.

In Section 2, we introduce a model of addiction in which a person decides each period whether

to ‘‘hit’’ or ‘‘refrain’’. This binary-choice model is more tractable than previous models, while still

incorporating the two crucial characteristics of harmful addictive products found in these previous

models. First, harmful addictive products involve negative internalities : The more of the product

a person has consumed in the past, the lower is his overall well-being now. Second, they involve

habit formation : The more of the product a person has consumed in the past, the more he desires

that product now. The combination of negative internalities and habit formation creates the trap

of addiction: As a person consumes more and more of an addictive product, he gets less and less

pleasure from its consumption, yet he may continue to consume the product because refraining

becomes more and more painful.

We model self-control problems by assuming that people have time-inconsistent present-biased

preferences, whereby they pursue immediate gratification in ways that do not correspond to their

long-run well-being. We apply a simple model of such preferences that was originally proposed

by Phelps and Pollak (1968) in the context of intergenerational altruism, and first used by Laibson
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(1994,1997) to capture self-control problems within an individual. To examine the role of aware-

ness of future self-control problems, we consider two extreme assumptions about such awareness:

Sophisticates are fully aware of their future self-control problems, and naifs are fully unaware of

their future self-control problems. By systematically comparing sophisticates and naifs to people

with standard, time-consistent preferences — whom we refer to as TCs — we can delineate how

predictions depend both on present-biased preferences per se and on assumptions about foresight.1

In Section 3, we go through an example that illustrates our most basic results. We first show that

naifs are always more prone to hit than TCs, reflecting that the direct implication of present-biased

preferences is a tendency to over-consume addictive products. Intuitively, the decision whether to

consume an addictive product boils down to whether the current desire to consume outweighs the

future cost of this consumption, and a preference for immediate gratification makes a person more

prone to conclude that hitting is worthwhile. We next show that sophisticates can be more or less

prone to hit than naifs, reflecting that awareness canmitigate or exacerbate over-consumption. This

ambiguity arises because there are two ways in which awareness can influence current behavior.

First, sophisticates are pessimistic about their future behavior, and believe in general that they will

hit more often in the future than TCs will (and than naifs think they will). We show in Section 3 that

the habit-forming property of addictive goods implies that this pessimism effect tends to exacerbate

over-consumption due to present-biased preferences. But the pessimism effect can be counteracted

by an incentive effect : Because sophisticates are worried about improper future over-consumption,

they may refrain now in an attempt to induce themselves to resist temptation in the future.

In Section 4, we consider a stationary model of addiction that assumes a person’s desire to con-

sume the product depends on past consumption but is otherwise constant over time. While sta-

tionarity is unrealistic, it is useful as a base case and to clarify some important intuitions.2 In this

environment, sophisticates are more likely than naifs to develop a harmful addiction, but are also

1 For other papers on self-control problems and addiction, see Caillaud, Cohen, and Jullien (1996), Carrillo (1999),
O’Donoghue and Rabin (1999b ), and Gruber and Koszegi (2000). Caillaud, Cohen, and Jullien use a different frame-
work to show that if people follow ‘‘self-restrained strategies’’ they might consume in moderation. Carrillo examines
sophisticates, and shows that if there is rational uncertainty about negative internalities for addictive products, then
sophisticates may abstain so as to avoid learning that the internalities are sufficiently small to justify continued con-
sumption. O’Donoghue and Rabin analyze sophisticates and naifs in a simplified version of the model studied here.
Gruber and Koszegi also analyze sophisticates and naifs; their main theoretical conclusions involve optimal cigarette
taxation designed to counteract over-consumption due to self-control problems. All these papers, except O’Donoghue
and Rabin’s, assume that consumption is a continuous choice, and for simplicity limit attention to stationary environ-
ments. See also Elster (1999).
2 Stationarity is assumed in all rational-addiction models with which we are familiar, and also in Caillaud, Cohen,
and Jullien (1996), Carrillo (1999), and Gruber and Koszegi (2000).
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more likely than naifs to quit an established addiction. These results reflect the interplay between

the pessimism and incentive effects in the stationary environment, and in particular how the incen-

tive effect is stronger the more addicted a person is. We then ask whether self-control problems

represent a plausible source of severe harm, and identify two potential sources of severe harm in

the stationary model. First, to the extent that people are sophisticated, they may suffer severe harm

due to feelings of inevitability. Even when a person would prefer non-addiction, if he thinks he’ll

get addicted in the future no matter what he does today, he may conclude that he might as well start

consuming today. Second, to the extent that people are naive, they may suffer severe harm from

procrastination in quitting. Even when quitting is well worth it, if the person prefers quitting in the

near future rather than now, he may repeatedly delay quitting.

In Section 5, we relax the unrealistic assumption of stationarity, and explore a ‘‘youthful’’ model

in which for any given addiction level the temptation to hit is larger earlier in life than later in

life. We use this model to show that the stationary model yields overly pessimistic predictions

with regard to sophisticates and overly optimistic predictions with regard to naifs. In the stationary

model, sophisticated self-control problems are problematic when they cause a person to feel that

addiction is inevitable; in the youthful model, inevitability is less likely — in particular, there is

no inevitability under the plausible assumption that the person eventually matures to a point where

he would have no desire to consume if he were unaddicted at that time. In the stationary model,

naive self-control problems are problematic when they cause a person to procrastinate quitting

an established addiction; in the youthful model, large initial temptations provide the catalyst for

establishing addictions which naifs never quit.

We also use the youthful model to explore the role of temporary temptations in developing harm-

ful addictions. While Becker and Murphy (1988) show how it can be optimal for a person to main-

tain a severely harmful addiction, their steady-state model provides no formal analysis of why the

person would choose to develop this harmful addiction in the first place.3 In their informal discus-

sion, Becker and Murphy suggest events such as youth, divorce, and the death of a loved one as

possible sources of harmful addictions. The youthful model permits us to directly investigate this

3 This shortcoming has been recognized in the rational-addiction literature, and fixes have been proposed. Orphanides
and Zervos (1995) andWang (1997) posit that peoplemight develop harmful addictions due to rational uncertainty about
the addictiveness of a product. Suranovic, Goldfarb, and Leonard (1999) and Goldbaum (2000) posit that people might
get addicted while young and later quit because the detrimental effects of consumption occur mainly at the end of a
person’s life. We feel there is some truth to both these stories, but we also feel that they are complements — and not
substitutes — to our approach.
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hypothesis, and in particular to ask whether a person would indulge his short-term desire despite

its long-term consequences. We show that while such events can clearly cause an addiction for all

three types, such an addiction can be severely harmful only for naifs.

Our analysis in Sections 4 and 5 assumes that prices are held constant; in Section 6 we explore

the effects of price on consumption. Although consumption is a discrete choice in our model, and

therefore our analysis of price comparative statics is necessarily crude, we are able to capture some

important intuitions for TCs and naifs. While the qualitative effects of price changes are the same

for TCs and naifs, our model predicts different quantitative effects. In particular, because naifs

underestimate their own future consumption, the effects of future prices on current consumption

are much smaller for naifs than for TCs. This intuition might provide an explanation for the puzzle

in the empirical literature on rational addiction that temporary price changes and permanent price

changes have similar effects on consumption. Under the maintained hypothesis of time consistency,

this empirical result implies that people have absurd discount rates. But our model suggests that

this empirical result might be consistent with a reasonable long-term discount rate combined with

a small self-control problem about which the person is naive.

Finally, we conclude in Section 7with a discussion of some general lessons to take away fromour

analysis, with an emphasis on why we feel our model of addiction and present-biased preferences

is an improvement on rational-choice models of addiction.

2. The Model

The crucial feature of addictive products is that past consumption affects current well-being. Becker

and Murphy (1988) provide a model of instantaneous utility functions that captures this feature.4

In this paper, we introduce a simplified version of their model: Whereas most models of addiction

follow Becker and Murphy (1988) in assuming consumption is a continuous choice, we model

consumption as a binary choice. Our model maintains the key features of Becker and Murphy’s

model, and our main conclusions are driven by these features. But by assuming a less realistic

binary choice, our model is significantly more tractable, allowing us to solve for optimal behavior

rather than merely steady-state behavior, and permitting analysis of a richer array of environments.

Most importantly, we are able to directly analyze the role of non-stationarities in the temptation to
4 For earlier work on habit formation using a similar formulation, see Pollak (1970) and Ryder and Heal (1973).
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consume, which seem likely to play an important role in why people develop harmful addictions.

We consider a discrete-time model with periods 1, ..., T , where we consider both T < ∞ and

T = ∞. Each period, a person can either take a ‘‘hit’’, in which case his consumption at = 1, or
‘‘refrain’’, in which case at = 0. In a given period, the person decides only whether to hit now, and

has no way to commit to future behavior. For most of our analysis, we assume that the addictive

product is free, which helps highlight the fact that people may avoid addictive products not because

of their purchase price per se, but rather because of their detrimental long-run consequences. We

explore the role of prices for consumption in Section 6.

Let kt be the person’s addiction level in period t, which captures all effects of past consumption

for period-t instantaneous utility. We assume kt evolves according to the equation kt = γkt−1+at−1,

where γ ∈ [0, 1) is a parameter indicating the rate at which an addiction decays. When γ = 0,

refraining for a single period gets the person completely unaddicted. For γ close to 1, refraining

reduces the person’s addiction level very little. The appropriate γ depends on both the nature of the

addictive product being examined, as well as on the time scale of each ‘‘period’’, be it a day, a year,

or an epoch of one’s life. This formulation implies a maximum addiction level: If the person hits

every period, his addiction level converges to kmax ≡P∞
t=1 γ

t−1 = 1
1−γ .

5

We assume the person’s instantaneous utility function in period t is

ut(at, kt) ≡
½
xt + f(kt) if at = 1
yt + g(kt) if at = 0.

Without loss of generality, we set f(0) = g(0) = 0, and we often drop the subscript t from kt and at
when there is no danger of confusion. This formulation allows for the instantaneous utility function

to be constant across time or to vary.

The temptation to hit in period t is ht(k) ≡ ut(1, k) − ut(0, k) = [xt − yt] + [f(k)− g(k)],
which is the person’s instantaneous marginal utility from hitting. The temptation to hit consists of

two components: an exogenous component xt − yt ≡ x̄t that is independent of past consumption,
and an endogenous component f(k)− g(k) that depends on past consumption.
Our analysis hinges on two characteristics of addictive products. First, they generate negative

internalities: The more the person has consumed in the past, the smaller is his current well-being.

Negative internalities include health, job, and personal problems caused by past consumption. Neg-

5 The parameter γ corresponds to (1− δ) in Becker and Murphy (1988). This formulation is potentially restrictive in
that it combines into a single parameter the rate at which a person becomes addicted when hitting and the rate at which
a person becomes unaddicted when refraining.
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ative internalities also include ‘‘tolerance’’ — the loss in enjoyment of an addictive substance due

to regular consumption.6 Formally:

Definition 1. A product has negative internalities if for all k, f 0(k) < 0 and g0(k) < 0.

In addition to generating negative internalities, addictive products are habit-forming: The more

of the product the person has consumed in the past, the more he will be tempted to consume now.7

Formally:

Definition 2. A product is habit-forming if for all t and k, h0t(k) = f 0(k)− g0(k) > 0.

Although negative internalities are incorporated into both f and g, we often refer to f(k) ≤ 0
as the internality cost of past consumption, and g(k) − f(k) ≤ 0 as the additional cost of past

consumption due to habit formation. A person incurs the internality cost f(k) no matter what he

does in period t; he incurs the additional cost g(k)−f(k) only if he refrains in period t. Hence, habit
formation implies that the cost of past consumption is larger when the person refrains as opposed

to hit. This feature of addictive products will play an important role in our analysis.

Besides assuming negative internalities and habit formation, we assume that f and g are weakly

convex in k: f 00(k) ≥ 0 and g00(k) ≥ 0.8 The more addicted the person becomes, the less a given
increase in k hurts his instantaneous utility, and therefore the less harm hitting does to future utility.

In fact, we shall often assume that the instantaneous utility function takes the following linear form:

ut(a, k) ≡
½
xt − ρk if a = 1
yt − (ρ+ σ)k if a = 0.

In this formulation, the parameter ρ > 0 represents the internality cost, and the parameter σ > 0

represents the additional cost due to habit formation.

The trade-off between the temptation to hit and its future costs is the crux of the choice to be-

come addicted. How people weigh this trade-off depends on their intertemporal preferences. The

6 We borrow the term ‘‘internalities’’ from Herrnstein, Loewenstein, Prelec, and Vaughn (1993), who define an in-
ternality to be a ‘‘within-person externality’’. Of course, some products generate positive internalities, in particular
learning and other ‘‘investment goods’’ that have long-term benefits. But harmful addictive products are generally
thought to generate negative internalities, and that is the case we focus on in this paper.
7 Internalities and habit formation are not inherently tied together; eating cheesecake may generate negative inter-
nalities, but is not necessarily habit-forming.
8 Most results hold even if f and g are a little concave, and some do not rely at all on them being convex. Note that
we make no assumption about whether the endogenous temptation f(k)− g(k) is convex or concave.
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standard economics model assumes that intertemporal preferences are time-consistent : A person’s

relative preference for well-being at an earlier date over a later date is the same no matter when

she is asked. But there is a mass of evidence that intertemporal preferences take on a specific form

of time inconsistency : A person’s relative preference for well-being at an earlier date over a later

date gets stronger as the earlier date gets closer.9 In other words, people have self-control problems

caused by a tendency to pursue immediate gratification in a way that their ‘‘long-run selves’’ do not

appreciate.

In this paper, we apply a simple form of such present-biased preferences, using a model origi-

nally developed by Phelps and Pollak (1968) in the context of intergenerational altruism, and first

used by Laibson (1994,1997) to capture self-control problems within an individual.10 Let ut be

the instantaneous utility the person gets in period t. Then his intertemporal preferences from the

perspective of time t can be represented by the following intertemporal utility function:

U t(ut, ut+1, ..., uT ) ≡ ut + β
TX

τ=t+1

δτ−tuτ .

The parameter δ represents ‘‘time-consistent’’ discounting, while the parameter β represents the

‘‘present bias’’. For β = 1 these preferences reduce to (the discrete version of) exponential dis-

counting, whereas for β < 1 these preferences parsimoniously capture the time-inconsistent pref-

erence for immediate gratification.11

To analyze the role of awareness of future self-control problems, we consider two types of peo-

ple representing extreme assumptions about such awareness: Sophisticates are fully aware of their

future self-control problems; and naifs are fully unaware of their future self-control problems.12 We
9 See, for instance, Ainslie (1975, 1991, 1992), Ainslie and Haslam (1992a, 1992b ), Loewenstein and Prelec (1992),
Thaler (1991), and Thaler and Loewenstein (1992). While the rubric of ‘‘hyperbolic discounting’’ is often used to
describe such preferences, we use the term ‘‘present-biased preferences’’ to reflect the qualitative feature of the time
inconsistency that is more general, and more generally supported by empirical evidence, than the specific hyperbolic
functional form.
10 This model has since been used by Laibson (1996), Harris and Laibson (forthcoming), O’Donoghue and Rabin
(1999a, 1999b, 1999c, 2001), Fischer (1997), Carrillo (1999), Carrillo andMariotti (2000), Gruber andKoszegi (2000),
and others.
11 We often refer to the time-consistent discount factor δ not as a preference parameter, but rather as a ‘‘relevance’’
parameter, interpreting 1− δ as the probability of dying between periods t and t+ 1. But none of our results depend
on this interpretation of δ.
12 These assumptions (and the labels) were originally laid out by Strotz (1956) and Pollak (1968). While there is
limited evidence, people clearly exhibit elements of both sophistication and naivete. Most papers studying time-
inconsistent preferences assume sophistication (e.g., Laibson (1994, 1996, 1997), Harris and Laibson (forthcoming),
Fischer (1997), Carrillo (1999), Carrillo and Mariotti (2000)). Akerlof (1991), O’Donoghue and Rabin (1999a, 1999b,
1999c ), and Gruber and Koszegi (2000) also consider naive beliefs. O’Donoghue and Rabin (2001) formalize and
analyze a case of partial naivete in between these two extremes.

7



also analyze standard time-consistent agents, whom we refer to as TCs. It is a useful benchmark

to understand how TCs would behave, and moreover understanding the behavior of TCs provides

a useful analytical tool for understanding the behavior of naifs. But most importantly, the behav-

ior of TCs represents how sophisticates and naifs would like to behave if asked from some prior

perspective (before period 1). We make use of this last point in our welfare analysis.

To analyze the behavior of these three types of people, we assume people follow perception-

perfect strategies (O’Donoghue and Rabin, 1999a ). In words, a person chooses to hit in period t

if and only if hitting in period t is optimal given his period-t preferences and his period-t beliefs

about how he will behave in the future. In order to formally describe both behavior and beliefs, we

define a strategy as a function α : [0, kmax] × {1, 2, ..., T} → {0, 1}, where strategy α prescribes
action α(k, t) in period t when the addiction level is k.

Define Ut(kt,α) to be the person’s period-t long-run utility from following strategy α given

period-t addiction level kt. ‘‘Long-run utility’’ represents the person’s intertemporal preferences

from a prior perspective that is temporally removed from the current desire for immediate grat-

ification — that is, the person’s intertemporal preferences when β = 1. A useful way to write

Ut(kt,α) is to break it down into the immediate instantaneous utility and the intertemporal utility

beginning next period:

Ut(kt,α) =

 [xt + f(kt)] + δUt+1 (γkt + 1,α) if α(kt, t) = 1

[yt + g(kt)] + δUt+1 (γkt,α) if α(kt, t) = 0.

Consider a person in period t whose current addiction level is k, and suppose this person per-

ceives that he will follow strategy αp beginning in period t+1. This person believes that if he hits

this period then his intertemporal utility beginning next periodwill beUt+1(γk+1,αp), and that if he

refrains this period then his intertemporal utility beginning next periodwill beUt+1(γk,αp). Hence,

he perceives the (undiscounted) future cost from hitting to be Ut+1(γk,αp)−Ut+1(γk+1,αp). He
would then hit in period t if and only if the current temptation to hit ht(k) is larger than the (dis-

counted) future cost from hitting. For simplicity, we assume a person hits when indifferent.

Given this framework, we can formally define perception-perfect strategies for the three types

of people. Because TCs correctly predict their future behavior, and because TCs discount the future

8



cost of hitting by δ, we define perception-perfect strategies for TCs as:

Definition 3. A perception-perfect strategy for TCs is a strategy αtc that satisfies for all k ≥ 0
and for all t, αtc(k, t) = 1 if and only if ht(k) ≥ δ [Ut+1 (γk,α

tc)− Ut+1 (γk + 1,αtc)].

At any point in time, naifs believe they will behave like TCs beginning next period — that is,

in any period naifs perceive that they will follow strategy αtc beginning next period. Because naifs

discount the future cost from hitting by βδ, we define perception-perfect strategies for naifs as:

Definition 4. A perception-perfect strategy for naifs is a strategy αn that satisfies for all k ≥ 0
and for all t, αn(k, t) = 1 if and only if ht(k) ≥ βδ [Ut+1 (γk,α

tc)− Ut+1 (γk + 1,αtc)].

Sophisticates, like TCs, predict exactly how theywill behave in the future. But sophisticates, like

naifs, discount the future cost from hitting by βδ. Hence, we define perception-perfect strategies

for sophisticates as:

Definition 5. A perception-perfect strategy for sophisticates is a strategy αs that satisfies for all
k ≥ 0 and for all t, αs(k, t) = 1 if and only if ht(k) ≥ βδ [Ut+1 (γk,α

s)− Ut+1 (γk + 1,αs)].

For TCs and naifs, this solution concept is equivalent to them formulating an optimal consump-

tion path in each period and choosing the current action that is part of that consumption path.13 TCs

always stick to the consumption path chosen in the first period, whereas naifs often revise their

chosen consumption paths as their preferences change from period to period. For sophisticates, in

contrast, this solution concept implies that they are in a sense playing a game against their future

selves. Hence, their behavior partly reflects ‘‘strategic’’ reactions to bad behavior by future selves

that they cannot directly control, and partly reflects attempts to induce good behavior from future

selves.14

Because our goal is to analyze the role of self-control problems in generating harmful addictions,

our analysis ignores a variety of other ‘‘errors’’ that might be important for addiction. We assume

13 We assume throughout that an optimal consumption path exists.
14 Conspicuously absent from our model is the use of external commitment devices. Alcoholics sophisticated about
their self-control problems may, for instance, choose to check themselves into the Betty Ford Clinic. Note that the
existence of external commitment devices would not affect the behavior of naifs (or TCs) since they believe they will
behave themselves in the future and therefore see no need for commitment devices.
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throughout, for instance, that people correctly predict how the temptation to consume evolves over

time, and that people correctly predict how current consumption affects future instantaneous utility

functions.15 We leave the analysis of other errors, and how self-control problems might interact

with those errors, for future research.

3. An Example and Some Basic Results

In this section we work through an example that illustrates some important intuitions, and in the

process we derive some basic results that hold for any instantaneous utilities satisfying the assump-

tions outlined in Section 2.

Example 1

Suppose T =∞ and γ = 0, which implies kt ∈ {0, 1} for all t— in each period the person is

either ‘‘unhooked’’ or ‘‘hooked’’. Suppose further that the person has a linear instantaneous utility

function with parameters ρ and σ. Finally, suppose yt = 0 for all t and xt = xo for all t ∈ {2, 3, ...}.
How does an unhooked person behave in period 1 as a function of x1?

A person hits when the temptation to hit is larger than the perceived future cost of that hit. In

period 1, the temptation to hit for an unhooked person is x1. The future cost of hitting depends

on perceived future behavior. Suppose that optimal behavior beginning in period 2 is to refrain in

all future periods whether unhooked or hooked at that time.16 Because TCs (correctly) and naifs

(possibly incorrectly) believe that they will behave in this way, they both perceive that hitting will

lead to continuation utilityU2(1,αtc) = −(ρ+σ)+ δ
1−δ0 and that refrainingwill lead to continuation

utility U2(0,αtc) = 0 + δ
1−δ0. Hence, they both perceive the future cost of hitting in period 1 to be

U2(0,α
tc)− U2(1,αtc) = ρ+ σ.

Applying Definitions 3 and 4, TCs hit in period 1 if and only if x1 ≥ δ(ρ+ σ), and naifs hit in

period 1 if and only if x1 ≥ βδ(ρ + σ). Hence, naifs are more prone to hit in period 1 than TCs,

15 Orphanides and Zervos (1995) and Wang (1997) explore how fully rational people might become addicted because
they have incomplete information about the addictiveness of products. Loewenstein, O’Donoghue, and Rabin (2000)
study a general form of misprediction of future preferences which when applied to addiction predicts that even a time-
consistent person might get harmfully addicted because he mispredicts the addictiveness of products.
16 As our analysis in Section 4 will reveal, this holds when −(ρ+ σ) > (xo − ρ)/(1− δ).
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reflecting that the direct implication of present-biased preferences is a tendency to over-consume

harmful addictive products. This outcome is a straightforward implication of the fact that TCs

and naifs perceive the same future implications of hitting, combined with the fact that naifs have a

greater taste for immediate gratification. Clearly this conclusion is quite general: Part 3 of Lemma

1 establishes that for any instantaneous utilities satisfying our assumptions in Section 2, in any

situation naifs are more likely to hit than TCs. As a preliminary step that will prove quite useful in

our later analysis, Lemma 1 also establishes that both TCs and naifs follow cutoff strategies where

in each period the person hits if and only if his addiction level is larger than some critical level.

This result is driven by the non-concavity of the instantaneous utility function with respect to the

addiction level k, which implies that the future cost of hitting is non-increasing in k.17

Lemma 1. For any instantaneous utilities and for any T :

(1) There is a unique perception-perfect strategy for TCs, αtc, and for all t there exists k̄tct such
that αtc(k, t) = 1 if and only if k ≥ k̄tct ,
(2) There is a unique perception-perfect strategy for naifs, αn, and for all t there exists k̄nt such
that αn(k, t) = 1 if and only if k ≥ k̄nt , and
(3) αtc(k, t) ≤ αn(k, t) for all k and t, or equivalently k̄tct ≥ k̄nt for all t.

We next investigate how awareness of future self-control problems affects this over-consumption.

In Example 1, naifs in period 1 optimistically believe they will behave themselves in the future —

and refrain forever after — whereas sophisticates correctly predict that they may misbehave. Let’s

first suppose that sophisticates will in fact hit forever after regardless of whether they enter period

2 unhooked or hooked.18 Because they correctly predict this future behavior, sophisticates perceive

that hitting will lead to continuation utility U2(1,αs) = (xo− ρ) + δ
1−δ (xo− ρ) and that refraining

will lead to continuation utility U2(0,αs) = xo + δ
1−δ (xo − ρ). Hence, sophisticates perceive the

future cost of hitting in period 1 to be U2(0,αs)− U2(1,αs) = ρ.

Applying Definition 5, sophisticates hit in period 1 if and only if x1 ≥ βδρ. Given our earlier

conclusion that naifs perceive the future cost of hitting to be ρ + σ, and hence hit in period 1

if and only if x1 ≥ βδ(ρ + σ), in this case sophisticates are more prone to hit in period 1 than

naifs. This outcome reflects the implications of pessimism in the realm of addiction: Because the
17 All proofs are in the Appendix.
18 As our later analysis will reveal, this holds when xo ≥ βδρ.
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habit-forming property of addictive products implies that a current hit has a larger future cost the

more one expects to refrain in the future, pessimism about future behavior makes a person more

prone to succumb to the temptation to hit, and therefore tends to exacerbate over-consumption. We

refer to this logic as the pessimism effect, and Lemma 2 establishes that this logic holds for any

instantaneous utilities satisfying our assumptions in Section 2.

Lemma 2. Suppose that for both kt+1 = γkt and kt+1 = γkt + 1, strategy α induces consumption
path (at+1, at+2, ..., aT ) and strategyα0 induces consumption path (a0t+1, a0t+2, ..., a0T ). If aτ ≥ a0τ
for all τ ≥ t+ 1, then Ut+1(γkt,α)− Ut+1(γkt + 1,α) ≤ Ut+1(γkt,α0)− Ut+1(γkt + 1,α0).

Lemma 2 states that if for both α and α0 the future consumption path is independent of current

consumption, and if α involves unambiguously more future consumption than α0, then a current

hit causes less future harm under α. This result plays an important role in the implications of

sophistication. If future behavior does not depend on current behavior, so that the implications

of sophistication derive solely from different perceptions of how much they will consume in the

future, naifs are less likely to consume than sophisticates.

There is more to sophistication than simple pessimism, however, because current behavior might

influence future behavior. Let us again return to Example 1, but now suppose that sophisticates will

hit forever after if they are hooked in period 2 but will refrain forever after if they are unhooked

in period 2.19 Sophisticates now perceive that hitting will lead to continuation utility U2(1,αs) =

(xo − ρ) + δ
1−δ (xo − ρ) and that refraining will lead to continuation utility U2(0,αs) = 0 + δ

1−δ0.

Hence, they perceive the future cost of hitting in period 1 to be U2(0,αs)− U2(1,αs) = ρ−xo
1−δ , and

therefore hit in period 1 if and only if x1 ≥ βδ
¡
ρ−xo
1−δ

¢
. Given our earlier conclusion that naifs hit

in period 1 if and only if x1 ≥ βδ(ρ + σ), and given our presumption that optimal behavior is to

refrain forever after even if hooked, which implies−(ρ+σ) > xo−ρ
1−δ , we conclude that sophisticates

are less prone to hit in period 1 than naifs.

In Example 1, sophisticates might refrain in period 1while naifs hit if sophisticates are refraining

in an attempt to induce future restraint — or equivalently in an attempt to prevent future misbehav-

ior. We refer to this second effect of sophistication as the incentive effect : Because sophisticates

are worried about improper future over-consumption, they may refrain now in an attempt to induce

19 As our later analysis will reveal, this holds when βδρ > xo ≥ ρ−
³

1−δ
1−δ+βδ

´
σ.
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themselves to resist temptation in the future. In the realm of addiction, the incentive effect means

that sophistication can mitigate over-consumption due to present-biased preferences. Hence, there

is a tension between the pessimism and incentive effects that determines whether sophisticates are

more or less prone to consume than naifs. In the next two sections, we examine how this tension

plays out in some different environments.20

4. Stationary Preferences

Preferences are stationary when a person’s instantaneous utility function ut(a, k) depends on his

current addiction level k but not on the specific period t. Formally:

Stationary Preferences:

For all t, ut(a, k) ≡
½
xo + f(k) if a = 1
yo + g(k) if a = 0.

Stationary preferences are not particularly realistic. Such preferences mean, for instance, that

the first hit of a cigarette or cocaine yields the same pleasure to a 20-year old as it does to a 60-year

old. On both social and physiological grounds we are skeptical of this assumption. But stationary

preferences are useful as a base case and to clarify some important intuitions.

Our analysis of stationary preferences assumes an infinite horizon, in part for expositional ease,

and in part because this assumption is closer in spirit to the rational-choice models of addiction. In

addition, we often analyze how a person behaves starting from an initial addiction level k1 > 0,

which can be naturally interpreted as reflecting the net effects of unmodeled past consumption.

Indeed, our analysis here of the k1 > 0 case is a useful building block for our analysis in the next

section, where we look at a stationary model preceded by a youthful period of larger exogenous

temptations. Finally, many of our results in this section will be stated in terms of x̄o ≡ xo − yo.
Lemma 3 establishes that with stationary preferences and an infinite horizon, the cutoff for TCs

and the cutoff for naifs are both stationary.

Lemma3. Under stationary preferences andT =∞, there exists k̄tc such that for all t,αtc(k, t) = 1
if and only if k ≥ k̄tc; and there exists k̄n such that for all t, αn(k, t) = 1 if and only if k ≥ k̄n.

20 The pessimism and incentive effects are first discussed in O’Donoghue and Rabin (1999b ). These effects represent
a decomposition of the ‘‘sophistication effect’’ identified in O’Donoghue and Rabin (1999a ).
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Intuitively, TCs and naifs choose optimal consumption paths, and with stationary preferences

and an infinite horizon the optimal consumption paths are independent of the current period. An

immediate implication of Lemma 3 is that for any initial addiction level both TCs and naifs either

never hit or hit always.

For sophisticates, unlike for TCs and naifs, there can be multiple perception-perfect strategies

for an infinite horizon. We restrict attention to perception-perfect strategies for the infinite horizon

that correspond to the unique finite-horizon perception-perfect strategy as the horizon becomes

long.21 Lemma 4 characterizes the behavior of sophisticates under this restriction:

Lemma 4. Under stationary instantaneous utilities and T =∞:
(1) If x̄o ≥ βδ∆H then αs(k, t) = 1 for all k and t; and

(2) If x̄o < βδ∆H then there exists k0 > 0 such that for all k < k0 αs(k, t) = 0 for all t, where

∆H ≡
∞X
n=1

δn−1
"
f

Ã
n−1X
m=1

γm−1
!
− f

Ã
nX

m=1

γm−1
!#
.

The value ∆H is the future cost from hitting for an unaddicted person who has the most pes-

simistic beliefs possible: He believes he will hit forever ever after no matter what he does now.

Lemma 4 establishes that a crucial question for sophisticates is how they would behave when un-

addicted given such extremely pessimistic beliefs. Intuitively, if there is a finite horizon, a sophis-

ticate facing exogenous temptation x̄o > 0 recognizes that he will hit in the final moments of his

life.22 Hence, if he refrains at all, it must be that there is some moment far enough from the end of

his life where he prefers to refrain despite pessimistically believing he will hit for the remainder of

his life, which holds if and only if x̄o < βδ∆H . The condition x̄o ≥ βδ∆H can be interpreted as

a kind of ‘‘inevitability condition’’: If it holds, sophisticates perceive that addiction is inevitable in

the sense that no matter what they do today their future selves will hit forever after. An immediate

21 For both TCs and naifs, the unique infinite-horizon perception-perfect strategy corresponds to the unique finite-
horizon perception-perfect strategy as the horizon becomes long. For sophisticates, this restriction rules out infinite-
horizon perception-perfect strategies where a person refrains because of a belief that hittingwill lead to bad continuation
utility beyond the change in incentives, analogous to folk-theorem type equilibria in infinitely-repeated games. The
reader should not be overly worried about this restriction because it biases sophisticates towards ‘‘bad behavior’’ — it
rules out strategies whereby sophisticates behave themselves due to this mentality — and yet we shall conclude that in
realistic environments sophisticated self-control problems are not a plausible source of severe addictions.
22 While the discussion in the text uses the assumption x̄o > 0 to avoid some technical details, the formal results do
not rely on this assumption, as x̄o < 0 merely implies we are in the case x̄o < βδ∆H .
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implication of Lemma 4 is that an unaddicted sophisticate either never hits or hits always.

It will prove useful in deriving a person’s actual behavior path to consider the person’s desired

behavior path. Lemma 3 implies that for any situation the desired behavior path for TCs is either

hitting always or never hitting. While the desired behavior path for a person with present-biased

preferences also might be never hitting or hitting always, a third possibility arises: The person

might want to hit now and never again. Let k∗(β) denote the addiction level such that a person

prefers hitting always to never hitting if and only if k ≥ k∗(β), and let k̃(β) denote the addiction
level such that a person prefers hitting once to never hitting if and only if k ≥ k̃(β). Lemma 5 uses
these values to describe behavior for the three types.23

Lemma 5. Under stationary instantaneous utilities and T =∞, for all t:
(1) αtc(k, t) = 1 if and only if k ≥ k∗(1);
(2) αn(k, t) = 1 if and only if k ≥ min{k∗(β), k̃(β)}; and
(3) If x̄o ≥ βδ∆H , then αs(k, t) = 1 for all k; if x̄o < βδ∆H and γk̃(β) + 1 ≥ k∗(β), then
αs(k, t) = 1 if and only if k ≥ k∗(β); and if x̄o < βδ∆H and γk̃(β) + 1 < k∗(β), then
αs(k, t) = 0 if k < k̃(β) and αs(k, t) = 1 if k ≥ k∗(β).

Part 1 characterizes the actual behavior of TCs. Because for TCs actual behavior is identical

to desired behavior, TCs hit if and only if they prefer hitting always to never hitting, which holds

if and only if their current addiction level k is larger than k∗(1). Part 2 characterizes the actual

behavior of naifs. Because naifs attempt to follow their desired behavior path, they hit if and only

if they prefer either hitting always or hitting once to never hitting, which holds if and only if their

current addiction level k is larger than either k∗(β) or k̃(β).

Part 3 characterizes the actual behavior of sophisticates. If x̄o ≥ βδ∆H then, as established by

Lemma 4, sophisticates hit no matter what. If x̄o < βδ∆H , then sophisticates refrain whenever

their desired behavior is never hitting, which holds if k < min{k∗(β), k̃(β)}, and sophisticates hit
whenever hitting always is preferred to never hitting, which holds if k ≥ k∗(β). The remaining
question is how do sophisticates behave if k ∈ [k̃(β), k∗(β)). In this case, sophisticates would like
to hit once, but if γk̃(β) + 1 ≥ k∗(β) then a single hit would increase their addiction level to the
23 The proof of Lemma 5 provides equations defining k∗(β) and k̃(β). Because for TCs hitting once is never desired,
clearly k∗(1) ≤ k̃(1). For β < 1, k∗(β) and k̃(β) are not rankable; but hitting once can be desired only if k̃(β) <
k∗(β).
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point where they would hit forever after. Hence, hitting once (or any finite number) is not feasible,

and so sophisticates refrain for any k ∈ [k̃(β), k∗(β)]. If instead γk̃(β) + 1 < k∗(β), there can be
situations in which hitting for a finite number of periods is feasible, in which case sophisticates’

behavior can be quite complicated for k ∈ [k̃(β), k∗(β)). In fact, because of these complications
sophisticates need not follow a stationary strategy or a cutoff strategy.

Lemma 5 permits a simple comparison of the behavior of TCs, naifs, and sophisticates, which

we present as Proposition 1:

Proposition 1. Under stationary instantaneous utilities and T =∞:
(1) If x̄o ≥ βδ∆H , then αtc(k, t) ≤ αn(k, t) ≤ αs(k, t) for all k and t; and

(2) If x̄o < βδ∆H , then αtc(k, t) ≤ αs(k, t) ≤ αn(k, t) for all k and t.

Proposition 1 establishes that in the stationary model whether sophistication makes a person

more or less likely to consume an addictive product depends crucially on whether the inevitability

condition x̄o ≥ βδ∆H holds. This conclusion reflects the interplay between the pessimism and

incentive effects in the stationary model. The pessimism effect is always at work in inducing so-

phisticates to consume more than naifs. The crucial question therefore is under what conditions is

the incentive effect operative, leading sophisticates to refrain in order to induce good behavior in

the future. Refraining now can induce future restraint only if persistent restraint puts the person in a

situation where he would refrain even in the absence of the incentive effect. With stationary instan-

taneous utilities, such situations are possible if and only if x̄o < βδ∆H . Proposition 1 establishes

that whenever x̄o < βδ∆H , the incentive effect is operative and sophisticates refrain whenever

naifs refrain.

Whereas Proposition 1 describes how the implications of sophistication depend on the inevitabil-

ity condition, Proposition 2 describes how the implications of sophistication depend on the initial

addiction level.

Proposition 2. Under stationary instantaneous utilities and T =∞, for any β, δ, γ, f(·), and g(·),
there exists k̄ ∈ (0, kmax) such that
(1) If k1 ≤ k̄, then for any x̄o where naifs hit always, sophisticates hit always; and
(2) If k1 ≥ k̄, then for any x̄o where naifs never hit, sophisticates never hit.
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Proposition 2 establishes that for sufficiently unaddicted people, sophisticates are more likely to

hit always than naifs, whereas for sufficiently addicted people, naifs are more likely to hit always

than sophisticates. For the case of continuous consumption (and with additional assumptions about

functional forms), Gruber and Koszegi (2000) find a similar result. These results once more reflect

the interplay between the pessimism and incentive effects. As discussed above, the incentive effect

can dominate the pessimism effect only if persistent restraint puts the person in a situation where

he would refrain even in the absence of the incentive effect. In the stationary model, this can

happen only if the person is already somewhat addicted, in which case persistent restraint reduces

the person’s addiction level and thereby reduces the temptation to consume.

The implication of Proposition 2 that sophisticates are more likely than naifs to develop an

addiction contradicts the common intuition that harmful addictions are caused by people naively

slipping into an unplanned addiction. While we shall in the end vindicate aspects of this intuition,

the direct effect of over-optimism is to deter consumption, and therefore the sense in which people

naively get addicted is not straightforward. The implication of Proposition 2 that naifs are less

likely than sophisticates to quit an established addiction, in contrast, accords well with the common

intuition that people ‘‘procrastinate’’ quitting an addiction. Indeed, continuation of an addiction that

a person plans to withdraw from is psychologically and mathematically very similar to the type

of procrastination discussed in Akerlof (1991) and analyzed in detail in O’Donoghue and Rabin

(1999a ).

It is useful at this point to consider an example:

Example 2: Stationary Linear Model

Suppose f(k) = −ρk and g(k) = −(ρ+ σ)k.
If k1 = 0, then: TCs hit always if and only if x̄o ≥ δρ

1−δγ .
Naifs hit always if and only if x̄o ≥ min

n
1

1−δ+βδ
βδρ
1−δγ ,

βδ(ρ+σ)
1−δγ

o
.

Sophisticates hit always if and only if x̄o ≥ βδρ
1−δγ .

If k1 = kmax, then: TCs hit always if and only if x̄o + σkmax ≥ δ(ρ+σ)
1−δγ .

Naifs hit always if and only if x̄o + σkmax ≥ βδ(ρ+σ)
1−δγ .

Sophisticates hit always if x̄o + σkmax ≥ 1
1−δ+βδ

βδ(ρ+σ)
1−δγ

and only if x̄o + σkmax ≥ βδ(ρ+σ)
1−δγ .

In Example 2, it is easy to see that unaddicted sophisticates are more likely to hit always than

unaddicted naifs, but addicted sophisticates are less likely to hit always than addicted naifs. But
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more interesting is the fact that simple qualitative comparative statics do not differ across the three

types. For all three types, the likelihood of hitting always is increasing in the exogenous tempta-

tion x̄o, and decreasing in the patience parameter β, the relevance parameter δ, and the degree of

negative internalities ρ. The inherent persistence of addiction γ decreases the likelihood of hitting

always when initially unaddicted and increases the likelihood of hitting always when initially ad-

dicted, and the degree of habit formation σ increases the likelihood of hitting always when initially

addicted.24 These results illustrate the more general point that simple qualitative comparative-static

predictions often cannot distinguish the rational-choice model from our self-control model. Indeed,

every comparative-static prediction that we’ve seen given in support of the rational-addictionmodel

is equally supportive of our self-control model of addiction. We return to this point in Section 6

when we discuss the implications of our model for price comparative statics.

We next turn our attention to the welfare implications of present-biased preferences in the sta-

tionary model. There is clearly a popular concern that people are causing themselves severe harm

when they develop and maintain harmful addictions. Because rational-choice models of addic-

tion a priori assume that people are behaving in their own best interests, they cannot address this

concern. Our model, in contrast, shows how present-biased preferences can be a source of over-

consumption. Even so, the question remains should we be worried about this over-consumption.

Are self-control problems a plausible source of severely harmful addictions, or do they merely lead

to minor episodes of suboptimality?

To address this question in a principled way, we first define a notion of ‘‘harm’’. Because we

interpret the preference for immediate gratification to be an error, we deem a person’s long-run pref-

erences —what the person would prefer if asked at some prior perspective— to be the appropriate

preferences for welfare analysis.

Definition 6. A person’s long-run utility from following strategy α starting from initial addic-
tion level k1 is U1(k1,α). If a person follows a strategy α 6= αtc, he suffers welfare loss of
WL(k1,α) = U1(k1,α

tc)− U1(k1,α).

24 For an unaddicted person the degree of habit formation σ plays a role in the propensity to hit only if the person
plans to incur withdrawal costs. Because an unaddicted person would incur withdrawal costs only if he planned to hit
in the short term and then refrain, in the stationary model σ is relevant only for naifs. The behavior of sophisticates
can be annoyingly non-monotonic in some parameters; but recent work by Harris and Laibson (forthcoming) suggests
that such non-monotonicities disappear as noise is introduced.
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The long-run utility function is the same for all three types. As discussed in Section 2, TC

behavior represents how naifs and sophisticates would like to behave if asked from some prior

perspective. Hence, the welfare loss for naifs and sophisticates represents their utility loss relative

to being able to commit prior to period 1 to some behavior path.25

To assess whether present-biased preferences are a plausible source of severe harm, we investi-

gate themaximumwelfare loss that a personmight suffer as parameters of themodel are varied. But

since perception-perfect strategies are unchanged by multiplicative transformations of the instan-

taneous utility function, the magnitude of the welfare loss per se is not meaningful. We therefore

explore the magnitude of the welfare loss in two ways. First, we express welfare losses in pro-

portion to ∆H , which is the internality cost from hitting for one period. Calibrationwise, we can

then derive the potential harm from plausible self-control problems as a multiple of the internal-

ity cost from hitting for one period, which in principle permits one to assess whether the potential

harm is empirically ‘‘large’’. Second, we compare the potential harm for sophisticates and naifs to

the potential harm for hypothetical committers —people with present-biased preferences who can

and must commit in period 1 to their desired behavior path. Because committers have the same

present-biased preferences as sophisticates and naifs, these results illustrate how the dynamic, one-

hit-at-a-time nature of addictive choices contributes to the potential harm suffered by sophisticates

and naifs. We letαcommit denote the strategy chosen by committers, sowelfare losses for committers

areWL(k1,αcommit).

Proposition 3 describes the potential welfare losses for committers, sophisticates, and naifs who

are initially unaddicted. We restrict attention to the stationary linear model where f(k) = −ρk and
g(k) = −φρk for some φ > 1, in which case ∆H = ρ

1−δγ .
26 We derive the maximum welfare loss

when all parameters are fixed except the exogenous temptation x̄o.

25 An alternative criterion is to measure welfare losses using period-1 preferences instead of long-run preferences,
where the benchmark strategy would be αcommit rather than αtc. This criterion would yield similar conclusions. A sec-
ond, and more conservative, alternative is to assume there are no ‘‘true preferences’’, and consider Pareto comparisons
(see, e.g., Goldman (1979) and Laibson (1994, 1997)). In our model, sophisticates and naifs follow Pareto-dominated
consumption paths whenever they hit always despite preferring in period 1 to never hit, and therefore our welfare ap-
proach yields similar conclusions to the more conservative approach. We prefer the long-run-utility criterion because
it permits discussion of the magnitude of harm.
26 We believe our welfare conclusions hold qualitatively for more general stationary preferences.
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Proposition 3. If f(k) = −ρk and g(k) = −φρk, then:

(1)maxx̄o∈IR
£
WL(0,αcommit)

¤
=


δ(1− β)φ∆H if 1 < φ ≤ 1

1−δ+βδ

δ(1−β)
1−δ+βδ∆

H if φ ≥ 1
1−δ+βδ ;

(2)maxx̄o∈IR [WL(0,αs)] =
δ(1−β)
1−δ ∆H for all φ > 1; and

(3)maxx̄o∈IR [WL(0,αn)] =


δ(1−φβ)
1−δ ∆H if 1 < φ ≤ 1

1−δ+βδ

δ(1−β)
1−δ+βδ∆

H if φ ≥ 1
1−δ+βδ .

Figure 1 depicts the results from Proposition 3.27 Part 1 derives the potential harm for hypo-

thetical committers; the results reflect that for low levels of habit formation committers are worst

off when they just prefer hitting once to never hitting, whereas for high levels of habit formation

committers are worst off when they just prefer hitting always to never hitting. But since commit-

ters follow their period-1 desired behavior path, their potential harm is small in the sense that for

plausible values of β and δ— reasonably close to 1 — the potential harm is less than∆H .28

Unlike committers, sophisticates and naifs might hit always despite preferring to never hit, in

which case they can suffer significantly larger welfare losses. For sophisticates, such an outcome

can arise due to feelings of inevitability: Even when a person prefers never hitting to hitting always,

if he believes that he will get addicted in the future he may see no reason to refrain now. Part 2 of

Proposition 3 shows that such reasoning can lead to severe harm for sophisticates in the sense that

for plausible values of β and δ their potential harm can be much larger than ∆H , and is a multiple

— greater than or equal to 1−δ+βδ
1−δ —of the potential harm for committers.29 The potential harm for

sophisticates is independent of the degree of habit formation. If harmful addictions are caused by

sophistication and feelings of inevitability, the degree of habit formation is irrelevant to the question

of how much damage a person might do to himself when he chooses to develop an addiction.

Naifs might hit always despite preferring to never hit when they repeatedly plan on short-term

consumption and end up with long-term consumption. But the habit-forming property of addictive

27 Figure 1 is drawn to scale for the case β = .8 and δ = .95.
28 It is instructive to calibrate our welfare results for some specific values of β and δ. We shall (somewhat arbitrarily)
focus on two cases: (I) β = .8 and δ = .95, and (II) β = .99 and δ365 = .95. Case I is meant to be plausible when the
length of a period is on the order of one year, and Case II is meant to be plausible when the length of a period is on the
order of one day. The potential harm for committers is at most .23∆H in Case I, and .01∆H in Case II.
29 Calibrationwise, and using the cases from footnote 28, the potential harm for sophisticates is 3.80∆H in Case I and
71.15∆H in Case II. These values are at least 16.5 times and 7115 times the potential harm for committers, respectively.
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goods tends to deter short-term consumption because short-term consumption creates unwanted

future withdrawal costs. Indeed, in a stationary model, if the product is sufficiently habit-forming,

short-term consumption is never desirable. Part 3 of Proposition 3 reflects this intuition by estab-

lishing that if the product is sufficiently habit-forming — φ is large enough — the potential harm

for naifs is identical to that for committers. For smaller degrees of habit formation, the potential

harm for naifs is a multiple of that for committers, although it is smaller than that for sophisticates

(see Figure 1).30

Our welfare results in Proposition 3 correspond to our earlier behavioral conclusion that sophis-

ticates are more likely than naifs to develop an addiction. But naifs are more likely than sophisti-

cates to maintain an established addiction. To investigate the potential harm that naifs could suffer

from maintaining an established addiction, Proposition 4 characterizes how the potential harm for

hypothetical committers and for naifs depends on the initial addiction level.31

Proposition 4. Let f(k) = −ρk, g(k) = −φρk, and fix φ > 1
1−δ+βδ . There exists

k∗ ∈ (0, (1− δ + βδ)kmax) such that:

(1)maxx̄o∈IR
£
WL(k1,α

commit)
¤
=


δ(1−β)
1−δ+βδ∆

H
£
1 + k1

kmax
(φ− 1)¤ if k1 ≤ k∗

δ(1− β)φ∆H if k1 ≥ k∗;

(2)maxx̄o∈IR [WL(k1,αn)] =


δ(1−β)
1−δ+βδ∆

H
£
1 + k1

kmax
(φ− 1)¤ if k1 ≤ k∗

δ(1−β)φ
1−δ ∆H − ¡1− k1

kmax

¢
δ(φ−1)
1−δ ∆H if k1 ≥ k∗.

Proposition 4 fixes the degree of habit formation to be sufficiently large that an unaddicted naif

would not suffer severe harm. If a person is sufficiently unaddicted, then short-term consumption

is not desirable for the reasons outlined above, and the potential harm for naifs is identical to that

for committers. But as the person becomes more addicted, a new force becomes important. Un-

like an unaddicted person, an addicted person who plans to eventually quit must incur withdrawal

costs from past consumption. While current consumption still creates additional unwanted future

withdrawal costs, which tends to deter current consumption, current consumption also delays the

30 Calibrationwise, and using the cases from footnote 28, the potential harm for naifs is identical to that for committers
if φ ≥ 1.23 in Case I and if φ ≥ 1.01 in Case II.
31 When k1 > 0, solving for potential welfare losses for sophisticates is a mess, and some preliminary calculations
suggested that there are no new insights.
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withdrawal costs from past consumption, which tends to encourage current consumption. For a

sufficiently addicted person, the latter effect dominates, and therefore the potential harm for naifs

can be a multiple of the potential harm for committers. Indeed, for k1 = kmax, the potential harm

for naifs is 1
1−δ times the potential harm for committers.

32

Hence, in our stationary model, there are two sources of severe harm. To the extent that people

are sophisticated, they may suffer severe harmwhen they develop an addiction due to feelings of in-

evitability. To the extent that people are naive, they may suffer severe harmwhen they procrastinate

quitting an established addiction. While this latter source is relatively unimportant in the stationary

model — because naifs would never develop the addiction in the first place — it becomes crucial

in the more realistic non-stationary case we consider next.

5. Youthful Preferences

In Section 4 we make the unrealistic assumption that the instantaneous utility function is constant

over time. It is more likely that the temptation to consume may vary over time in systematic or

randomways. In this section, we explore the implications of one particular type of non-stationarity

wherein the temptation to hit is larger earlier in life. Formally:

Youthful Preferences:

ut(a, k) ≡
½
xt + f(k) if a = 1
yt + g(k) if a = 0

where x̄1 ≥ x̄2 ≥ ... ≥ x̄M = x̄M+1 = ... = x̄T .

Because the temptation to hit in period t is ht(k) ≡ [xt − yt] + [f(k)− g(k)], this assumption
implies that while the endogenous temptation f(k)− g(k) is independent of the person’s age, the
exogenous temptation x̄t ≡ xt − yt decreases as the person ages. Our formal results also assume
that a person eventually ‘‘matures’’ in that beginning in some periodM <∞ preferences become

stationary; this is a vacuous limitation for T < ∞, but is a restriction in the infinite-horizon case
on which we focus.33

32 Also note that the larger the degree of habit formation, the larger is the potential harm for naifs. Intuitively, the
more habit-forming is the product, the more prone are naifs to procrastinate quitting.
33 The assumption of a maturity date is used only for results concerning sophisticates; we conjecture that our results
and intuitions for sophisticates hold more generally. As in the stationary model, for sophisticates we restrict attention
to perception-perfect strategies for the infinite horizon that correspond to the unique perception-perfect strategy for
some long, finite horizon, where we fix a finite maturity dateM and let T become large.
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Youthful instantaneous utilities reflect forces such as peer pressure and intrinsic biological fac-

tors that lead most people to face larger temptations while young than they do later in life. Youthful

instantaneous utilities might also reflect the effects of a traumatic life event, such as a divorce,

loss of a job, or death of a loved one: After a traumatic event, a person may have an increased

desire to consume an addictive product for some duration, but eventually the desire to consume re-

turns to more normal levels. Most importantly, youthful instantaneous utilities permit the plausible

assumption that an addictive product is intrinsically appealing early in life but not later in life.

Our first goal in this section is to explore how our conclusions from the stationary model change

in the more realistic youthful model. We begin with some preliminary results concerning how the

three types behave in the youthful model.

Lemma 6. Under youthful instantaneous utilities and T =∞:
(1) k̄tct ≤ k̄tct+1 for all t,
(2) k̄nt ≤ k̄nt+1 for all t, and
(3) If x̄M ≥ βδ∆H , then αs(k, t) = 1 for all k and t. If x̄M < βδ∆H , then there exists k0 > 0
such that for all t ≥M , αs(k, t) = 0 for all k < k0.

Parts 1 and 2 of Lemma 6 establish that for both TCs and naifs, the cutoff addiction level above

which the person hits is smaller in earlier periods. The intuition is simple: In the youthful model

the temptation to hit is larger in earlier periods, and since TCs and naifs plan to follow optimal

consumption paths, they are each more likely to hit in earlier periods. An immediate implication

of this result is that both TCs and naifs hit first and refrain later: Starting from any situation, they

either never hit again, hit for a finite number of periods and then never hit again, or hit always.

Part 3 of Lemma 6 establishes that, in contrast to the stationary model where the crucial question

for sophisticates is whether they feel that addiction is inevitable in period 1, the crucial question

in the youthful model is whether they feel that addiction is inevitable at maturity, which holds

if x̄M ≥ βδ∆H . If a sophisticate views addiction as inevitable at maturity, then he clearly hits

throughout his youth when the temptation to hit is even larger. If, in contrast, the sophisticate

would refrain once mature if sufficiently unaddicted, then he may refrain in his youth as well.

Proposition 5 shows that, as in the stationary model, the inevitability condition determines when

the incentive effect is operative, and hence determines when sophisticates are less or more prone
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to hit than naifs.

Proposition 5. Under youthful instantaneous utilities and T =∞:
(1) If x̄M ≥ βδ∆H , then αs(k, t) ≥ αn(k, t) for all k and t, and

(2) If x̄M < βδ∆H , then αs(k, t) ≤ αn(k, t) for all k and t.

Proposition 5 implies that under the plausible assumption that an addictive product eventually

loses its intrinsic appeal, sophisticates are never more prone to hit than naifs. Moreover, unlike in

the stationary model, sophisticates can be strictly less prone to hit than naifs even when unaddicted,

as illustrated in Example 3.

Example 3: Suppose δ = .9, β = .5, and γ = 0. Let f(k) = −3k, g(k) = −12k, and suppose
x̄1 = 8 and x̄t = 1 for all t ≥ 2. Then starting from k1 = 0:
(1) TCs never hit,

(2) Naifs hit always, and

(3) Sophisticates never hit.

In Example 3, once they reach maturity in period 2, both naifs and sophisticates will refrain for-

ever after if and only if they are unhooked at t = 2. Hence, the incentive effect becomes important

for preventing unwanted addictions. Sophisticates recognize that indulging in the youthful temp-

tation would lead to a lifetime of hitting, and so refrain to induce good behavior in their maturity.

Naifs, in contrast, think in their youth that they can indulge in the large youthful temptation and

later quit, but this unfortunately leads to a lifetime of hitting. Example 3 illustrates an important

difference between the stationary and youthful models: In the youthful model, persistent restraint

can reduce the temptation to hit even for an unaddicted person, and hence the incentive effect can

dominate the pessimism effect even for an unaddicted person.

Hence, stationary models may make overly pessimistic predictions for sophisticates, and overly

optimistic predictions for naifs. To allow a more systematic analysis of these points, we define a

formal sense in which a given youthful environment is comparable to a stationary environment.

We define a youthful rotation to be a transformation of stationary environment into a youthful

environment that holds constant both the period-1 utility from hitting always and the period-1 utility

from never hitting.
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Definition 7. Consider stationary instantaneous utility function

ut(a, k) ≡
½
xo + f(k) if a = 1
g(k) if a = 0

and youthful instantaneous utility function

ût(a, k) ≡
½
xt + f(k) if a = 1
g(k) if a = 0

for some x1 ≥ x2 ≥ ... ≥ xM = xM+1 = ... = xT . We say that ût is a youthful rotation of ut

if x1 > xo and x1 + β
TP
t=2

δt−1xt = xo + β
TP
t=2

δt−1xo.34

Because a youthful rotation makes early-life hitting more attractive and late-life hitting less

attractive, a youthful rotation can clearly cause a person to switch from never hitting or always

hitting to hitting only in his youth. The more interesting question is whether a youthful rotation can

cause a person to switch from hitting always to never hitting and vice-versa.

Proposition 6. Suppose ût is a youthful rotation of ut, and let atc, an, as, batc, ban, and basdenote the
perception-perfect behavior paths given k1 = 0 under ut and ût. Then:

(1) atc = (1, 1, ...) implies batc 6= (0, 0, ...), and atc = (0, 0, ...) implies batc 6= (1, 1, ...);
(2) an = (1, 1, ...) implies ban 6= (0, 0, ...); and
(3) if as = (0, 0, ...) and bas = (1, 1...), then an = (0, 0, ...) and ban = (1, 1, ...).
Part 1 establishes that for TCs a youthful rotation can neither cause a switch from hitting always

to never hitting nor vice-versa. Because a youthful rotation does not change the utility from these

two options, these results follow from a simple application of revealed preference. Part 2 establishes

that for naifs a youthful rotation cannot cause a switch from hitting always to never hitting for

essentially the same revealed-preference reason. But a youthful rotation can cause naifs to switch

from never hitting to hitting always, because for a stationary model in which naifs never hit, a

youthful rotation can make them plan to hit in their youth and later quit, and once they have become

somewhat hooked on the product they might never quit.

For sophisticates, a youthful rotation can cause a switch in either direction. Youthful rotations

can cause sophisticates to switch from never hitting to hitting always by creating an irresistible

temptation to hit during youth, after which it may be worthwhile to continue hitting. We don’t

34 Since TCs have β = 1, for TCs ût is a youthful rotation of ut if x1 > xo and
TP
t=1

δt−1xt =
TP
t=1

δt−1xo.
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believe this is a particularly important intuition, and moreover Part 3 of Proposition 6 establishes

that sophisticates switch from never hitting to hitting always only in situations where naifs also

switch from never hitting to hitting always. We believe the more important intuition is that a youth-

ful rotation can cause sophisticates to switch from hitting always to never hitting. In a stationary

model, sophisticates sometimes hit always even though they would prefer to never hit because they

believe late-life hitting is inevitable. By decreasing the temptation later in life, a youthful rotation

may eliminate the inevitability of addiction, and therefore enable sophisticates to refrain always.

Proposition 6 implies that youthful rotations can have opposite implications for naifs and sophis-

ticates. Example 4 illustrates the opposite implications can arise for the same youthful rotation.

Example 4: Suppose δ = .9, β = .5, and γ = 0. Let f(k) = −3k, g(k) = −12k, and suppose
k1 = 0:

(1) If x̄t = 1.7 for all t ≥ 1, then sophisticates hit always whereas naifs never hit; and
(2) If x̄1 = 8 and x̄t = 1 for all t ≥ 2, then naifs hit always whereas sophisticates never hit.

We next explore the welfare implications of present-biased preferences in the youthful model.

Again, we are interested in whether self-control problems represent a plausible source of severely

harmful addictions, and hence focus on maximum possible welfare losses. Proposition 7 charac-

terizes the potential harm for hypothetical committers and naifs who are initially unaddicted:

Proposition 7. If f(k) = −ρk and g(k) = −φρk, then:
(1)max(x̄1,x̄2,...)∈IR∞

£
WL(0,αcommit)

¤
= δ(1− β)φ∆H for any φ > 1; and

(2)max(x̄1,x̄2,...)∈IR∞ [WL(0,αn)] =
δ(1−β)φ∆H

1−δ for any φ > 1.

The more realistic youthful environment is problematic for naifs because they can be tempted

in their youth to acquire an addiction that they delay quitting for the rest of their lives. Indeed,

Proposition 7 reveals two senses in which naive self-control problems may be a plausible source

of severely harmful addictions in this environment. First, a comparison of naifs to committers in

the youthful model reveals that the potential harm for naifs is 1
1−δ times the potential harm for

committers for any degree of habit formation. Second, a comparison of naifs in the stationary vs.

youthful model — comparing Propositions 3 and 7 — reveals that the potential harm for naifs is

much higher in the youthful model (see Figure 2).
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Unfortunately, we have not found any general welfare results for sophisticates. But we can

describe the ways in which sophisticates might harm themselves and the likely implications. In

situations where there is an inevitability to addiction at maturity, then sophisticates can suffer wel-

fare losses in much the same way as they do in the stationary model — because they develop a

lifelong addiction due to a lifelong feeling of inevitability. Clearly the potential harm from such an

addiction can be just as large as — but no larger than — that for the stationary model.

If, in contrast, there is no inevitability at maturity, sophisticates can suffer welfare losses of a

different form. First, sophisticates might suffer welfare losses because they hit too much during

their youth, as illustrated in Example 5.

Example 5: Suppose δ = .9, β = .6, and γ = 0. Let f(k) = −20k, g(k) = −25k, and suppose
M > 2, x̄t = 15 for all t < M , and x̄t = 5 for all t ≥M . Then starting from k1 = 0:
(1) TCs never hit,

(2) Sophisticates hit for the firstM − 1 periods and then refrain thereafter.

In Example 5, sophisticates correctly predict that they will refrain once mature no matter what

they do during their youth. As a result, some indulgence in their youth is ‘‘safe’’ in the sense that it

won’t cause a lifelong addiction, and in this example sophisticates end up indulging throughout their

youth. Such over-indulgence during one’s youth can causewelfare losses because sophisticates give

too little weight to the eventual withdrawal costs.

The second way in which sophisticates can hurt themselves that cannot arise in the stationary

model is that they might under -consume in their youth as a means of preempting over-consumption

at maturity. Example 6 illustrates this possibility:

Example 6: Suppose δ = .9, β = .9, and γ = .999. Let f(k) = −k, g(k) = −2.5k, and suppose
x̄1 = 24, x̄2 = x̄3 = 18.6, and x̄t = 0 for all t ≥ 4. Then starting from k1 = 0:
(1) TCs hit in period 1 and then refrain thereafter,

(2) To preempt consumption in periods 2 and 3, sophisticates never hit.

In Example 6, both TCs and sophisticates would like to hit in period 1 when the enjoyment from

hitting is very high, and then never hit again. TCs follow precisely this plan. But sophisticates

recognize that hitting in period 1 would lead to unwanted further consumption in periods 2 and 3,

and therefore refrain in period 1. Examples 5 and 6 illustrate that even when the incentive effect
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is operative, sophisticates can still suffer welfare losses. But our impression from the examples

we have worked through is that under the plausible assumption that addiction is not inevitable at

maturity, sophisticates are much less prone to suffer severe welfare losses in the youthful model

than in the stationary model.

The youthful model can also be used to shed light on an issue that we feel is misleadingly

discussed in the rational-addiction literature. Using a stationary model, Becker and Murphy (1988)

describe how it can be optimal for a person to maintain an established harmful addiction, but their

use of steady-state analysis prevents them from analyzing why a person would choose to develop

the harmful addiction in the first place. They suggest that events such as youth, divorce, and death of

a loved one are plausible sources of harmful addictions. Our youthful model allows us to directly

investigate this hypothesis, because we can ask whether and by how much traumatic events can

harm a person by leading him to develop an addiction.

Suppose that, absent a traumatic event, a person has a stationary, linear instantaneous utility

function with no intrinsic desire to hit — that is, for all t

ut(a, k) ≡
½ −ρk if a = 1
−(ρ+ σ)k if a = 0.

With such instantaneous utilities, an unaddicted person would never hit —regardless of his type

— but a person with an established addiction might. Suppose that a traumatic event increases the

temptation to consume for N periods, and in particular makes refraining more painful. Formally,

we assume that the person faces instantaneous utility function

ut(a, k) ≡
½ −ρk if a = 1
−yt − (ρ+ σ)k if a = 0

where y1 ≥ y2 ≥ ... ≥ yN > 0 and yt = 0 for all t > N .
For all three types, a traumatic event could of course cause a lifelong addiction. This qualitative

aspect of Becker andMurphy’s story is obviously correct. But how harmful could such an addiction

be? For TCs and sophisticates, there is a sense in which the answer is not very harmful:

Proposition 8. Consider an N-period traumatic event on an otherwise untempting product.

(1)min(ρ,σ)∈IR2+
£
U1(0,α

TC)
¤

= −
³PN

t=1 δ
t−1yt

´
; and

(2)min(ρ,σ)∈IR2+ [U1(0,α
s)] ≥ −

³
1
β

PN
t=1 δ

t−1yt
´
.
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Absent the traumatic event, all three types would never hit and therefore experience long-run

utility U1(0,αi) = 0. Proposition 8 therefore describes by how much a person might be hurt by the

traumatic event. Part 1 establishes that the most a TC might be hurt is by the present discounted

sum of the pain from not consuming during the traumatic event. Intuitively, if a traumatic event

causes a TC to develop an addiction, then at the moment the traumatic event occurs developing the

addiction is better than never hitting.35 Part 2 establishes that a similar result holds for sophisticates.

Given no intrinsic desire to hit absent the traumatic event, a sophisticate does not view a lifelong

addiction as inevitable — if he can reach the end of the traumatic event sufficiently unhooked,

then he will refrain thereafter. This knowledge limits how much the sophisticate can be hurt by the

traumatic event, because if a lifelong addiction is too harmful then he’ll make sure to reach the end

of the traumatic event sufficiently unhooked.36

By contrast, a traumatic event can lead naifs to develop a lifelong addictionwell out of proportion

from the pain of the traumatic event itself. A naif may think it is safe to hit during the traumatic

event because he’ll quit once sobriety becomes less painful. But if consuming during the traumatic

event gets him sufficiently addicted, the naif procrastinates quitting and as a result suffers large

harm. The cleanest case to illustrate this point is for a one-period traumatic event when γ = 0.

Example 7: Consider a one-period traumatic event and suppose γ = 0.

(1)min(ρ,σ)∈IR2+
£
U1(0,α

TC)
¤

= − (y1);
(2)min(ρ,σ)∈IR2+ [U1(0,α

s)] = −
³
1
β
y1
´
; and

(3)min(ρ,σ)∈IR2+ [U1(0,α
n)] = −

³
1
β
y1 +

δ
1−δ

1−β
β
y1
´
.

The source of harm for naifs in Example 7 is not the traumatic event per se, but rather that naifs

fail to quit the addiction caused by the traumatic event. Indeed, the additional harm that naifs might

suffer relative to sophisticates is essentially the maximum welfare loss that they might suffer from

not quitting an established addiction. As long as the future holds enough relevance — δ is close

enough to 1 — this latter source of harm can be many times the pain of the traumatic event itself.37

35 For TCs, a second qualitative feature of ‘‘traumatic-event-caused’’ addictions is that the person consciously chooses
to develop the addiction at the moment the traumatic event occurs. While traumatic events may lead some people to
consciously choose a lifelong addiction— as in the movie Leaving Las Vegas —we suspect that many such addictions
are not intentional.
36 Proposition 8 provides a lower bound on sophisticates’ utility, but for many (y1, ..., yN ) this bound cannot be
achieved. Hence, Proposition 8 over states by how much sophisticates can be hurt.
37 More generally, a traumatic event can cause a severely harmful addiction for naifs as long as it gets them sufficiently
addicted that they procrastinate quitting.
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Hence, our model suggests that traumatic events may be a plausible source of severely harmful

addictions for naifs, but not for TCs and sophisticates.

6. Price Effects

In this section, we examine the effects of price on consumption. Because our analysis of prices is

conducted within the confines of our binary-choice model, it is crude in a number of ways. But we

feel it captures some important intuitions that would hold in a more general model. Our main goal

is to provide some intuition for why existing empirical evidence often invoked as support for the

rational-choice (exponential) model of addiction may in fact be more supportive of a self-control

model of addiction.

To introduce prices into our model of instantaneous utilities, we suppose that in period t the

person consumes the addictive product and ‘‘other goods’’. We assume that the person’s income in

period t is Yt, and that he cannot borrow or save. We assume the price of other goods is normalized

to one, and that the price of the addictive product in period t is pt. Hence, in period t, if the person

refrains then he consumes quantity Yt of other goods, and if he hits then he consumes quantity Yt−pt
of other goods. Assuming that utility from the addictive product is stationary and that utility from

other goods is stationary, linear, and additively separable from utility from the addictive product,

we can re-write the person’s instantaneous utility function as:

ut(a, k) ≡
½
f(k) + [Yt − pt] if a = 1
g(k) + [Yt] if a = 0.

Because of the discreteness of our model, there is limited scope for studying marginal price

changes. We can, however, analyze marginal changes in the cutoff addiction level for which a

person consumes. That is, Lemma 1 implies that for any price vector (p1, ..., pT ), both TCs and

naifs follow a cutoff strategy, and we analyze how price changes affect the period-1 cutoffs k̄tc1 and

k̄n1 . Both for simplicity (because sophisticates need not follow a cutoff rule) and because we believe

naivete is the more empirically relevant case, we confine our analysis to TCs and naifs.

We suppose that there is initially a fixed price p̄— i.e., pt = p̄ for all t— and consider three

price comparative statics: an immediate permanent price change — a change in p̄ — which we

denote by dk̄i1/dp̄; an immediate temporary price change — a change in p1 holding pt = p̄ for all

t 6= 1—which we denote by dk̄i1/dp1; and an expected future temporary price change— a change
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in a future price pτ holding pt = p̄ for all t 6= τ —which we denote by dk̄i1/dpτ .38

It is straightforward to derive that all qualitative price comparative statics are the same: For

both TCs and naifs, a price increase — whether it be permanent, immediate temporary, or future

temporary — causes a person’s cutoff k̄1 to increase, which means the person is less prone to con-

sume in period 1.39 Much as we discussed for Example 2, simple comparative static results are the

same for TCs and naifs. Indeed, Gruber and Koszegi (2000) investigate price comparative stat-

ics in a continuous-choice model (with additional assumptions about functional forms), and reach

the same conclusion. Hence, the most common test of the rational-choice model of addiction —

whether current consumption depends on future prices — does not test whether people have self-

control problems. Our point in this section, however, is that if one looks more carefully at these

empirical results, calibrationwise they may be more supportive of a self-control model of addiction.

Because in our model absolute price comparative statics are not meaningful, we focus on relative

price comparative statics — e.g., the impact of a permanent price change relative to the impact of a

temporary price change. Proposition 9 derives some relative price comparative statics. The values

k∗(β, p̄) and k̃(β, p̄) are the analogues of k∗(β) and k̃(β) in Section 4 (for a fixed price p̄ the price

model is equivalent to the stationary model).

Proposition 9. Suppose pt = p̄ for all t, and that k̄tc1 , k̄n1 ∈ (0, kmax). Then:
(1) For people with time-consistent preferences,

dk̄tc1
dpτ

Á
dk̄tc1
dp1

= δτ−1 and
dk̄tc1
dp̄

Á
dk̄tc1
dp1

=
1

1− δ
.

(2) For people with present-biased preferences who are naive:

(a) If the initial price p̄ is such that k∗(β, p̄) < k̃(β, p̄),
dk̄n1
dpτ

Á
dk̄n1
dp1

= βδτ−1 and
dk̄n1
dp̄

Á
dk̄n1
dp1

= 1 +
βδ

1− δ
.

(b) If the initial price p̄ is such that k∗(β, p̄) > k̃(β, p̄),
dk̄n1
dpτ

Á
dk̄n1
dp1

= 0 and
dk̄n1
dp̄

Á
dk̄n1
dp1

= 1.

38 This technique is essentially the same as that used in Becker and Murphy (1988) and Gruber and Koszegi (2000).
39 There is one caveat: In situations where they don’t expect to consume in the future, naifs have no reaction to future
price changes. But this no-reaction result is an artifact of our discrete-choice model. All relevant price comparative
statics are derived in the proof of Proposition 9 below.
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Part 1 presents comparative statics for TCs. For a fixed price p̄, TCs hit in period 1 if and only

if a lifetime of hitting is preferred to a lifetime of restraint. Hence, a price change affects behavior

only to the extent that it makes a lifetime of hitting look more or less worthwhile, and therefore the

relative price comparative statics are equal to the relative amounts by which current, future, and

permanent price changes affect the cost of hitting always.

Part 2 presents comparative statics for naifs. Lemma 5 establishes that for a fixed price p̄, the

cutoff for naifs can be either the addiction level at which the person is indifferent between never

hitting and hitting always or the addiction level at which the person is indifferent between never

hitting and hitting once. In the former case, where naifs like TCs hit in period 1 if and only if a life-

time of hitting is preferred to a lifetime of restraint, part 2a establishes that the relative comparative

statics are similar to those for TCs, differing only to the extent that naifs discount future periods by

the factor β. In the latter case, naifs hit in period 1 if and only if hitting once is preferred to never

hitting, and hence a price change affects behavior only to the extent that it affects the utility of hit-

ting once. Part 2b establishes that this case yields very different comparative statics. In particular,

because an individual with k1 near k̄n1 does not plan to consume in the future, future prices do not

affect the cutoff (at least for small price changes).

Table 1 explores calibrationwise — for some reasonable parameter values of β and δ — what

these relative price comparative statics should be.

Table 1: (Unanticipated) Price Comparative Statics in Our Model

Elasticity TCs Naifs if
k∗(β, p̄) < k̃(β, p̄)

Naifs if
k∗(β, p̄) > k̃(β, p̄)

β = .9 δ = .95 dk̄i1
dp2

.
dk̄i1
dp1

0.95 0.86 0

dk̄i1
dp̄

.
dk̄i1
dp1

20.00 18.10 1

β = .8 δ = .95 dk̄i1
dp2

.
dk̄i1
dp1

0.95 0.76 0

dk̄i1
dp̄

.
dk̄i1
dp1

20.00 16.20 1

β = .9 δ = .9 dk̄i1
dp2

.
dk̄i1
dp1

0.90 0.81 0

dk̄i1
dp̄

.
dk̄i1
dp1

10.00 9.05 1
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Table 1 reveals that for TCs with a plausible yearly discount factor δ, temporary price changes

now vs. next period have similar effects on the period-1 cutoff, whereas a permanent price change

has a much larger effect. Similar conclusions hold for naifs when their cutoff is the addiction level

at which they are indifferent between never hitting and hitting always. But when the cutoff for

naifs is the addiction level at which they are indifferent between never hitting and hitting once, a

very different pattern emerges. Because future price changes do not affect the cutoff, a temporary

price change next period has a very small effect relative to a temporary price change now, and a

permanent price change and an immediate temporary price change have identical effects.

While these comparative statics are artificially extreme due to our crude model, they reflect the

more general point that, because naifs underestimate howmuch they’ll consume in the future, future

prices matter much less for naifs than for TCs. To further illustrate this point, consider a person who

has a pack-a-day smoking habit. If this person is time-consistent, he smokes one pack a day because

doing so is optimal, and moreover he plans to be smoking one pack a day. Because a temporary

change in the price of cigarettes has only a small effect on the lifetime cost of his chosen behavior,

whereas a permanent change in the price of cigarettes significantly changes the lifetime cost of

smoking one pack a day, for TCs permanent price changes should have significantly larger effects

than temporary price changes. Suppose instead that the person has present-biased preferences and

is naive, in which case he may be smoking one pack a day his entire life not because he finds a

lifetime pack-a-day habit optimal, but rather because he always plans to smoke one pack a day for

a short while and then quit. For such a person, the only relevant prices are those for the near future.

Hence, a permanent price change and an immediate temporary price change should have similar

effects on consumption.

In this light, we now reinterpret the empirical literature on rational addiction. Themain empirical

finding is that consumption of addictive products depends on past and future prices, suggesting both

that the products are indeed addictive and that people are forward-looking and take into account

how current consumption affects future well-being.40 But a puzzle in this literature is that temporary

price changes and permanent price changes have similar effects on consumption. As an example,

Table 2 presents the price elasticities derived in Becker, Grossman, and Murphy’s 1994 study of

cigarette consumption, where ε(x, y) is the point elasticity of variable x with respect to variable y.

40 We emphasize again that while these results are consistent with the rational-choice model of addiction, they are also
consistent with our model of addiction.
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Table 2: (Unanticipated) Price Elasticities from
Becker, Grossman, and Murphy (1994, Table 4)

Elasticity Model (i) Model (ii) Model (iii) Model (iv)

ε(Ct, pt) −0.349 −0.322 −0.316 −0.262

ε(Ct, pt+1) −0.050 −0.084 −0.058 −0.068

ε(Ct, p̄) −0.407 −0.436 −0.387 −0.355

ε(Ct, pt+1)/ε(Ct, pt) 0.14 0.26 0.18 0.26

ε(Ct, p̄)/ε(Ct, pt) 1.17 1.35 1.22 1.35

Becker, Grossman, and Murphy recognize the puzzle, noting that the regression results reported

above imply absurd yearly discount rates ranging from 56.3% to 222.6%. They conclude that the

data is too coarse to identify the discount rate. But Table 2 reveals that the relative comparative

statics look very much like those for naifs in our model — that is, close to zero and one rather than

one and much larger than one. Hence, our self-control model of addiction suggests an alternative

explanation for the puzzling empirical results: While the regression results imply absurd discount

rates under the maintained hypothesis of time consistency, they may be quite consistent with plau-

sible discount rates once one permits that people might have a small self-control problem about

which they are naive. Hence, calibrationwise the existing empirical literature on rational addiction

may be more supportive of a self-control model of addiction than of the fully rational model of

addiction.41

7. Discussion

We conclude by discussing why our self-control model of addiction is an improvement relative to

the rational-choice model of addiction, and some general lessons to be gleaned from our analysis.

The most obvious advantage of our model is simple realism. While economists have become

habituated to the exponential-discounting model, the evidence overwhelmingly supports the hy-
41 Of course, we don’t want to sell this point too strongly. One of our goals for the future is to develop a self-control
model that can be more readily taken to the data so as to further test this hypothesis.
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pothesis that people have present-biased preferences.42 Of course, because in many domains self-

control problems likely have marginal effects, time consistency is often a useful approximation to

the more realistic model of present-biased preferences. But addiction is a realm where intuition

suggests self-control problems matter a lot, and hence the obviously appropriate null hypothesis

for studies of addiction should be that self-control problems matter.

Related to the issue of realism, we predict that our self-control model of addiction — especially

when it incorporates an element of naivete — will be better calibrated than the rational-choice

model, and hence make sounder quantitative predictions.43 We have already seen an example of

this point in Section 6: Under themaintained hypothesis of time consistency, the empirical addiction

results imply absurd discount rates, whereas the same results are consistent with plausible discount

rates and a small present bias about which the person is naive. More generally, we suspect that

if one were to estimate discount rates and the various properties of an addictive product — e.g.,

addictiveness, degree of negative internalities, etc. — the behavior of addicts just wouldn’t accord

well with the rational-choice model, but might accord well with a self-control model.

The most important advantage of our self-control model, however, is that it permits more ac-

curate welfare conclusions. Welfare conclusions are central to many economic analyses, but such

conclusions are usually drawn under the maintained assumption that people always do what’s best

for themselves. In realms such as addiction where self-control problems and other errors seem

likely to play an important role, such conclusions may be very misleading. Many observers —

including, we suspect, many economists — believe that people develop and maintain addictions

against their long-run best interests, and cause themselves severe harm in the process. If so, it is

important to understand how and why people are hurting themselves, so that policies can be enacted

to help people not to hurt themselves. By a priori assuming that people always act in their own

self-interest, the rational-choice model precludes itself from answering these questions. We believe

the economic method will prove useful in answering such questions, and we hope our self-control

42 Indeed, every study with which we are familiar that has explicitly compared the empirical fit of different dis-
count functions supports present-biased preferences over time-consistent preferences (and also over ‘‘future-biased
preferences’’).
43 As our analysis indicates, for most simple qualitative comparative statics, such as the effects of price changes, the
rational-choice model and our model make the same predictions — because both models make the intuitively correct
predictions. But we predict that for more complicated comparative statics our model may make sounder qualitative
predictions as well.
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model represents a useful step in this direction.44

The most basic lessons from our analysis are that self-control problems are a source of over-

consumption of addictive products, and that awareness of self-control problems can mitigate or

exacerbate this over-consumption. As we have emphasized throughout, however, our main concern

is with quantitative results about whether self-control problems are a plausible source of severely

harmful addictions. Our analysis suggests two possible ways in which self-control problems might

cause severe harm. First, to the extent that a person is sophisticated, he may suffer severe harm

due to feelings of inevitability. Second, to the extent that a person is naive, he may suffer severe

harm due to procrastination in quitting an established addiction. But in real-world environments,

lifelong feelings of inevitability seem implausible, while at the same time non-stationarities in the

temptation to consume seem prevalent. Hence, our analysis suggests that for realistic environments,

self-control problems are plausible source of harmful addictions only in conjunction with at least

some degree of naivete.

While the most likely source harm from naivete is simple over-consumption, we conclude with

one final example that indicates a second way in which naivete can cause harm in the face of non-

stationarities:

Example 8: Suppose δ = .9, β = .6, and γ = .5. Let f(k) = −4k, g(k) = −24k, and suppose
x̄t = 17 for t odd and x̄t = −16 for t even. Then starting from k1 = 2/3:
(1) TCs never hit,

(2) Naifs hit in odd periods but refrain in even periods, and

(3) Sophisticates hit always.

In Example 8, the exogenous temptation to hit fluctuates between a very high level and a very

low level. While sophisticates consume more than naifs in this example, they are in fact suffering

less harm.45 Both are consumingmore than is optimal, but the harm from consumption is verymuch

not monotonic in consumption — if a person simply cannot sufficiently control himself, he may

in fact be better off succumbing fully to his addiction rather than trying to eliminate it. Misguided

and unpleasant attempts to quit addictions, followed by relapse, may represent another significant
44 The reader might worry that we are proposing an overly paternalistic approach to policy. As we discuss elsewhere
(see in particular O’Donoghue and Rabin (1999c )), we believe one should approach policy with a ‘‘cautious paternal-
ism’’ wherein we look for policies that can be beneficial for people who make errors while having very little effect for
people who are fully rational.
45 It is easy to show that U1(k1,αs) > U1(k1,αn).
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problem for naifs.

Whether it be the unpleasantness of failed attempts to quit or the more fundamental problem

of over-consumption, we share many non-economists conjecture that self-control problems are a

major facet of cigarette, alcohol, and other forms of addiction. If economists want to contribute

to the policy debate over how to deal with addictions, we need to develop a systematic approach

to analyzing self-control problems and other errors rather than assume them away. We hope our

analysis will prove useful in this regard.
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Appendix: Proofs

Proof of Lemma 1: For use in this and other proofs, we define some additional notation. Define

At ≡ {0, 1}T−t+1, where at ≡ (at, at+1, ..., aT ) ∈ At designates a behavior path beginning from
period t. Define Vt(kt, at) to be long-run continuation utility from following behavior path at given

period-t addiction level kt. Define Kτ (kt, a
t) ≡ γτ−tkt +

Pτ−1
i=t γ

τ−i−1ai, which is the person’s

addiction level in period τ ≥ t conditional on following at starting from addiction level kt. Then

Vt(kt,a
t) =

TX
τ=t

δτ−t
£
aτ
¡
xo + fτ

¡
Kτ (kt, a

t)
¢¢
+ (1− aτ)

¡
yo + gτ

¡
Kτ(kt,a

t)
¢¢¤
.

By assumption ft and gt are weakly convex, and Kτ is increasing and linear in kt, and therefore

Vt is weakly convex in kt. We assume throughout that maxa∈At V t(k,a) exists for all k and t (see

footnote 14).

(1) Since TCs are time-consistent, any perception-perfect strategy αtc must satisfy for all t

Ut(k,α
tc) = max

a∈At
V t(k,a).

To prove uniqueness, suppose that αtc and α̂tc are both perception-perfect strategies for TCs.

Then Ut(k,αtc) = Ut(k, α̂tc) = maxa∈At V t(k,a) for all k and t. By Definition 3, αtc(k, t) = 1

if and only if ht(k) ≥ δ [Ut+1 (γk,α
tc)− Ut+1 (γk + 1,αtc)], and α̂tc(k, t) = 1 if and only if

ht(k) ≥ δ
£
Ut+1

¡
γk, α̂tc

¢− Ut+1 ¡γk + 1, α̂tc¢¤. But then Ut(k,αtc) = Ut(k, α̂tc) for all k and t
implies αtc(k, t) = α̂tc(k, t) for all k and t— that is, αtc and α̂tc must be the same strategy.

For all t, Ut(k,αtc) is the upper envelope of the set of weakly convex functions Vt(k, at), at ∈
At, and is therefore weakly convex in k. Hence, for all t, [Ut+1 (γk,αtc)− Ut+1 (γk + 1,αtc)] is
weakly decreasing in k. By Definition 3, αtc(k, t) = 1 if and only if ht(k) ≥
δ [Ut+1 (γk,α

tc)− Ut+1 (γk + 1,αtc)]. Since ht(k) is increasing in k for all t, it follows that for all
t there exists k̄tct such that αtc(k, t) = 1 if and only if k ≥ k̄tct .
(2) ByDefinition 4, αn(k, t) = 1 if and only if ht(k) ≥ βδ [Ut+1 (γk,α

tc)− Ut+1 (γk + 1,αtc)].
Given αtc is unique, αn(k, t) is uniquely defined for all k and t. Because for all t,

Ut+1 (γk,α
tc)−Ut+1 (γk + 1,αtc) is weakly decreasing in k and ht(k) is increasing in k, it follows

that for all t there exists k̄nt such that αn(k, t) = 1 if and only if k ≥ k̄nt .
(3) Since ft and gt are both decreasing in k for all t, V t(k,a) is decreasing in k for all t

and a ∈ At, and therefore Ut(k,αtc) is decreasing in k for all t. This implies Ut+1 (γk,αtc) −
Ut+1 (γk + 1,α

tc) > 0 for all k and t. Since αtc(k, t) = 1 if and only if ht(k) ≥

38



δ [Ut+1 (γk,α
tc)− Ut+1 (γk + 1,αtc)], whereas αn(k, t) = 1 if and only if ht(k) ≥

βδ [Ut+1 (γk,α
tc)− Ut+1 (γk + 1,αtc)], it follows that αtc(k, t) ≤ αn(k, t) for all k and t, which

in turn implies k̄tct ≥ k̄nt for all t.
QED

Proof of Lemma 2: Define at+1 ≡ (at+1, ..., aT ) and at+10 ≡ (a0t+1, ..., a
0
T ). Define kτL =

Kτ(γkt,a
t+1), kτH = Kτ (γkt + 1,a

t+1), k0τL = Kτ(γkt,a
t+10), and k0τH = Kτ(γkt + 1,a

t+10).

Note that for all τ , kτL − kτH = k0τL − k0τH = γτ−t−1. Moreover, aτ ≥ a0τ for all τ implies

kτL ≥ k0τL and kτH ≥ k0τH for all τ . Let I(E) be an indicator function that takes a value of 1 if E
is true and 0 otherwise. Then for α and α0 as described in the premise,

[Ut+1(γkt,α)− Ut+1(γkt + 1,α)]− [Ut+1(γkt,α0)− Ut+1(γkt + 1,α0)] =PT
τ=t I(aτ = a

0
τ = 1)δ

τ−t [(fτ (kτL)− fτ(kτH))− (fτ(k0τL)− fτ(k0τH))]
+
PT

τ=t I(aτ = a
0
τ = 0)δ

τ−t [(gτ(kτL)− gτ (kτH))− (gτ(k0τL)− gτ(k0τH))]
+
PT

τ=t I(aτ > a
0
τ)δ

τ−t [(fτ (kτL)− fτ(kτH))− (gτ (k0τL)− gτ(k0τH))].
Given kτL − kτH = k0τL − k0τH and kτL ≥ k0τL, fτ weakly convex implies (fτ(kτL)− fτ(kτH))−
(fτ(k

0
τL)− fτ (k0τH)) ≤ 0 for all τ , and gτ weakly convex implies (gτ(kτL)− gτ (kτH))−

(gτ (k
0
τL)− gτ(k0τH)) ≤ 0 for all τ . Finally, (fτ(kτL)− fτ(kτH))− (gτ(k0τL)− gτ (k0τH)) =

(fτ(kτL)− fτ (kτH))−(fτ (k0τL)− fτ(k0τH))+h(k0τL)−h(k0τH) ≤ 0 for all τ because k0τL ≤ k0τH and
h is increasing. Hence, [Ut+1(γkt,α)− Ut+1(γkt + 1,α)]− [Ut+1(γkt,α0)− Ut+1(γkt + 1,α0)] ≤
0, and the result follows.

QED

Proof of Lemma 3: T = ∞ implies that At = {0, 1}∞ for all t, and then stationary preferences
imply that V t(kt,at) is independent of t, and therefore Ut(k,αtc) = maxa∈At V t(k, a) is indepen-

dent of t. Stationary preferences also imply that ht(k) is independent of t. Because αtc(k, t) = 1 if

and only if ht(k) ≥ δ [Ut+1 (γk,α
tc)− Ut+1 (γk + 1,αtc)], it follows that αtc(k, t) is independent

of t, in which case Lemma 1(1) implies that TCs have a stationary cutoff k̄tc. Similarly, because

αn(k, t) = 1 if and only if ht(k) ≥ βδ [Ut+1 (γk,α
tc)− Ut+1 (γk + 1,αtc)], it follows that αn(k, t)

is independent of t, in which case Lemma 1(2) implies that naifs have a stationary cutoff k̄n.

QED

Proof of Lemma 4: When T <∞, αs is unique (since we assume a person hits when indifferent).
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Our ‘‘limit-of-the-finite-horizon’’ reasoning involves solving for this strategy and asking what it

looks like far from the end of the game. To make such arguments, two new pieces of notation will

be useful:

Define ∆̃H(k, η) to be the future cost from hitting for a person whose current addiction level is

k who will hit no matter what in the η remaining periods. Formally,

∆̃H(k, η) =

ηX
n=1

δn−1
"
f

Ã
γnk +

n−1X
m=1

γm−1
!
− f

Ã
γnk +

nX
m=1

γm−1
!#
≥ 0.

∆̃H is weakly decreasing in k, is increasing in η, and∆H = ∆̃H(0,∞).
Define rtτ ≡ {(at, at+1, ..., aT ) ∈ At | at0 = 1 if and only if t0 ≥ τ}. In words, rtτ is the period-t

behavior path that involves refraining until period τ and then hitting thereafter.

Suppose x̄o ≥ βδ∆H . Because this implies h(0) ≥ 0, αs(k, T ) = 1 for all k ≥ 0 — the

person hits no matter what in period T . Given this, αs(k, T − 1) = 1 if and only if hT−1(k) ≥
βδ∆̃H(k, 1). Given hT−1(k) ≥ x̄o for all k and ∆̃H(k, 1) ≤ ∆H for all k, x̄o ≥ βδ∆H implies

αs(k, T − 1) = 1 for all k ≥ 0— the person hits no matter what in period T − 1. Iterating this
logic, it is straightforward to derive that for any T <∞, αs(k, t) = 1 for all k and t, in which case
the corresponding infinite-horizon strategy involves αs(k, t) = 1 for all k and t.

Suppose x̄o < βδ∆H . Now there exists η̄ ∈ {0, 1, ...} such that x̄o < βδ∆̃H(0, η) if and only if

η ≥ η̄. The logic above implies that for all t > T − η̄, αs(k, t) = 1 for all k, and that for τ̄ ≡ T − η̄

there exists k0 > 0 such that αs(k, τ̄) = 0 if and only if k < k0. It is straightforward (although

tedious) to derive that for any t < τ̄ and k < k0, a sophisticate’s desired behavior conditional on

hitting from period τ̄ + 1 onward — that is, among the set of strategiesAt∗ ≡
{(at, ...aT ) ∈ At | aτ = 1 for t > τ̄} — is rtτ̄+1. Hence, in period τ̄ − 1, a sophisticate with
kτ̄−1 < k0 perceives that refraining now will lead to following his desired behavior path rτ̄−1τ̄+1,

and so αs(k, τ̄ − 1) = 0 for all k < k0. But this means that in period τ̄ − 2 a sophisticate with
kτ̄−2 < k0 perceives that refraining now will lead to following his desired behavior path rτ̄−2τ̄+1, and

so αs(k, τ̄ − 2) = 0 for all k < k0. Iterating this logic, it follows that for all t ≤ τ̄ , αs(k, t) = 0 for

all k < k0, in which case the corresponding infinite-horizon strategy involves for all t, αs(k, t) = 0

for all k < k0.

QED

Proof of Lemma 5: The value k∗(β) is the k∗ such that
(1−δ+βδ)x̄o

1−δ + f (k∗) + βδ
P∞

n=1 δ
n−1f

¡
γnk∗ +

Pn−1
m=0 γ

m
¢
= g (k∗) + βδ

P∞
n=1 δ

n−1g (γnk∗),
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and the value k̃(β) is the k̃ such that

x̄o + f
³
k̃
´
+ βδ

P∞
n=1 δ

n−1g
³
γnk̃ + γn−1

´
= g

³
k̃
´
+ βδ

P∞
n=1 δ

n−1g
³
γnk̃

´
.

(1) For all k and t, TCs follow their desired behavior path, which is either hit always or refrain

always. Clearly αtc(k, t) = 1 if and only if their desired behavior path is hit always, which means

k ≥ k∗(1).
(2) For all k and t, naifs attempt to follow their desired behavior path, which is either hit always,

hit once, or refrain always. Hence, αn(k, t) = 1 if and only if their desired behavior path is either

hit always or hit once, which means k ≥ min{k∗(β), k̃(β)}.
(3) That αs(k, t) = 1 for all k if x̄o ≥ βδ∆H follows from Lemma 4. Suppose x̄o < βδ∆H .

Define k∗∗ such that sophisticates’ desired behavior path is hit always for all k ≥ k∗∗, in which
case clearly αs(k, t) = 1 if k ≥ k∗∗. Consider k ∈ [(k∗∗ − 1)/γ, k∗∗). Because γk + 1 ≥ k∗∗,
hitting with addition level k will lead a sophisticate to hit always. The best possible behavior path

following restraint is never hitting (given that k < k∗∗). Hence, for any k ∈ [(k∗∗−1)/γ, k∗∗) such
that k ≥ k∗(β), which means hitting always is preferred to never hitting, αs(k, t) = 1. Because we
can iterate this logic, it follows that for any t, αs(k, t) = 1 if k ≥ k∗(β).
By Lemma 4, there exists k0 > 0 such that for all t, αs(k, t) = 0 if k < k0. Consider k ∈

[k0, k0/γ). Because γk < k0, refraining with addiction level k implies never hitting. Hence, for any

k ∈ [k0, k0/γ) such that k < min{k∗(β), k̃(β)}, which means never hitting is sophisticates’ desired
behavior path, αs(k, t) = 0. Because we can iterate this logic, it follows that for any t, αs(k, t) = 0

if k < min{k∗(β), k̃(β)}.
Suppose γk̃(β) + 1 ≥ k∗(β). In this case, one possibility is k̃(β) ≥ k∗(β), in which case it

follows from above that αs(k, t) = 1 if and only if k ≥ k∗(β). The other possibility is k̃(β) <
k∗(β). But then for any k ∈ [k̃(β), k∗(β)), hitting with addiction level k implies hitting always
(because γk + 1 ≥ k∗(β)), and an iteration logic similar to that in the previous paragraph yields
αs(k, t) = 1 if and only if k ≥ k∗(β).
Finally suppose γk̃(β)+1 < k∗(β), which implies k̃(β) < k∗(β). In this case, our results above

imply αs(k, t) = 0 if k < k̃(β) and αs(k, t) = 1 if k ≥ k∗(β).
QED

Proof of Proposition 1: (1) αtc(k, t) ≤ αn(k, t) for all k and t is established by Lemma 1; and

αn(k, t) ≤ αs(k, t) for all k and t follows trivially from Lemma 4, which establishes that x̄o ≥
βδ∆H implies αs(k, t) = 1 for all k and t.
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(2) αs(k, t) ≤ αn(k, t) follows from Lemma 5, which establishes that αn(k, t) = 1 if k ≥
min{k∗(β), k̃(β)} whereas αs(k, t) = 1 only if k ≥ min{k∗(β), k̃(β)}. αtc(k, t) ≤ αs(k, t) also

follows from Lemma 5, which establishes αs(k, t) = 1 if k ≥ k∗(β) whereas αtc(k, t) = 1 only if
k ≥ k∗(1) ≥ k∗(β).
QED

Proof of Proposition 2: Define k̄ such that

f(k̄)− g(k̄) = βδ
£
∆R

¡
k̄
¢−∆H

¤
where ∆R(k) =

P∞
n=1 δ

n−1 [g (γnk)− g (γnk + γn−1)]. Because f(k) − g(k) is increasing in
k, and because βδ

£
∆R(k)−∆H

¤
is weakly decreasing in k (since g is weakly convex), there

exists a unique such k̄, and moreover f(k) − g(k) < βδ
£
∆R (k)−∆H

¤
for k < k̄ and f(k) −

g(k) > βδ
£
∆R (k)−∆H

¤
for k > k̄. Because f(0) − g(0) = 0 < βδ

£
∆R(0)−∆H

¤
(the

inequality follows from Lemma 2), k̄ > 0. Because δ = 1 implies βδ
£
∆R(kmax)−∆H

¤
=

β [f(kmax)− g(kmax)], and because βδ £∆R(k)−∆H
¤
is increasing in δ (whenever it’s positive),

k̄ < kmax.

(1) Suppose k1 ≤ k̄. By Lemma 5, naifs hit always only if x̄o such that k1 ≥ min{k∗(β), k̃(β)}.
If k1 ≥ k∗(β), then sophisticates hit always. If k1 ≥ k̃(β), then x̄o + f(k1)− g(k1) ≥ βδ∆R(k1).

But since k1 ≤ k̄ implies f(k1) − g(k1) ≤ βδ∆R(k1) − βδ∆H , k1 ≥ k̃(β) implies x̄o ≥ βδ∆H

and therefore sophisticates hit always. The result follows.

(2) Suppose k1 ≥ k̄. By Lemma 5, naifs never hit only if x̄o such that k1 < min{k∗(β), k̃(β)},
which requires k1 < k̃(β). If k1 < k̃(β) then x̄o + f(k1) − g(k1) < βδ∆R(k1). And since

k1 ≥ k̄ implies f(k1)− g(k1) ≥ βδ∆R(k1)−βδ∆H , k1 < k̃(β) implies x̄o < βδ∆H and therefore

sophisticates refrain whenever naifs refrain. The result follows.

QED

Proof of Proposition 3: It is clear that both behavior andwelfare losses depend only on x̄o ≡ xo−yo
and not on the specific values of xo and yo. For notational simplicity, therefore, the proofs of

Propositions 3 and 4 shall assume yo = 0 and xo = x̄o. Define V NH(x̄o, k1), V HA(x̄o, k1), and

V H1(x̄o, k1) to be the long-run utilities from never hitting, hitting always, and hitting once, respec-

tively. Similarly, define Ṽ NH(x̄o, k1), Ṽ HA(x̄o, k1), and Ṽ H1(x̄o, k1) to be the short-run utilities

from these behavior paths. Given f(k) = −ρk, g(k) = −φρk, and ∆H = ρ
1−δγ , it is straightfor-

ward to derive:
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V NH(x̄o, k1) = −φ∆Hk1 and Ṽ NH(x̄o, k1) = −φρk1 − βδφ∆Hγk1

V HA(x̄o, k1) =
x̄o
1−δ − δ∆H

1−δ −∆Hk1 and Ṽ HA(x̄o, k1) = x̄o − ρk1 +
βδx̄o
1−δ − βδ∆H

1−δ − βδ∆γk1.

V H1(x̄o, k1) = x̄o − ρk1 − δφ∆H(γk1 + 1) and Ṽ H1(x̄o, k1) = x̄o − ρk1 − βδφ∆H(γk1 + 1).

(1) TCs either never hit or hit always; committers either never hit, hit always, or hit once. Com-

mitters suffer welfare losses only if they hit always or hit once when TCs never hit. Because
∂V HA

∂x̄o
> ∂V H1

∂x̄o
> ∂V NH

∂x̄o
, welfare losses are maximized at either the minimum x̄o such that commit-

ters hit always or the minimum x̄o such that committers hit once.

Define xNH,H1 such that Ṽ NH(xNH,H1, 0) = Ṽ H1(xNH,H1, 0), define xNH,HA such that

Ṽ NH(xNH,HA, 0) = Ṽ HA(xNH,HA, 0), and define xH1,HA such that

Ṽ H1(xH1,HA, 0) = Ṽ HA(xH1,HA, 0). Algebra reveals xNH,HA = βδ∆H

1−δ+βδ and x
NH,H1 = βδφ∆H ,

and therefore xNH,H1 ≤ xNH,HA if and only if φ ≤ 1
1−δ+βδ .

Suppose φ ≤ 1
1−δ+βδ . Because

∂Ṽ HA

∂x̄o
> ∂Ṽ H1

∂x̄o
> ∂Ṽ NH

∂x̄o
, it follows that xH1,HA ≥ xNH,H1,

and therefore committers never hit for x̄o < xNH,H1, hit once for x̄o ∈ [xNH,H1, xH1,HA), and hit
always for x̄o ≥ xH1,HA. Hence, if φ ≤ 1

1−δ+βδ welfare losses are maximized at x
NH,H1 (because

xH1,HA is the x̄o at which TCs are indifferent between hitting once and hitting always), and so

maxx̄o∈IR
£
WL(0,αcommit)

¤
= V NH(xNH,H1, 0)− V H1(xNH,H1, 0) = δ(1− β)φ∆H .

If φ ≥ 1
1−δ+βδ then x

NH,H1 ≥ xNH,HA, in which case ∂Ṽ HA

∂x̄o
> ∂Ṽ H1

∂x̄o
> ∂Ṽ NH

∂x̄o
implies that

committers never hit for x̄o < xNH,HA and hit always for x̄o ≥ xNH,HA. Hence, if φ ≥ 1
1−δ+βδ then

welfare losses aremaximized at xNH,HA, and somaxx̄o∈IR
£
WL(0,αcommit)

¤
= V NH(xNH,HA, 0)−

V HA(xNH,HA, 0) = δ(1−β)
1−δ+βδ∆

H .

(2) TCs and sophisticates both either never hit or hit always, and so sophisticates suffer welfare

losses only if they hit always when TCs never hit. Because ∂V HA

∂x̄o
> ∂V NH

∂x̄o
, welfare losses are

maximized at the minimum x̄o such that sophisticates hit always. Lemma 4 implies sophisticates

hit always if and only if x̄o ≥ βδ∆H . Hence, for any φ > 1 welfare losses are maximized at x̄o =

βδ∆H , and somaxx̄o∈IR [WL(0,αs)] = V NH(βδ∆H , 0)− V HA(βδ∆H , 0) = δ(1−β)
1−δ ∆H .

(3) Like sophisticates, naifs suffer welfare losses only if they hit always when TCs never hit, and

so welfare losses are maximized at the minimum x̄o such that naifs hit always. Using the notation

from the proof of part 1, naifs hit always if x̄o ≥ min{xNH,HA, xNH,H1}.
As above, if φ ≤ 1

1−δ+βδ then x
NH,H1 ≤ xNH,HA, and therefore welfare losses are maximized

at xNH,H1. Hence,maxx̄o∈IR [WL(0,αn)] = V NH(xNH,H1, 0)− V HA(xNH,H1, 0) = δ(1−βφ)
1−δ ∆H .

If φ ≥ 1
1−δ+βδ then x

NH,H1 ≥ xNH,HA, and therefore welfare losses are maximized at xNH,HA.
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Hence, maxx̄o∈IR [WL(0,αn)] = V NH(xNH,HA, 0)− V HA(xNH,HA, 0) = δ(1−β)
1−δ+βδ∆

H .

QED

Proof of Proposition 4: (1) For any k1, committers suffer welfare losses only if they hit always or

hit once when TCs never hit, and welfare losses are maximized at either the minimum x̄o such that

committers hit always or the minimum x̄o such that committers hit once.

Define xNH,H1 such that Ṽ NH(xNH,H1, k1) = Ṽ H1(xNH,H1, k1), define xNH,HA such that

Ṽ NH(xNH,HA, k1) = Ṽ
HA(xNH,HA, k1), and define xH1,HA such that

Ṽ H1(xH1,HA, k1) = Ṽ
HA(xH1,HA, k1). Algebra reveals xNH,HA = βδ∆H

1−δ+βδ − (1−δ)(1−δγ+βδγ)
1−δ+βδ (φ −

1)∆Hk1 and xNH,H1 = βδφ∆H − (1 − δγ)(φ − 1)∆Hk1, and therefore xNH,H1 ≤ xNH,HA if

and only if k1 ≥ (1−δ+βδ)φ−1
φ−1 kmax ≡ k∗ (recall that kmax = 1

1−γ ). Note that φ >
1

1−δ+βδ implies

k∗ ∈ (0, (1− δ + βδ)kmax).

Suppose k1 ≥ k∗. Because ∂Ṽ HA

∂x̄o
> ∂Ṽ H1

∂x̄o
> ∂Ṽ NH

∂x̄o
, it follows that xH1,HA ≥ xNH,H1, and

therefore committers never hit for x̄o < xNH,H1, hit once for x̄o ∈ [xNH,H1, xH1,HA), and hit
always for x̄o ≥ xH1,HA. Hence, if k1 ≥ k∗ then welfare losses are maximized at xNH,H1, and so
maxx̄o∈IR

£
WL(k1,α

commit)
¤
= V NH(xNH,H1, k1)− V H1(xNH,H1, k1) = δ(1− β)φ∆H .

If k1 ≤ k∗ then xNH,H1 ≥ xNH,HA, in which case ∂Ṽ HA

∂x̄o
> ∂Ṽ H1

∂x̄o
> ∂Ṽ NH

∂x̄o
implies that com-

mitters never hit for x̄o < xNH,HA and hit always for x̄o ≥ xNH,HA. Hence, if k1 ≤ k∗ then wel-
fare losses are maximized at xNH,HA, and somaxx̄o∈IR

£
WL(k1,α

commit)
¤
= V NH(xNH,HA, k1)−

V HA(xNH,HA, k1) =
δ(1−β)
1−δ+βδ∆

H
£
1 + k1

kmax
(φ− 1)¤.

(2) Naifs suffer welfare losses only if they hit always when TCs never hit, and so welfare losses

are maximized at the minimum x̄o such that naifs hit always. Using the notation from the proof of

part 1, naifs hit always if x̄o ≥ min{xNH,HA, xNH,H1}.
As above, if k1 ≥ k∗ then xNH,H1 ≤ xNH,HA, and therefore welfare losses are maximized at

xNH,H1. Hence, maxx̄o∈IR [WL(k1,αn)] = V NH(xNH,H1, k1)− V HA(xNH,H1, k1) =
δ(1−β)φ
1−δ ∆H − ¡1− k1

kmax

¢ δ(φ−1)
1−δ .

If k1 ≤ k∗ then xNH,H1 ≥ xNH,HA, and therefore welfare losses are maximized at xNH,HA.

Hence, maxx̄o∈IR [WL(k1,αn)] = V NH(xNH,HA, k1)− V HA(xNH,HA, k1) =
δ(1−β)
1−δ+βδ∆

H
£
1 + k1

kmax
(φ− 1)¤.

QED

Proof of Lemma 6: (1) We first prove that for any behavior paths a ≡ (a1, a2, ...) and a0 ≡
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(a01, a
0
2, ...) with an ≥ a0n for all n, Vt(k, a)−Vt(k,a0) ≥ Vτ(k, a)−Vτ(k, a0) for any t < τ . Given

f and g are independent of t, [Vt(k, a)− Vt(k,a0)]− [Vτ (k,a)− Vτ(k,a0)] =P∞
n=1 δ

n−1I(an > a0n) [(xt+n − yt+n)− (xτ+n − yτ+n)], where I is an indicator function as in the
proof of Lemma 2. Given youthful instantaneous utilities, t < τ implies xt+n−yt+n ≥ xτ+n−yτ+n
for all n, and the result follows.

Suppose that k̄tct ≤ k̄tct+1 for all t ≥ τ . Letting ã be the optimal behavior path for a person

in period τ with addiction level kτ = k̄tcτ , which must involve hitting in period τ , and defining

r ≡ (0, 0, ...), we must have Vτ(k̄tcτ , ã) ≥ Vτ(k̄
tc
τ , r). Now consider a person in period τ − 1

with addiction level kτ−1 = k̄tcτ . Given the premise that k̄tct ≤ k̄tct+1 for all t ≥ τ , if this person

refrains then he will refrain forever after. Given our assumption that people hit when indifferent,

this person can therefore refrain only if Vτ−1(k̄tcτ , r) > Vτ−1(k̄tcτ ,a) for all a ∈ {0, 1}∞, and in
particular only if Vτ−1(k̄tcτ , r) > Vτ−1(k̄tcτ , ã). But our result in the previous paragraph implies

that if Vτ(k̄tcτ , ã) ≥ Vτ(k̄tcτ , r) then Vτ−1(k̄tcτ , ã) ≥ Vτ−1(k̄tcτ , r). Hence, this person must hit, and
therefore k̄tcτ−1 ≤ k̄tcτ .
We have thus established that if k̄tct ≤ k̄tct+1 for all t ≥ τ , then k̄tct ≤ k̄tct+1 for all t ≥ τ − 1.

Lemma 3 implies that k̄tct = k̄tct+1 for all t ≥M , and the result follows.
(2) The proof is almost identical to that for TCs, and so is omitted.

(3) Note that if for all t > τ αs(k, t) = 1 for all k, then Uτ+1 (γk,α
s) − Uτ+1 (γk + 1,α

s) =

∆̃H(k,∞), where ∆̃H is defined in the proof of Lemma 4 and is independent of τ . By Lemma 4,

x̄M ≥ βδ∆H implies that for all t ≥ M αs(k, t) = 1 for all k, which in turn requires hM(k) ≥
βδ∆̃H(k,∞) for all k. Then hM−1(k) ≥ hM(k) for all k implies hM−1(k) ≥ βδ∆̃H(k,∞) for all
k, and therefore αs(k,M − 1) = 1 for all k. Iterating this logic, it follows that αs(k, t) = 1 for all
k and t.

That x̄M < βδ∆H implies there exists k0 > 0 such that for all t ≥M αs(k, t) = 0 for all k < k0

follows directly from Lemma 4.

QED

Proof of Proposition 5: (1) αn(k, t) ≤ αs(k, t) for all k and t follows trivially from Lemma 6,

which establishes that x̄M ≥ βδ∆H implies αs(k, t) = 1 for all k and t.

(2) We first establish that if for all t > τ αs(k, t) ≤ αn(k, t) for all k, then αs(k, τ) ≤ αn(k, τ)

for all k. If αn(k, τ) = 1, then clearly αs(k, τ) ≤ αn(k, τ). Suppose instead that αn(k, τ) = 0, in

which case hτ(k) < βδ [Uτ+1 (γk,α
tc)− Uτ+1 (γk + 1,α

tc)]. By Lemma 6, if naifs refrain in pe-
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riod τ then they will refrain forever after, which implies that if TCs refrain in period τ then they will

refrain forever after. Moreover, the premise that for all t > τ αs(k, t) ≤ αn(k, t) for all k implies

that if sophisticates refrain in period τ then they will refrain forever after, and so Uτ+1(γk,α
s) =

Uτ+1(γk,α
tc). By revealed preference for TCs, Uτ+1(γk+1,α

tc) ≥ Uτ+1(γk+1,α
s), which im-

plies βδ [Uτ+1 (γk,α
s)− Uτ+1 (γk + 1,α

s)] ≥ βδ [Uτ+1 (γk,α
tc)− Uτ+1 (γk + 1,α

tc)] > hτ(k)

and therefore αs(k, τ) = 0. The claim follows.

The result then follows from Proposition 1, which implies that if x̄M < βδ∆H then αs(k, t) ≤
αn(k, t) for all k and t ≥M .
QED

Proof of Proposition 6: Let w(a) and ŵ(a) be the person’s period-1 utility before and after the

youthful rotation, respectively, from following behavior path a given initial addiction level k1 = 0.

Let r ≡ (0, 0, ...), h ≡ (1, 1, ...), and h1 ≡ (1, 0, 0, ...).
(1) For TCs, the definition of a youthful rotation implies w(h) = ŵ(h) and w(r) = ŵ(r).

Because atc = h only if w(h) ≥ w(r) and batc = r only if ŵ(h) < ŵ(r), atc = h implies batc 6= r.
Similarly, because atc = r only if w(r) > w(h) and batc = h only if ŵ(r) ≤ ŵ(h), atc = r impliesbatc 6= h.
(2) For naifs, the definition of a youthful rotation implies w(h) = ŵ(h), w(r) = ŵ(r), and

w(h1) ≤ ŵ(h1). Lemma 5 implies an = h only if min{w(h), w(h1)} ≥ w(r), and since

min{ŵ(h), ŵ(h1)} ≥ min{w(h), w(h1)} ≥ w(r) = ŵ(r), it follows that ban 6= r.
(3) as = r implies an = r by Proposition 2. as = r also implies that x̄o < βδ∆H by Lemma 4,

and the definition of a youthful rotation then implies x̄M < βδ∆H . Proposition 5 then implies that

if in addition bas = h then ban = h.
QED

Proof of Proposition 7: As for Propositions 3 and 4, both behavior and welfare losses depend only

on x̄t ≡ xt− yt and not on the specific values of xt and yt. For notational simplicity, therefore, this
proof shall assume yt = 0 and xt = x̄t for all t.

(1) Because committers behave optimally from period 2 onward, committers suffer welfare

losses only if they hit in period 1 while TCs never hit. Moreover, if committers hit in period 1,

then their period-2 continuation utility is U2(1,αtc). Hence, committers hit in period 1 only if

x̄1+βδU2(1,α
tc) ≥ 0, and their welfare loss from doing so is−x̄1− δU2(1,α

tc). Because a TC in
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period 2 with addiction level k2 = 1 could choose to refrain forever after, which yields continuation

utility −φ∆H , by revealed preference U2(1,αtc) ≥ −φ∆H . Because x̄1 + βδU2(1,α
tc) ≥ 0 and

U2(1,α
tc) ≥ −φ∆H imply −x̄1 − δU2(1,α

tc) ≤ δ(1− β)φ∆H , we can conclude

max(x̄1,x̄2,...)∈IR∞
£
WL(0,αcommit)

¤ ≤ δ(1− β)φ∆H .

It remains to prove we can hit this bound for any φ. To do so, simply let x̄1 = βδφ∆H and let x̄t
be sufficiently small for all t ≥ 2 that αtc(k, t) = 0 for all k and t ≥ 2 (recall x̄t can be negative).
x̄1 = βδφ∆H < δφ∆H implies committers hit once and TCs never hit, and committers therefore

suffer a welfare loss of −x̄1 + δφ∆H = δ(1− β)φ∆H .

(2) Choose (x̄1, x̄2, ...) such that x̄1 = βδφ∆H , x̄2 + σ = βδφ∆H , x̄3 + σ(1 + γ) = βδφ∆H ,

and so forth. x̄1 = βδφ∆H implies a naif in period 1 with k1 = 0 just prefers hitting once to never

hitting, and x̄2 + σ = βδφ∆H implies a naif in period 2 with k2 = 1 just prefers hitting once to

never hitting, and x̄3 + σ(1 + γ) = βδφ∆H implies a naif in period 3 with k3 = 1+ γ just prefers

hitting once to never hitting, and so forth. Hence, with this (x̄1, x̄2, ...) naifs hit always while TCs

never hit, and so naifs suffer a welfare loss of−P∞
t=1 δ

t−1x̄t+ δ∆H

1−δ . It is straightforward to deriveP∞
t=1 δ

t−1x̄t =
βδφ∆H

1−δ − δ(φ−1)∆H

1−δ , and hence naifs suffer welfare loss −P∞
t=1 δ

t−1x̄t + δ∆H

1−δ =
δ(1−β)φ∆H

1−δ .

The (x̄1, x̄2, ...) chosen above minimize
P∞

t=1 δ
t−1x̄t subject to naifs planning every period to

hit once. The welfare losses cannot be larger because if in some period τ naifs plan to hit m > 1

times, then the x̄0t for periods τ + 1 through τ +m must be sufficiently large that TCs would hit,

which would clearly mean smaller welfare losses.

QED

Proof of Proposition 8: (1) If a TC never hits despite the traumatic event, his utility would beP∞
t=1 δ

t−1(−yt) = −
³PN

t=1 δ
t−1yt

´
. By revealed preference, if he hits some during the traumatic

event and perhaps beyond, doing so must yield larger utility, and therefore we can conclude that

min(ρ,σ)∈IR2+
£
U1(0,α

TC)
¤
= −

³PN
t=1 δ

t−1yt
´
.

(2) Vt(k, r) is the long-run continuation utility from refraining forever after. We know that

αs(0, t) = 0 for all t ≥ N + 1. If αs(0, N) = 0, then UN(0,αs) = VN(0, r). If αs(0, N) = 1,

then 0 + βδUN+1(1,α
s) ≥ −yN + βδVN+1(0, r). But since αs(0, N) = 1 implies UN(0,αs) =

0 + δUN+1(1,α
s), and since −yN + βδVN+1(0, r) = −(1 − β)yN + βVN(0, r), it follows that if

αs(0, N) = 1 thenUN(0,αs) ≥ VN(0, r)− 1−β
β
yN . Hence, whether αs(0, N) = 0 or αs(0, N) = 1,
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we have UN(0,αs) ≥ VN(0, r)− 1−β
β
yN .

Consider period N − 1. If αs(0, N − 1) = 0, then UN−1(0,αs) = −yN−1 + δUN(0,α
s) ≥

VN−1(0, r) − 1−β
β

δyN . If αs(0, N − 1) = 1, then 0 + βδUN(1,α
s) = βUN−1(0,αs) ≥ −yN−1 +

βδUN(0,α
s) ≥ −yN−1 + βδ

h
VN(0, r)− 1−β

β
yN
i
, which yields UN−1(0,αs) ≥ VN−1(0, r) −

1−β
β
(yN−1+ δyN). Hence, whether αs(0, N −1) = 0 or αs(0, N −1) = 1, we have UN−1(0,αs) ≥

VN−1(0, r)− 1−β
β
(yN−1 + δyN).

Iterating this logic, and the fact that V1(0, r) = −
³PN

t=1 δ
t−1yt

´
, it follows that U1(0,αs) ≥

V1(0, r)− 1−β
β

³PN
t=1 δ

t−1yt
´
= −

³
1
β

PN
t=1 δ

t−1yt
´
.

QED

Proof of Proposition 9: (1) For any p ≡ (p1, p2, ...), define k∗1(p) to be the period-1 addiction

level such that a TC is indifferent between hitting always and never hitting. k∗1(p) is defined by
∞X
t=1

δt−1
"
Yt − pt + f

Ã
γt−1k∗1(p) +

t−1X
n=1

γn−1
!#

=
∞X
t=1

δt−1
£
Yt + g

¡
γt−1k∗1(p)

¢¤
,

which we can rewrite as
P∞

t=1 δ
t−1(−pt) + Φ(k∗1(p)) = 0, where Φ(k) ≡P∞

t=1 δ
t−1 £f ¡γt−1k +Pt−1

n=1 γ
n−1¢− g (γt−1k)¤. It is straightforward to show that Φ0(k) < 0.

Define p̄ ≡ (p̄, p̄, ...). Applying Lemma 5, k̄tct = k∗1(p̄) for all t. A simple application of the

implicit function theorem yields dk̄tc1 /dp̄ = (1/(1− δ)) /[−Φ0 (k∗1(p̄))].
Consider next an immediate temporary price change. Given pt = p̄ for all t ≥ 2, k̄tct = k∗1(p̄)

for all t ≥ 2, which implies that for any k1 ∈ [(k∗1(p̄)− 1)/γ, k∗1(p̄)/γ] the person compares hitting
always to never hitting. Hence, for p1 sufficiently close to p̄ that k̄tc1 ∈ [(k∗1(p̄)− 1)/γ, k∗1(p̄)/γ],
k̄tc1 is determined by the condition

P∞
t=1 δ

t−1(−pt) + Φ(k∗1(p)) = 0. At p1 = p̄, dk̄tc1 /dp1 =

1/[−Φ0 (k∗1(p̄))].
Consider a temporary price change in period τ . The logic above implies that at pτ = p̄,

dk̄tcτ /dpτ = 1/[−Φ0 (k∗1(p̄))]. Moreover, for pτ sufficiently close to p̄ that k̄tcτ ∈ [γk∗1(p̄), γk∗1(p̄) + 1],
k̄tcτ−1 is determined by the condition

P∞
n=0 δ

n(−pτ−1+n) + Φ(k∗1(p)) = 0 and therefore at pτ = p̄,

dk̄tcτ−1/dpτ = δ/[−Φ0 (k∗1(p̄))]. Iterating this logic, we conclude that k̄tc1 is determined by the con-
dition

P∞
t=1 δ

t−1(−pt) + Φ(k∗1(p)) = 0, and therefore at pτ = p̄, dk̄tc1 /dpτ = δτ−1/[−Φ0 (k∗1(p̄))].
Finally, it follows immediately from above that (dk̄tc1 /dpτ)/(dk̄tc1 /dp1) = δτ−1 and

(dk̄tc1 /dp̄)/(dk̄
tc
1 /dp1) = 1/(1− δ).

(2a) For any p ≡ (p1, p2, ...), define kβ1 (p) to be the period-1 addiction level such that a naif is
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indifferent between hitting always and never hitting. kβ1 (p) is defined byh
Y1 − p1 + f(kβ1 (p))

i
+ β

∞X
t=2

δt−1
"
Yt − pt + f

Ã
γt−1kβ1 (p) +

t−1X
n=1

γn−1
!#

=
h
Y1 + g(k

β
1 (p))

i
+ β

∞X
t=2

δt−1
h
Yt + g

³
γt−1kβ1 (p)

´i
,

which we can rewrite as p1 + β
P∞

t=2 δ
t−1(−pt) + Φ̃(kβ1 (p)) = 0, where Φ̃(k) ≡ f(k) − g(k) +

β
P∞

t=2 δ
t−1 £f ¡γt−1k +Pt−1

n=1 γ
n−1¢− g (γt−1k)¤. It is straightforward to show that Φ̃0(k) < 0.

Applying Lemma 5, if k∗(β, p̄) < k̃(β, p̄) then k̄nt = kβ1 (p̄) for all t. It is straightforward to

show that for small price changes k̄n1 is still the addiction level at which the person is indifferent

between hitting always and never hitting (the logic is the same as that used in the proof of part

1). Applying the implicit function theorem yields dk̄n1 /dp̄ = (1 + βδ/(1− δ)) /[−Φ̃0
³
kβ1 (p̄)

´
],

dk̄n1/dp1 = 1/[−Φ̃0
³
kβ1 (p̄)

´
], and dk̄n1 /dpτ =

¡
βδτ−1

¢
/[−Φ̃0

³
kβ1 (p̄)

´
]. The result follows.

(2b) For any p ≡ (p1, p2, ...), define k̃β1 (p) to be the period-1 addiction level such that a naif is
indifferent between hitting once and never hitting. k̃β1 (p) is defined byh

Y1 − p1 + f(k̃β1 (p))
i
+ β

∞X
t=2

δt−1
h
Yt + g

³
γt−1k̃β1 (p) + γt−2

´i
=

h
Y1 + g(k̃

β
1 (p))

i
+ β

∞X
t=2

δt−1g
³
γt−1k̃β1 (p)

´
,

which we can rewrite as p1 + Γ̃(kβ1 (p)) = 0, where Γ̃(k) ≡ f(k)− g(k)+
β
P∞

t=2 δ
t−1 [g (γt−1k + γt−2)− g (γt−1k)]. It is straightforward to show that Γ̃0(k) < 0.

Applying Lemma 5, if k̃(β, p̄) < k∗(β, p̄) then k̄nt = k̃
β
1 (p̄) for all t. It is again straightforward

to show that for small price changes k̄n1 is still the addiction level at which the person is indifferent

between hitting once and never hitting. Applying the implicit function theorem yields dk̄n1 /dp̄ =

1/[−Γ̃0
³
k̃β1 (p̄)

´
], dk̄n1 /dp1 = 1/[−Γ̃0

³
k̃β1 (p̄)

´
], and dk̄n1 /dpτ = 0. The result follows.

QED
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