Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions

Abstract

Natural killer (NK) cells are an important early mediator of host immunity to murine cytomegalovirus (MCMV) infection. However, MCMV has evolved mechanisms to elude recognition and clearance by NK cells. We have identified an MCMV immune evasion protein that impairs NKG2D-mediated NK cell antiviral activity. Infection of BALB/c 3T3 cells with the Smith strain of MCMV resulted in strong down-regulation of H60, a high affinity ligand for NKG2D, from the surface of virus-infected cells. The MCMV m155 protein specifically down-regulated H60 without affecting expression of the other known NKG2D ligands, RAE-1 and MULT-1. Treatment with the proteasome inhibitors lactacystin or epoxomicin reversed m155 down-regulation of H60. An MCMV mutant virus lacking m155 was severely attenuated in BALB/c mice; however, treatment with neutralizing anti-NKG2D monoclonal antibody or with NK-depleting anti-asialo GM1 antisera restored virulence of the mutant virus. Thus, down-regulation of H60 by m155 is a powerful mechanism of inhibiting NKG2D-niediated antiviral function.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View