Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

The Chemokine Fractalkine Can Activate Integrins without CX3CR1 through Direct Binding to a Ligand-Binding Site Distinct from the Classical RGD-Binding Site

Abstract

The chemokine domain of fractalkine (FKN-CD) binds to the classical RGD-binding site of αvβ3 and that the resulting ternary complex formation (integrin-FKN-CX3CR1) is critical for CX3CR1 signaling and FKN-induced integrin activation. However, only certain cell types express CX3CR1. Here we studied if FKN-CD can activate integrins in the absence of CX3CR1. We describe that WT FKN-CD activated recombinant soluble αvβ3 in cell-free conditions, but the integrin-binding defective mutant of FKN-CD (K36E/R37E) did not. This suggests that FKN-CD can activate αvβ3 in the absence of CX3CR1 through the direct binding of FKN-CD to αvβ3. WT FKN-CD activated αvβ3 on CX3CR1-negative cells (K562 and CHO) but K36E/R37E did not, suggesting that FKN-CD can activate integrin at the cellular levels in a manner similar to that in cell-free conditions. We hypothesized that FKN-CD enhances ligand binding to the classical RGD-binding site (site 1) through binding to a second binding site (site 2) that is distinct from site 1 in αvβ3. To identify the possible second FKN-CD binding site we performed docking simulation of αvβ3-FKN-CD interaction using αvβ3 with a closed inactive conformation as a target. The simulation predicted a potential FKN-CD-binding site in inactive αvβ3 (site 2), which is located at a crevice between αv and β3 on the opposite side of site 1 in the αvβ3 headpiece. We studied if FKN-CD really binds to site 2 using a peptide that is predicted to interact with FKN-CD in site 2. Notably the peptide specifically bound to FKN-CD and effectively suppressed integrin activation by FKN-CD. This suggests that FKN-CD actually binds to site 2, and this leads to integrin activation. We obtained very similar results in α4β1 and α5β1. The FKN binding to site 2 and resulting integrin activation may be a novel mechanism of integrin activation and of FKN signaling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View