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Abstract: We study games played between groups of players, where a given group decides 
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players, our games can also be interpreted as network-formation games.  In experiments on Stag 
Hunt games, we find a stark contrast between how groups and individuals play, with payoffs 
playing a primary role in equilibrium selection when individuals play, but the structure of the 
voting rule playing the primary role when groups play.   

We develop a new solution concept, robust-belief equilibrium, which explains the data 
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1. Introduction 
 

The decisions made by many social and economic organizations or groups involve some 

sort of consent.  While classical models in economics treat firms as if they were individual 

decision makers, a firm generally comprises many agents who each have some input into the 

actions of the firm.  In most organizations, some committee of members oversees the decisions 

of the organization and votes on critical decisions.  There is typically some specified method of 

aggregating the agents’ preferences into a group decision, and the nature of this method can have 

important consequences for the organization’s behavior. 

While there is considerable research about how groups behave and how their behavior 

differs from that of individuals, there is much less research about how groups interact with each 

other, and in particular, how games are played when the ‘players’ are groups, rather than 

individuals.   This is of obvious importance, since the strategic interaction between competing 

firms is not between unitary actors, but one between competing groups, and similarly the 

interaction among countries and other organizations. Although it has long been recognized that 

treating firms and other organizations as individual decision makers is at best an imperfect 

approximation, not much is known, theoretically, empirically, or experimentally, that discerns 

how groups interact with each other in strategic contexts.  

In this paper we look explicitly at the play of a game when the ‘players’ are actually 

groups of players.    One of our findings is that the play of games between groups of players is 

systematically different than the play of games between individuals, even in a situation where all 

traditional game-theoretic equilibrium concepts do not provide any distinction.  This prompts us 

to develop a new equilibrium concept to explain our observations. 
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To discuss our approach and analysis, it is easiest to fix ideas directly in terms of the 

game that we use in the experimental part of our study.  Consider the following variation on 

Rousseau's classic Stag Hunt game.   

  Player 2 

  Stag Hare 

Stag 9, 9 1, 8 
Player 1 

Hare 8, 1 8, 8 

 
There are two Nash equilibria in pure strategies: one where both players play Stag, and 

another where both players play Hare.1  

Let us consider the case where a ‘player’ is actually a ‘group’ or, in particular for our 

experiments, a couple.2  That is, there are two individuals who fill the role of a given player - 

and both of these individuals receive that player's payoffs.  We now have to be explicit about 

how the couple determines whether to play Stag or Hare.  There are different ways in which a 

couple could decide on how to play.  The three prominent ones are: 

• One of the two individuals dictates. 
• The couple votes over which strategy to play by one of the following two methods: 

-- It takes two votes for Stag to play Stag, and one vote for Hare to play Hare. 
-- It takes one vote for Stag to play Stag, and two votes for Hare to play Hare. 

 
Once we specify the method by which each couple makes the decision to play, the overall 

game is fully specified, so that we can solve for the equilibria of the larger four-player game.  It 

is easy to see that regardless of the way in which the couples make their decisions, there will still 

be an equilibrium in which both couples play Stag, and another equilibrium in which both 

                                                           
1 The selection between these equilibria (and those in related coordination games) has been the subject of much 
study.  See for instance, Harsanyi and Selten (1988), Kandori, Mailath and Rob (2003), and the literature that 
followed. 
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couples play Hare.  In fact, it is clear that this is a much more general phenomenon:  Any pure-

strategy equilibrium of a game with ‘individual players’ remains an equilibrium of the game 

where groups fill the roles of players, regardless of the way in which the groups make decisions.3

Given this observation, one might wonder whether there is anything interesting to learn 

about groups playing games in situations where each group’s members share the same payoffs. 

We find that some equilibria are more pertinent when groups play than when individual players 

do, and that this selection among equilibria depends on the method by which the group makes 

decisions.  We argue that there is a (formal) sense in which one of the two equilibria becomes 

more ‘focal’.   On an intuitive level this is quite easy to see.  Suppose that both couples make 

decisions through a voting system where it takes two votes to play Stag and one vote to play 

Hare.  In this situation, it is ‘easier’ for a couple to decide to play Hare.  This in turn can feed 

into the expectations that one couple has about the other couple's play, and so forth.  This leads 

to a prediction that the Hare equilibrium is the focal one in cases where it takes two votes to play 

Stag and one vote to play Hare.  Correspondingly, the Stag equilibrium becomes more focal if 

the voting system is such that it takes two votes to play Hare.   

We come back to offer a formal analysis of this in Section 4, but for now we take the 

view that the focal equilibrium play is the one that only takes one vote of two to undertake. 

 
The Related Literature 

 There are a modest number of contributions from the economics and game theory 

literatures on games played between groups.4  From the theory side, Duggan (2001) defines 

                                                                                                                                                                                           
2 In our experiments, groups are couples.  While our theoretical analysis applies to larger groups, it would be 
interesting to eventually extend the experimental analysis to larger groups as well.   
3 This is provided the group decision-making system has a full range.  Specifying any actions that lead to the 
candidate strategy leads to a situation where no group member can benefit from a deviation. 
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“group Nash” equilibria and examines the group decision-making processes that allow for the 

existence of equilibrium when individuals in a group may have different payoff structures.   

Experimentally, Cason and Mui (1997) consider individual and team choices in a dictator 

game, with group choices more generous than individual choices.  In contrast, Cox (2002) finds 

that groups behave similarly to individuals as senders in an investment game, but send back 

much less.  Blinder and Morgan (forthcoming) find that groups were just as quick as individuals 

to reach decisions and also outperform individuals.  Cooper and Kagel (2003) study the 

behavior of individuals and two-player teams in signaling games; teams consistently play more 

strategically than individuals do.  Similarly, Kocher and Sutter (2005) find that groups learn 

more quickly than individuals in a beauty contest (guessing game). 

Gary Bornstein and co-authors have a series of experimental papers on group play in 

social dilemmas, with particular emphasis on inter-group competition on group performance.  

Perhaps the most closely related paper is Bornstein, Gneezy, and Nagel (2002) who examine a 

variation of Van Huyck’s (1990) minimum-effort game, where two groups play the game and 

only the group with the higher minimum receives a non-zero payoff (in the case of a tie, both 

groups earn half of this payoff).  They find that such a form of inter-group competition leads to 

higher efforts and improved collective efficiency relative to the usual minimum-effort game.    

In all of these games, groups either reach a unanimous decision after some form of 

communication or adopt the minimum (and therefore unanimous) choice.  In contrast, our 

analysis is one where group members only interact through voting on decisions, and do not even 

                                                                                                                                                                                           
4 As one would expect, the social-psychology literature has many studies of inter-group relations.   Sherif (1966) 
and Tajfel (1982) provide extensive surveys of some of the classic theories of how groups interact.  While this is a 
rich literature, we have not found any predictions that would help us select between the multiple equilibria in the 
games we study.  
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communicate with their partners.5  This is clearly an extreme, but one that begins to capture how 

the procedure by which a group makes a decision matters in strategic interaction.  Of course, 

understanding how communication and procedures interplay is of obvious interest for future 

research.   

Our focus is on how the play of a game depends on the aggregation process of the 

individual choices in groups, and how this influences the beliefs and behavior of players.  The 

structure of our games bears no resemblance to that in any of the papers mentioned above.  The 

equilibrium analysis that we undertake uses standard game-theoretic (and network-based 

solutions), as well as one that we develop to explain the data.  Our new equilibrium concept, 

“robust-belief” equilibrium, provides a new refinement of Nash equilibrium play.    It builds on 

tools from the stochastic-stability literature, most notably from Kandori, Mailath, and Rob 

(1993) and Young (1993).    

The new aspect is that voting games, as well as many others, have situations where 

players are completely indifferent over how they play – for instance in situations where they are 

not pivotal.  In such situations, stochastic stability (and other refinements) has little bite.  The 

insight leading to the concept of robust-belief equilibrium is that players best respond to the 

process, taking into account the probability that other players might tremble.  This breaks the 

indifference and makes sharp predictions that can actually completely reverse the prediction of 

stochastic stability (in ways consistent with our experimental observations). 

 

                                                           
5 After the original version of our paper, we became aware of related independent work by Elbittar, Gomberg and 
Sour (2005).  They examine the role of voting by 3-player groups on ultimatum-game proposals, varying the 
decision rule for acceptance of an offer.  They find no effect of the voting rule on individual responder behavior, 
although individual proposer behavior anticipates the effect of the voting rule on the likelihood of acceptance, by 
becoming more aggressive as it takes more votes to eject a proposal.  In contrast, we find the voting rules have 
strong effects on individual choices, and we also observe more complex strategic differences. 
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2. Network Formation and Consent 

Our analysis also has a completely different interpretation, and implications for a 

different area of study.  In fact, our initial interest in this project originated from thinking about 

differences in protocols for network formation and our experimental instructions were written 

from this perspective, so we would like to explain the connection.  

In many social and economic networks it takes the consent of both parties to maintain a 

link or tie.  This includes such varied applications as friendships, political alliances, trading 

relationships, partnerships, etc.  In some other contexts a tie can be formed unilaterally – one 

web site can link to another or one author can cite another, without having mutual consent.  How 

does this difference in the consent needed to form a link affect the network that emerges?   

Network formation maps directly to the analysis of the Stag Hunt as follows.  The choice 

of play by a couple is whether or not to form a link.  The ‘voting rule’ then translates into 

whether or not one needs the consent of both individuals to form a link or whether just one 

individual can form a link. For instance, consider starting at the following network, with 

corresponding payoffs to each one of the players.   From here players can choose whether or not 

to add the missing links.  

 

       A        B 
          (9)                                  (9) 
 
 
      
            
 
 
 
               
            C       D 

       (9)                    (9) 
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Players A and D might be thought of as the row group in the Stag Hunt game, and players 

B and C might be thought of as the column group in the Stag Hunt game.   Playing Hare 

corresponds to adding a link, and playing Stag corresponds to not adding a link.  Thus, if A and 

D add a link between themselves, while B and C do not, then we end up with the following 

network and payoffs: 

      A        B 
          (8)                                  (1) 
 
 
      
            
 
 
 
               
            C       D 

       (1)                    (8) 
 

If both groups add a link, then we end up with the following network and payoffs:  

      A        B 
          (8)                                  (8) 
 
 
      
            
 
 
 
               
            C       D 

       (8)                    (8) 
 
If mutual consent is required to add a link, this is equivalent to having both players have 

to vote Hare in order to play Hare.   If either player in a group can add a link unilaterally, then 

this corresponds to a single vote being enough to play Hare.   Thus the two variations on this 

network game where we vary the consent needed to form a link correspond exactly to the Stag 

Hunt game played between two groups where the voting rule is varied.6

                                                           
6 Note that there are other variations of the above network formation game that we can consider.  In addition to the 
two variations that we have already described, we can also reverse the payoff structure.  That is, we could have 
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The reasoning that corresponds to that of what is ‘focal’ when groups play Stag Hunt is 

as follows.  In the game where unilateral consent is needed to form a link, it is ‘easier’ to form 

links, and one should expect them to form.   If it is more likely that the other pair will add their 

link, then it is a best response to add a link.    In contrast, when it takes mutual consent to form a 

link, then it can be more difficult for either group to form a link and thus the network where no 

links are formed becomes more focal.    

In terms of predictions from the network-formation literature, we again find that there are 

multiple equilibria.7  For instance, if mutual consent is needed to form a link then we can use the 

concept of pairwise stability from Jackson and Wolinsky (1996) to develop predictions of which 

links will form.  This asks that no two players wish to add a link, and no single player wishes to 

delete a link.   Here, (subject to the constraint that the initial four links cannot be altered) both 

the network where neither link is formed and the network where both links are formed are 

pairwise stable.   In the case where single consent is needed, then the game can be viewed as a 

variation on a link-formation game proposed by Myerson (1990) (see also Bala and Goyal 2000), 

and Nash equilibrium can be used as a solution concept.  Again, there are two (pure-strategy) 

equilibrium network configurations: one where neither link is added and the other where both 

links are added.    In order to select among the equilibria, we need to employ some coalitional 

refinement.  In the case of mutual consent, strong stability (see Jackson and van den Nouweland 

2001) will single out the networks that lead to the payoffs of nine, and similarly strong Nash 

equilibrium will do the same in the case of unilateral link formation.  

                                                                                                                                                                                           
payoffs of 8 when neither link is added, payoffs of 9 when both links are added, and, when exactly one link is added, 
payoffs of 1 for the group adding a link and payoffs of 8 for the group not forming a link.  While these are 
seemingly different variations on the games, they are again completely strategically equivalent to the others.  We ran 
these variations to check that the framing was not important, and indeed found the results to be indistinguishable 
across framing, as we detail below.    
7 See Jackson (2004) for a survey of models of network formation. 
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There are also notions of farsighted network formation, such as those of Page, Wooders 

and Kamat (2005) and Dutta, Ghosal and Ray (2003).   In the context of the networks we have 

examined, they would select equilibria where Stag is played.8   This is not the behavior observed 

here, although perhaps because our setting is sufficiently different in structure so as not to favor 

such forward-looking behavior.9

 
3. Experimental Description and Hypotheses 

 
3.1 The Experiment 

We conducted a series of experiments in six separate sessions at the University of 

California at Santa Barbara.  There were 16 participants in each session, with average earnings of 

about $15 (including a $5 show-up payment) for a one-hour session.  The experiments were 

framed in terms of the formation of links.  The complete instructions are presented in Appendix 

D.  Our experiment was programmed using the z-Tree software (Fischbacher 1999).  

Participants were sorted randomly into groups, typically with four people in a group.  We 

imposed the initial link structure of a ‘square’, where each person was linked to two adjacent 

parties, with no diagonal links.  In three of our sessions, this was the initial link structure: 

              
         

                                                           
8 The Dutta, Ghosal and Ray (2003) definition is in the context of an infinite game of network formation, and would 
require a sufficiently high discount factor.   Their analysis would not have any specific prediction in the context of 
our game as it is outside of their setting.  Nevertheless, the reasoning that they are attempting to capture is consistent 
with some of the attempts of players in the game to play Stag, with the hope that others will see this and follow suit.   
The analysis of Page, Wooders and Kamat (2005) is independent of a particular protocol, as it builds on Chwe’s 
(1994) largest consistent set.   
9 See Pantz and Ziegelmeyer (2003) for a more detailed study of myopic versus farsighted behavior in network 
formation. 
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A        B 
           (9)              (9) 
      
            
 
 
 
               
             

        C        D 
       (9)            (9) 

 

The issue of choice was whether to add a diagonal link, as we described in the previous 

section.  If neither diagonal link was created, each person received nine experimental units.  If 

both diagonal links were created, each person received a payoff of eight. If only one diagonal 

link was created, the people at the nodes of this link received eight, while the people not 

connected by a diagonal link received only one.  

In the other three sessions, we started with lower default payoffs and also altered the way 

that payoffs were determined by the links added. 

              
             A            B 
            (8)            (8) 
      
            
 
 
 
               
             C            D 

        (8)                (8) 
 

In these sessions, if no diagonal links were added, then each person received a payoff of 

eight experimental units.  If both diagonal links were added, then each person received a payoff 

of nine.  If only one diagonal link was created, the people at the nodes of this link received only 

one, while the people not connected by a diagonal link received eight.   

The contrast between the two different starting payoff structures is simply one of 

framing, as we shall discuss more fully below. 
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There were 60 periods in a session, comprised of four 15-period segments with different 

decision rules for whether a diagonal link was created.  These segments differed with respect to 

the decision rules for creating a diagonal link.  The people in each group were matched with each 

other for the 15 periods in a segment; after each segment, participants were randomly re-

matched.  Each person was involved once in each of these three different cases.10

 
1) Mutual consent: People are in 4-person groups.  Consider the two people diagonally 

across from each other: A link is added if and only if both of these people wish to add it. 
2) Unilateral consent: People are in 4-person groups.  Consider the people diagonally 

across from each other: A link is added if and only if at least one of these people wishes 
to add it. 

3) Dictators: People are in 4-person groups.  However, only two of these people will make 
choices in the game (say players A and C in the above diagrams), and they can 
unilaterally decide whether or not to add their corresponding links.   Each one of these 
people is paired with a silent partner (say players B and D in the above diagrams) who is 
inactive in the game but whose payoff depends on the play of the game.     

 
 

Participants always knew which case applied before making a decision.  Once the 

decisions for the period were reached, each person learned his or her payoff, the choice of his or 

her partner (diagonal counterpart), and whether or not the other group (off-diagonals) added a 

link.  Participants also knew that they would learn this information before making subsequent 

choices. 

 

                                                           
10 Subjects also played 15 periods in a fourth type of game, which were standard two-player games (so, without 
groups).   There are differences in play between the “dictator” games and the two-player games.   We report on those 
in a separate paper, Charness and Jackson (2006). Overall, we find fairly strong support for the notion of 
responsibility-alleviation (Charness 2000).  If being responsible for another player's payoff has no effect on how 
individuals act, then the play in these two treatments should be exactly the same.  However, we find that the 
behavior of about one-third of the population is sensitive to the issue of being responsible for another person’s 
welfare. In about 90% of these cases, the decider takes on less risk when he or she is the agent for another party than 
when acting only for him or herself.  However, this lessened risk comes at a social cost, as the average payoffs are 
reduced substantially when the deciding agent also represents another party. 

 11



3.2 Hypotheses   

The reason for running variations where the default payoffs differ was to simply check 

for framing effects.  That is, consider two variations: one where the starting payoffs are 8’s and it 

takes mutual consent to add a link, and another where the starting payoffs are 9’s and a link can 

be added unilaterally.   These two situations are strategically equivalent: they differ only in their 

framing.  In either situation if a single player wants to go for the payoff of 8’s (the “hare” play) 

that player can guarantee it, while it takes two players to try for the payoff of 9 (the “stag” play).   

In principle, play should be the same across strategically-equivalent games. 

As noted above, solution concepts such as pairwise stability and Nash equilibrium result 

in multiple equilibria in our games, and thus leave much open in terms of how play might 

proceed.   We can look to ideas such as risk and payoff dominance to try to select among the 

equilibria.  The notion of risk dominance is consistent with both groups choosing Hare and the 

notion of payoff dominance is consistent with both players choosing Stag.11  We wish to remain 

agnostic regarding the relative merits of payoff dominance and risk dominance, but note that 

play should be the same across all treatments if either notion were a consistent underlying force.  

We find nothing else in conventional theory to guide us.  Thus, we formulate null hypotheses 

based on the view that behavior will not vary across our experimental games. 

 
Hypothesis 1: (No Effect of Payoff Structure) There will be no difference between the 
tendency to vote Stag when it takes two votes to go Stag and the tendency to vote Hare when it 
takes two votes to go Hare. 

 
Hypothesis 2: (No Effect of Voting Rule) There will be no difference in voting for Stag across 
the ‘two-votes-to-go-stag’ and the ‘one-vote-to-go-stag’ treatments, all else held constant. 
  
 

                                                           
11 We need to be a bit careful here, as with four players the ideas apply slightly differently than with just two.  
Nevertheless, the risk-dominant play is still for every player to play Hare, regardless of the voting rule, and payoff 
dominance has both groups playing Stag, regardless of the voting rule.   
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The above hypotheses are not nested nor are they mutually exclusive, so there are many 

alternative hypotheses to various sets of the above.  Rather than list all of these possible 

alternatives, let us mention a few.   

There are two different views as to how payoffs might affect play, depending on whether 

one looks to payoff or risk dominance.  Strong stability and strong Nash equilibrium give clear 

predictions in Stag, while risk dominance gives a clear prediction in favor of play resulting in 

Hare.  We thus have two alternative hypotheses. 

 
Hypothesis 1a: The tendency to vote for Stag when it takes two votes to go Stag will be stronger 
than the tendency to vote for Hare when it takes two votes to go Hare.  

 
Hypothesis 1b: The tendency to vote for Hare when it takes two votes to go Hare will be 
stronger than the tendency to vote for Stag when it takes two votes to go Stag. 
 
. 

If we adopt the view that links will form if and only if formation requires only one vote, 

we have an alternative hypothesis: 

 
Hypothesis 2a: There will be more votes for the Stag when it takes one vote to go stag then when 
it takes two, and similarly for Hare.  
 
 

This is the critical alternative hypothesis that the method by which groups make decisions 

affects play.  

 
4. Analysis of the Experimental Results 

 
4.1 Descriptive statistics 

We observe considerable variation in play, according to the type of game.  Table 1 

displays the pattern of play in the four different types of games and already gives us a strong 

look at the hypotheses, and makes it pretty clear what the conclusions will be.    
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Table 1 - Individual Votes by Game 
Game Stag Hare 

1 vote for stag 1047 (72.7%) 393 (27.3%) 

2 votes for stag 456 (31.7%) 984 (68.3%) 
 

While we proceed shortly to careful statistical tests of the hypotheses, let us first discuss 

what these aggregate statistics suggest.  The largest difference in play can be found by 

comparing the four-player games.  People are much more likely to vote for Stag when a group 

choice of Stag requires only one vote out of two than when both votes are required.  Although ex 

post this seems quite intuitive, we had not anticipated it ex ante and, as we shall see, this result is 

not captured in standard equilibrium notions.  

Hypothesis 1, that the payoff structure does not matter, will be accepted - as the voting 

for Hare or Stag almost exactly reverses itself based on the voting rule and not on the label of 

Hare or Stag (and hence not on the payoffs).  Hypothesis 2, that the voting rule does not matter, 

will be rejected in favor of the alternative that voting goes in favor of the strategy requiring only 

one vote – that is, the group decision-making rule is an (the) important factor in determining play 

and it goes in favor of the decision that requires the least votes or consent to achieve.    

From the standpoint of network formation and social-welfare analysis, it is also relevant 

to consider group outcomes in addition to individual voting behavior.  Table 2 shows these group 

outcomes across different voting rules: 

 
Table 2 - Group Outcomes: Number of observations (percentages), by category 

Game Both groups stag Mis-coordination. Both groups hare 

1 vote for stag  310 (86.1%) 12 (3.9%) 38 (10.5%) 

2 votes for stag 46 (12.8%) 25 (6.9%) 289 (80.3%) 
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The patterns seen in Table 1 are also apparent in Table 2, and are more striking.  This is a 

consequence of the voting rule: For instance, suppose that players were simply flipping coins in 

order to decide whether or not to vote to form a link.  In that case, more links would be formed 

under unilateral consent than mutual consent, and not because their play was influenced by the 

structure of the consent rule, but simply because of the consent rule.  

Aggregating across four-voter games, the (9,9) outcome happens 86.1 percent of the time 

when the consent rule mandates that the group go Stag if there is at least one vote to do so, 

compared to 12.8 percent of the time when both votes must be Stag.  We also observe that the 

unattractive mis-coordination (1,8) outcome is relatively rare, eventuating in only 37 of 720 

cases across all games, or 5.1% of the time; in the few cases where there is coordination failure 

in initial periods, we often see rapid movement to successful coordination. 

We can also consider the choice tendencies of each individual in each game.   The 

complete profiles across all games each person played are shown in Appendix C, and we come 

back to discuss the determinants of individual plays below. 

 
4.2 Hypothesis tests 

 As we have repeated interaction among players, we must be careful in performing 

statistical tests of our hypotheses.  While there is no obvious reason why behavior should unravel 

over time, one could be concerned that there is nevertheless a repeated-game flavor to the data. 

One method for eliminating such concerns is to consider only the last period in the 15-period 

segments; these data might also be seen as reflecting more ‘settled’ behavior.  Further, since the 

behavior of the individuals within a group may well be correlated, we consider group 

performance, as measured by the number of votes for links in this last period.   As this severely 

limits the number of observations and the power of the tests, in some cases we also consider a 
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less conservative test involving the behavior of each individual in each segment, yielding more 

observations at a cost of some loss of independence.  

 The group-level data we use for most of our hypothesis testing are shown in Table 3: 

Table 3 – Stag vote totals for groups in last period of segment 

 Number of groups with: 

Voting Rule 0 stag votes 1 stag vote 2 stag votes 3 stag votes  4 stag votes 

2 votes to go Stag 13 5 2 0 4 

1 vote to go Stag 3 0 2 8 11 
 

Hypothesis 1 (No Effect of Payoff Structure): Table 4 summarizes the link choices by 

four-person game, illustrating the effect of the voting rule.  

Table 4 – Link choices by game 

Game No Link Link 
Start at 9’s   

mutual consent 512 (71.1%) 208 (28.9%) 
unilateral consent 191 (26.5%) 529 (73.5%) 

Start at 8’s   

mutual consent 455 (63.2%) 265 (37.8%) 
unilateral consent 185 (25.7%) 535 (74.3%) 

 
 

The choice of adding a link when starting at 9’s under mutual consent is the same as not 

adding a link when starting at 8’s under unilateral consent, and similarly for the other case.  

Another way to see this is to break play down player by player, as in the following Figures that 

track the frequency of individual stag play across strategically-equivalent variations: 
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Figure 2 - Stag play if two votes needed to go Stag

Mutual (8's)
Unilateral (9's)

 

 Statistical tests confirm the visual pattern observed in these Figures, that there is little 

difference due to framing.12  Given that the play across strategically-equivalent games is 

                                                           
12 The most careful tests use group choices made in the last-period of a segment, to avoid both interactions and 
repeated-game effects. The Wilcoxon-Mann-Whitney ranksum test (see Siegel and Castellan 1988) finds no 
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statistically indistinguishable, we generally pool the data in what follows (although on some tests 

we also disaggregate to be especially cautious).  

We cannot reject Hypothesis 1, as the Wilcoxon test on group outcomes in the last period 

of the game gives Z = 0.24, very slightly in favor of Hypothesis 1b, but far short of statistical 

significance (p = 0.810, two-tailed test).  If we further increase (quadruple) the sample size by 

considering individual voting in the last period of each 15-period segment, there is no difference 

at all: 25 of 96 individuals voted to go Stag when going Stag took two votes and 25 of 96 

individuals voted to go Hare when going Hare took two votes.   

Figure 3 examines whether or not the payoff structure affects individual voting behavior, 

by comparing the rate of voting to go Stag when this requires two votes to the rate of voting to 

go Hare when this requires two votes.  
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Figure 3 - Voting Behavior 

Vote Stag (takes 2)
Vote Hare (takes 2)

 

                                                                                                                                                                                           
significant difference in rates of stag play across either the mutual-consent game starting at 9’s and the unilateral-
consent game starting at 8’s (Z = 0.61, p = 0.271, one-tailed test) or across the mutual-consent game starting with 8’s 
and the unilateral-consent game starting with 9’s (Z = 0.12, p = 0.452, one-tailed test).  If we instead consider 
individual last-period data, these comparisons are 13 people of 48 versus 12 people of 48, and 10 people of 48 
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Overall, there is no clear visual difference across these conditions, although there are 

slightly more cases of one voting an intermediate proportion of the time for Stag than for Hare.   

 
Hypothesis 2 (No Effect of Voting Rule): If we combine the mutual plays and unilateral 

plays across starting payoffs, we see the difference between consent/voting structures most 

vividly:  Figure 4 illustrates the central finding of our experiments:  Play is largely dictated by 

the consent/voting role, essentially independently of the payoff structure.  
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Quite to the contrary of the null hypothesis, play is essentially completely reversed by the 

voting rule.  For a conservative statistical test, we use the Wilcoxon-Mann-Whitney ranksum test 

(see Siegel and Castellan 1988) on the last-period group-level data for four-voter games.  

Consistent with the visual evidence, there are strong differences according to the voting rule.  

                                                                                                                                                                                           
versus 15 people of 48.  Using the test of proportions (see Glasnapp and Poggio 1985), the test statistics for these 
differences are Z = 0.23 and Z = -1.16, respectively, with p = 0.409 and p = 0.877 for the one-tailed tests. 
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The Wilcoxon test gives Z = 3.56; thus, we can easily reject Hypothesis 1 in favor of Hypothesis 

1a, as the corresponding significance level is p < 0.001.13  

 
4.3 Changes over time and determinants 

Does the tendency to play the risky strategy (Stag) change appreciably over time?  If so, 

can we isolate any determinants of this change?  Table 5 shows the average rate of risky play in 

the first five periods of the segment, the middle five periods of the segment, and the last five 

periods of the segment for each of our games: 

Table 5 – Rates of Risky Play over Time, by Game 

 Rate of Risky Play (Stag) in: 

Game First five periods Middle five periods Last five periods 

1 vote to go stag .7125 .7271 .7417 

2 votes to go stag .4445 .2792 .2583 

 

While risky play increases slightly over time when only one vote for Stag is sufficient to 

go Stag, it decreases substantially when two Stag votes are required.  This latter result suggests 

an initial attraction for payoff dominance that meets with poor results. 

We can also examine individual choice tendencies and how common it was for an 

individual to change his or her strategy over the course of a 15-period segment, and in which 

direction (from Stag to Hare, or vice versa).  This is shown in Table 6: 

                                                           
13 We can also break things down to the specific games, not pooling across strategically-equivalent treatments.  
Comparing the start-at-9’s games, the test gives Z = 3.09, while the test gives Z = 2.02 for the start-at-8’s games, 
with p = 0.002 and p = 0.042, respectively, using two-tailed tests. 
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Table 6 – Individual Choice Tendencies, by Game 

Game Stag Mix Hare Stag⇒Hare Hare⇒Stag 

1 vote to go stag 71 1 24 5 12 

2 votes to go stag 19 12 65 36 5 

“Stag” or “Hare” means the individual made this choice at least 10 times (out of 15).  “Mix” 
means that an individual chose each action at least six times (out of 15).  Switching (rightmost 

columns) reflects a difference between play in the first and last periods of a segment. 
 
 

We see that individual behavior mirrors the patterns observed in Tables 2 and 4, and 

switching behavior (changes from one’s choice in the first period of a segment to the last period 

of a segment) mirrors the pattern seen in Table 5.  Overall, people changed their choice in 58 of 

the 192 possible cases, or 30.2% of the time.  We see that changes go predominantly in the 

direction of the voting rule, as 12 of the 17 people who switch change from Hare to Stag when 

Stag is focal, and 36 of the 41 people who switch change from Stag to Hare when Hare is focal.  

A simple binomial test rejects the hypothesis that 48 of 58 choices going in one direction reflect 

random changes (Z = 4.99, p < 0.00001).14  

There is also some support for the notion that people have some initial attraction to 

payoff dominance, as there is an inference about initial attraction from the fact that only 12 

people switch from Hare to Stag in the first row of Table 6, while 36 people switch from Stag to 

Hare in the second row; the binomial test rejects the hypothesis that these data reflect 

randomness (Z = 3.46, p < 0.001). 

Why do people switch their behavior over the course of a segment?  One would naturally 

suspect that this decision is correlated with having previously experienced bad (payoff = 1) 

                                                           
14 Given the grouping of subjects, there might be (small amounts of) correlation so that the observations might not 
satisfy the appropriate independence condition to make the binomial test fully valid.  We feel these tests are still 
illuminating enough to present, especially in conjunction with the group level tests above and the regression analysis 
below. 
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outcomes during the segment.  In fact, random-effects probit regressions (with the individual as 

the random effect) strongly confirm this conjecture:  

 
Table 7 – Determinants for Risky Play  

 Dependent Variable 

Independent variables Vote for Stag 
(1) 

Vote for Stag 
(2) 

-1.732*** -1.755*** Two votes to go Stag 
[0.078] [0.079] 

-1.158*** -1.194*** One bad outcome 
[0.151] [0.150] 

-2.635*** -2.754*** Two bad outcomes 
[0.245] [0.244] 

- -0.815*** Three or more bad outcomes 
- [0.213] 

0.710*** 0.726*** Rho 
[0.034] [0.036] 

0.468*** 0.503*** Constant 
[0.101] [0.116] 

# Observations 2880 2880 

Log-likelihood -1002.4 -995.2 

Standard errors are in brackets.  *** indicates significance at 0.1%  
 

In these games, people are much more likely to play safe (hare) when it takes two votes 

for the group to make the risky (stag) choice.  A player who has experienced one bad outcome is 

substantially less likely to vote for the risky play (stag).  The effect of a second bad outcome is 

much stronger, as the coefficient is even larger than that for the treatment effect.  However, a 

person who persists in voting for the risky play (stag) after two bad outcomes doesn’t seem to 

care much about bad outcomes, as we see in specification (2) that the coefficient for the effect of 

three or more bad outcomes is actually smaller than the coefficient for having had only one bad 
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outcome.  Rho (the random-effects term) is highly significant in both regressions, so that 

individual variation is seen to be an important factor. 

 
5. A Foundation for the Selection of Equilibrium 

Our experiments exhibit patterns and regularities in the way that groups play these 

games.  In particular, while the games in question have multiple strict Nash equilibria, there is a 

tendency to focus in on specific ones:  those ‘favored’ by the voting rule, as evidenced by the 

sound rejection of Hypothesis 1.  This is exhibited even when the payoffs are altered, and so the 

selection cannot be attributed to equilibrium refinements such as risk dominance or payoff 

dominance.  None of the other standard equilibrium refinements, such as trembling hand 

perfection or stochastic stability, predict the selection that the participants are consistently 

making either.15  Nevertheless, there is a clear logic behind the behavior of the subjects, which 

suggests that there should be an equilibrium concept to capture it.   In this section, we use the 

intuition and observed play in these experiments to develop a new equilibrium concept.  It builds 

on tools from perfection and stochastic stability, but in a way to capture the logic that seems to 

be underlying the behavior in our experiments.   

 We begin by explaining the underlying ideas; to do so we consider an abstract two-by-

two game that has two pure-strategy equilibria.  For this discussion, consider a coordination 

game where, as will become clear, the symmetry of payoffs is irrelevant to the general 

development of the solution concept. 

                                                           
15 Even the application of the theory of global games (see Carlsson and van Damme 1993) does not work here.  With 
the right specifications of uncertainty, this sort of game can be analyzed using the techniques of Morris, Frankel and 
Pauzner (2001).  However, depending on the structure of uncertainty that is introduced, it seems that the selection is 
made either in favor of the risk dominant, or in favor of the payoff dominant payoffs (viewed as a two-player game); 
and that the selection is not being made relative to the voting rule.   There are other behavioral based solution 
concepts, such as the “Lk” theory of Stahl and Wilson (1995) (see also, e.g., Costa-Gomez, Crawford, and Broseta 
(2001)) that can be examined.  Again, the details can affect which equilibrium is selected, but the theory does not 
make a unique prediction that aligns with what we observed here. 
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  Player 2 Role  
(Group 2) 

  A B 

A a, a c, d Player 1 Role 
(Group 1) B d, c b, b 

 
     

Let a > d and b > c, so that the game has two pure-strategy equilibria, A,A and B,B.  

Assume that (a-d) > (b-c), so that A,A is the risk-dominant equilibrium in the sense of Harsanyi 

and Selten (1988).16  The game in our experiments fits into this setting.  Let each player role be 

filled by some group of at least two individuals.  Describe a group’s method of selecting a 

strategy by a quota rule q, where q in {1,..., n} denotes the minimum number of votes for 

strategy A needed before A is played.  Thus, if q or more members of the group vote to play A, 

then A is played, while if fewer than q members of the group vote to play A, then B is played. 

Let a state be a list of each individual’s play - so it is a vector of length 2n where entries 

are either A or B.  Given a state, each player has a best response.  That is, considering a 

conjecture that other players will play as described in a state, each player has a best response.  A 

pure-strategy Nash equilibrium is then just a state where the state’s prescription of each player’s 

vote is a best response given the anticipation that the state correctly describes the voting behavior 

of the players. 

There are many pure-strategy equilibria of such a game.  Any profile of votes where both 

groups pick A is an equilibrium; any profile of votes where both groups pick B is an equilibrium; 

and any profile of votes where one group picks A, the other group picks B, and no voter is 

                                                           
16 This equilibrium has the property that each player is choosing a strategy that is also a best response to the other 
player mixing 50/50.  Thus, A is the strategy that is a best response to the largest set of beliefs over possible plays of 
the opponent, and so the risk-dominant equilibrium is the pure-strategy equilibrium with a larger basin of attraction 
than the other pure-strategy equilibrium.  Specifically, playing A is a player’s best response if the probability that his 
opponent plays A is greater than or equal to (b-c)/(a-d+b-c) < 1/2.  Thus if a = 3, b = 1, and c = d = 0, then playing A 
is a best response if the belief is that the probability is 1/4 or more that a player’s opponent plays A. 
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pivotal, is also an equilibrium.   In fact, all of these states are undominated Nash equilibria.17  

Moreover, all voting A is a trembling-hand-perfect equilibrium, as is all voting B.    

A critical aspect of this game is that at any profile where a voter is not pivotal, the voter 

is completely indifferent as to their action.  It is this aspect that makes standard refinements 

inadequate here.   

The behavior in our experiments, however, picks out the equilibrium that is ‘favored’ by 

the voting rule.  That is, if q is less than or equal to n/2, then all voting A is observed, while if q 

is greater than n/2 then all players voting B is observed.18  On one level we might think of this as 

a ‘focal’ effect, in that the bias in the voting rule focuses attention on one of the equilibria.  Yet, 

there are many different things that might be used to ‘focus’ the attention of the players.  For 

instance, why isn’t it that the highest payoff equilibrium becomes the ‘focal’ one?  The challenge 

for an equilibrium concept is to capture the focal nature of the voting rule, and to do it in a robust 

way that is not ad hoc to the games in question.   

Let us go through some heuristic reasoning that suggests an equilibrium concept.  

Consider a player forecasting the play of the others.  If the player starts agnostically, and simply 

assumes random voting by the players in the other group, then the forecast would be that the 

other players would end up playing the strategy favored by the voting rule. While this is rather 

simplistic reasoning that does not account for payoffs, we can take it further to consider further 

levels of reasoning.  Imagine now that a player starts with any forecast of other players’ behavior 

based on the payoffs and the structure of the game.  The player can still think about how 

sensitive this forecast is to the play of the others.  For instance, in our games where n = 2 and the 

quota is 1 to play A, then the player realizes that if either of the players in the other group plays 

                                                           
17 Some of these can be ruled out by ‘trembling’ arguments, but we still end up with no real selection in outcomes. 
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A then it is in her interest to play A.  Moreover, it is enough for her to believe that one of the 

other players reasons this way to induce one of the other players to play A.   Or, it is enough for 

her to believe that one of the other players might believe that she is going through this logic, etc.   

This suggests looking at basins of attraction of equilibria to try to capture some of this reasoning.   

The primary equilibrium selection notion that builds on basins of attraction is stochastic 

stability.19  Can we bring stochastic stability off the shelf and apply it here?  There are two 

problems.  First, stochastic stability is generally used in evolutionary analyses where agents 

either play games against randomly-selected opponents repeatedly over time, or else are playing 

strategies simultaneously against many other players.   This is easily overcome, as it is merely a 

matter of interpretation.20   That is, the machinery of stochastic stability still captures ideas 

underlying basins of attraction and robustness of equilibria even when the game is only played 

once by a given set of players.  The second problem is the more crippling one:  stochastic 

stability does not make much of a selection here.    Let us discuss this in the context of the game 

we used in our experiments, where the voting rule is that it takes one vote to go Stag and two 

votes to go Hare.    

Consider movement among states, and start at a state where all players vote to go Stag.  

In this case, every player has two best responses:  either voting Stag or Hare.  So, completely 

consistently with best-response behavior, we can move to a state where all players play Hare.  

However, if all players are voting Hare, then the unique best response of each player is to vote 

Hare.  So, it takes at least one ‘tremble’ or ‘error’ on the part of some player to switch to a state 

where at least some players play Stag.   Since it took no trembles to get us to move from the 

                                                                                                                                                                                           
18 We have only examined particular parameter values for the game and number of players, so this is clearly an 
extrapolation of what is occurring in these games.   
19 See Foster and Young (1990), Kandori, Mailath and Rob (1993), and Young (1993) and the literature that follows. 
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equilibrium where all players vote Stag to one where all players vote Hare, but at least one 

tremble to move in the reverse direction, the unique stochastically-stable state turns out to be 

where all players vote Hare!21   However, this is exactly the opposite of what we observe in the 

experiments.   

What’s missing from this reasoning?    Suppose we start from a state where all players 

vote Stag, and we also know that there is some unpredictability (real or imaginary) in players’ 

votes so that they might vote Hare with a small probability.  That is, players are fully aware of 

the noise in the process and take that into account when making their decisions.  Now, choosing 

Hare makes it more likely that my group will cross the threshold and fail to coordinate, as I 

realize that one tremble by my partner will lead to coordination failure (whereas, by playing Stag 

it will require two errors for coordination failure).  Straightforward calculations show that now 

Hare is the unique best response.22   Now, it takes at least two errors or trembles to get from 

voting Stag to voting Hare, and only one to go back.  Using this reasoning, players being 

somewhat unsure of the other players’ play leads to a unique selection from the game.   The key 

difference between this and the usual definition of stochastic stability is that players are not best-

responding to the state, but rather to the state with the understanding of the full process including 

errors.23  This seems like a subtle difference, but it is a critical one not only in changing the 

                                                                                                                                                                                           
20 See Jackson and Watts (2002) for a model of stochastic stability in network formation and some discussion of 
possible interpretations. 
21 We could also consider a stochastic process where players’ strategy choices are modified one at a time, according 
to a best response with errors.  In that case, both all voting Hare and all voting Stag are stochastically stable.  
Regardless of the process, stochastic stability fails to select the equilibrium observed in our experiments. 
22 There is a probability of (1-ε)3 that all others vote stag, a probability on the order of ε that one other player votes 
Hare, and a probability on the order of ε2 or less that two or more other players vote Hare.  This means voting Stag 
leads to a probability on the order of ε2 for coordination failure, while voting Hare leads to a probability on the order 
of ε for coordination failure.  For small ε the expected payoff is strictly higher from voting Stag. 
23 Thus, this has the flavor of Quantal Response Equilibrium of McKelvey and Palfrey (1995) in that players are best 
responding to the actual process including errors.  Note, however, that there generally are multiple Quantal 
Response equilibria of this game, even for very small error sizes, as all intending to vote Stag, and all intending to 
vote Hare are QRE for small error probabilities.   Therefore, while QRE is a useful econometric tool, it does not 
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predictions of the solution concept, but also in capturing the reasoning that might underlie what 

we observe in the experiments.   

Now let us move to a formal definition of the solution concept.  It uses ideas from 

stochastic stability to capture basins of attraction and robustness, and yet has players best-

responding to the actual process to capture the importance of their beliefs (rather than viewing 

players as random mutations in an evolutionary soup).   

We define robust-belief equilibrium for an arbitrary game as follows:    

Consider an arbitrary finite game G=(N,S,u), where (with an abuse of notation 

N={1,...,N} is a set of players, S= S1 x... x SN  is the finite set of pure strategies available to 

players, and u=(u1 , ... uN ) is the profile of von Neumann-Morgenstern utility functions, ui : Si  

→R.   Given a game G and an ε > 0, let G(ε) be the following variation on the game.  Each 

player trembles from their prescribed strategy with probability ε, 1 > ε > 0.   In particular, if a 

player chooses a given strategy then with probability 1-ε the player’s strategy is played and with 

probability ε the player’s strategy is chosen to be any action with equal probability.24

 
Given a game variant G(ε), define a Markov process as follows.   A state is a profile of 

strategies s in S.   For each state, let players pick a best response to that state in the game G(ε) - 

that is forecasting that the other players will try to play according to s, but may tremble.   This 

defines a function β from S to S.   There may be multiple best responses, so there are may be 

multiple functions β.  For small enough ε, some β‘s remain a best-response selection for all 

                                                                                                                                                                                           
provide any selection here.   It is critical to our approach to look at limits and relative probabilities, as from the 
stochastic stability approach, at the same time as having players best responding to the actual process.   
24 One can modify our definitions to allow for different ε’s for different players, and to have non-uniform 
probabilities on the actions that are chosen in a ‘tremble’.   We note however, that just as with stochastic stability, 
the relative size of trembles can be important:  changing from a situation where trembles are all of the same relative 
size, to situations where some are of a smaller or larger order can lead to different conclusions, along the same lines 
as shown by Bergin and Lipman (1996) for stochastic stability.  
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smaller ε.  Let the set of such β’s that remain best-response selections for small ε’s be denoted 

B(G).   Any selection of best responses β in B(G), together with the tremble probabilities defines 

a transition matrix across states.   We end up with a Markov process M(G,ε,β) that is irreducible 

and aperiodic.   Thus, M(G,ε,β) has a unique steady-state distribution.  

Given a game G=(N,S,u), a robust-belief state is any state that has positive probability 

under the limit of the steady-state distribution of M(G,ε,β) as  ε  goes to 0 for some best-response 

selection β in B(G).    If s is a state that is both a Nash equilibrium and a robust-belief state, then 

it is said to be a robust-belief equilibrium.25

Given a game G=(N,S,u), a strongly robust-belief state is any state that has positive 

probability under the limit of the steady-state distribution of M(G,ε,β) as  ε  goes to 0 for all best 

response selections β in B(G).    If s is a state that is both a Nash equilibrium and a strongly 

robust-belief state, then it is said to be a strongly robust-belief equilibrium. 

Let us now return to the coordination game mentioned above.   

 
Theorem 1 There is a unique robust-belief state in the group-play coordination game where 
both groups vote using the quota q: it is all players voting A if q is less than or equal to n/2, and 
all players voting B otherwise.  Moreover this state is a strongly robust-belief equilibrium. 
 
 

An important observation about Theorem 1 is that the conclusions are completely 

determined by the voting rule and independent of the levels of the payoffs (a,b,c,d - subject to the 

inequalities defining the coordination structure),   Indeed this is consistent with what we observe 

in the experiments. 

                                                           
25 In some games (such as matching pennies) the process will cycle among a set of states, none of which are 
equilibria.  In that case, these states might be thought of as robust and ‘likely’ states, but are not equilibria in and of 
themselves.   This means that while robust-belief states will always exist, robust-belief equilibria might not, as this is 
a pure-strategy concept.   
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Theorem 1 is actually a corollary to a more general theorem covering a wide class of two-

group games with an arbitrary (finite) number of pure strategies for each group, and potentially 

different sized groups.    

Theorem 2 Consider a two-group finite game, with corresponding group sizes n1 and n2, such 
that there is a strict Nash equilibrium in the game with corresponding pure strategies s1 and s2. 
If for each group i, playing any strategy other than si requires that more than ni /2 members of 
the group vote for that strategy (and otherwise si is played), then there is a unique robust-belief 
state in the group-play game: all players in group i vote for si .  Moreover this is a strongly 
robust-belief equilibrium. 
 

The formal proof appears in the appendix, but we present a brief outline here.  For small enough 

ε, any best-response correspondence is such that if the other group j is electing to play sj, then 

any player in group i should vote to play si.  This comes from the fact that si is the unique best 

response to sj (given the strictness of the equilibrium) and agents are anticipating that there might 

be trembles by other players and acting accordingly.   This means that from any state where the 

groups are choosing  (s1,s2),  all voters will best-respond by voting for these strategies.   It is 

possible that there are also other states, which are also (strict) Nash equilibria, and where all 

players best respond by voting for those states, or some states where the two groups fail to 

coordinate, and end up selecting strategies that are not equilibria, and perhaps cycling among 

several such strategy combinations.    In order to determine what the robust-belief states are, we 

need to see how hard it is to move from (each) one of these situations to another.   The key to the 

theorem is that it takes more ‘trembles’ in order to leave the situation where all voters are voting 

to play  (s1,s2),  than it does to leave other states, and to get back to the situation where all players 

vote for (s1,s2).  This is entirely determined by the voting rule and is independent of the specifics 

of the payoffs (other than the strictness of the equilibrium).  
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While Theorem 2 covers a broad class of games, it does not cover games where one 

group's voting rule favors one equilibrium while the other group's rule favors another 

equilibrium.  Indeed, it is easy to see (simply by symmetry arguments) that such games will not 

always have a unique pure-strategy selection.  Battle of the sexes, where one group's rule favors 

one equilibrium and the other group's rule favors the other equilibrium is such an example.  Nor 

does it cover more complicated voting rules, where some players have veto rights over certain 

strategies, or other such variations on voting that one can imagine.  

We emphasize that the concept of robust-belief equilibrium should be useful more 

generally, especially as a refinement in games where players’ best response correspondences are 

multi-valued in some situations.  Best responding to the noisy play can tie down play uniquely.   

 
6. Conclusion 

We have explored behavior in a Stag Hunt that can be interpreted as either a study of how 

the voting rule that a group uses for decision making impacts the play of a game or as 

endogenous link-formation in networks.  We find a stark contrast between how groups play and 

how individuals play: in the group games, the voting rule is the primary determinant of play, 

independently of the payoff structure – when hunting Stag requires unanimous consent (two 

votes) and Hare only requires one vote, then most subjects vote to hunt Stag; while when the 

voting rule is reversed so that hunting Stag requires only one vote and Hare requires two votes, 

then most subjects vote to play Hare.  Thus, even when group members all have the same payoff 

structure, we see different behavior in terms of how groups play games against other groups 

compared to how individuals play games against other individuals.  As existing game-theoretic 

solution concepts allow for multiple equilibria and do not distinguish between these cases, we 

 31



develop a new solution concept, robust-belief equilibrium, which offers a unique prediction that 

is consistent with the data.    

As our experiments were limited to a specific game, it would be interesting to see to what 

extent group decision making processes are critical determinants of play in other sorts of games, 

and more generally how this varies with the structure of the game, the number of players in a 

group, the type of group decision-making procedure (which one might even endogenize), etc.   It 

would also be interesting to further investigate both the theoretical properties and other 

applications of robust-belief equilibria, which should be a useful tool far beyond our setting. 
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Appendix A 
 
 Proof of Theorem 2:    A theorem from Young (1993) is instrumental in the proof of Theorem 
2.  Before stating Young’s theorem, the following definitions from Young (1993) are needed. 
 
Consider a stationary Markov process on a finite state space X with transition matrix P.  
 
A set of mutations of P is a range (0,a] and a stationary Markov process on X with transition 
matrix P(ε)  for each ε  in (0,a], such that (i) P(ε) is aperiodic and irreducible for each  ε  in (0,a], 
(ii) P(ε) →P, and (iii) P(ε)xy>0 implies that there exists r ≥ 0 such that 0 < limε→0ε-r P(ε) xy <∞.   
  
The number r in (iii) above is the resistance of the transition from state x to y.  There is a path 
from x to z of zero resistance if there is a sequence of states starting with x and ending with z 
such that the transition from each state to the next state in the sequence is of zero resistance.  
Note that from (ii) and (iii), this implies that if there is a path from x to z of zero resistance, then 
the n-th order transition probability associated with P of x to z is positive for some n. 
 
The recurrent communication classes of P, denoted X1,…,XJ, are disjoint subsets of states such 
that (i) from each state there exists a path of zero resistance leading to a state in at least one 
recurrent communication class, (ii) any two states in the same recurrent communication class are 
connected by a path of zero resistance (in both directions), and (iii) for any recurrent 
communication class X j and states x in Xj and y not in Xj   such that P(ε)xy  > 0,  the resistance of 
the transition from x to y is positive.   
 
For two communication classes Xi  and Xj , since each  P(ε) is irreducible, it follows that there is 
a sequence of states x1,…xK with x1 in Xi  and xK in Xj  such that the resistance of transition from 
xk to xk+1 for each k from 1 to K-1 is defined by (iii) and finite.  Denote this by r(xk,xk+1).   Let 
the resistance of transition from Xi  to Xj  be the minimum over all such sequences of   
Σκ=1

Κ−1 r(xk,xk+1), and denote it r(Xi , Xj ). 
 
Given a recurrent communication class Xi, an i-tree is a directed graph with a vertex for each 
communication class and a unique directed path leading from each class j (≠ i) to i.   The 
stochastic potential of a recurrent communication class Xj  is then defined by finding an i-tree 
that minimizes the summed resistance over directed edges, and setting the stochastic potential 
equal to that summed resistance. 
 
Given any state x, an x-tree is a directed graph with a vertex for each state and a unique directed 
path leading from each state y  (≠ x) to x.   The resistance of x is then defined by finding an x-
tree that minimizes the summed resistance over directed edges. 
 
The following theorem is a combination of Theorem 4 and Lemmas 1 and 2 in Young: 
 
Theorem [Young (1993)]: Let P be the transition matrix associated with a stationary Markov 
process on a finite state space with a set of mutations {P(ε)} and with corresponding (unique) 
stationary distributions {m(ε)}.  Then m(ε) converges to a stationary distribution m of P, and a 
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state x has mx  > 0 if and only if x is in a recurrent communication class of P which has a minimal 
stochastic potential.  This is equivalent to x having minimum resistance. 
 
Now let us return to the details of Theorem 2.   Let us describe what must be true of any β in 
B(G).  Consider a player in Group i.  We argue that if we are at a state where the players in the 
other Group j choose sj, then regardless of the voting behavior of the other players in Group i, the 
best response for the player anticipating s in G(ε) for small enough ε is to vote si.  This is clear if 
the player were determining the action of his or her group.  As the trembles of the group are 
independent of those of the other group, for small enough ε the player prefers that his or her 
group choose  si .  Given that it takes at least a strict majority to choose any strategy other than si 
then a player by voting for a strategy other than si could only be pivotal between that strategy 
and si .  If the player's vote is pivotal (which occurs with positive probability under the trembles), 
then the player strictly prefers to vote for si .  
 
From this, we conclude that if we are in some state where at least one of the groups votes for  
the corresponding strategy from (s1,s2), then the best responses to that either cycle, with at each 
point at least one of the groups voting for the corresponding strategy from (s1,s2) and which 
group it is switching in each period and never reaching (s1,s2); or else the best responses always 
include at least one of the groups voting for the corresponding strategy from (s1,s2) and 
eventually reaching (s1,s2).    
 
This implies that the recurrent communication classes are of three sorts:  
(1) the class consists of a single state where both of the groups votes for the corresponding 
strategy from (s1,s2),  
(2) the class consists of a cycle of states, corresponding to cycles in the best responses, and in 
each state one of the groups votes for the corresponding strategy from (s1,s2) and which group it 
is continually switches along the cycle,  
(3) the class consists of states such that neither group ever votes for the corresponding strategy 
from  (s1,s2). 
   
Now consider the associated Markov process with small ε.   We establish the result by showing 
that for any tree with minimum resistance for some class other than all players voting for (s1,s2), 
there is a tree with lower resistance for the class where all players vote for (s1,s2). 
 
So start with a tree that has minimum stochastic potential for some recurrent communication 
class.   If that class is of type (2) above, then alter the tree as follows.  Point from that class to the 
state where all players vote for (s1,s2), and erase the link that was leaving the state where all 
players vote for (s1,s2).   The new link requires no more than n1/2 trembles (as there is a state 
where group 2 votes for s2 and group 1 does not, and we need at most half the group 1 players to 
tremble to voting for s1) and the old link required more than n1/2 trembles.  Thus the new tree has 
lower resistance. 
 
If that class if of type (3) above, the construct a new tree as follows.   First, suppose that there is 
some class of type (2).  Then direct an edge from the original class to the class of type (2).  Then 
point from the class of type (2) to the class (1).   Delete the old link out of the class of type (2) 
and the link out of class (1).    Each of the new links requires at most n1/2 trembles (having group 
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1 change to voting for s1), while each of the old links required at least that many, and the link out 
of (1) required more.   Thus the new tree has lower resistance.    If there is no class of type (2), 
then instead of pointing from the class of type (3) to the class of type (2), point directly to the 
class (1).   Since there is no class of type (2), then by the definition of (2) it must be that any 
cycle that includes states where at least one group votes for the corresponding (s1,s2) has a path 
of zero resistance that gets to class (1).    This means that the resistance of pointing from a class 
of type (3) to (1) is no more than n1/2 trembles, while the old link out of (1) required at least that 
many.  The conclusion then follows.   
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Appendix B – Aggregated rates for adding links, by individual and game 
 

Table B1 – Games starting with 9’s 
Participant # Mutual Unilateral 

1 0.00 0.53 
2 1.00 0.67 
3 0.00 0.87 
4 0.00 0.60 
5 0.00 0.93 
6 0.00 0.87 
7 0.00 1.00 
8 0.13 0.53 
9 0.00 0.87 

10 0.00 0.87 
11 0.00 0.73 
12 0.87 0.87 
13 0.07 0.93 
14 0.07 1.00 
15 0.00 1.00 
16 0.47 0.53 
33 1.00 1.00 
34 0.00 0.87 
35 0.20 0.27 
36 0.00 1.00 
37 0.00 1.00 
38 1.00 0.93 
39 0.27 0.40 
40 1.00 1.00 
41 0.00 0.53 
42 0.27 1.00 
43 0.00 0.67 
44 0.87 0.00 
45 0.87 0.93 
46 0.20 0.93 
47 0.87 0.53 
48 1.00 0.93 
65 0.00 0.00 
66 0.00 0.93 
67 0.00 0.40 
68 0.00 0.00 
69 0.87 1.00 
70 1.00 1.00 
71 0.00 0.87 
72 0.87 1.00 
73 0.00 0.80 
74 0.00 0.00 
75 1.00 1.00 
76 0.00 0.00 
77 0.00 0.93 
78 0.00 0.67 
79 0.00 1.00 
80 0.00 0.87 
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Table B2 – Games starting with 8’s 
Participant # Mutual Unilateral 

17 1.00 1.00 
18 1.00 1.00 
19 1.00 1.00 
20 1.00 1.00 
21 0.00 0.07 
22 0.00 0.07 
23 0.00 0.00 
24 0.00 0.00 
25 0.93 1.00 
26 0.00 0.93 
27 0.07 1.00 
28 0.20 1.00 
29 0.00 0.00 
30 0.60 0.87 
31 0.47 1.00 
32 0.27 1.00 
49 0.93 1.00 
50 0.00 1.00 
51 0.87 1.00 
52 0.00 1.00 
53 0.13 1.00 
54 0.13 1.00 
55 0.20 1.00 
56 0.07 0.00 
57 0.20 1.00 
58 0.13 1.00 
59 0.13 1.00 
60 0.93 1.00 
61 0.00 1.00 
62 0.00 0.93 
63 0.00 0.93 
64 0.07 0.93 
81 1.00 0.93 
82 0.53 1.00 
83 1.00 1.00 
84 0.33 0.00 
85 0.07 0.07 
86 0.00 0.00 
87 1.00 1.00 
88 0.00 1.00 
89 0.00 0.93 
90 0.93 0.00 
91 1.00 1.00 
92 0.00 0.07 
93 0.07 0.73 
94 0.40 1.00 
95 1.00 1.00 
96 0.00 1.00 
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Appendix C 
 

Table C1 – Individual Profiles in Games  

Game pair NN NM NL MN MM ML LN LM LL 

Start with 9’s 
         

mutual &unilateral 5 6 23 0 1 0 1 1 11 

Start with 8’s 
         

mutual & unilateral 10 0 21 0 0 4 1 0 12 
In this Table, “N” means voted for No Link, “M” means Mix, and “L” means voted for Link 

 
Regarding the mutual and unilateral game-pair, 39 people out of 96 (40.6%) played about 

the same in both games.  We see that in games starting with 9’s, many more people did not add 

links under mutual consent and added links under unilateral consent than the other way around; 

the reverse is true in the games starting with 8’s.  Overall, for the 57 people whose choice 

behavior differed across the mutual- and unilateral-consent treatments, 54 of the differences 

(94.7%) favor being an individual being more aggressive when going Stag (trying for 9) requires 

only one vote of the two (mapping to mutual consent when starting with 9’s or to unilateral 

consent when starting with 8’s). 

 
 

Table C2 –Within-subject Individual Profiles across Games 

Profile - start with 9’s # of occurrences  Profile - start with 8’s # of occurrences 
A,A 11  A,A 12 
A,M 1  A,D 1 
A,D 1  M,A 4 
M,M 1  D,A 21 
D,A 23  D,D 10 
D,M 6    
D,D 5    

     
All 48  All 48 

 
The order of the games in both profiles is mutual, unilateral.  “A” means an individual chose to 

add a link 10 or more times (of 15 in the respective segment), “D” means he or she chose to not 

add a link 10 or more times, and “M” means he or she chose both actions at least six times. 
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Appendix D - Experimental Instructions (Start at 9’s) 
 
Welcome to our experiment.  You will receive $5 for showing up, in addition to your earnings 
from the session.   
 
There will be a total of 60 periods in the session.  You will be paired with a group of people (and 
your position in the group will stay the same) for 15 periods, and then your pairing will change 
for the next 15 periods, etc.   
 
Payoffs for each person are determined by the links that exist in the network below at the end of 
a period.  Your group begins with the following links: 
              
             A          B 
           (9)                    (9) 
      
            
 
 
 
               
             C          D 

(9)        (9) 
 
If this network is in place at the end of the period, then each of A, B, C, and D would receive 9 
units, as is indicated by the bold number in parentheses below each letter.  
 
Some or all of the people in the network will simultaneously indicate on their computer their 
choice concerning whether or not to add a link to the person diagonally opposite.  There are 4 
different cases, and you will make choices in each case for15 periods during the session: 
 

1) People are in 4-person groups.  Consider the people diagonally across: A link is added if 
at least one of these two people wishes to add it. 

2) People are in 4-person groups.  Consider the people diagonally across: A link is added if 
and only if both of these two people wish to add it. 

3) People are in 4-person groups; however, only two of these people (not diagonally across 
from each other) choose whether to add links.  Each person’s decision is implemented 
and two silent participants in the group receive payoffs according to these choices. 

4) People are in 2-person groups, so that each person controls 2 vertices.  If a person 
chooses to add a link, it is added and he or she receives the payoffs from one vertex. 

 
You will always know which case applies to your decision before you make your decision. 
 
There are four possible networks that could result from the process of adding or not adding links.  
The first is the network pictured above, where there are no changes.  The other three possibilities 
arise if at least one link is added.   These networks, and the corresponding payoffs to the 
participants are as follows: 
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           A    B        A          B   
          (8)               (1)       (1)          (8)                          
                                                    
         
 
 
 
 
 

C    D        C          D 
           (1)              (8)       (8)          (1)  
         
 
     
      A              B 
    (8)             (8)   
 
 
 
 
 
 
 
 
      C             D 

(8)            (8) 
 
The diagrams show that if exactly one diagonal link is included in the final network, the people 
connected by the link receive 8 units and the people not connected by the diagonal link receive 1 
unit. 
 
If both diagonal links are included in the final network, then everyone in the network receives 8 
units.   
 
We will randomly choose one period from each of the 15-period blocks for payment, so that only 
four periods will actually count towards monetary payoffs.  These periods will be chosen at the 
end of the session.  We will add up your payoffs from these four periods and convert them to 
actual dollars at the rate of $0.30 for each unit. 
 
At the end of the experiment, we will pay each participant individually and privately. 
 
We encourage you to ask questions about the instructions by raising your hand. 
 
Thank you again for your participation in our research. 
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