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Abstract

Asymmetric Information, Repeated Trade, and Asset Prices

by

James McLoughlin

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Christine A. Parlour, Chair

Financial intermediaries play an important role in the pricing of financial assets. For
example, intermediaries may act on behalf of consumers in deciding how their wealth is
invested, or they may act as providers of liquidity. This dissertation explores several ways
in which intermediaries impact price informativeness, the transaction costs investors incur,
and investor welfare.

In the first chapter, I examine how prices reveal information when intermediaries are in-
formed. Using a model of repeated trade between a long-lived, informed, price-discriminating
market maker and risk averse traders with endogenous hedging demands, I first show that
traders are weakly better off trading with an informed dealer, as they may learn something
about an asset’s value in the process of transacting. Second, while long-term incentives can
induce an informed market maker to honestly reveal information and increase risk-sharing,
they also enable the market maker to hide her information and extract more rents, reduc-
ing price informativeness. This less desirable outcome dominates with respect to both the
parameter space and a selection criterion. Finally, measures of market quality, such as the
transient component of price volatility (illiquidity), may not accurately reflect welfare.

The second chapter discusses how relationships affect prices when intermediaries are
concerned about adverse selection. When counter-parties trade in OTC markets, such as
those for corporate bonds or derivatives, the lack of anonymity implies that future terms
of trade can influence prices today. Using a model of repeated trade between an informed
trader and uninformed market makers, I show that information asymmetry can affect the
markups charged by dealers in two ways. First, for a given market structure (number of
market makers), traders with more private information incur lower trading costs because
dealers offer better terms to mitigate adverse selection. Second, even when dealers can not
compete directly on price quotes, they compete indirectly by improving the informed trader’s
outside option, though this competition is imperfect. While repeated trade allows two given
counter-parties to ameliorate adverse selection, the maximum number of dealers, and hence
the total gains achievable, are limited by information frictions. An empirical implication
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is that the comparative statics of transaction costs only make sense conditional on market
structure.

The third chapter considers the effect intermediaries have as financial advisors, and
whether measures of their performance as mutual fund managers accurately reflect the value
they add to an economy. Relative to the existing literature, I look at how the presence
of mutual funds affects the price of the underlying asset in an economy. Once this pricing
effect is accounted for, I show that standard measures of mutual fund performance may not
accurately reflect whether fund management is welfare improving.
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Chapter 1

Why trade with Goldman?

1.1 Introduction

The first thing you need to know about Goldman Sachs is that it’s everywhere.
The world’s most powerful investment bank is a great vampire squid wrapped
around the face of humanity, relentlessly jamming its blood funnel into anything
that smells like money.

–Matt Taibbi, “The Great American Bubble Machine”, Rolling Stone, 2009

People lost money in it, but the security itself delivered the specific exposure
that the client wanted to have.

–Lloyd Blankfein, C.E.O. Goldman Sachs, 2010

In the financial markets literature, the strategic use of private information is largely
viewed through the lens of equity markets. Much of our intuition rests on a paradigm in
which competitive, uninformed market makers set prices against which a large number of
agents, some of whom have private information, may trade. For example, a dealer quoting
prices in a particular firm’s stock is unlikely to have inside information about the firm’s
fundamentals, but may be exposed to adverse selection if the firm’s employees or their
associates do. However, a large number of asset classes, from traditional assets such as
municipal bonds to more exotic asset-backed securities and derivatives, trade in over-the-
counter (OTC) markets that do not fit this paradigm: price quotes are private, dealers have
market power in setting prices, and it may be more reasonable to assume that they are the
smart money.

If a market maker knows more about an asset’s value than her clients, how do these
clients avoid being taken advantage of when buying or selling the asset? Are they better
off transacting with an uninformed dealer? Can longer term incentives, such as those pro-
moted by recent financial regulation, improve client welfare by making the market maker
more cooperative? To address these questions I posit a model of repeated trade between
an informed market maker and uninformed risk-averse agents interested in hedging their
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endowment shocks. The market maker is able to use her information strategically because
she has pricing power—for simplicity I assume she is a monopolist—and may be more or less
focused on short-term profits depending on how she discounts future cash flows.

I find that while long-term incentives can increase risk sharing gains, they are potentially
detrimental to price informativeness. In a static setting, as long as consumers of a market
maker’s risk sharing services are sophisticated—i.e. they have rational expectations—they
are not easily exploited and may benefit by learning from an informed dealer’s price quotes.
Increasing a market maker’s concern for future business can improve welfare by promoting
more trade and informative prices, but this is not the only possible outcome. In fact, long-
term incentives are more likely to increase the dealer’s trading gains by allowing her to
conceal information.

There are three distinct aspects of my model. First, the price makers (dealers) are more
informed about the risky asset’s value than the price takers (traders). This information
structure may apply for OTC assets because dealers often have a role in designing the
securities that satisfy their clients’ hedging needs, giving them a better sense of what these
assets are worth. For example, following the financial crisis, politicians, regulators, and
the media censured investment banks, particularly Goldman Sachs, for betting against their
clients using superior information about the value of mortgage-backed securities.1 Even when
dealers don’t have superior information about an asset’s fundamental value, they may have
private information about inventory imbalances that give them an edge: Cao, Evans, and
Lyons (2006) show private information about order flow can predict future prices changes in
the foreign exchange market.

Second, imperfect competition allows the market maker to strategically use her informa-
tional advantage when setting prices. For more exotic OTC assets, there may only be a few
players who can accommodate a given hedging need, and, even in more staid asset classes,
there is empirical support for imperfect competition—Green, Hollifield, and Schurhoff (2007)
find that a significant component of transaction costs in the municipal bond market is due
to dealer market power.

Third, the market maker is a long-lived player who trades off shorter versus longer term
profits depending on her incentives. I use the market maker’s discount factor as a reduced
form proxy for the extent to which she cares about current versus future gains. Traders in
OTC markets know the counter-party they are dealing with, and should consider a dealer’s
incentives when forming beliefs about what she is or isn’t willing to do.2

The beliefs traders entertain about asset value, given an observed price quote, drive the
model’s results. An informed dealer, who posts these quotes, has long-term incentives that

1See Taibbi (2009) and Hobson (2010) for media coverage, the U.S. Senate Permanent Subcommittee’s
analysis of the financial crisis (2010) for political investigations, and Securities and Exchange Commission
(2010) for the SEC’s criminal complaint against Goldman Sachs.

2The role of incentives in financial markets has also received a lot of recent attention: following the
crisis regulators in the U.S. and abroad have recommended a shift from short to long-term incentive-based
compensation schemes. For details, see proposed implementations of the Dodd-Frank act’s section 956 and
the U.K. Financial Services Authority’s “Principle 5” in The Financial Services Authority (2009).
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change the trader’s viable set of beliefs about asset value, and hence the possible trading
outcomes, relative to the myopic case. In my model, a myopic risk-averse trader (the client)
wants to hedge an endowment shock of the risky asset each period. For ease of exposition,
I assume he wants to sell due to a positive shock. A long-lived, risk-neutral, monopolist
market maker knows whether the mean asset payoff is high or low, and bids accordingly,
potentially signaling its value.

The market maker’s preferred bidding strategy depends on the magnitude of hedging
demand. First, consider a myopic market maker who only cares about current period profits.
When the trader is relatively desperate—for example, if he is highly risk-averse—the market
maker can bid low regardless of what she knows about the asset’s value and trade occurs;
the trader knows there is a chance the asset’s value is high, but is still willing to trade
at a low bid. In concealing her private information via a pooling bid, the market maker
maximizes the trader’s uncertainty and the corresponding insurance rents. When hedging
demand is less extreme, this pooling strategy is untenable: given his prior beliefs, the trader
is unwilling to trade at a lowball bid, and the dealer cannot commit to posting a higher bid
because she loses money when the asset value is low. Any high bid therefore reveals the asset
value is high. Signaling the asset value via this separating strategy is the only way trade
occurs, so the market maker is willing to reveal her information in order to get the client’s
business. Her profits are lower than those of the pooling strategy: by revealing information,
she reduces trader uncertainty and the corresponding insurance rents. She also has to forgo
trade in the low-value state because the trader never trusts a low bid.

The myopic case above demonstrates that when traders have rational expectations, they
are not easily exploited. If anything, trading with an informed market maker allows them to
learn about asset value, and they are therefore weakly better off trading with an informed
rather than an uninformed monopolist. In the separating equilibrium, the market maker is
engaging in a form of information sale à la Admati and Pfleiderer (1990): she reveals her
information, alleviating some of the trader’s uncertainty, in exchange for the residual risk
sharing gains.

Long-term incentives yield two additional types of equilibria with higher gains from
trade. The first is the type of Pareto improvement we usually associate with inter-temporal
incentives: low bids are not trustworthy in the static separating equilibrium, but if future
risk sharing gains are large enough, a market maker who cares about the long-term can post
a credible low bid when the asset value is indeed low. If she deviates by lowballing when
asset value is high, traders will no longer trust her, and she will lose out on these additional
profits going forward. This separating outcome is Pareto improving because the trader is
no worse off—he still learns about asset value and reduces his uncertainty—and the market
maker extracts the additional gains associated with trade in the low value state3.

Long-term incentives also produce pooling equilibria that are not Pareto improving.

3This outcome is the easiest to support. Equilibria also exist where the trader receives some or all of the
additional risk-sharing gains for a smaller set of parameters—these are also a Pareto improvement. For ease
of exposition I focus on repeated game improvements that are most easily supportable.
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When the market maker cares exclusively about current profits, high bids unambiguously
reveal her information. However, if hiding her information leads to significant future profits,
the market maker can credibly post a high bid that is uninformative. She is willing to incur
small losses today in order to keep her information hidden in future periods, some of which
will involve large gains on the spread between her pooling bid and the high asset value.
Relative to the myopic separating outcome, gains from trade are again increased, but not
in a Pareto improving way: because the market maker can now conceal her information,
she captures additional risk sharing rents and recovers the gains associated with sharing her
information in the separating strategy.

When we care about price informativeness in addition to total insurance gains, long-term
incentives enable a socially undesirable pooling outcome. How likely is it that this equilibrium
occurs relative to the preferable separating improvement? An increase in long-term incentives
may be desirable if it enables a shift from the static/constrained separating equilibrium to a
full trade separating equilibrium, but not the pooling equilibrium. It turns out this is never
the case: generically, any parametrization supporting a separating improvement supports
the pooling equilibrium, but the converse isn’t true.

As usual, inter-temporal incentives support many possible equilibria in the repeated
game. I use the notion of undefeated equilibria in Mailath, Okuno-Fujiwara, and Postlewaite
(1993) to select the market maker’s maximum profit outcome.4 Intuitively, since the market
maker moves first, if she posts a bid in line with her preferred pooling strategy, any separating
equilibrium requires that the trader maintain “stubborn” beliefs: under his prior, he would
trade, but instead makes the most pessimistic inference possible from the market maker’s
bid. These stubborn beliefs don’t survive the undefeated criterion, and this strengthens the
above result: long-term incentives only serve to make the market maker better off, at the
trader’s expense.

The media and the empirical microstructure literature often portray price volatility as a
bad thing because it implies higher trading costs for investors.5 Fixing parameters, I analyze
how price volatility varies across the model’s equilibria. Decomposing price volatility into
its desirable and undesirable components—price discovery and transient illiquidity—I show
the latter, a common measure of market quality, does not accurately reflect trader welfare.
The static, partial-trade separating equilibrium endogenously constrains trade at extreme
prices, reducing the price-impact of trades and leading to a lower illiquidity measure than the
Pareto-dominant full insurance outcome. Huang and Wang (2010) also show that transient
volatility doesn’t accurately reflect welfare, but they reach this conclusion through an entirely
different channel—information is symmetric in their model and participation costs drive the
welfare implications. Finding the same result herein, in a different context, makes the point
that illiquidity is not an indicator of welfare more robust.

The lack of perfect competition and the endogenous hedging demand in my model are

4See Gomes (2000) for an application of this selection criterion in the finance literature.
5Recent discussion, for example, has focused on whether algorithmic / high-frequency trading has in-

creased price volatility. See, for example, Chaboud, Chiquoine, Hjalmarsson, and Vega (2009)
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similar in spirit to Glosten (1989), which features a price-discriminating monopolist dealer,
and the models of Biais, Martimort, and Rochet (2003), Bernhardt and Hughson (1997),
and Dennert (1993), which feature oligopolistic dealers. All of these papers assume that
the liquidity demand side is more informed, as is the case in most of the microstructure
literature.

There is an earlier literature that considers the strategy of an informed market maker,
or, equivalently, a “big” inside trader. Grinblatt and Ross (1985) and Gould and Verrecchia
(1985) both analyze the linear pricing strategies of an informed dealer, but they assume
she can commit to this strategy ex-ante, meaning she sometimes posts a price that implies
expected losses. Laffont and Maskin (1990) use a static model like the myopic case herein to
address this commitment problem, and show that prices can be informationally inefficient—
pooling is a possible outcome. They restrict the insider to uniform pricing strategies, which
constrains trade beyond the adverse selection dimension. I assume full price discrimination,
which separates risk-sharing gains from learning effects, and is closer in spirit to how trade
occurs in over-the-counter markets, where price schedules are not constant in quantity.6

More recently, some models of limit-order markets, such as Goettler, Parlour, and Rajan
(2009), do allow for informed trade originating from either the liquidity demand or supply
side.

I discuss how a dealer ’s long-term incentives affect prices and welfare in a financial
markets context. Several papers show ways in which dealers can use a trader ’s long-term
concerns to their benefit. Seppi (1990) and Benveniste, Marcus, and Wilhelm (1992) look
at whether monopolist dealers can screen out informed trade via the threat of reduced-
form punishments, while Desgranges and Foucault (2005) explicitly model a dynamic game
between a dealer and an informed trader. Bernhardt, Dvoracek, Hughson, and Werner (2005)
use a reduced form model—prices are exogenous—along with supporting empirical evidence
to show that dealers offer clients price improvements in exchange for their future order flow.

Finally, there is a significant corporate finance literature that highlights problems associ-
ated with managerial myopia (e.g. Stein (1988)), and suggests remedies that keep manage-
ment focused on long-term shareholder value (e.g. Edmans (2009)). This paper provides an
example of how myopia can improve, rather than harm, consumer welfare.

1.2 Model

Consider the following discrete-time infinite horizon game (t = 0, 1, 2, . . .) in which a risk-
neutral informed dealer quotes prices for an uninformed, strategic, risk-averse trader. In
each period t, the asset produces an end of period payoff vt:

vt = vt−1 + ηt + εt, P(ηt = ∆) = P(ηt = −∆) =
1

2

6For example, Edwards, Harris, and Piwowar (2007) analyze how corporate bond trading costs vary with
order size.
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where εt is a zero-mean residual risk term with variance σ2
ε and ηt is the fundamental com-

ponent of the asset payoff. The dealer knows ηt before any trade occurs; traders only see its
value after payoffs are realized.7 I refer to the monopolist dealer as M and the trader as T .

Before trade occurs, the trader receives an endowment shock yt ∈ {−1, 1} of the risky
asset, where positive and negative shocks are equally likely. For simplicity, I assume the
endowment shock is common knowledge, so that the trader’s risk-sharing motive—whether
he wants to buy or sell—is known before prices are set, so on a given trade the market maker
only quotes one side of the market. The trader’s end of period wealth wt is

wt = (yt + qt)vt − qtP (qt)

where qt ∈ {−1, 0, 1} is the amount of the risky asset purchased by the trader from the
market maker at price P (qt). I assume traders choose portfolios myopically, ignoring inter-
temporal hedging demand, or equivalently that they are short-lived and the history of the
game is publicly observable. When traders are indifferent, I assume trade occurs. Trader
utility V T

t is a combination of mean-variance preferences over end-of-period wealth and any
benefit from learning about the asset payoff:

Assumption 1. Trader utility V T
t is given by

V T
t = Ewt −

γ

2
Var(wt) + L(Var(vt)−Var(vt|price))

where L(0) = 0 and L(·) is strictly increasing.

The learning benefit L(·) is a reduced form way of capturing any social gains from price
efficiency. For example, more informative prices may allow investors to hedge exposures in
correlated assets more efficiently, or may encourage more efficient real investment.8

The informed market maker M sets a price schedule P (qt; ηt) that maximizes time-t
profits πt = Eqt(P (qt; ηt) − vt) and the present value of future profits discounted at rate
β ∈ (0, 1). Abstracting away from the time-value of money, the parameter β captures the
extent to which the dealer’s employees have an incentive to favor long-term firm value (e.g.
via restricted stock/option grants or bonus clawbacks) over short term profits (e.g. those
encouraged by annual cash bonuses). Denote her normalized utility at time t as

V M
t = (1− β)E

∞∑
s=t

βs−tπs = (1− β)Eπt + βEV M
t+1

Given that M has full market power in setting a price schedule, restricting trade to whole
units of the asset does not sacrifice much generality in a qualitative sense, and greatly simpli-
fies the specification of equilibrium beliefs; I discuss unrestricted quantities as an extension.9

7This is for simplicity to retain perfect public monitoring of the market maker’s actions.
8Leland (1992) shows that insider trading and the corresponding information impounded in prices can

lead to a social welfare increase via more efficient real investment.
9In states of the world where trade is not possible with whole units, trade is possible at a constrained

quantity in the more general case. However, the main welfare conclusions of the paper are unchanged.
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We can therefore think in terms of bid/ask prices for one unit of the asset:

B(ηt) = P (−1, ηt) A(ηt) = P (1, ηt)

After the asset pays off, all information becomes public, and ht = {ht−1, ηt, Pt, qt, vt} denotes
the history of realized play through the end of period t. This ex-post history includes the
fundamental innovation ηt, so the game has perfect public monitoring. The trader has
rational expectations: his expected utility and optimal portfolio choice are based on beliefs
about the market maker’s pricing strategy and any information revealed by a given price
schedule realization. The history of prior play can affect his beliefs about the information
revealed in prices. Let

µ(Pt;h
t−1)

denote the trader’s belief that the fundamental is high (ηt = +∆) given this period’s price
and the history of prior play. This belief will be specified for all possible price realizations,
not just those on the equilibrium path.

In general, the pricing strategy Pt = P (ηt;h
t−1) may involve randomization, in which case

prices will partially reveal information about the fundamental. I restrict attention to pure
pricing strategies that reveal either no information (pooling) or all information (separating).

Definition 1. A tuple {P ∗(·, ·), µ∗(·; ·), q∗(·)} is a perfect Bayesian equilibrium of the re-
peated game if, for any time t and any ex-ante history ht−1,

• Taking the market maker’s pricing rule P (ηt;h
t−1) as given, the beliefs µ∗(Pt;h

t−1)
about the fundamental realization ηt are formed using Bayes’ rule for any price Pt that
occurs with non-zero probability under the pricing rule.

• The portfolio choice q∗(Pt) ∈ {−1, 0, 1} maximizes the trader’s expected utility over
time t wealth given his endowment shock yt, the observed price Pt, and corresponding
belief µ∗(Pt;h

t−1).

• The pricing rule P (ηt;h
t−1) maximizes the informed market maker’s expected utility

given the evolution of trader beliefs µ∗(·; ·), optimal demand q∗(), and fundamental
realization ηt.

Because information is perfectly revealed at the end of each period, I focus on simple
trigger strategies that achieve efficient outcomes. As in most signaling games, beliefs are not
restricted off of the equilibrium path without refinements, leading to multiple equilibria for
some parameterizations, even in the static game. The undefeated selection criterion discussed
in Mailath, Okuno-Fujiwara, and Postlewaite (1993) applies naturally to this game, and I
use it as a refinement in both the static and dynamic cases.
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1.3 The benefit of trading with an informed dealer

I first consider a myopic market maker and show that traders are weakly better off if she is
informed. Because everything in the model is symmetric and endowment shocks yt are com-
mon knowledge, I restrict attention to the bid-side of the market when describing results.10

This side is relevant when yt = 1: the trader has a positive endowment shock he wants to
hedge by selling the asset, and the market maker need only supply a price on the bid-side
of the market. To emphasize that this is the bid side of the quote, I will denote the price
Pt offered for one unit as Bt. When discussing empirical implications, I reflect these results
to the ask-side of the market. I refer to the states η = +∆ and η = −∆ as the high and
low asset value states throughout, and to the market maker as the high or low type in these
cases. Proofs are in the appendix.

When β = 0, the market maker does not care about future consequences and equilibria
correspond to static game outcomes. As a benchmark, consider the symmetric information
case at time t—when M does not know whether asset value is high or low—given prior asset
value realization vt−1:

Lemma 1. In the static symmetric information game where neither party know ηt, full risk
sharing occurs, the market maker captures all gains from trade, and prices are uninformative.

The trader wants to sell to hedge her endowment shock. Maximum gains from trade
are achieved via full risk sharing, and the market maker can capture all of these gains by
posting a bid B∗ = vt−1− γ

2
(∆2+σ2

ε ) that equals T ’s no-trade certainty equivalent. Prices are
obviously uninformative because neither party knows the fundamental value’s realization.

When the market maker is informed about the fundamental component ηt, she is better
off, ex-ante, if she posts the uninformative (pooling) bid of Lemma 1. However, she can
not always commit to this bid, and a separating strategy that reveals her information is
the only viable alternative. Specifically, she is not willing to bid above the asset’s expected
value Evt = vt−1 + ηt, and this constraint may bind in the low-value state. The trader’s
risk aversion parameter characterizes when these two outcomes—pooling or separating—are
possible:

Proposition 1. Risk aversion thresholds γS and γP characterize outcomes in the static
game:

1. A separating equilibrium S0 with partial trade—trade only occurs when asset value is
high—exists for γ < γS.

2. A pooling equilibrium P0 featuring full trade exists for γ ≥ γP .

3. γP < γS, so both equilibria exist for γ ∈ [γP , γS)

10With unknown endowments, signaling and beliefs are more complicated because both sides of the quote
are relevant strategic choices for the market maker.
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4. No mixed-strategy equilibria exist.

When T is highly risk-averse, and correspondingly more desperate to trade, M can post
a low bid regardless of ηt and capture all gains via full insurance. But when T is relatively
risk tolerant, he is no longer willing to trade at such low bids unless they credibly reveal the
asset value is low. The market maker generally prefers pooling bids that hide her information
because they increase uncertainty and hence insurance rents she extracts. When this is not
possible, a separating pricing strategy is her next best option.

Any high bid BH > vt−1 − ∆ at which trade is feasible credibly signals that the asset
value is high to the trader. Maximum gains are extracted when M offers the trader’s outside
option:

B∗H = vt−1 + ∆− γ

2
σ2
ε

The intuition is the same as in the symmetric case, except everything is conditional on
ηt = ∆; the expected payoff is higher, and the trader’s uncertainty is reduced, lowering the
risk premium M can charge. M will never post this bid when the asset value is low because
she loses money on the trade. In the low-value state, any low bid BL ≤ vt−1 −∆ needs to
be incentive compatible: M must not be tempted to post a low bid when the asset value is
actually high. This is only possible if B∗L, the equilibrium bid offered when ηt = −∆, results
in no trade. Hence risk-sharing is only possible in the high value state.

Figure 1.1 shows the main structure of the static game on the equilibrium path.11 To
support a separating equilibrium, T correctly believes the asset value is high when B∗H is
posted (µH = 1). He also has to believe that any low bid BL at which trade could occur is
not necessarily coming from the low-type—otherwise the high type will deviate to exploit
this. Finally, bids that are low enough to prohibit trade, including the equilibrium bid
B∗L < vt−1 −∆ − γ

2
σ2
ε , are credible from the low type (µL = 0). Under appropriate beliefs,

this partial trade equilibrium is possible as long as γ is below γS: when risk aversion is too
extreme, the high bid B∗H is below the low asset value, so the low type will want to mimic
this bid, breaking the consistency of T ’s beliefs.

The pooling equilibrium P0 is comparable to the symmetric information case in Lemma
1: when the symmetric information bid is below the low asset value vt−1 −∆, the informed
market maker can credibly bid this amount in all states of the world and capture the full
ex-ante risk sharing gains. The trader knows he may hit this bid in a high value state, but
his hedging demand is large enough that he still prefers to trade.

Once the symmetric information bid is above the low asset value because hedging demand
is lower, which occurs when γ < γP , it is no longer rational for the informed market maker
to maintain this bid in the low state. In that case, the market maker can not credibly bid
low for the asset, so she foregoes gains in the low value state of the world while retaining
them in the high value state via the separating strategy S0.

Note that any equilibrium has to involve trade in at least one state: under any beliefs
the trader holds, a high-type market maker can, at a minimum, post a high bid that signals

11A full specification of off-equilibrium beliefs supporting Proposition 1 is given in the appendix.
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asset value and captures gains. Similarly, mixed strategy outcomes, which partially reveal
information, are not possible. In these cases, M would occasionally signal the high asset
value, but in any such equilibrium she always prefers posting a low-bid to exploit the trader’s
more generous beliefs.

The market maker’s ex-ante profits are higher in the pooling equilibrium P0 because
uninformative prices increase uncertainty and allow her to extract more risk-sharing gains.
There is not a Pareto dominating outcome, so I use the undefeated selection criterion:

Lemma 2. When γ ∈ [γP , γS), so that both equilibria P0 and S0 are possible outcomes, P0

is the only undefeated equilibrium.

When both equilibria are possible, separation only occurs if T ’s beliefs are highly pes-
simistic. He needs to stubbornly believe that any low bid is posted by the high type. This
equilibrium is defeated because there is another equilibrium (pooling) in which that price is
posted by both types, and, further, it is the equilibrium they prefer to play. This selection
criterion can also be supported with a single set of “robust” beliefs across all parameteriza-
tions:

Corollary 1. In the static game, the belief specification

µ∗(B) =


1, ∀Bt > vt−1 −∆
1
2

∀Bt ∈ [minµ u(µ), vt−1 −∆]

0, otherwise

supports prices and quantities corresponding to the separating equilibrium S0 for γ < γP and
the pooling equilibrium P0 for γ ≥ γP .

The separating threshold γS is increasing in ∆ because higher information asymmetry
allows the high type dealer to signal without tempting the low type to mimic this bid. It
is decreasing in σ2

ε because higher residual risk implies a lower bid B∗H , which is only above
vt−1 −∆ if risk-aversion is lower. The static pooling threshold γP is monotonic in residual
risk, but non-monotonic in fundamental risk:

Remark 1. The comparative statics of γP are

∂γP
∂σε2

< 0
∂γP
∂∆

{
> 0 for ∆ < σε

< 0 for ∆ > σε

As σ2
ε increases, traders face more risk and are anxious to hedge, so the pooling threshold

is lower. For the standard deviation of fundamentals ∆, there are two opposing effects,
illustrated in Figure 1.2. When ∆ is very small, the adverse selection problem is minimal
and pooling bids are credible for most risk aversion parameters. As ∆ increases towards
σε, the adverse selection effect dominates, pushing up the pooling threshold because only
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Figure 1.2: The pooling (γP ) and separating (γS) thresholds as functions of the fundamental
standard deviation ∆. Residual risk σε = 0.75. The pooling equilibrium P0 occurs above γP
while the separating equilibrium S0 occurs below γS. In the region where both are feasible,
P0 defeats S0.

desperate traders with high risk aversion are willing to trade at the uninformative pooling bid.
Finally, for high values of ∆, the trader’s large fundamental risk exposure and the consequent
hedging demand override the adverse selection effect, lowering the pooling threshold.

When the pooling equilibrium is a possible outcome, traders are neither better or worse
off transacting with an informed monopolist—she extracts the same insurance rents as an
uninformed market maker (Lemma 1). For moderate risk aversion γ < γP , traders are
actually better off facing an informed monopolist, because the adverse selection friction
works in their favor. The market maker prefers something to nothing, and is willing to
reveal her information via aggressive bids in the high-value state to achieve trade. She
still extracts any residual risk-sharing gains, but traders learn something in the process and
reduce their uncertainty.

1.4 The ambiguous effects of long-term incentives

When the market maker is myopic, the preceding results show that consumers (traders) are
better off in the separating equilibrium that occurs for moderate risk aversion—even though
M extracts all residual insurance gains, the information in prices reduces trader uncertainty.
When hedging demand is high, M is able to maintain uninformative prices and extract the
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maximum possible rents. Do stronger inter-temporal incentives, represented by higher values
of the discount rate β, improve trader welfare?

When hedging demand is high (γ ≥ γP ), the pooling outcome P0 is an equilibrium of the
static game and therefore a sub-game perfect equilibrium of the repeated game. It is also
the undefeated outcome of the repeated game because there is no credible threat that gives
incentives any bite. I impose the following assumption to focus discussion on the additional
gains achievable in a repeated context.

Assumption 2. Hedging demand is moderate, i.e. γ < γP , where γP is defined in Proposi-
tion 1.

The only static equilibrium under this restriction is separating and constrains the quantity
traded in the low-value state to zero. This is also sub-game perfect in the repeated game
and can be used to support more efficient equilibria.

Both equilibria I discuss have the same flavor: the market maker is able to credibly
commit to a pricing strategy that achieves additional gains; traders believe this is the strategy
being played until evidence arises to the contrary and make trades according to these beliefs;
any deviation triggers reversion to the static separating equilibrium where these additional
gains are lost. The static separating equilibrium S0 is the harshest playable trigger and
supports efficient equilibria in the repeated game.

There are two ways to increase gains from trade in the repeated context: an additional
pooling equilibrium involving small losses for M on bids in the low-value state, and an
additional separating equilibrium in which she can credibly signal the asset value in the low
state without constraining the quantity traded.12 Given a choice, the market maker prefers
the pooling improvement while the trader prefers the separating improvement.

Incentives may encourage more informative prices

The first dynamic result shows that a Pareto improvement is possible for some parameteri-
zations because M can credibly signal the asset value is low. Traders believe high and low
bids correspond to the true value of the asset. If M takes advantage of this by bidding low
when the asset value is high, T no longer believes these low bids, and play reverts to the
static equilibrium. Under Assumption 2, the static separating equilibrium S0 is the market
maker’s outside option should she choose this deviation, implying her ex-ante continuation
value V M

S0 is

V M
S0 =

1

2
· 0 +

1

2

γ

2
σ2
ε =

γ

4
σ2
ε

12There are also a set of additional mixed strategy, partially revealing equilibria in between, but they are
ignored for simplicity. They are also inferior to the pooling outcome from M ’s perspective.
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In a full-trade separating equilibrium, she earns the residual spread in both states of the
world for a continuation value of γ

2
σ2
ε , so her incentive constraint in the low state is

(1− β)
γ

2
σ2
ε + β

γ

2
σ2
ε ≥ (1− β)(2∆ +

γ

2
σ2
ε ) + βV M

S0

The first term on the right-hand side is M ’s most profitable deviation: by posting a low bid
when the asset value is high, she makes the spread between high and low asset values (2∆)
plus the residual risk sharing gains. The following proposition summarizes the results of this
heuristic argument.

Proposition 2. If the market maker has significant long-term incentives (β > 2/3), a full-
trade separating equilibrium S∞ of the repeated game exists when trader risk aversion γ
exceeds the threshold γ∞S . γ∞S is decreasing in the market maker’s long-term incentives β,
increasing in information asymmetry ∆, and decreasing in residual risk σ2

ε .

The market maker is able to credibly signal low-asset value through her bid because she
would forgo significant future gains from trade by deceiving the trader. However, this is only
supportable when the trader’s risk-aversion, and therefore hedging demand, are relatively
high. When risk aversion is low, the future gains are not high enough to keep the market
maker honest. Similarly, there is a lower bound on how much M cares about future gains,
parameterized by β.

The comparative statics of the supporting risk-aversion threshold γ∞S are straightforward.
It is decreasing in residual risk σ2

ε because it implies higher hedging demand for a given risk
aversion level, and hence more gains that are lost by deviating; it is increasing in fundamental
risk ∆ because this magnifies the benefit from deviating in the present period if the asset
value is high; and it is decreasing in β because, as usual, more weight on future gains supports
cooperation over a larger range of parameters.

The trader is no better off here, but he still has the same informational benefit—regardless
of whether or not trade occurs in each state, both the repeated and static separating equilibria
fully reveal the asset’s value to him. The market maker achieves additional insurance rents
in the low-value state, and for an outside observer, prices are more informative than the
static separating case, where prices are unobservable in the low state.

Incentives also enable information to be concealed

The static pooling equilibrium P0 breaks down once the symmetric uninformed bid, which
captures all ex-ante gains from trade, is above the low asset value and no longer credible for
a low-type market maker. In that case, such a bid leads to an expected loss for the market
maker when the asset value is low. In a repeated context, the market maker can credibly
commit to incurring such losses in exchange for large gains in the high value state, again
modulo a restriction on risk aversion so that future gains are large enough to support this
strategy.
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The market maker is tempted to abstain from bidding in the low value state, forgoing
the expected losses in the present period at the expense of future profits. Her outside option
is again the static separating continuation value V M

S0 . By staying on the equilibrium path,
she always earns the full gains γ

2
(∆2 + σ2

ε ), so her IC constraint in the low state is

(1− β)[
γ

2
(∆2 + σ2

ε )−∆] + β
γ

2
(∆2 + σ2

ε ) ≥ (1− β) · 0 + βV M
S0

where the first term is her loss on the pooling bid—it’s negative under Assumption 2. The
solution to this constraint characterizes the repeated pooling outcome:

Proposition 3. A pooling equilibrium P∞ of the repeated game exists when trader risk
aversion γ exceeds the threshold γ∞P , where γ∞P ≤ γP . γ∞P is decreasing in the market maker’s
long-term incentives β, and its other comparative statics are analogous to the static threshold
γP .

In this case, the market maker’s long term incentives allow her to extract full gains for
more parameterizations because the pooling threshold is lower than in the static case. M ’s
continuation utility allows her to credibly post a high bid in the low value state. Maximal
insurance gains are achieved, but prices are uninformative and the trader is left with no
share of the surplus. In this sense, pooling is an undesirable outcome, yet it is more easily
supported when the market maker has long term incentives.

In sum, long-term incentives can have two effects: an informed market maker may be
willing to honestly reveal asset value by signaling through prices, but she is also willing
to incur losses in order to maintain uninformative prices. Is the uninformative pooling
equilibrium P∞ a legitimate concern? The following proposition shows that, in terms of the
parameter space, it is the more likely result of long-term incentives:

Lemma 3. The pooling threshold supported by repeated play, γ∞P , is always lower than the
repeated separating threshold γ∞S . γ∞S is only below γP when the market maker has sufficient
long-term incentives:

γ∞S < γP ⇐⇒ β > β

where β ∈ (4
5
, 1). β is increasing in information asymmetry ∆ and decreasing in residual

risk σ2
ε

The full-trade separating equilibrium S∞ is harder to support because M ’s short-term
gains from deviating in the low value state are significantly larger than the losses she incurs
in the pooling equilibrium P∞. The separating improvement is only possible for moderate
risk aversion (γ < γP ), so inter-temporal incentives (β) must be sufficiently high to support
S∞. When information asymmetry is high, M ’s profitable deviation is more attractive, so
she needs to care more about long-term gains in order to resist it. When residual risk is
high, future gains from staying on the equilibrium path are higher, and cooperation can be
supported for lower long-term incentives.
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Figure 1.3: Static thresholds γP and γS (thin lines), γ∞S (dashed line), and γ∞P (thick line) as
a function of the fundamental standard deviation ∆, for residual risk σε = 0.75 and discount
factor β = 0.9. P denotes a region where either of the pooling outcomes, P0 or P∞, are
possible.

Figure 1.3 shows the regions of the parameter space in which each equilibrium outcome
is possible. It is the repeated-game analog of Figure 1.2. When the market maker has long
term incentives (β = 0.9 in the figure), the repeated separating equilibrium S∞ featuring
maximal gains, a fair surplus split, and fully informative prices can be supported for some
moderate risk aversion levels γ ∈ [γ∞S , γP ). However, whenever S∞ is possible, so is P∞.
Whether long-term incentives are desirable depends on how the equilibria discussed thus far
compare to each other in a welfare sense.

Welfare Summary

The pooling equilibrium occurs for high risk aversion regardless of long-term incentives using
the undefeated criterion. For more moderate risk aversion (Assumption 2), the partial-trade
separating equilibrium S0 occurs absent long-term incentives. This equilibrium does not
achieve full insurance, but does provide the trader with some gains via informative prices.

Do long-term incentives improve things in this parameter region? If risk aversion and
incentives are high enough to support S∞, and beliefs can be influenced such that this is the
equilibrium played, then incentives can achieve a Pareto improvement—traders still learn
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from prices, and more insurance occurs.13 However, the feasibility of S∞ implies the pooling
equilibrium P∞ is also possible (Lemma 3). The converse is not true—in this sense, pooling
improvements dominate separating improvements with respect to the underlying parameter
space.

Applying the undefeated selection criterion in the repeated game—that traders interpret
dealer actions in the context of all possible equilibria they might be playing—long-term
incentives hurt the trader because they only enable P∞. A move from S0 to P∞ does
generate additional gains from trade, but it allocates these gains to the market maker while
reducing price informativeness.

Proposition 4. Total risk sharing gains are highest in the pooling equilibria (P0,P∞), while
the trader surplus is highest in the separating equilibria S0 and S∞.

Equilibrium Dealer Surplus Trader Surplus

P0,P∞ γ
2
(∆2 + σ2

ε ) 0
S0 γ

4
σ2
ε L(∆2)

S∞ γ
2
σ2
ε L(∆2)

There is a fundamental tradeoff between price efficiency and the amount of risk sharing
that takes place. Because they both have the same welfare implications, let P denote either
of the pooling equilibria. Thus far, I’ve argued that these pooling equilibria are socially
undesirable because they are bad for the consumer and result in uninformative prices. When
we care about the trader’s take or price informativeness, these equilibria are inferior to the
full-trade separating equilibrium (S∞ � P). The repeated separating equilibrium is a Pareto
improvement over the static separating outcome, so S∞ � S0.

I’ve used a monopolist market maker as a proxy for imperfect competition, but it is
reasonable to argue that some of the additional gains generated in the pooling equilibrium
would accrue to consumers under a more competitive market structure. To that end, consider
a weighted social objective

V = V T + αV M

where V T and V M are the ex-ante utilities of the trader and dealer in a given equilibrium,
and α ∈ (0, 1) denotes the level of competition in the dealer market. When α = 0, S0 � P .
But even when α ∈ (0, 1), there are parameterizations which result in the same social
preference—as long as the market is not perfectly competitive, additional risk sharing gains
enabled by the pooling equilibrium are potentially offset by the loss in price informativeness
L(∆2). This occurs when information asymmetry (∆), and hence the gain from informative
prices, is large relative to residual risk σε. As an example, consider the simple Pareto frontier
in Figure 1.4 (where L(x) = γ

2
x): in this case, if the introduction of long-term incentives

induces a shift from S0 to P∞, there is a small increase in total social gains at the expense
of a large loss in trader welfare.

13Depending on the beliefs, traders can also receive some of the additional insurance gains, but these
outcomes are harder to support.



CHAPTER 1. WHY TRADE WITH GOLDMAN? 18

S0

S∞

P0,∞

0.2 0.4 0.6 0.8 1.0
V_M

0.2

0.4

0.6

0.8

1.0

V_T

Figure 1.4: The Pareto frontier: ex-ante trader utility V T (y-axis) vs. market maker utility
V M for model parameters σε = 0.75, γ = 0.9,∆ = 1.3 and learning benefit L(x) = γ

2
x

For a social planner instituting longer-term incentives, even if the selection criterion is
relaxed, it’s ambiguous which outcome will occur when both full-trade equilibria are possible.
If the planner is not sure of the underlying parameters, it’s more likely that incentives will
support P∞ rather than S∞ because the former occurs for a strict superset of the parameter
space. Hence it’s possible that the introduction of these incentives only serves to make a less
desirable pooling outcome possible—this is the case, for example, in the region of Figure 1.3
where S0 and P∞ are the only viable outcomes.

The upshot, then, is that whether longer-term incentives make sense depends on a social
tradeoff between risk sharing and price informativeness. When we care significantly about the
latter, longer-term incentives can have negative welfare consequences, at least if competition
is imperfect. In this case, it only makes sense to introduce them if some other policy will also
influence beliefs and actions towards the Pareto improving outcome S∞, or if some other
transfer will restore the consumer’s lost gains.

1.5 Welfare and price volatility

Given the welfare conclusions of the previous section, what can we expect to see in the data?
Specifically, are standard measures of market quality aligned with welfare? For the sake of
argument, fix the model parameters and suppose social preferences over equilibria are given
by the example in Figure 1.4 (S∞ � S0 � P)—the conclusions of this section are unchanged
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if we reverse the last two.
Now consider price volatility as a measure of market quality: recent media attention has

focused on the presumably negative effects of commodity speculation and high-frequency
trading on volatility—Chaboud, Chiquoine, Hjalmarsson, and Vega (2009) test the latter
claim. Volatility is not necessarily a bad thing if it is associated with price discovery, and
I will therefore focus on the transient “illiquidity” component of price volatility. In Roll’s
(1984) classic model of the bid-ask bounce, this measure corresponds to fixed trading costs
or markups.

I have described the results so far from the bid side of the market, which occurs when the
endowment shock is yt = 1 and the trader wants to sell. This is without loss of generality
because I’ve assumed the market maker knows the desired trade direction—she only has
to quote one side of the market. This is often the case in OTC markets, as dealers are
not necessarily required to quote both sides. The results on the ask side of the market are
therefore symmetric, and that implies a data generating process for observed prices in each
of the equilibria discussed so far:

P : Pt = vt−1 − yt
γ

2
(∆2 + σ2

ε )

S∞ : Pt = vt−1 + ηt − yt
γ

2
σ2
ε

S0 : Pτn = vτn−1 + ητn − yτn
γ

2
σ2
ε

where {τn}∞n=1 is the sequence of realized trade times for S0 because trade doesn’t occur in
every state. These price processes can be use to decompose the variance of price changes in
each equilibrium into permanent and transient components:

Proposition 5. For each equilibrium, let Σ denote the total variance of price changes and
λ the transient component. Then,

ΣP = (∆2 + σ2
ε ) +

γ2

2
(∆2 + σ2

ε )
2︸ ︷︷ ︸

λP

ΣS∞ = (∆2 + σ2
ε ) +

γ2

2
σ4
ε︸ ︷︷ ︸

λS∞

ΣS0 = 2(∆2 + σ2
ε ) +

γ2

2
σ4
ε −∆γσ2

ε︸ ︷︷ ︸
λS0

and λP > λS∞ > λS0

The details are in the appendix, but, as in Roll (1984), the transient component λ corre-
sponds to the spread between price and fundamental value, which reverts towards fundamen-
tals. The ranking of λ across equilibria is not consistent with the posited social preferences.
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Note that comparing illiquidity across the two full-trade equilibria, P and S∞ matches wel-
fare: the pooling equilibria P is more illiquid because uninformative prices induce higher
trader uncertainty, allowing the market maker to charge greater spreads. The confounding
effect comes from the fact that λS∞ > λS0 : the full-trade separating equilibrium is Pareto
dominant, but displays higher illiquidity. The reason is that trade in S0 is constrained to
preclude extreme price impact: sells at the bid only happen when the asset value is high,
while buys at the ask only happen when it is low. Adverse selection endogenously constrains
trade and dampens the transient component of price volatility.

Huang and Wang (2010) find an analogous result—that lower transient volatility does
not necessarily represent higher welfare—via an entirely different channel. In their model,
prices are competitive, information is symmetric, and the friction is participation costs that
restrict the supply and demand of liquidity. Here, prices are not competitive and adverse
selection is the cause of inefficiency. The common theme in both cases is that an endogenous
constraint on trade simultaneously reduces both welfare and the transient component of price
volatility. The illiquidity measure λ defined above also corresponds directly to the measure
of corporate bond illiquidity proposed by Bao, Pan, and Wang (2009).14.

In sum, decomposition of volatility into good and bad components does not accurately
reflect underlying welfare15. This suggests that such measures of market quality are not
necessarily a good intermediate policy objective, at least in markets characterized by the
features of this model, and they may not be good indicators of whether a change in incentives
has had a positive or negative effect on welfare.

1.6 Robustness and Extensions

Divisible shares

Thus far, I’ve assumed that trading the asset is an all or nothing proposition: the trader
is unable to sell a fractional share of the asset.16 This greatly simplifies the specification
of equilibrium strategies and beliefs. In this section, I show that the main welfare impli-
cation of the paper—that inter-temporal incentives reduce trader welfare—is robust to this
assumption.

Pooling outcomes P0 and P∞ are the same when they are possible: M posts uninforma-
tive prices at which full insurance occurs. Similarly, the full-trade separating improvement
S∞, possible for high β, has full-trade in both states at the same prices. What changes is
the static separating outcome S0: when the asset value is low, M can make an incentive
compatible bid that results in trade. This is achieved by constraining the quantity traded

14Their measure γ is the negative of the first-order auto-covariance of price changes, which equals λ/2
15The measure used here is strictly price based. A more nuanced decomposition of these components

using both prices and order flow as in Hasbrouck (1993) does not substantially change the results: for a large
portion of the parameter space, the ranking is unchanged.

16He will never be able to sell more than his share in equilibrium, as there are no gains beyond full
insurance.
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in the low value state such that a high type market maker prefers to trade the full quantity
at her high bid rather than deviate by bidding low—she makes a larger spread in doing so,
but the reduced quantity negates this gain.

Proposition 6. The risk aversion threshold γ̂P characterizes outcomes in the static game
with arbitrary quantities:

1. A full insurance pooling equilibrium P0 exists for γ ≥ γ̂P .

2. A separating equilibrium S0 with partial trade always exists. Full residual insurance
occurs in the high value (ηt = ∆) state, while trade in the low value state is constrained
to a quantity Q∗L ∈ (0, 1).

When quantities are unconstrained, M can fully price discriminate, so it is without loss
of generality to consider her action space as offering a price-quantity pair (B,Q), where
Q is the quantity she is willing to buy. Trader T then chooses an optimal sale quantity
q ∈ {0, Q}—let q be positive when he is selling. Beliefs µ(B,Q;ht−1) that the asset value
is high are formed over both price and quantity dimensions, and the equilibrium concept is
identical to Definition 4, other than the change from an optimal pricing strategy B∗(ηt;ht−1)
to a price-quantity strategy (B∗, Q∗)(ηt;ht−1).

Any high bid BH > vt−1−∆ credibly signals that the asset value is high (M loses money
if she posts this in the low state), and maximum gains are extracted when M offers the
trader’s outside option:

(B∗H , Q
∗
H) = (vt−1 + ∆− γ

2
σ2
ε , 1)

In the low-value state, any bid BL ≤ vt−1 − ∆ needs to be incentive compatible: M must
not be tempted to use this bid when the asset value is actually high. This is possible if Q∗L,
the equilibrium quantity offered when ηt = −∆, is constrained.

First ignore incentive compatibility: given any quantity q ∈ [0, 1], the low bid price
BL(q) needs to meet the trader’s participation constraint (IRq) by offering his autarky value,
implying:

BL(q) ≥ vt−1 −∆− (2− q)γ
2
σ2
ε (IRq)

This price will be incentive compatible for small q, as low bid profits πL(q) are lower than
the full insurance profits π∗H = γ

2
σ2
ε at (B∗H , Q

∗
H). However, as q increases, the market maker

is tempted to deviate when the asset value is high and capture the much larger spread
provided by BL, requiring the incentive constraint π∗H ≥ πL(q) when asset value is high.
This constraint implies a lower bound on BL for a given quantity

BL(q) ≥ vt−1 + ∆− γ

2q
σ2
ε (ICq)

Figure 1.5 shows the relationship between these constraints: there is a q∗ ∈ (0, 1) such
that for quantities higher than q∗, the IC constraint binds. Trader T believes that any
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Figure 1.5: The static separating bid with partial shares. The thin slanted lines are the
participation constraints IRq(µ) for different trader beliefs µ. The horizontal dashed line
denotes the low asset value vt−1 − ∆—bids below this are profitable in the low state. The
dark, curved line is the ICq constraint. B denotes the region of incentive compatible, rational
low-state bids. The intersection of IRq(µ = 0) and ICq is the optimal bid-quantity pair in
the low state. Parameters: γ = 0.5, σε = 0.75,∆ = 0.35.

bid-quantity pair above the IC constraint credibly signals the asset value is low (region B).
As q increases from 0, M only has to ensure participation, and profits are increasing. Once
the incentive constraint binds at q∗, profits decrease. Hence she will select this quantity in
the separating equilibrium, and bid such that the trader participates.

The modification of S0 when partial shares can be bought/sold does not qualitatively
change the results regarding long-term incentives. The additional constrained trade in the
low value state improves M ’s outside option, but this options supports both the separating
(γ∞S ) and pooling (γ∞P ) equilibria. It is still the case that the pooling equilibrium P∞
dominates S∞ because γ∞S > γ∞P . The welfare conclusions that follow are unchanged.

Asymmetric fundamental shocks

To derive the main results of the paper, I use a model with symmetric, equally likely shocks
to the privately known component of asset value ηt. I now relax this assumption and show
the results of the paper are largely unchanged. Suppose asset value follows a process with
asymmetric shocks

vt = vt−1 + ηt + εt, P(ηt = ∆H) = p,P(ηt = ∆L) = 1− p
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where ∆H > ∆L and p ∈ (0, 1). Under these dynamics, it is no longer without loss of
generality to consider one side of the market exclusively. There is still symmetry in the
sense that ask-side results when P(ηt = ∆H) = p correspond to bid-side results where
P(ηt = ∆H) = 1− p. This implies different pooling thresholds for each side of the market:

Proposition 7. Risk aversion thresholds γS, γP,A, γP,B characterize outcomes in the static
game with asymmetric fundamental shocks:

1. A separating equilibrium S0 with partial insurance—sells only occur when asset value
is high, buys when asset value is low—exists for γ < γS. This threshold is independent
of whether the trader is buying or selling.

2. A pooling equilibrium P0
B featuring full insurance on the bid-side of the market (yt = 1)

exists for γ ≥ γP,B.

3. A pooling equilibrium P0
A featuring full insurance on the ask-side of the market (yt =

−1) exists for γ ≥ γP,A.

4. A pooling equilibrium P0 featuring full insurance on the both sides of the market exists
for γ ≥ max{γP,A, γP,B}.

5. γS is greater than both pooling thresholds, so pooling and separating are possible for
γ ∈ [γP,A, γS) on the ask-side and γ ∈ [γP,B, γS) on the bid-side.

6. γP,A < γP,B ⇐⇒ p > 1
2
.

7. No mixed-strategy equilibria exist.

The effects of asymmetric fundamental shocks in the myopic case are illustrated in Figure
1.6. The results largely correspond to the symmetric case (Figure 1.2), but the spread
∆H − ∆L determines the volatility of fundamentals and hence the degree of information
asymmetry. The previous comparative statics, where this spread replaces the parameter ∆,
are unchanged. The bid threshold γP,B is increasing in p, while the ask threshold γP,A is
decreasing in p—as the trader is more sure the asset value is high, it is harder to support a
low pooling bid.

The major difference is the asymmetry between when pooling is supported on each side of
the market. In the figure, the region between the two pooling thresholds supports pooling at
the ask, but not at the bid (for p < 1/2, the results are reversed). This region is largest when
p takes on extreme values. The ask-side pooling outcome P0

A defeats S0 because M prefers
pooling where possible, so it will be the equilibrium in that region under my selection criteria,
and the market maker has in improved outside option in the repeated game. I have not yet
analyzed how this affects the feasibility of improvements in the repeated game. However,
when γ < min{γP,B, γP,A}, separating prices are still the only possible outcome on both sides
of the market, so M ’s outside option is the same as in the symmetric case. In this region,
the results are qualitatively the same as the symmetric information case:
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Figure 1.6: The pooling (γP,A, γP,B) and separating (γS) thresholds as functions of the private
information spread ∆H −∆L. Residual risk σε = 0.75 and high-state probability p = 0.65.
Pooling on both sides of the market is possible for γ > γP,B, but only on the ask-side for
γ ∈ [γP,A, γP,B). P0 is undefeated among all equilibria, while P0

A and P0
B defeat S0.

Proposition 8. In the repeated game, for γ < min{γP,B, γP,A}, there exists a risk aversion
threshold γ∞S supporting a separating improvements on both the bid and ask sides of the
market. Thresholds γ∞P,B and γ∞P,A support pooling improvements on the bid and ask sides,
respectively, where

γ∞P,B < γ∞S γ∞P,A < γ∞S

This confirms that, if the static separating equilibrium S0 is the market maker’s outside
option, whenever long-term incentives enable a separating improvement, they also enable a
pooling improvement. While the separating outcome is a Pareto improvement, the pooling
outcome reduces trader welfare. Hence the qualitative conclusions about the effects of long-
term incentives on trader welfare remain unchanged.

1.7 Conclusion

Using a stylized model of repeated trade, I’ve shown that traders interested in hedging a risk
are weakly better off trading with an informed dealer. If they’ve got rational expectations,
the dealer can’t use the information to her advantage, and may actually share what she knows
to facilitate trade. Surprisingly, when the dealer has long-term incentives—she values future
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profits highly—traders may be worse off because the dealer is willing to incur short-term
losses to conceal her private information.

Using simple assumptions on the dynamics of asset value, I decompose price volatility
to show that liquidity measures do not necessarily reflect trader welfare (or price efficiency).
Enriching the fundamental dynamics will allow for more precise statements about which
types of assets are more likely to benefit or suffer from long term incentives in this context
(for example those with bond-like versus stock like payoffs), as well as sharper empirical
implications. For example, fundamentals could more closely track the dividends of a con-
sumption tree, where the market maker knows whether consumption growth will be high
or low. I also made a strong perfect monitoring assumption; relaxing it will not necessarily
change the welfare results, but it will imply other interesting price dynamics: when traders
experience significant losses, temporary periods of lower market liquidity may follow if they
infer the market maker has deviated from a given pricing strategy.
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Chapter 2

Transaction costs and asymmetric
information in non-anonymous
markets

2.1 Introduction

When counter-parties trade in OTC markets, such as those for corporate bonds or derivatives,
the lack of anonymity implies that the consideration of future transactions can influence
prices today. In the presence of adverse selection, informed traders may be willing to forgo
information rents today in exchange for future liquidity rents, resulting in gains from trade
that would be lost in a static or anonymous setting. This tradeoff, as well as the degree of
competition in a given market, jointly determine the transaction costs—a result of dealer
markups—that traders incur.

Using a model of repeated trade between an informed trader and uninformed market
makers, I show that repeated interaction affects transaction costs through two channels.
First, for a given market structure (number of dealers) more informed traders pay lower costs.
Second, even if dealers can not compete directly on price, a trader’s costs are still lowered
by the presence of competition because it improves their outside option. This indirect effect
of competition is imperfect: a Bertrand outcome does not obtain, so costs will vary with
the number of dealers. The main implication of the model, then, is that measurement and
comparison of transaction costs in markets characterized by non-anonymous trade should
proceed with caution, at least to the extent that information frictions apply, by conditioning
on market structure.

The model used is stylized in the sense that it analyzes the effect of a specific friction –
information asymmetry – on a specific component of trading costs – the markups charged
by dealers due to imperfect competition. The model does not include inventory effects or
fixed order processing costs, so the spread charged by market makers consists of an adverse
selection component plus any markups they are able to charge. As in most OTC markets, the
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notion of a binding bid-ask spread does not apply, but these two components can be identified
by the econometrician from the history of price changes: adverse selection costs correspond
to the “permanent” component of price changes, markups to the “transitory” component,
which tends to revert following a trade. In this sense, the primitive parameters of the model
induce an endogenous bid-ask bounce. Finally the information friction is assumed to be
extreme enough such that trade is only viable in a repeated setting. When adverse selection
is not extreme, a competitive, anonymous market as in Glosten and Milgrom (1985) is viable
and transaction costs (the transitory component) are zero – this will serve as a benchmark.

Both of the model’s effects are driven by the incentive compatibility constraints of an
informed trader facing a market maker’s price schedule. In each period, traders come to the
market driven by either an information or liquidity motive. In the informed state, the trader
knows the asset’s end-of-period common value, while in the liquidity state she has a private
value that differs from current fundamentals. This private value is not extreme – the trader
is somewhat elastic to price – and the dealer’s break-even price, given he doesn’t know the
trading motive, is above this valuation. In a one-shot anonymous setting, the market breaks
down. With the potential for repeated interaction, the dealer can incentivize the trader to
cooperate by revealing her trading motive, and gains from trade are realized.

First consider the case of a monopolist dealer. He is able to solicit the trader’s motive by
offering a share of future gains from trade in the liquidity state. There are two dimensions of
information asymmetry: the likelihood of informed versus liquidity trade, and the magnitude
of common value shocks about which the trader has private information. When information
asymmetry is high in either dimension, all else equal, the trader values future liquidity gains
less, so her share must be increased to maintain incentive compatibility. The dealer wants to
impose markups to the point where incentive compatibility on the part of the trader binds,
so prices are determined by this constraint. These markups are a function of the primitive
parameters, not realized fundamentals, so they show up as the transitory component of
price changes. Measurements of this component via Roll’s 1984 covariance estimate or trade
indicator regressions along the lines of Madhavan, Richardson, and Roomans (1997) and
Huang and Stoll (1997) will produce the same conclusion: for a fixed market structure (e.g.
one dealer), transaction costs are decreasing in the trader’s informational advantage.

The second result of the paper concerns the entry of additional competition on the liq-
uidity supply side. In the monopolist model described above, the dealer ensures cooperation
by: a) promising a share of future gains from trade; b) credibly threatening to terminate
the relationship if a trader deviates by lying about her motive, destroying any future gains.
If there are competing dealers present in the market, the trader’s outside option is signifi-
cantly improved – if she deviates and burns an existing relationship, she can trade with the
remaining dealers. While the OTC nature of the market does not allow dealers to compete
directly on price within a given trading period, competition increases the trader’s outside
option, and therefore the surplus share dealers must offer to maintain cooperation. Hence
the level of competition in a given market can be a confounding factor in determining the
causes of transaction costs, and it should be controlled for when attributing costs to other
factors.
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The effect of competition on transaction costs suggests a simple explanation for some of
the observed cost variation in, for example, corporate bond markets. Bao, Pan, and Wang
(2009) show that bonds with lower ratings have higher transaction costs, and suggest that
this illiquidity might be a priced risk factor. However, to the extent that my model reflects
the OTC nature of the corporate bond market, it may just be that there is less competition
in lower rated bonds: according to MarketAxess, an electronic bond trading platform, there
are almost twice as many dealers in the U.S. high-grade corporate bond market as there are
in the high-yield market.1

While I mainly considered the effect of exogenous changes in dealer competition, each
additional dealer who enters reduces the liquidity supply side’s surplus share, placing an
endogenous upper bound on the feasible level of competition in a given market. The fact
that competition is endogenously limited due to incentive effects, even with free-entry, is
also unique to the repeated/non-anonymous nature of the market examined in this paper.
In many microstructure models, Bertrand competition is invoked to justify setting prices
such that dealers break even in the presence of two or more competitors. In models that
allow informed traders to split their orders among competing dealers, this result does not
hold for a given level of competition, but free entry still implies that an infinite number of
dealers will enter and profits will go to zero. In the present case, even with free entry, there
is a limit on the per-capita number of dealers—the number of dealers per trader. Dealers
will enter until profits are zero, but the limited number of dealers prevents maximum social
gains from being achieved—some traders are not able to find a market maker to transact
with.

To motivate the model empirically, I appeal to stylized facts in the markets for corporate
and municipal bonds because they trade in an OTC/non-anonymous fashion and there is a
wealth of existing research on their transaction costs.2 Both Bao, Pan, and Wang (2009)
and Edwards, Harris, and Piwowar (2007) document that bonds with lower ratings or higher
yields are more costly to trade.3 If markets for those bonds are less competitive, this is in line
with the model’s predictions. Second, in the municipal bond market, Green, Hollifield, and
Schurhoff (2007) conclude that a significant portion of transaction costs are due to dealer
markups (not other “marginal” cost components) via a structural estimation, and it’s natural
to assume the same applies for corporate bonds. Finally, to address concerns about whether
the model’s main friction, which is informational, is relevant in the corporate bond market,
I appeal to Hotchkiss and Ronen (2002), who show that bonds incorporate informational
events into prices as quickly as equity markets.

1See http://www.marketaxess.com: they advertise 67 dealers in the high-grade credit market compared
to 37 dealers in the high-yield market as of April 2012.

2Recent studies of corporate bond transaction costs include Edwards, Harris, and Piwowar (2007), Bao,
Pan, and Wang (2009), Bessembinder, Maxwell, and Venkataraman (2006), and Goldstein, Hotchkiss, and
Sirri (2007). In the municipal bond markets, see Green, Hollifield, and Schurhoff (2007) and Green, Li, and
Schurhoff (2010)

3In Bao, Pan, and Wang (2009) costs are measured via transitory price changes, whereas Edwards,
Harris, and Piwowar (2007) look at the total average spread
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Literature Review

Theoretical motivation for relationship/reputation effects in financial markets begins with
Seppi (1990) and Benveniste, Marcus, and Wilhelm (1992), who look at whether monopolist
dealers can screen out informed trade via the threat of reduced form punishments. Des-
granges and Foucault (2005) are the first to explicitly model the dynamic game between a
dealer and an informed trader – they construct a stationary equilibrium in which the dealer
offers price improvements as a function of past profits. In all of the above papers the dealer
is a monopolist and the focus is on whether and how cooperation can be maintained – my
focus is more on the pricing effects of relationship trade and imperfect competition. Empir-
ical support for reputation effects is given by Battalio, Ellul, and Jennings (2007), who use
specialist relocations on the NYSE as a natural experiment to show that brokers who move
with the specialist trade on better terms.

The second result in this paper adds competing dealers and looks at their effect on prices.
Static adverse selection models often assume dealers earn zero profits to pin down prices,
but there is a significant literature exploring imperfect competition: Glosten (1989) examines
how a monopolist sets his price schedule against a trader who has mixed information and
liquidity motives, and notes that monopolistic pricing is socially preferable when adverse
selection is significant. Dennert (1993) and Bernhardt and Hughson (1997) consider stylized
models in which a finite number of dealers compete for order flow and traders are able to split
orders amongst dealers. The result is that with any finite number of market makers, expected
profits are positive (Bertrand competition doesn’t hold) and transfer schedules are convex
(agents are charged more for the second unit than the first). This result is generalized by
Biais, Martimort, and Rochet (2003), who also show welfare implications of these schedules:
oligopolistic competition increases trading volume (and hence efficiency) over the monopolist
case, but falls short of ex-ante social efficiency (the allocation an informed social planner
would choose). In these models, profits go to zero as the number of dealers increases to
infinity, which will occur with free entry. The second result of this paper shows that adverse
selection and relationship effects combine to limit the viable level of competition for a given
parameterization, and hence market structure provides a link between prices and parameters.

Though the focus of this paper is on an implication of adverse selection in a relationship
market, Carlin, Lobo, and Viswanathan (2007) show that cooperation among traders in a
market can be sustained for non-informational reasons – they abstain from “preying” on
each other in a repeated setting. Bernhardt, Dvoracek, Hughson, and Werner (2005) show
that traders can obtain price improvements from a dealer’s posted quotes with the promise
of future order flow. Both of these models take prices as exogenous, while I solve for prices
as a function of the model’s parameters.

There is a significant literature concerning over-the-counter trade. The search models of
Duffie, Garleanu, and Pedersen (2005) and Duffie, Garleanu, and Pedersen (2007) are driven
by hedging motives, while more recent work including Duffie, Giroux, and Manso (2010)
and Golosov, Lorenzoni, and Tsyvinski (2009) study information driven trade. In my model,
repeated interaction enables the adverse selection problem to be negotiated around, whereas
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trade in the above models is entirely anonymous. The common theme I share with these
models is that outside options determine prices: in OTC search models, the likelihood of
meeting another counter-party tomorrow determines an agent’s valuation today, whereas in
my model, the number of dealers in a market determines a trader’s market power and hence
the terms of trade.

2.2 Model

I first discuss the effect information asymmetry has in a two party setting where there is no
competition.

Consider a discrete-time infinite horizon game (t = 0, 1, 2, . . .) in which a risk-neutral,
uninformed dealer (m) provides price quotes for a strategic trader (i) with unknown trading
motives. Both players are long-lived. With probability α, the trader has superior information
about an innovation in asset value, and is otherwise trading due to a private hedging motive.
The fundamental common value of the asset vt evolves as

vt = vt−1 + ηtyt∆

P(ηt = 1) = α P(ηt = 0) = 1− α

P(yt = 1) = P(yt = −1) =
1

2

ηt indicates whether trade is information driven or not, and, if so, yt indicates whether
the common value innovation is positive or negative. The common value innovations are
symmetric with magnitude ∆. These two shocks are assumed to be independent.

When trade is liquidity driven (ηt = 0), yt indicates the direction of the trader’s private
valuation, which has magnitude δ, so i’s valuation in period t is

vt + (1− ηt)ytδ

Market maker m sets a price schedule P (qt, η̂t) contingent on the trader’s demand for the
asset qt and a report η̂t about the true value of ηt: trader i can indicate whether he is trading
for informational or liquidity reasons.

After trade occurs, the end of period asset value vt is revealed, so m knows whether i was
truthful in his report of trading motive, and can respond with punishments if necessary.4

Trader i’s realized period t profit πit is

πit = qt[vt + (1− ηt)ytδ − P (qt, η̂t)]

where qt ∈ {−1, 0, 1} is the amount of the asset purchased by i (trade only occurs in whole
units of the asset). Market maker m’s period t profit πmt is

πim = qt[P (qt, η̂t)− vt]
4This is a game with perfect public monitoring.
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All agents maximize the present value of expected payoffs using discount rate β, which I
interpret as the probability of continuation play: the trading relationship may end for some
exogenous reason with probability (1− β). Their ex-ante utilities prior to trading in period
t are

V i
t = (1− β)Et

∞∑
s=t

βs−tπit

V m
t = (1− β)Et−1

∞∑
s=t

βs−tπmt

Each player optimizes conditional on their information sets: trader i knows the value of the
shocks ηt and yt (and uses expectation operator Et) while dealer m does not (so she uses
Et−1). After the period t asset value is revealed, ht = {ht−1, Pt(·, ·), qt, η̂t, ηt, yt} denotes the
updated history of play through time t. An equilibrium of the game is defined as follows:

Definition 2. A tuple {P (·, ·;ht−1), q(ht−1, η̂t(ht−1))} is an equilibrium of the repeated game
if, for any time t and ex-ante history ht−1:

1. Taking the market maker’s pricing strategy P (q, η̂;ht−1) as given, trader i’s trading
motive report η̂∗(ht−1) and demand q∗(ht−1) maximize his expected utility V i

t .

2. Market maker m’s pricing rule P (q, η̂;ht−1) maximizes her utility V m
t given the traders

reporting/demand strategy.

For simplicity, I restrict attention to pure-strategy, stationary equilibria in which m
follows simple trigger strategies.5 While more complex dynamics strategies are potentially
interesting in their own right, I focus on the implications for average transaction costs in
this paper, so this restriction is largely without loss of generality.

2.3 More informed traders pay lower transaction

costs

Because of the symmetry in the model, the market maker is effectively posting a bid-ask
spread around the prior period’s asset value:

P (1, η̂;ht−1) = A(η̂;ht−1) = vt−1 + s(η̂)

P (−1, η̂;ht−1) = B(η̂;ht−1) = vt−1 − s(η̂)

where the symmetric spread s(η̂) is conditional on trader i’s reported motive η̂. For exposi-
tional purposes, it is simpler to consider m’s choice of spreads s(η̂), and trader i’s choice of
whether to trade or not (q ∈ {0, 1}) and whether to accurately report his motive—whether
the trade is a buy or sell doesn’t matter in describing the equilibrium.

5m might be able to extract more surplus by offering quotes that either front-load or backload the surplus
shared with trader i.
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For moderate hedging demand, trade breaks down in a static
setting

Consider the stage game at time t taking the fundamental realization vt−1 at the end of
the prior period as given and assuming no continuation play beyond the current period.
The potential ex-ante gains from trade in the stage-game are (1 − α)δ, and the following
proposition describes its equilibrium:

Proposition 9. In the static game, there are effectively three-equilibrium outcomes depend-
ing on the parameter region:

1. If δ < α∆: m’s optimal spreads are s∗(0) = s∗(1) ≥ ∆, trader i does not trade
(q̂∗(η = 0) = q̂∗(η = 1) = 0), both players receive payoffs of 0 and no gains from trade
are realized.6

2. If δ ∈ (α∆,∆): m’s optimal spreads are s∗(0) = s∗(1) = δ; trader i always trades
(q̂∗(η = 0) = q̂∗(η = 1) = 1); trader i’s ex-ante payoff is V i

t = α(∆− δ); market maker
m’s ex-ante payoff is V m

t = δ − α∆; ex-ante gains from trade V i
t + V m

t = (1− α)δ are
achieved.

3. If δ > ∆: m’s optimal spreads are s∗(0) = s∗(1) = δ; trader i only trades in the
liquidity state (q̂∗(η = 0) = 1, q̂∗(η = 1) = 0); trader i’s payoff is 0; market maker m’s
ex-ante payoff is EV m

t = (1 − α)δ; ex-ante gains from trade V i
t + V m

t = (1 − α)δ are
achieved.

In the second and third regions of the parameter space above, all possible gains from
trade are achieved and there is no extra social benefit to repeated interaction. In the second
region, the gains are split: the trader profits on information trades, but the dealer extracts
gains on liquidity trades. In the third region, the dealer is able to screen out information
trade by setting a wide spread, while still capturing all liquidity rents because the trader is
relatively desperate to trade in those states. In a perfectly competitive market a la Glosten
and Milgrom (1985) trade will occur at zero-profit bid-ask prices

At = vt−1 + α∆, Bt = vt−1 − α∆

in regions (2) and (3). To focus on the benefits of repeated interaction, I’ll assume throughout
the rest of the paper that gains from trade are only achieved from repeated interaction:

Assumption 3. The private valuation discount δ satisfies

δ < α∆

6There is a trivial equilibrium in which trade occurs at s∗ = ∆ and payoffs/gain are still zero for both
players. I’ll ignore it because the presence of any other trading costs would eliminate it.
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Assumption 3 captures the elasticity of liquidity demand to price: under this assumption,
any anonymous / one-shot market breaks down. In a repeated OTC context, gains from trade
can still be achieved if traders credibly signal whether trade is liquidity based or not. When
δ > α∆, liquidity demand is less elastic to price, and trade is viable in an anonymous market.

Relationships induce honesty and gains from trade

For any stationary symmetric pricing strategy, let s(η̂) denote the spread charged when i
claims a trading motive of η̂. We can define the spreads sL = s(0) charged by the market
maker on liquidity trade and sI = ∆ − s(1) conceded by the market maker on informed
trades. For any equilibrium involving sustained cooperation at stationary spreads (sI , sL),
because things are i.i.d.,

V 1
i = (1− α)(δ − sL) + αsI

V 1
m = (1− α)sL − αsI

where V 1
i and V 1

m are the ex-ante utilities of the trader, i, and market maker m. The one
super-script denotes the number of market makers, for use when we consider multiple market
makers later. m’s optimization problem (P ) can then be stated as

max
sL,sI

(1− α)sL−αsI (P )

such that:

(1− β)sI + β[αsI + (1− α)(δ − sL)] ≥ (1− β)(∆− sL) + β · 0 (IC1)

(1− β)(δ − sL) + β[αsI + (1− α)(δ − sL)] ≥ 0 (IC2)

αsI + (1− α)(δ − sL) ≥ 0 (IR)

where IC1 ensures that trader i doesn’t disguise an informed trade as a liquidity trade (only
applicable for sL < ∆ − sI), IC2 ensures that trader i executes her liquidity trade through
the dealer rather than abstaining (applicable when sL > δ), and the IR constraint ensures
that traders will want to continue on with the relationship under a given pricing strategy.
Note that for both IC constraints, the market maker uses the credible threat of the static
game Nash equilibrium, where trader i’s continuation value is 0.

The solution to this problem formulation is given by the following proposition:

Proposition 10. The unique stationary strategy equilibrium of the repeated game with one
market maker, is characterized by the parameter δ. Define δ as

δ =
α∆(1− β)

1− α2β

For δ ∈ (δ, α∆),
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• Market maker m sets spreads contingent on the trader’s report

s∗L =
δ + αβ∆

1 + αβ
s∗I =

(1− αβ)(∆− δ)
1 + αβ

after every possible history in which the trader truthfully reports her motive. Follow-
ing any history involving a false report, m plays the stage-game strategy in all future
periods.

• Trader i truthfully reports her motive when spreads are quoted as above (η̂ = η, q = 1),
and plays the stage-game equilibrium for all other spreads.

For all δ ∈ (0, δ), incentive compatibility can not be profitably maintained by m, and both
players play the stage-game equilibrium in every period (no trade occurs).

The appendix derives the equilibrium spreads in detail, but, roughly, both IC constraints
will bind at any optimum, and the IR constraint will be satisfied. The lower bound on
the liquidity gain δ required to support trade is increasing in the information asymmetry
parameters (α,∆) because bigger gains are required to reward traders for cooperating when
adverse selection is more severe.

Implied Price Dynamics and Cost Measurement

Given the equilibrium spreads above, I now examine how prices and corresponding measures
of transaction costs will vary with the underlying parameters. First note that the evolution
of fundamentals and prices is given

vt = vt−1 + ηtyt∆ (2.1)

Pt = vt−1 + (∆− s∗I)ηtyt + s∗L(1− ηt)yt (2.2)

We can consider two measures of costs:

1. The negative auto-covariance of price changes γ = −Cov(∆Pt,∆Pt−1) as in Bao, Pan,
and Wang (2009).

2. A regression of prices changes ∆Pt on buy sell indicators xt in a typical reduced form
decomposition of the spread into permanent (price-impact) and transitory (fixed) costs.
These specifications typically model an underlying efficient price ft

ft = ft−1 + wt

wt = λxt + ut

where λ measures the permanent impact of a trade on fundamental value due to infor-
mational effects and xt ∈ {1,−1} indicates whether a trade is a buy or a sell, where xt
and xt−1 are i.i.d. The observed transaction price process pt is assumed to be

pt = ft + cxt
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where c represents the transitory cost a trader incurs. In the present setting, this cost
reflects the markup dealers are able to charge, though in models that assume perfect
competition, it is usually interpreted as a fixed order processing cost. Price changes
are then given by

pt − pt−1 = (λ+ c)xt − cxt−1 + ut

where ut is a residual term capturing public information innovations—in the model,
these are zero, so costs can be estimated exactly from price and trade observations. This
specification matches Huang and Stoll (1997) (minus inventory effects) and Madhavan,
Richardson, and Roomans (1997).

I’ll focus on the second measure for several reasons: 1) the covariance measure γ is closely
related to c; 2) the estimates from the second specification have a simpler form, facilitating
easier comparative statics.

Proposition 11. In a monopolistic market, where the true price dynamics are given by
equations (1) and (2), the estimated transitory cost ĉ and price impact λ̂ are given by

ĉ = (1− α)s∗L − αs∗I λ̂ = α∆

with comparative statics
∂ĉ

∂α
< 0

∂ĉ

∂∆
< 0

The intuition for the cost estimate is that, on average, traders pay the liquidity spread s∗L
with probability (1− α), and recoup the informed spread concession sI with probability α.
The comparative static demonstrates the first main result of the paper: When trader’s are
more informed – either by being more frequently informed (α), or having better information
(about larger price moves ∆) – they pay lower costs. Higher α implies the trader cares less
about future gains from liquidity trade, and needs to be compensated with lower costs today
in order to ensure cooperation. Higher ∆ makes disguising an informed trade as a liquidity
trade more tempting today, and requires a similar concession from the market maker.

In a market characterized by anonymous trading, where there are no relationship effects,
transaction costs will be unrelated to the information parameters α and ∆, and hence to
permanent price impact estimates (λ̂). Here, the comparative statics of λ and c have opposite
signs with respect to each information asymmetry parameter. Controlling for the effects of
other parameters, a negative relationship between cost and price impact estimates in a given
market is indicative of potential relationship effects.

2.4 Competition indirectly reduces transaction costs

This section demonstrates the second main result of the paper: that the comparative statics
of transaction costs only make sense conditional on market structure—the viable number of
dealers in a given market—and that the concentration of dealers has an endogenous limit. To
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address this issue in a tractable way, consider a matching extension to the one-dealer/one-
trader model presented above.

There is a unit mass of traders i ∈ [0, 1], and a mass of dealers with exogenous measure
µ ≤ 1 indexed by m. Because this is an over the counter context, dealers do not simultane-
ously compete via price quotes: traders can only request a quote from the dealer they are
currently matched with.

Maintaining a relationship with traders is costly, so dealers are limited in the number
of relationships they can have at one time—I’ll assume they can not be in more than one
trading relationship.7 Each period, existing relationships end with exogenous probability
(1 − β), and unmatched players of both types die with probability (1 − β). In both cases,
players are replaced by new players of the same type.8

Dealers in this setup still have the potential to generate trade and extract some surplus,
but their threat is less powerful than the monopoly case. They can terminate a relationship
and send traders back to the unmatched pool, but the severity of this threat depends on
how easy it is to form another relationship, i.e. on the mass of dealers µ. Gains from trade
via repeated trade are only achievable if µ < 1; otherwise the dealers have no credible threat
because traders are sure to be matched in the next period with a new dealer. The unmatched
pool of players will consist entirely of traders.

In this setting, a dealer-trader pair only observe the history ht of their prior transactions,
and act upon those. Once a relationship is terminated, any new matches begin with a fresh
(null) history. The equilibrium is similar, with the addition that things need to be in a
steady state:

Definition 3. A tuple {P (·, ·;ht−1), q(ht−1, η̂t(ht−1))} is an equilibrium of the repeated game
if, for any time t and ex-ante history ht−1 of a given dealer-trader pair:

1. Taking the market maker’s pricing strategy P (q, η̂;ht−1) as given, trader i’s trading
motive report η̂∗(ht−1) and demand q ∗ (ht−1) maximize his expected utility V i

t .

2. Market maker m’s pricing rule P (q, η̂;ht−1) maximizes her utility V m
t given the traders

reporting/demand strategy.

3. Flows of traders / market makers into the unmatched pool are such that the fraction
of traders in a relationship is constant.

The resulting outcome is similar to the monopolist case, but the level of competition in
the market µ alters spreads and the range of δ for which gains from trade are feasible.

7Allowing them to be in some finite number N at a given time will not qualitatively change the results.
8Allowing one player in a relationship to die while the other continues complicates the algebra without

changing much qualitatively. See section 5.2 of Mailath and Samuelson (2006) for a discussion.
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Proposition 12. There exists a stationary equilibrium of the repeated matching game char-
acterized by the parameter δ. Define δ′ as

δ′ =
α∆(1− β)

1− βµ− α2β(1− µ)

For δ ∈ (δ′, α∆), and for each dealer-trader pairing (m, i)

• Market maker m sets spreads contingent on trader i’s report

s∗L =
δ + αβ − βµ(δ + α∆)

1 + β[α− (1 + α)µ]
s∗I =

[1− αβ − βµ(1− α)](∆− δ)
1 + β[α− (1 + α)µ]

after every possible history in which the trader truthfully reports her motive. Follow-
ing any history involving a false report, m plays the stage-game strategy in all future
periods.

• Trader i truthfully reports her motive when spreads are quoted as above (η̂ = η, q = 1),
and plays the stage-game equilibrium for all other spreads.

For all δ ∈ (0, δ′), incentive compatibility can not be profitably maintained by m, and both
players play the stage-game equilibrium in every period (no trade occurs).

Note that for µ = 0, the equilibrium spreads reduce to those of Proposition 10. Dealers
are not competing with each other directly on prices, but there is an indirect benefit to
traders of having more dealers in the market: they improve a trader’s outside option. When
µ is higher, the pool of unmatched traders is smaller, and if a trader deviates he can expect
to be in a new trading relationship sooner.

All else equal, the comparative statics of estimated transaction costs with respect to the
information asymmetry parameters are the same, but the effect of dealer competition also
changes costs:

Proposition 13. In the repeated matching game with dealer mass µ, the estimated transac-
tion costs ĉ and price impact λ̂ are given by

ĉ = (1− α)s∗L − αs∗I λ̂ = α∆

with comparative statics
∂ĉ

∂α
< 0

∂ĉ

∂∆
< 0

∂ĉ

∂µ
< 0

This illustrates the second main point of the paper: in drawing conclusions about transac-
tion costs in OTC markets, market structure matters. Whereas the equity markets literature
generally assumes prices are set competitively, this assumption is not as tenable in less liq-
uid markets. As such, the level of competition in a given asset should either be considered
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directly as a determinant of transaction costs, or it should be controlled for when attributing
variation in costs to other factors.

The previous results took the level of competition in a market, µ, as exogenously given.
However, there is an endogenous limit on the measure of dealers that still allows trade to
occur. Once it is exceeded, market making is no longer profitable at the spreads required to
maintain trader cooperation, and the market breaks down.

Proposition 14. The imperfectly competitive matching game has a limit µ on the mass of
market makers that can be supported. This limit is decreasing in the information asymmetry
parameters α and ∆.

When information asymmetry increases, via the parameters α or ∆, it is harder to keep
traders cooperative so they must be given better terms of trade. When the concentration of
dealers is µ = µ, dealers are already earning zero profits, so they can not cede any more gains.
The only way cooperation can be maintained is if the trader’s outside option is reduced by
decreasing the number of dealers in the market, thereby increasing the cost of returning to
the matching pool.

While repeated interaction does allow gains to be achieved in a matched dealer-trader
pair, removing the static-game inefficiency, asymmetric information still causes an aggregate
inefficiency by limiting the viable size of the liquidity supply market. The total ex-ante gains
from trade in each pairing is (1−α)δ, so the total gains are µ(1−α)δ. This quantity is also
decreasing in both information asymmetry parameters.

2.5 Conclusion and Extensions

This article demonstrates that in markets characterized by non-anonymous trade and ad-
verse selection, a higher level of information asymmetry may actually lead to lower costs.
Repeated interaction allows dealers to screen out informed trade, while superior information
gives traders more market power against them, improving prices. The number of dealers
in a given market also affects prices, hence inference about transaction costs in a repeated
setting should, ideally, condition on market structure. Finally, assuming free entry, the max-
imum number of dealers in a given market is endogenously determined, and is decreasing
in informed trade—repeated trade solves inefficiencies at the relationship level, but can not
remove all aggregate inefficiency.

There are several extensions and improvements that could be made to the above analysis.
First, non-stationary strategies will effect the dynamics of prices, but it’s not clear whether
they will alter measurement of average transaction costs. Second, a potentially useful ex-
tension is to consider additional quantities—when traders can transact on more than one
unit, what do price schedules look like? Will they split their orders? The transaction cost
literature for bond markets has identified schedules as being concave in quantity–can we
match that stylized fact in this setting?
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Finally, from a theoretical perspective, a useful benchmark would be to cast this model in
the CARA-normal framework of Glosten (1989) and Biais, Martimort, and Rochet (2003) to
at least examine the monopolist case. This framework is already used to compare the welfare
implications and price schedules of static market structures (e.g. monopoly vs. oligopoly),
so it may provide more insight into the conditions under which non-anonymous markets are
superior to anonymous markets.
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Chapter 3

Measuring mutual fund performance
with endogenous asset prices

3.1 Introduction

Do mutual fund managers add value? This question has been the focus of a large empir-
ical literature that measures mutual fund performance. In the theoretical literature, most
models of mutual funds rationalize fund performance puzzles by isolating the value added
by managers from the underlying financial assets traded in the economy.1 Yet treating risky
asset prices as an exogenous side show only make sense if mutual funds are a relatively small
component of the market. Allen (2001) argues that because this is not the case—the share
of corporate securities owned directly by households dropped from 90% in 1950 to less than
40% by 2000—the effects of institutions on asset prices are a first order concern. As of 2010,
mutual funds alone owned 27% of U.S. equities.2 In aggregate, then, investor demand for
mutual funds potentially affects their demand for direct investment in risky assets.

I use a model of fund management that incorporates this pricing effect to produce two
results. First, I show that while measuring fund performance against a risk adjusted bench-
mark indicates whether managers are skilled, it does not imply welfare is improved by the
presence of mutual funds—even when these measures are positive, investors might be better
off in a world without fund management. The literature on incomplete markets has shown
that the introduction of new securities can reduce welfare,3 so my contribution is simply to
show that standard mutual fund performance measures do not capture welfare effects.

Second, I show that when pricing effects are accounted for, some existing explanations
of mutual fund underperformance are harder to maintain. In models explaining fund per-
formance puzzles such as Berk and Green (2004) and Glode (2011), fund managers control

1A notable exception is Savov (2010), who uses a market timing story to explain fund underperformance
in an REE economy

2See Ivestment Company Institute (2011)
3See Duffie and Rahi (1995) for a survey of this literature.
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demand for their active management technology, and hence profits, via their management
fee. Assumptions on the characteristics of the payoffs being sold determine the optimal fee
and the puzzle explanation. However, any effect on mutual fund demand via fees has a
corresponding effect on direct demand for the underlying risky asset, affecting its price and
potentially the pricing kernel. Once this joint effect is accounted for by fund managers,
equilibrium fees are different, and so are performance measures used to address puzzles.

What are the puzzles people are trying to explain? Beginning with Jensen (1968), the
debate initially focused on why risk-adjusted returns, after fees, were not positive if mutual
fund managers had skill. Berk and Green (2004) (BG) changed the terms of the debate by
showing that in a rational model of fund flows, ex-post fund performance should be zero.
However, evidence of mutual fund underperformance after fees, including Gruber (1996) and
Fama and French (2010), is not explained by their model. So far, several competing models
attempt to address this negative performance puzzle. Pastor and Stambaugh (2010) attempt
to show that if returns to scale are decreasing at the industry (not manager) level, and
investors need to learn the parameters governing this process, they might still invest in funds
despite a long history of observed underperformance. Citing evidence that mutual funds tend
to perform relatively well in bad times,4 Glode (2011) augments the BG model to allow for
state-dependent alpha and shows that unconditional risk-adjusted returns, when measured
against a passive benchmark, may be rationally negative. Whereas Glode’s explanation is
cross-sectional, Savov (2010) provides a market-timing explanation involving heterogeneous
wealth shocks. All but the latter abstract from investor behavior and leave the underlying
asset price as exogenous.

To show that pricing effects matter in explaining these puzzles, I use a simple model of
fund management closest to BG and Glode (2011). The zero fund performance result in
BG follows from several key assumptions: 1) completely diversifiable and idiosyncratic fund
payoffs; 2) an unlimited supply of capital that flows to any positive excess return opportunity;
3) decreasing returns to scale in fund size; 4) fund manager market power. Glode assumes
an exogenous pricing kernel, allows fund performance to vary with the pricing kernel (so
its risk is not completely idiosyncratic/diversifiable), allows managers to produce this state-
dependent alpha using a decreasing returns to scale technology, and again gives managers
market power in setting fees. Glode’s result is that managers optimally choose to provide
alpha in high marginal utility states, so funds provide insurance, and their unconditional
risk premium is therefore negative when measured against an imperfect pricing kernel proxy
(such as a passive benchmark).

I allow fund payoffs to be correlated with the single risky asset in the economy (the
“market” portfolio), where this correlation is exogenous – BG corresponds closely to the case
where this correlation is zero, Glode to the case where it is negative. The key assumption
I remove is that capital is in unlimited supply – the aggregate investor in the economy has
a budget constraint that needs to be satisfied. He has to hold the outstanding supply of
the risky asset and requires compensation for this risk. If fee changes shift money to/from

4See for example Kacperczyk, Van Nieuwerburgh, and Veldkamp (2009)
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mutual funds, this changes the price of the underlying asset and hence the pricing kernel – so
imposing this budget constraint is equivalent to relaxing Glode’s assumption of an exogenous
pricing kernel.

Because the fund payoff is imperfectly correlated with the market portfolio, its risk is
not completely diversifiable as in BG. I do not impose any decreasing returns to scale in
alpha generation – this means the fund is not any less attractive as delegated investment
increases, but uncertainty in alpha still limits investor willingness to invest in the fund. I do
not need decreasing returns to scale to get an interior solution, and it does not qualitatively
effect the results of the paper. I retain the notion of manager market power as in the
existing models to give them the best chance of succeeding, and show the main result holds
whether we consider a single monopolist fund manager who internalizes his effect on prices
or a continuum of small managers who do not internalize this effect, but best-respond to the
fees set by other managers in the economy. For the purposes of this discussion, I am being
agnostic about how managers add value – we can think of their value added as coming from
better stock selection or lower costs, for example.

In other areas of the delegated portfolio management literature, models do endogenize
asset pricing effects. However, they are generally not concerned with the mutual fund per-
formance puzzle. Instead, they focus on things like equilibrium contracting under agency
frictions Cuoco and Kaniel (2006), explanations for momentum/reversal Vayanos and Wool-
ley (2008), optimal strategies for information sale Admati and Pfleiderer (1990), excess
volatility Guerrieri and Kondor (2009), etceteras.5

Given the result of this paper – that existing fund performance puzzles remain once
asset prices are endogenous – the larger question remains unanswered: why would anyone
rationally invest in mutual funds if they underperform in aggregate after fees? Additionally,
because performance measures do not necessarily reflect the welfare gains of fund manage-
ment, how can we measure the true value added by active fund management?

3.2 Model

Consider the following three period (t = 1, 2, 3) model of fund management. There is a unit
mass of risk averse investors with exponential utility over terminal wealth W

U(W ) = − exp(−ρW )

with initial wealth normalized to 0.
There is a also a unit mass of portfolio managers who possess an identical active manage-

ment technology that delivers a normally distributed payoff ε ∼ N (α, σ2
ε ). Managers do not

have capital of their own, but they sell exposure to this payoff at a fee of f per unit. For sim-

5See Stracca (2006) and Bhattacharya, Dasgupta, Guembel, and Prat (2007) for more complete surveys
of the delegated portfolio management literature.
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plicity, this active management technology exhibits constant returns to scale—the qualitative
results of the paper do not change if I use a decreasing returns to scale technology.6

There is a risky asset with a supply of one unit that pays a normally distributed dividend
D ∼ N (µ, σ2), and a risk free asset in infinite supply with net return normalized to Rf = 0.
The risky asset and the portfolio management payoffs D and ε have a correlation γ. Investors
demand quantities xS and xF of the risky asset and the fund to maximize the expected utility
of their terminal wealth.

The sequence of events is as follows:

• t = 1: Fund managers set fee f simultaneously, taking the fees set by other managers as
given and anticipating investor demand xF . Each given manager chooses f to maximize
profits π = f · xF .

• t = 2: Investors are randomly matched with fund managers and make portfolio choices.
They directly buy xS shares of the risky asset at the market clearing price P , and xF
shares of the fund at price f .

• t = 3: The asset payoff D and fund performance ε are realized, and investors consume
terminal wealth.

When investors choose active management, they are randomly matched with a fund
manager. The fund manager therefore has “local” monopoly power over the investor he
is matched with and will set fees accordingly. There is no benefit to diversification across
managers, as they all have the same α technology. For robustness, I later consider a single
monopolist manager in charge of all delegated funds, but it does not qualitatively affect the
results. In both cases, managers are able to extract some of the rents associated with their
portfolio management skills, as is standard in the literature.

Agents in the model are ex-ante identical, so I focus on symmetric equilibria. Given the
parameters of the economy θ = (ρ, µ, σ2, α, σ2

ε , γ), an equilibrium is defined as follows:

Definition 4. An equilibrium of the economy is given by

• A pair of investor demand schedules (x∗S(P, f ; θ), x∗F (P, f ; θ)) specifying direct and in-
direct investment in the risky asset, respectively, given asset price P and fund fee
f .

• An asset price P ∗(f ; θ) such that markets clear given symmetric fund fee f : x∗S(P, f ; θ) =
1.

• A symmetric per-share fund fee f ∗(θ) charged by all fund managers that is a best-
response for an atomistic manager given all other managers charge f ∗.

6Berk and Green (2004) and Glode (2011) effectively need decreasing returns to scale to arrive at interior
solutions; without it, mutual fund investment would grow without bound. Here, fund investment will be
limited by risk in the fund payoff and investors’ budget constraints.



CHAPTER 3. MEASURING MUTUAL FUND PERFORMANCE WITH
ENDOGENOUS ASSET PRICES 44

All of the pricing effects in the model depend on µ− P , so I express results in terms of
this premium rather the the price alone (this removes a model parameter).

To make sure that fund management is valuable, I impose

Assumption 4. The expected gross fund return α satisfies

α > ργσσε

Assumption 4 insures that active fund management is justified – for α below this bound,
even if the fund is free, investors will want to short it. Note that if γ < 0, gross α can
be negative and fund management is still viable, at least before fees, because it provides a
hedging gain.

3.3 Equilibrium and Performance Measurement

This section solves for equilibrium quantities and derives performance measures. First note
that because of the CARA-normal setup, investors equivalently maximize their certainty
equivalent of wealth

EU(W ) = EW − ρ

2
Var(W )

If investors buy xS units of the risky asset and xF units of the fund, the moments of terminal
wealth are given by

W = xS(D − P ) + xF (ε− f)

EW = xS(µ− P ) + xF (α− f)

Var(W ) = x2Sσ
2 + x2Fσ

2
ε + 2xSxFγσσε

Taking the symmetric fund management fee as given, first order conditions and the market
clearing constraint imply

Proposition 15. Given parameters θ = (ρ, σ2, α, σ2
ε , γ) and management fee f , optimal

prices and demand schedules are given by:

µ− P ∗(f) = ρσ2(1− γ2) + (α− f)γ
σ

σε

x∗F (P, f) =
σ(α− f)− γσε(µ− P )

ρσσ2
ε (1− γ2)

=
α− f − ργσσε

ρσ2
ε

x∗S(P, f) =
µ− P
ρσ2

− γσε
σ
xF = 1

The obvious thing to note here is that the risky asset price is a function of fund per-
formance moments and fees—fund manager skill and behavior affect aggregate asset price
and hence the pricing kernel. In the existing literature on fund manager performance, the
pricing kernel is assumed to be exogenous.
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Now consider a given (atomistic) fund manager’s problem: he will be matched with a
single investor. Let f̄ be the fee charged by other managers, which determines the aggregate
asset price (µ−P ∗(f̄)). The fee the individual manager charges, f , will directly effect investor
demand for the fund. Taking f̄ as given, the manager’s profit (π) maximization problem is

max
f

π(f ; f̄) = fx∗F (P ∗(f̄), f)

= f
σ(α− f)− γσε(µ− P ∗(f̄))

ρσσ2
ε (1− γ2)

Solving for the fixed point f ∗ = f̄ gives us the equilibrium fee:

Proposition 16. The symmetric management fee charged by all managers is

f ∗(θ) =
(1− γ2)(α− ργσσε)

2− γ2
Now that endogenous quantities are determined, what do measures of fund manager

performance look like? Because of the CARA-normal setting, it is most natural to measure
things on a per-share basis. Let S = D − P and F = ε − f be the realized returns to one
share of direct and indirect investment, respectively. The risk-adjusted excess return on the
fund α̂ can then be defined as

α̂ = EF − βF,SES
where βF,S regresses fund return on the market (direct/passive investment). Then, using the
equilibrium quantities,

Proposition 17. Ex-ante (expected) fund performance, net of fees, is given by

βF,S = γ
σε
σ

α̂ =
(1− γ2)(α− ργσσε)

2− γ2
Figure 3.1 shows the equilibrium quantities. The optimal fee is non-monotonic in γ – as γ

decreases from 1, the fund becomes more valuable as hedging tool, and managers can charge
higher fees. Eventually, the pricing effect, which they do not account for in their individual
fee, reduces the fee they can charge to 0. The symmetric equilibrium α̂ is 0 when the fund is
perfectly correlated—positively or negatively—with the risky asset payoff. The risky asset
price adjusts to offset any excess return added by the managers (they do not internalize this
effect), neutralizing the value they are adding.

The performance measure α̂ is always positive under Assumption 4. This suggests that
the negative performance puzzle in the literature is more difficult to explain when endogenous
effects on the asset price are accounted for. For example, Glode (2011) uses an exogenous
pricing kernel to show that if fund managers use a technology that pays off in bad states
of the world—which corresponds to a negative correlation γ here—measured performance α̂
can be negative. When the effect on the underlying risky asset (the market) is accounted
for, this does not seem to be the case.
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Figure 3.1: Clockwise from top left: the equilibrium fund position x∗F ; fee f ∗; performance
measure α̂; risk premium µ− P . Parameters: ρ = 2, σ = 1, α = 0.2, σε = 0.1

3.4 Active management does not necessarily add

value

The previous section showed that under Assumption 4, which requires that fund managers are
offering a desirable product, performance measures are weakly positive. I.e. after adjusting
for market risk and fees, investors still earn a positive excess return. This would seem to
imply that managers are adding value to the economy, but that is not necessarily the case if
we consider the counter-factual: would investors be better off if fund management did not
exist?

To address this, let V0 be the ex-ante utility of investors in the absence of fund man-
agement, when they invest exclusively in the risky and risk-free assets. Let VI and VM be
the ex-ante utilities of investors and managers in the presence of fund management, so that
VS = VI + VM is total welfare. Let ∆VI = VI − V0 and ∆VS = VS − V0 be the changes in
investor and social welfare associated with fund management. These values are given by

Proposition 18. Ex-ante utility V0 and the incremental gains from active management are
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given by

V0 =
ρσ2

2

VM =
(1− γ2)(α− ργσσε)2

ρσ2
ε (2− γ2)2

∆VI =
(α− ργσσε)(α + ργσσε[3− 2γ2])

2ρσ2
ε (2− γ2)2

Note that under Assumption 4, VM > 0, so fund managers always earn profits. However,
it is not always the case that fund management improves total welfare or make investors
better off:

Proposition 19. For γ > 0, investor and total welfare are always enhanced by the presence
of fund management as long as Assumption 4 holds. For γ < 0, there exist thresholds αI
and αS with

αI > αS > ργσσε

such that

• ∆VI < 0 and ∆VS < 0 for α < αS.

• ∆VI < 0 and ∆VS > 0 for α ∈ (αS, αI).

• ∆VI > 0 and ∆VS > 0 for α > αI .

When Assumption 4 holds, fund management adds value as long as γ > 0. When
γ < 0, the fund is attractive on an individual/atomistic level, but equilibrium effects on the
underlying asset price and fees are welfare reducing for α < αS: managers earn profits, but
these profits do not offset the loss in investor welfare relative to the benchmark case V0. If
there were no pricing effects—if we took the underlying risky asset price as exogenous and
introduced fund management—welfare would be improved.

Once α > αS, investors are still worse off, but manager profits exceed these losses,
increasing social welfare. Finally, when α > αI , fund management adds significant excess
returns, improving both investor and social welfare.

These regions are shown in Figure 3.2. Note that for α < αI (regions B and C), the
performance measure α̂ is still always positive, so it looks like investors are benefitting from
fund management. In effect, using this type of performance measure is misleading because
the benchmark itself—the risky asset price—is endogenously affected by the presence of fund
management. These measures still accurately reflect manager “skill”, but they do not imply
that the presence of such skill is a good thing.
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Figure 3.2: This graph shows welfare outcomes for different values of (normalized) α as a
function of γ. For α < α0 (region A), Assumption 4 is violated and fund management is not
viable. In region B, α < αS so fund management is viable but welfare reducing. In region
C, α ∈ (αS, αI) fund management increases total welfare but investor welfare is reduced. In
region D investor welfare is also improved.

3.5 Robustness

This section considers two variation of the model—a monopolist fund manager and decreas-
ing returns to scale in generating fund returns—and shows that the qualitative results of
the paper are unchanged. Measured fund performance is generally positive and does not
necessarily indicate that fund management is welfare improving.

Monopolist fund management

The main results of the paper assumed assumed a continuum of fund managers set fees
symmetrically. Supposed instead that there is a large, monopolist fund manager. She will
set a fee f , and this will effect the aggregate asset price. Relative to the continuum of
managers, the monopolist will internalize her effect on prices in setting a fee.
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Figure 3.3: Left: the equilibrium risk premium µ − P ; Right: equilibrium manager profit.
Solid lines are the symmetric case, dashed are the monopolist case. Parameters: ρ = 2, σ =
1, α = 0.2, σε = 0.1

Conditional on a given fee, the equilibrium demands and prices in Proposition 15 are
unchanged. The monopolist’s profit maximization problem is then

max
f

π(f) = fx∗F (P ∗(f), f)

= f
σ(α− f)− γσε(µ− P ∗(f))

ρσσ2
ε (1− γ2)

and the corresponding fee and performance measures are

Proposition 20. The equilibrium fee and performance measure under monopolist fund man-
agement are

f ∗(θ) =
α− ργσσε

2

α̂ =
(1− γ2)(α− ργσσε)

2

The performance measure is still positive for γ ∈ (−1, 1). There is a difference in the
monopolist fee, as shown in Figure 3.3: because the fund manager internalizes her effect on
prices, she is still able to extract rents when the fund is perfectly correlated (positively or
negatively) with the underlying risky asset. This was not possible when she was one of a
small continuum of managers, where demand for the fund and the risky asset drive down
the risky asset premium.

Modeling the fund manager as a monopolist also does not change the main welfare and
measurement conclusions:

Proposition 21. With a monopolist fund manager, for γ > 0, investor and total welfare
are always enhanced by the presence of fund management as long as Assumption 4 holds.
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For γ < 0, there exist thresholds αmI and αmS with

αmI > αmS > ργσσε

such that

• ∆VI < 0 and ∆VS < 0 for α < αmS .

• ∆VI < 0 and ∆VS > 0 for α ∈ (αmS , α
m
I ).

• ∆VI > 0 and ∆VS > 0 for α > αmI .

As shown in Figure 3.4, while the boundaries that determine whether fund management
is welfare improving shift relative to the symmetric case, the qualitative result remains:
performance measures can be positive even though mutual funds reduce welfare.

Decreasing returns to scale

Many existing mutual fund models, including Berk and Green (2004), Glode (2011), and
Pastor and Stambaugh (2010), posit that fund performance decreases in the size of a fund.
This assumption is partially motivated by intuition, but it is also produces interior solutions
to their models—without imposing it, fund demand would increase without bound.

Decreasing returns to scale were not necessary in deriving the results thus far because
fund performance is risky and an investor’s demand is limited by his budget constraint—in
addition to the fund, investors still need to hold the underlying risky asset in the economy.
Nonetheless, imposing this assumption does not change the prior results.

To incorporate decreasing returns to scale as in the existing literature, suppose that
managers incur a cost cx2F/2 in delivering xF shares of their fund to investors. This will
effect the optimal fee they decide to charge, but not the demand and price of Proposition
15, which takes the fee as given. A given manager’s maximization problem, taking the
equilibrium fee f̄ of other managers as given, is

max
f

π(f ; f̄) = fx∗F (P ∗(f̄), f)− cx∗F (P ∗(f̄), f)2/2

The equilibrium fee and corresponding mutual fund performance measure are given by

Proposition 22. When returns to scale are decreasing, the symmetric management fee
charged by all managers is

f ∗(θ) =
(α− ργσσε)(c+ ρσ2

ε (1− γ2))
c+ ρσ2

ε (2− γ2)

α̂ =
ρσ2

ε (1− γ2)(α− ργσσε)
c+ ρσ2

ε (2− γ2)
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Figure 3.4: This graph shows welfare outcomes for different values of (normalized) α as a
function of γ when the fund manager is a monopolist. It corresponds to Figure 3.2 in the
symmetric fee case. For α < α0 (region A), Assumption 4 is violated and fund management
is not viable. In region B, α < αmS so fund management is viable but welfare reducing.
In region C, α ∈ (αmS , α

m
I ) fund management increases total welfare but investor welfare is

reduced. In region D investor welfare is also improved.

It is straightforward to show that the equilibrium fee is increasing in the cost parameter
c, while measured performance is decreasing in this parameter. Managers charge higher fees
to reduce demand for the fund and hence costs, and this increase in fees reduces the net
return on mutual fund investment. However, measured performance is still always positive
when fund management is viable (when investors do not want to short the fund).

As with the case of a monopolist manager, decreasing returns to scale shift things quan-
titatively but not qualitatively:

Proposition 23. When fund performance exhibits decreasing returns to scale, there exist
thresholds αcI and αcS with

αcI > αcS > ργσσε

such that the welfare results are analogous to Proposition 19. Both thresholds are increasing
in cost parameter c.
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Because the main results of Proposition 19 correspond to the case where c = 0, costs
simply have the effect of increasing the hurdle for fund management to be a benefit to
investors and the economy as a whole, while they leave the relative relation of these hurdles
unchanged.

3.6 Conclusion

Because delegated investment makes up a large portion of invested wealth, it potentially
affects the underlying assets in an economy. Using a simple model of two aggregate assets—
an underlying risky asset and a mutual fund technology—I show one potential channel for
this effect: the fees and payoff characteristics of the mutual fund sector can change investor
demand for the underlying risky asset.

By shifting the risky asset’s price, the presence of mutual funds is not generically a good
thing, and I show that standard mutual fund performance measures won’t necessarily reflect
this. Risk adjusted fund returns capture manager skill, but not whether mutual funds add
value. This also suggests that negative observed fund performance, which French (2008) cites
as a reason to eschew active management, may not be indicative of the true value added
for the same reason: we don’t observe the counterfactual. It’s likely that other measures of
value added, such as the one proposed by Berk and van Binsbergen (2011), will suffer from
the same problem.

The fact that the characteristics of the mutual fund sector alter the underlying risky
asset price, and hence the pricing kernel, also suggests that explanations of fund performance
puzzles should account for equilibrium effects to be convincing.
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Appendix A

Chapter 1 Proofs

Proof of Proposition 1. For a given bid B, let µ be trader T ’s belief about whether the asset
value is high. His certainty equivalent u(µ) from abstaining (q = 0) is

E[vt|µ] = vt−1 + (2µ− 1)∆

Var[vt|µ] = 4µ(1− µ)∆2 + σ2
ε

=⇒ u(µ) = vt−1 + (2µ− 1)∆− γ

2
[4µ(1− µ)∆2 + σ2

ε ]

First note that any equilibrium has to involve trade in the high value state ηt = ∆: T
is willing to trade regardless of his beliefs if M ’s bid exceeds u(1), so M can profitably
deviate from any no-trade outcome by posting this bid. Any outcome involving trade is
either separating, pooling, or partially revealing (mixed).

1. Separating Equilibrium S0: Separation requires that M credibly reveal her informa-
tion, which is only possible for bidsBH > vt−1−∆ at which trade occurs because the low
type always loses money on such a bid. Hence beliefs for high bids are µ([u(1),∆]) = 1
and M will extract maximum gains for these beliefs: B∗H = u(1). These beliefs also
need to hold for out-of-equilibrium bids in (−∆, u(1))—otherwise high types have a
profitable deviation by bidding on this interval, while low types do not, implying any
such beliefs are inconsistent. Trade can not occur for any bid BL < −∆, as high types
will then have a profitable deviation posting BL instead of B∗H , so we can arbitrar-
ily specify a no-trade bid B∗L < u(0) for which beliefs are separating. Summarizing
equilibrium bids, beliefs and trading strategies:

B∗(ηt) =

{
u(1), ηt = ∆

< u(0), ηt = −∆
µ∗(B) =

{
1,∀B ≥ u(0)

0, otherwise
q∗(B) =

{
−1, B ≥ u(1)

0, otherwise

For some parameterizations, there are alternative out-of-equilibrium beliefs that sup-
port the same outcome, but the above hold generically and satisfy the “intuitive cri-
terion” of Cho and Kreps (1987). Finally, this separating equilibrium is only feasible
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if u(1) > vt−1 −∆, as otherwise the low type can also profitably post this bid, imply-
ing these beliefs are inconsistent with separating beliefs. This implies the parameter
restriction γ < γS, where

γS ≡
4∆

σ2
ε

2. Pooling Equilibrium P0: In a pooling equilibrium, bids are uninformative, so T ’s
beliefs are µ = 1

2
for equilibrium bids. M will extract the maximum possible gains by

bidding u(1
2
) in either state:

B∗(ηt) = u(
1

2
) µ∗(B) =

{
1,∀B > vt−1 −∆
1
2
, otherwise

q∗(B) =


−1, B ≥ u(1)

−1, B ∈ [u(1
2
), vt−1 −∆]

0, otherwise

Again, off-equilibrium beliefs are consistent with the intuitive criterion, and their exist
inconsequential modifications to beliefs supporting the same outcome. For this equi-
librium to be viable, the high type needs to be willing to post the pooling bid in both
states, which is only possible if u(1

2
) ≤ vt−1 −∆ i.e.

γ ≥ γP ≡
2∆

∆2 + σ2
ε

3. By inspection, γS > γP .

4. Any mixed strategy equilibrium entails M signaling—posting a high bid when asset
value is high—some, but not all, of the time. That implies that beliefs for any low bid
BL ≤ vt−1 −∆ will assign positive probability to the asset being the high type. Trade
can not occur at any such bid, because the high type would always prefer to trade at
BL. But if low bids do not involve trade, the high type will strictly prefer to signal via
a high bid BH ≥ u(1) to capture some gains, implying a separating equilibrium.

Proof of Corollary 1. Note that the lower bound minµ u(µ) provides the lowest possible bid
price at which trade could occur under any belief. For example, when γ > 2/∆, u(0) > u(1

2
),

and vice versa. When γ < γP , the pooling bid u(1
2
) > vt−1 −∆, so low bids BL ≤ vt−1 −∆

will not result in trade, and the only feasible outcome with trade is separating, which high
types will choose. When γ ≥ γP , pooling bids are viable and will be chosen by both types.
This is consistent with the beliefs because the pooling bid u(1

2
) ∈ [minµ u(µ), vt−1 −∆].

Proof of Proposition 2. The market maker’s outside option is the static separating equilib-
rium S0 for γ < γS—for γ ≥ γS, pooling is the only outcome and cannot be improved upon.
Trade in a full-trade separating equilibrium occurs at both low and high bids, BL ≤ vt−1−∆



APPENDIX A. CHAPTER 1 PROOFS 55

and BH > vt−1−∆, and can only be maintained if M will not deviate by bidding BL when as-
set value is high. Let sL and sH be the spreads she earns on each bid; so, BL = vt−1−∆−sL.
Her incentive compatibility constraint is then

(1− β)sH +
β

2
(sL + sH) ≥ (1− β)(2∆ + sL) + β

γ

4
σ2
ε

where the last term is the discounted ex-ante gains extracted for her outside option, providing
a lower bound on the high spread

sH ≥
sL(2− 3β) + 4(1− β)∆ + β γ

2
σ2
ε

(2− β)

For trade to occur, bids need to satisfy the trader’s participation constraints BL ≥ u(0) and
BH ≥ u(1), hence both spreads sL and sH must be less than γ

2
σ2
ε implying

sL(2− 3β) ≤ (1− β)(γσ2
ε − 4∆)

There are two cases to consider:

1. β ≤ 2
3

: In this case,

sL ≤
(1− β)(γσ2

ε − 4∆)

(2− 3β)

but this spread has to be weakly positive, otherwise M is no better off than equilibrium
S0, implying

γ ≥ 4∆

σ2
ε

= γS

for which S0 is not a credible outside option, and hence no separating improvement is
possible.

2. β > 2
3

: In this case

sL ≥
(1− β)(γσ2

ε − 4∆)

(2− 3β)

which needs to be lower than the maximum spread γ
2
σ2
ε . This is only possible if γ ≥ γ∞S ,

where

γ∞S =
8(1− β)∆

βσ2
ε

and for any beliefs supporting separation, M maximizes profit via s∗L = γ
2
σ2
ε . The

comparative statics of this threshold follow immediately.
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Hence for β > 2
3
, the prices, beliefs and demands supporting the full trade separating equi-

librium S∞ are

B∗(ηt;h
t−1) =

{
u(1), ηt = ∆

u(0), ηt = −∆
µ∗(B, ht−1) =

{
1,∀B > vt−1 −∆

0, otherwise

q∗(B) =


−1, B ≥ u(1)

−1, B ∈ [u(0), vt−1 −∆]

0, otherwise

for any history ht−1 which entails exclusive play of the above bidding strategy by M , and
reversion to the static equilibrium S0 following any period in which M deviates by bidding
low when asset value is high.

Proof of Proposition 3. A pooling equilibrium of the repeated game that increases trade is
only possible for γ < γP . Above that value, the static pooling equilibrium achieves the same
gains. For such γ, S0 is M ’s outside option following any deviation. M will maintain the
pooling bid, even at a loss in the low state, if future gains are high enough. For a pooling
bid B = vt−1− s, where s < ∆ is the spread charged, M is tempted to abstain from posting
this bid in the low state, requiring that

(1− β)(s−∆) + βs ≥ (1− β) · 0 + β
γ

4
σ2
ε

so that the spread must satisfy

s ≥ (1− β)∆ + β
γ

4
σ2
ε

Trade in any pooling equilibrium requires a bid B ≥ u(1
2
), placing an upper bound on the

spread:

(1− β)∆ + β
γ

4
σ2
ε ≤

γ

2
(∆2 + σ2

ε )

This condition is only satisfied if γ ≥ γ∞P , where

γ∞P =
4(1− β)∆

2∆2 + (2− β)σ2
ε

It is easy to show γ∞P ≤ γP . A full specification of the actions and beliefs supporting this
equilibrium (P∞) is given by

B∗(ηt;h
t−1) = u(

1

2
) µ∗(B, ht−1) =

1

2
q∗(B) =

{
−1, B ≥ u(1

2
)

0, otherwise

for any history ht−1 which entails exclusive play of the above bidding strategy by M , and
reversion to the static equilibrium S0 following any period in which M deviates by bidding
low when asset value is high. The specified beliefs do not necessarily survive refinements,
but any more nuanced specification results in the same outcome.
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Proof of Lemma 3. The fact that γ∞S > γ∞P for all parameterizations follows from inspection
of their definitions in Propositions 2 and 3. Comparing γ∞S to the static pooling threshold
γP defined in Proposition 1 produces the lower bound β:

β =
4(∆2 + σ2

ε )

4∆2 + 5σ2
ε

Proof of Proposition 18. First consider the consumer surplus: in any pooling equilibrium, T
receives u(1

2
) for the asset, which is equal to his autarky certainty equivalent, so the consumer

surplus is zero. For either of the separating equilibria, T ’s ex-ante gain over autarky (u(1/2))
is

E[u(µ(B))]− γ

2
Var(u(µ(B))) + L(∆2)− u(1/2) = L(∆2)

In the pooling equilibrium, full gains are extracted by M for a surplus of γ
2
(∆2 + σ2

ε ). In
the full-trade separating equilibrium S∞, M extracts the residual risk sharing gains γ

2
σ2
ε in

both states of the world, while in the partial trade separating equilibrium S0, residual risk
sharing gains of γ

2
σ2
ε are lost in the low-state, which occurs half of the time, reducing ex-ante

gains accordingly.

Proof of Proposition 5. Negative endowment shocks yt = −1, which are equally likely, lead
to purchases at ask prices symmetric to the bids in the previous propositions, implying price
processes for the various equilibria. Letting Σ denote the variance of price changes for each
of them:

1. Pooling equilibria P0,P∞: Prices are given by

Pt = vt−1 − yt
γ

2
(∆2 + σ2

ε )

implying price differences

Pt − Pt−1 = ηt−1 + εt−1 − (yt − yt−1)
γ

2
(∆2 + σ2

ε )

All of the innovations are independent of each other, implying

ΣP = (∆2 + σ2
ε )

[
1 +

γ2

2
(∆2 + σ2

ε )

]
2. Full-trade separating equilibrium S∞: Similarly, again using the independence of inno-

vations, prices and changes are given by

Pt = vt−1 + ηt − yt
γ

2
σ2
ε

Pt − Pt−1 = ηt−1 + εt−1 + (ηt − ηt−1)− (yt − yt−1)
γ

2
σ2
ε

ΣS∞ = ∆2 + σ2
ε +

γ2

2
σ4
ε
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3. Partial-trade separating equilibrium S0: For this equilibrium, trade does not occur
in some states of the world, so there are periods where prices are not observed. Let
{τn}∞n=1 denote the sequence of realized trade times. Prices are then given by:

Pτn = vτn−1 + ητn − yτn
γ

2
σ2
ε

with differences

Pτn − Pτn−1 = vτn−1 − vτn−1−1 + (ητn − ητn−1)− (yτn − yτn−1)
γ

2
σ2
ε

=
τn−1∑
s=τn−1

(ηs + εs) + (ητn − ητn−1)− (yτn − yτn−1)
γ

2
σ2
ε

These differences still have mean zero, so the variance is given by

ΣS0 = E

{
τn−1∑
s=τn−1

(ηs + εs)

}2

+ 2E
{

(ητn − ητn−1)− (yτn − yτn−1)
γ

2
σ2
ε

} τn−1∑
s=τn−1

(ηs + εs)

+ E
{

(ητn − ητn−1)− (yτn − yτn−1)
γ

2
σ2
ε

}2

It’s easiest to calculate these terms separately. Conditional on being in a trade state
at time t, which occurs when (ηt, yt) ∈ {(∆, 1), (−∆,−1)}, let T be the stopping time
at which the next trade occurs. Trade occurs with probability 1/2 independent of the
current state, so ET = 2 (this is a trivially stationary, irreducible, finite-state Markov
chain). Then

E

{
τn−1∑
s=τn−1

(ηs + εs)

}2

= E
∞∑
j=1

1T =jE

{
τn−1+j∑
s=τn−1

(ηs + εs)

}2

= E
∞∑
j=1

1T =j

τn−1+j∑
s=τn−1

E(ηs + εs)
2

= E
∞∑
j=1

1T =j

τn−1+j∑
s=τn−1

(∆2 + σ2
ε )

= (∆2 + σ2
ε )E

∞∑
j=1

j · 1T =j

= (∆2 + σ2
ε )ET

= 2(∆2 + σ2
ε )
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The second term is

2E
{

(ητn − ητn−1)− (yτn − yτn−1)
γ

2
σ2
ε

} τn−1∑
s=τn−1

(ηs + εs) = 2E
(
−η2τn−1

+ ητn−1yτn−1

γ

2
σ2
ε

)
= 2(−∆2 + ∆

γ

2
σ2
ε )

= ∆γσ2
ε − 2∆2

The third term is

E
{

(ητn − ητn−1)− (yτn − yτn−1)
γ

2
σ2
ε

}2

= E(ητn − ητn−1)
2 − γσ2

εE(ητn − ητn−1)(yτn − yτn−1)

+
γ2

4
σ4
εE(yτn − yτn−1)

2

= 2∆2 − 2∆γσ2
ε +

γ2

2
σ4
ε

=
1

2
(2∆− γσ2

ε )
2

where we’ve used the fact that Eητnyτn = ∆ conditional on trade occurring. Combining
these three terms:

ΣS0 = 2(∆2 + σ2
ε ) + ∆γσ2

ε − 2∆2 +
1

2
(2∆− γσ2

ε )
2

= 2(∆2 + σ2
ε ) +

γ2

2
σ4
ε −∆γσ2

ε

A similar calculation of the first-order auto-covariance φ1 produces:

P : φ1 = −γ
2

4
(∆2 + σ2

ε )
2

S∞ : φ1 = −γ
2

4
σ4
ε

S0 : φ1 =
γ

2
∆σ2

ε −
γ2

4
σ4
ε

of each price series identifies the permanent component as Σ + 2φ1 and the transitory com-
ponent as λ = −2φ1.

Proof of Proposition 6. Consider the bid-side—this is without loss of generality—and a price-
quantity offer (B,Q), where Q is the quantity M is willing to buy at price B per unit (the
total transfer ). This is equivalent to a bid-schedule B(q), where B(q) is an unacceptably
low bid for q 6= Q.1 For a given price-schedule B(q), let µ be T ’s belief that the asset value
is high. His certainty equivalent by selling q units u(µ, q) is

u(µ, q) = (1− q)[vt−1 + (2µ− 1)∆] + qB(q)− γ

2
(1− q)2[4µ(1− µ)∆2 + σ2

ε ]

1I’m abusing notation here a bit by using q > 0 to indicate the quantity sold; elsewhere, I’ve used q < 0.
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and his certainty equivalent from abstaining is then u(µ, 0). Note, as in the main case,
autarky is not an equilibrium: M can always offer the bid-quantity pair (B,Q) = (u(1, 1), 1)
and T will accept regardless of his beliefs.

1. Pooling Equilibrium P0: As in the binary (q ∈ {0, 1}) case, risk sharing gains are
maximized at q = 1, and M can extract all of these gains by offering u(1

2
, 1) under

the pooling belief µ = 1
2
, and a full specification of actions and beliefs supporting this

outcome is

(B∗, Q∗) =

(
u(

1

2
, 1), 1

)
µ∗(B,Q) =

{
1,∀(B,Q) : B > vt−1 −∆
1
2
, otherwise

q∗(B,Q) =


Q,∀(B,Q) : B ≥ vt−1 + ∆− (2−Q)γ

2
σ2
ε

Q,∀(B,Q) : B ∈ [vt−1 −∆− (2−Q)γ
2
(∆2 + σ2

ε ), vt−1 −∆]

0, otherwise

where the off-equilibrium beliefs and actions satisfy the intuitive criterion. For the full
insurance pooling equilibrium to be viable, the pooling bid needs to be profitable in
both states (u(1

2
, 1) ≤ vt−1 −∆), requiring that γ ≥ γ̂P

γ̂P ≡
2∆

∆2 + σ2
ε

2. Separating Equilibrium S0: The high state mirrors that of Proposition 1. Let
(BH , QH) be the price-quantity pair offered in the high value state. BH > vt−1 − ∆
signals asset value is high, and the market maker extracts all gains in this state when
(B∗H , Q

∗
H) = (u(1, 0), 1). In the low value state, any bid-quantity pair needs to satisfy

two constraints: First, an IR constraint that ensures trader T gets at least his outside
option, u(0, q) ≥ u(0, 0), implying

BL(q) ≥ vt−1 −∆− (2− q)γ
2
σ2
ε (IRq)

Second, an IC constraint ensuring that the high-type market maker is not tempted to
deviate by quoting the low bid-quantity pair. His profit in the high state is π∗H = γ

2
σ2
ε ,

the residual risk sharing gains, so bid-quantity pairs have to satisfy

πH ≥ q(vt−1 −∆−BL(q))

=⇒ BL(q) ≥ vt−1 + ∆− γ

2q
σ2
ε (ICq)

For a given quantity q, M maximizes profits when she bids the minimum amount
satisfying both constraints. In the low state, her profits πL(q) for a given q are therefore

πL(q) = q

(
vt−1 −∆−max

{
vt−1 −∆− (2− q)γ

2
σ2
ε , vt−1 + ∆− γ

2q
σ2
ε

})
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For small q, the IRq constraint binds. It’s straightforward to show that πL(q) is
increasing on q when this is the case, so M increases her offer. Solving for the q that
equalizes the constraints shows that there is a single crossing point at

q∗ = 1−
√

∆2 + ∆γσ2
ε −∆

γ
2
σ2
ε

∈ (0, 1)

after which ICq determines the bid. πL(q) is decreasing as q increases for this case, so
M will optimally bid BL(q∗). Define the set of incentive compatible bids B as

B = {(B,Q) : B ≥ vt−1 + ∆− γ

2Q
σ2
ε}

A full equilibrium specification is given by

(B∗, Q∗)(ηt) =

{
(u(1, 0), 1), ηt = ∆

(vt−1 −∆− (2− q∗)γ
2
σ2
ε , q
∗), ηt = −∆

µ∗(B,Q) =

{
1, ∀(B,Q) : B > vt−1 −∆ ∪ (B,Q) /∈ B
0, ∀(B,Q) : B ≤ vt−1−∆ ∩ (B,Q) ∈ B

q∗(B,Q) =


Q,∀(B,Q) : B ≥ vt−1 + ∆− (2−Q)γ

2
σ2
ε

Q,∀(B,Q) : B ≤ vt−1−∆ ∩ (B,Q) ∈ B
0, otherwise

For some parameterizations, there are more complex out-of-equilibrium belief speci-
fications that support the same outcome—they do not change prices and quantities.
Unlike in the binary case, this separating equilibrium always exists: the low type M
is never tempted to post the high-type bid, even if the bid BH < vt−1 −∆ so that is
profitable.

Proof of Proposition 7. Most of the logic here mirrors Proposition 1, so I omit details on
belief specifications, etc. Let µ be trader T ’s belief about whether the asset value is high.
His certainty equivalents u(µ) and u(µ) from abstaining (q = 0) following positive and
negative endowment shocks, respectively, are

E[vt|µ] = vt−1 + ∆L + p(∆H −∆L)

Var[vt|µ] = µ(1− µ)(∆H −∆L)2 + σ2
ε

=⇒ u(µ) = vt−1 + ∆L + p(∆H −∆L)− γ

2
[µ(1− µ)(∆H −∆L)2 + σ2

ε ]

u(µ) = −[vt−1 + ∆L + p(∆H −∆L)]− γ

2
[µ(1− µ)(∆H −∆L)2 + σ2

ε ]
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1. Separating Equilibrium S0: Separation requires that M credibly reveal her infor-
mation, which is only possible for bids BH > vt−1 + ∆L and asks AL < vt−1 + ∆H .
Because the other types lose money at these quotes, beliefs are µ(u(1),∆H) = 1 for
high bids and µ(u(0),∆H) = 0 for low asks. M will extract maximum gains for these
beliefs: B∗H = u(1), A∗L = −u(0). Trade can not occur in any separating equilibrium
for low bids BL < vt−1 + ∆L or high asks AH > vt−1 + ∆H .

As before, the separating bid quotes are only feasible if u(1) > vt−1 + ∆L. Similarly,
separating ask quotes are only feasible A∗L < vt−1 + ∆H . Each of these constraints
implies the same parameter restriction γ < γS, where

γS ≡
2(∆H −∆L)

σ2
ε

2. Bid-side Pooling Equilibrium P0
B: For M to commit to a pooling bid in either

state, it is necessary that u(p) ≤ vt−1 + ∆L, requiring that γ ≥ γP,B, where

γP,B ≡
2p(∆H −∆L)

σ2
ε + p(1− p)(∆H −∆L)2

3. Ask-side Pooling Equilibrium P0
A: Similarly, on the ask-side, pooling requires

−u(p) ≥ vt−1 + ∆H , implying that γ ≥ γP,A, where

γP,A ≡
2(1− p)(∆H −∆L)

σ2
ε + p(1− p)(∆H −∆L)2

4. When γ exceeds both pooling thresholds, then obviously pooling on both sides of the
market is feasible.

5. Follows from inspection of the thresholds.

6. Follows from inspection of the thresholds.

7. The logic is the same as Proposition 1: any mixed equilibrium implies partially reveal-
ing prices in some states of the world, but for induced under any of those prices, M
will deviate from his mixed strategy.

Proof of Proposition 8. The logic follows Propositions 2-3 and Lemma 2, so many details are
omitted. First consider the separating improvements on the bid-side: the easiest improve-
ment to support gives M all of the residual risk sharing gains on every trade. His tempted
deviation is to bid low when the asset has a high value, which triggers the static separating
outcome, requiring

(1− β)
γ

2
σ2
ε + β

γ

2
σ2
ε ≥ (1− β)(∆H −∆L +

γ

2
σ2
ε ) + β

γ

4
σ2
ε
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implying that γ ≥ γ∞S , where

γ∞S ≡
4(1− β)(∆H −∆L)

βσ2
ε

Note the constraint is identical on the ask-side, as the temptation to deviate is independent
of the high-state probability p, so the separating threshold is the same.

For a pooling bid, let s denote the spread between the trader’s prior expectation and the
bid: B = E[vt|p] − s. In a pooling equilibrium, s is the market maker’s ex-ante expected
per-period profit, but she loses money on this spread in the low-state when γ < γP,B. She is
tempted to deviate by abstaining from trade in this state because she knows the asset value
is low:

(1− β)(vt−1 + ∆L −B) + βs ≥ (1− β) · 0 + β
γ

4
σ2
ε

⇒ s ≥ (1− β)p(∆H −∆L) + β
γ

4
σ2
ε

In order for trade to occur, the bid has to exceed the trader’s certainty equivalent given his
prior: B ≥ u(p), implying that

s ≤ γ

2
[µ(1− µ)(∆H −∆L)2 + σ2

ε ]

which combined with the previous IC constraint requires that γ ≥ γ∞P,B, where

γ∞P,B ≡
4(1− β)p(∆H −∆L)

(2− β)σ2
ε + 2p(1− p)(∆H −∆L)2

The logic on the ask side is symmetric with p→ (1− p), so

γ∞P,A ≡
4(1− β)(1− p)(∆H −∆L)

(2− β)σ2
ε + 2p(1− p)(∆H −∆L)2

That both of these pooling thresholds are lower than γ∞S follows by inspection.
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Appendix B

Chapter 2 Proofs

Proof of Proposition 9. First note that it must be the case that s∗(0) = s∗(1) – trader i can
not credibly signal her trading motive and will always choose the narrowest spread – so m
is choosing a single spread, call it s. Suppose δ < ∆. First note that for any s ∈ (δ,∆), i’s
best response is to trade when informed (q̂(η = 1) = 1) and abstain when liquidity driven
(q̂(η = 0) = 0), implying m’s expected payoff is V m

t = (1 − α)0 + α(s −∆) < 0. If s ≥ ∆,
i’s best response is to abstain from trade in both states (q̂(η = 0) = q̂(η = 1) = 0), implying
an expected payoff of V m

t = 0, which clearly dominates s ∈ (δ,∆). For s ∈ (0, δ), i’s best
response is to alway trade (q̂(η = 0) = q̂(η = 1) = 1), with expected payoffs V m

t = s − α∆
and V i

t = (1− α)δ + α∆− s.
When δ < α∆, any s ∈ (0, δ) leads to a negative expected payoff for m, and is dominated

by the zero-payoff actions s ≥ ∆, result (1). When δ ∈ (α∆,∆), m’s most profitable action
is to set s = δ for an expected payoff profile V m

t = δ−α∆ > 0, V i
t = α(∆− δ) > 0, implying

result (2).
When δ > ∆, any s ∈ (∆, δ) allows m to screen out losses from informed trade while

earning positive profits in the hedging state: V m
t = (1−α)s. Any s > δ leads to no trade, so

m’s profits are maximized at s∗ = δ. Trader i abstains from trade in the information state
(q̂(η = 1) = 0), and trades (indifferently) in the liquidity state (q̂(η = 0) = 1), for a payoff
of V i

t = 0, result (3).

Proof of Proposition 10. We’ll ignore the IR constraint and verify it holds later. Because
the objective function is linear, we are simply looking for the maximum sL and minimum sI
such that the IC constraints are satisfied. Assume both IC constraints bind: this occurs when
∆− sI > sL and sL > δ. Solving the IC’s simultaneously produces the resulting spreads s∗L
and s∗I . Now it remains to verify that there are not better solutions where either constraint
binds (at least one has to bind at any optimum). Suppose only IC1 binds – then m will
choose spreads such that the IR binds, producing s∗L = δ+α(∆−δ) and s∗I = (1−α)(∆−δ).
But checking IC2 shows it is violated, a contradiction. A similar argument shows it can’t be



APPENDIX B. CHAPTER 2 PROOFS 65

the case that only IC2 binds. Value functions are given by:

V 1
i =

α(1− β)(∆− δ)
1 + αβ

V 1
m = (1− α)δ − V 1

i

=
(1− α2β)δ − α(1− β)∆

1 + αβ

To be profitable, it must be the case that

V 1
m ≥ 0 ⇐⇒ δ > δ

which defines the parameter region for which gains from trade can be achieved via repeated
play.

Proof of Proposition 11. Regressing price changes pt − pt−1 on xt and xt−1, using the inde-
pendence of xt and xt−1, produces estimates

(λ̂+ ĉ) =
Cov(pt − pt−1, xt)

Var(xt)

−ĉ =
Cov(pt − pt−1, xt−1)

Var(xt)

The observed price in the reduced form specification pt corresponds to the true model price
Pt, while the order flow indicator xt corresponds to the true model order flow yt. Order flow
yt is a symmetric binary variable, so its variance is 1. The true evolution of prices changes
as a function of the primitive shocks is

Pt − Pt−1 = vt−1 − vt−2 + (∆− s∗I)(ηtyt − ηt−1yt−1) + s∗L[(1− ηt)yt − (1− ηt−1)yt−1]
= (∆− s∗I)ηtyt + s∗L(1− ηt)yt + s∗Iηt−1yt−1 − s∗L(1− ηt−1)yt−1

Because both price changes and yt have a mean of zero, their covariances are equal to their
cross moments. yt and yt−1 are only related to contemporary terms because everything in
the model is i.i.d., so

(λ̂+ ĉ) = E(Pt − Pt−1)yt = (∆− s∗I)Eηty2t + s∗LE(1− ηt)y2t
−ĉ = E(Pt − Pt−1)yt−1 = s∗IEηt−1y2t−1 − s∗LE(1− ηt−1)y2t−1

yt and ηt are both independent binary variables, and it’s straightforward to show that

Eηty2t = α E(1− ηt)y2t = 1− α

so the regression coefficients are

(λ̂+ ĉ) = α(∆− s∗I) + (1− α)s∗L
−ĉ = αs∗I − s∗L(1− α)
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Solving for λ̂ and ĉ produces the estimates in the proposition. For the comparative statics,
substitute in the equilibrium spreads and differentiate:

ĉ = (1− α)s∗L − αs∗I
=
δ(1− α2β)− α∆(1− β)

1 + αβ

∂ĉ

∂α
= −β[1 + α(2 + αβ)]δ + (1− β)∆

1 + αβ
< 0

∂ĉ

∂∆
=
−α(1− β)

1 + αβ
< 0

Proof of Proposition 12. First note that a given (m, i) pairing, m will solve the same problem
as a monopolist, with an adjustment for i’s improved outside option. Letting V 0

i be the
continuation value of a trader entering the matching pool, m’s problem is

max
sL,sI

(1− α)sL−αsI (P ′)

such that:

(1− β)sI + β[αsI + (1− α)(δ − sL)] ≥ (1− β)(∆− sL) + β · V 0
i (IC1)

(1− β)(δ − sL) + β[αsI + (1− α)(δ − sL)] ≥ βV 0
i (IC2)

αsI + (1− α)(δ − sL) ≥ 0 (IR)

As in proposition 10, both IC constraints bind at the optimum, and solving for them taking
V 0
i as exogenous gives

s∗L =
δ + αβ − βV 0

i

1 + αβ
s∗I =

(1− αβ)(∆− δ) + 2βV 0
i

1 + αβ

Let V µ
i be the continuation value of a trader in a relationship where spreads s∗I and s∗L are

being charged on the two types of trades, and cooperation is maintained:

V µ
i = (1− α)(δ − s∗L) + αs∗I

For an unmatched trader at the start of a period, if p is the probability a trader in the pool
is matched with a dealer, his ex-ante utility is

V 0
i = pV µ

i + (1− p)βV 0
i

=⇒ V 0
i =

p

1− (1− p)βV
µ
i
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because with probability (1 − p) he rolls into next period’s matching pool. To derive the
matching probability, note that the probability of a match at the start of the period is

p =
mass of market makers in the pool

mass of traders in the pool

New market makers only enter the pool as a replacement for those that died the previous
period, which have mass (1 − β)µ. Any unmatched traders from the previous period (or
their replacements) add a mass of (1− µ) to this periods pool. Any traders replacing those
from dead relationships in the previous period result in an additional (1−β)µ traders in the
pool, so that

p =
(1− β)µ

1− µ+ (1− β)µ
=

(1− β)µ

1− βµ
Substituting this and V µ

i gives us the value of V 0
i as a function of the spreads,

V 0
i =

p

1− (1− p)βV
µ
i

= µV µ
i

= (1− α)(δ − s∗L) + αs∗I

In any equilibrium, this endogenous outside option needs to be consistent with the optimal
spreads being charged, so plugging V 0

i back into the expressions for s∗I and s∗L produces the
equilibrium spreads as a function of the primitives:

s∗L =
δ + αβ − βµ(δ + α∆)

1 + β[α− (1 + α)µ]
s∗I =

[1− αβ − βµ(1− α)](∆− δ)
1 + β[α− (1 + α)µ]

Note that these match the monopolist case when µ = 0, as expected.

Proof of Proposition 13. All that’s changed in this case are the spreads, as a function of the
outside option due to market maker concentration µ, so transaction cost estimate ĉ becomes

ĉ = (1− α)s∗L − αs∗I
=
δ[1− βµ− α2β(1− µ)]− (1− β)α∆

1 + β[α− (1 + α)µ]

and the comparative statics of ĉ w.r.t. α,∆, and µ are

∂ĉ

∂α
= −βδ(1− µ)[1 + α(2 + αβ)− (1 + α)2βµ] + (1− β)(1− βµ)∆

{1 + β[α− (1 + α)µ]}2 < 0

∂ĉ

∂∆
= − (1− β)α

1 + β[α− (1 + α)µ]
< 0

∂ĉ

∂µ
= −α(1 + α)β(1− β)(∆− δ)

{1 + β[α− (1 + α)µ]}2 < 0

where the first two reduce to the monopolist case when µ = 0.
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Proof of Proposition 14. To solve this, note that in order for the market to be viable, market
makers m need to be weakly profitable. Their ex-ante utility entering the game, assuming
µ < 1, is

Vm = (1− α)s∗L − αs∗I
=
δ[1− βµ− α2β(1− µ)]− (1− β)α∆

1 + β[α− (1 + α)µ]

Note this is equivalent to the average transaction cost they are able to extract. Solving
Vm ≥ 0 for µ produces the upper bound

µ =
δ(1− α2β)− (1− β)α∆

βδ(1− α2)

It’s straight forward to check that µ ∈ (0, 1) if and only if δ ∈ (δ, α∆) as defined in Propo-
sition 10: markets at at least have to support a monopolist dealer. The comparative static
w.r.t α is

∂µ

∂α
=

(1− β)(2αδ − (1 + α2)∆)

(1− α2)2βδ

which is negative if 2αδ− (1 +α2)∆ < 0, and this is the case for all δ < α∆ (assumption 3).
The other comparative static is

∂µ

∂∆
= − α(1− β)

(1− α2)βδ
< 0
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Appendix C

Chapter 3 Proofs

Proof of Proposition 15. The first order conditions of the investor’s expected utility are:

∂EU(W )

∂xS
: 0 = (µ− P )− ρσ2xS − xFργσσε

∂EU(W )

∂xF
: 0 = (α− f)− ρσ2

εxF − xSργσσε

Solving for xS and xF gives the demands as a function of the premium µ−P . µ−P follows by
imposing market clearing: xS = 1. Substituting this premium into xF gives the equilibrium
demand as a function of the primitives θ and the managment fee f .

Proof of Proposition 16. Taking the symmetric fee f̄ charged by other managers as given,
and substituting the equilibrium risk premium µ−P as a function of that fee, the manager’s
FOC w.r.t. her individual fee f is

∂π(f ; f̄)

∂f
: 0 =

α(1− γ2)− 2f + γ[γf̄ − ρσσε(1− γ2)]
ρσ2

ε (1− γ2)

In any symmetric equilibrium, it must be the case that the best response f = f̄ . Makign
that substitution and solving for f produces the symmetric equilibrium fee f ∗.

Proof of Proposition 17. To calculate βF,S, we first need the covariance between fund and
stock returns:

Cov(F, S) = Cov(ε− f,D − P )

= Cov(ε,D)

= γσσε
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The variance of S is σ2, so βF,S = Cov(F,S)
σ2 = γ σε

σ
. The performance measure α̂ is then

α̂ = EF − βF,SES
= α− f ∗ − γσε

σ
(µ− P (f ∗))

= α− (1− γ2)(α− ργσσε)
2− γ2 − γσε

σ

[
ρσ2(1− γ2) + (α− f)γ

σ

σε

]
=

(1− γ2)(α− ργσσε)
2− γ2

Proof of Proposition 18. For V0, note that in a world without the mutual fund, investors
simply choose xS to maximize

EU(W ) = EW − ρ

2
Var(W )

= xS(µ− P )− ρ

2
x2Sσ

2

and the first order condition implies the standard risk-return tradeoff

x∗S =
µ− P
ρσ2

Market clearing requires x∗S = 1, which implies the equilibrium risk premium is µ−P = ρσ2.
Substituting these back into the objective produces EU(W ) = ρσ2/2, which is V0.

Once the fund is introduced, the manager’s value is the fee multiplied by the portfolio
choice:

VM = f ∗ · x∗F
so substituting in the equilibrium values from Propositions 15 and 16 and simplifying pro-
duces VM .

Similarly, substituting the equilibrium values of x∗S, x
∗
F , µ− P and f ∗ into the investor’s

utility

EU(W ) = xS(µ− P ) + xF (α− f)− ρ

2

[
x2Sσ

2 + x2Fσ
2
ε + 2xSxFγσσε

]
produces the investors ex-ante certainty equivalent VI . Subtracting V0 from VI gives the
change in investor utility due to the presence of mutual funds.

Proof of Proposition 19. First consider the change in investor welfare ∆VI . The denominator
is positive, and the first term in the numerator is always positive under Assumption 4, so

∆VI > 0 ⇐⇒ α + ργσσε[3− 2γ2] > 0

⇐⇒ α > −(3− 2γ2)ργσσε
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When γ > 0, Assumption 4 insures that this constraint is met. When γ < 0, this constraint
binds, so it defines the threshold

αI ≡ −(3− 2γ2)ργσσε

that applies for γ < 0. First note that the change in total welfare in the economy ∆VS is

∆VS = VM + ∆VI

=
(α− ργσσε)(α[3− 2γ2] + ργσσε)

2ρσ2
ε (2− γ2)2

The denominator and first numerator term are again positive, so

∆VS > 0 ⇐⇒ α[3− 2γ2] + ργσσε > 0

⇐⇒ α > − ργσσε
(3− 2γ2)

which again is satisfied for γ > 0, but when γ < 0 it binds, defining the threshold

αS ≡ −(3− 2γ2)ργσσε

It’s straightforward to show αI > αS.

Proof of Proposition 20. The monopolist’s fee f directly affects the premium µ − P (f), so
she internalizes its effect, and substituting in this premium gives

max
f

π(f) = fx∗F (P ∗(f), f)

= f
σ(α− f)− γσε(µ− P ∗(f))

ρσσ2
ε (1− γ2)

= f
α− f − ργσσε

ρσ2
ε

Solving the first order condition w.r.t. f produces the optimal monopolist fee. Investor
demand for the fund and the risky asset premium change under a monopolist, they are
obtained by substituting the optimal fee into the equilibrium values of Proposition 15. The
performance measure is still

α̂ = EF − βF,SES
= α− f ∗ − βF,S(µ− P (f ∗))

The value of βF,S is unchanged from Proposition 17. Using the update values of the fee f ∗

and premium µ− P (f ∗) produces the performance measure for the monopolist case.
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Proof of Proposition 21. The proof here is identical to Proposition 19, except the monopolist
fee is used to determine ex-ante utility and the corresponding boundaries. I omit the details
and just provide the quantities.

VM =
(α− ργσσε)2

4ρσ2
ε

∆VI =
(α− ργσσε)(α + 3ργσσε)

8ρσ2
ε

∆VS =
(α− ργσσε)(3α + ργσσε)

8ρσ2
ε

αI ≡ −3γρσσε

αS ≡ −
1

3
γρσσε

Proof of Proposition 22. As in Proposition 16, the equilibrium fee is obtained by taking the
fee of other managers, f̄ , as given and maximizing profits

max
f

π(f ; f̄) = fx∗F (P ∗(f̄), f)− cx∗F (P ∗(f̄), f)2/2

with respect to f . I omit the algebraic details, but as in Proposition 16, the first order
condition for the above problem is set to 0, and the equilibrium condition f = f̄ is imposed
to solve for the symmetric fee f ∗. The fund performance measure α̂ is derived as before,
with modifications to the risk premium µ − P (f ∗) and fund demand x∗F to account for the
effects of costs on the fee.

Proof of Proposition 23. The algebra with decreasing returns to scale is more complicated,
but ex-ante utilities and boundaries are computed as in Propositions 19 and 21. The resulting
values are

VM =
(α− ργσσε)2[c+ 2ρσ2

ε (1− γ2)]
2[c+ ρσ2

ε (2− γ2)]2

∆VI =
ρσε(α− ργσσε)

2[c+ ρσ2
ε (2− γ2)]2

[2cγσ + ασε + ργσσ2
ε (3− 2γ2)]

∆VS = VM + ∆VI

αI ≡ −γ
[

2cσ

σε
+ ρσσε(3− 2γ2)

]
αS ≡ −γ

ρσσε(c+ ρσ2
ε )

c+ ρσ2
ε (3− 2γ2)

In terms of comparative statics, recall that these thresholds apply for γ < 0. αI is obviously
increasing in c, and it is straightforward to show that αS is as well.
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