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Abstract

This paper investigates the question of how much information
firma can acquire about the demand for their product when they learn
from experience (i.e. from data about past sales and prices). The
main issues are whether firms will eventually learn everything about

decisions of firms. It is shown that even when demand is determin-

istic, strong conditions are required, such as continuity and quasi-
concavity of the profit-function, to guarantee that a monopoly will

eventually learn all the relevant information about demand.
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Section I: Introduction:

In almest all existing theories of market bricing it is assumed that firms
know their demand curve. This is true in the theory of monopoly-pricing as well
as in most theories of oligopoly pricing. It is such a well-accepted assumption
that most economists do not even bother to justify it. Yet one may wonder how
firms do acquire the knowledge about their demand curve. In practice firms
often conduct market surveys. These give some idea about the profitability of
a given market. For instance, they inform the seller about what characteristics

of the good consumers like best. 'They also produce estimates of volume of sales

at a given price. However, these surveys do not reveal the entire demand curve
to the firm. At best, they allow the firm to find one point on the demand curve.
An alternative source of information for firms is data on current and past
sales at the prices set by firms today and in previous periocds. Such data is
more or less infdrmative depending on the stability of demand over time and
mainly on the pricing-rule followed by firms. For example, if the firm never
(or rarely) moves its price then the history of past sales will provide a goed
estimate of expected sales at that price. Or if the firm oniy allows small
price-variations then the history of past prices and coutputs will provide a good
estimate of the elasticity of demand, at one price. Electric utilities, for
example, follow price rules that typically involve small price-variations so

that the numerous existing econometric studies of U.S. residential electricity

price-elasticities at ocne point on the demand curve. They generallyido not
provide information about the entire demand curve.

The subject of the present paper is to determine exactly how much a firm
can learn from past data, when it sets prices at every period so as to maximize

proefits. The main issues here are: how do learning considerations affect the



Lt

firm's pricing decisions and assuming that demand remains stable aver time will
the firm eventually learn all the relevant information about demand?

The firm's learning process through time can be viewed as an adjustment
process towards some equilibrium in the absence of an auctioneer: Suppose that
the firm experiences a shock on demand. It will notice this shock, for example,
by observing that its inventories are unusually high or low. While it may know
that demand has changed in a2 certain direction, it may not know exactly what-
the new demand looks like. It will then grope  its way towards the new
equilibrium by experimenting with prices. Thus the learning problem studied
here is relevant to stability theory. There is one major difference, however,
with standard stability tﬁeory; namely that hers it is costly to experiment.
The firm foregoes short-run profits by sometimes setting its price too low or
too high. If learning is costly, then it may well pay the firm to stop learning
before it knows all the relevant information about the new demand.

As a first Step towards understanding learming by experimentation, we
consider the case of a monopoly. We hope to deal with the oligopoly case in
future research. We model the firm as startiﬁg with an initial prior
distributien over some space of demand functions. These demand functions are
assumed to be deterministic. When the firm sets a price, it observes how much
it was able to sell at that price and uses this information to update its prior
distribution using Bayes' rule. There are two types of firms one can consider

in this context: myopic and non-myopic firms. The myopic firms do not

“understand that by manipulating today's prices, they can gain more or less

information about demand tomorrow. They are, however, able to use data about

past sales to update their priors. We analyze both types of learning behavior.
The existing.literature on this question comprises only a handful. of papers:

Rothschild (1974); Grossman-Kihlstrdm-Mirman (1977): McLenran (1984); and




Lazear (1986). With the exception of Lazear, all these studies assume that the

firm's demand is stochastic. Rothschild (1974) pointed out that when demand
is stochastic the firm's learning problem is essentially equivalent to a
multi-armed bandit problem (see DeGroot (1970)). Through this analogy, he was
able to draw on well known theorems in multi-armed bandit theory, to conclude
thét a tirm will always stop experimenting before it has full knowiedge about
the demand curve and that as a conseduence the firm may end up setting a price
different from the full-information monopoly price. In other words, market
experimentation does not lead to perfect knowledge bf demand.

As Rothschild pointed out, this is an important conclusion since it suggests
that existing theories of moncpoly pPricing cannot be viewed as representaticns
of a firm's pricing behavior, once this firm has decided ‘> stop learning. The
long-run equilibrium cutcome cannot be separated from the history of price
experiments, and from the firm's initial prior infoermation. In other words,
when learning is incomplete in equilibrium, we have a situation where the

long-run equilibrium is historv-dependent. The significance of this conclusion

is that standard comparative statics analyses have to be abandoned when learning

is incomplete and history becomes a fundamental explanatory variable.

In a subsequent study, McLennan also obtained that when the demand funetion is
stochastic firms will not have all the relevant information about demand in

long-run equilibrium. Thus both of these studies seem to indicare that the

incomglete-learning results stem from the stochastic nature of demand. Indeed,
if one looks at the deterministic version of the demand-function in MclLennan

then the firm will end up with complete knowledge of demand in long-run

equilibrium.



Cur study assumes that the firm faces the same deterministic demand every
period, and we show that Rothschild's incomplete-learning result does not depend
on the stochastic nature of demand. Assuming a deterministic demand simplifies
the analysis considersbly. The firm's inference problem is now trivial (the
firm learns a point on the demand curve whenever it sets a price). Simplifying
the inference problem allows us to characterize the firm's learning strategy
much more precisely. We are able to substantially generalize Rothschild's and
McLennan's results and to identify the reasons for which a monopely may want
to stop learning before knowing the true demand curve. In addition, a simple
methodology is develeped here to handle adaptive-learning problems in
deterministic settings. This methodology may be applicable to a wide rénge af
problems.

The paper is organized as follows: Sections II and III set out two polar

cases of imperfect knowledge about a discontinuous deterministic demand, which

can only be learned through price-experimentation. In the first case the
monopoly price can take a finite number of values but the quantities sold at
each price are uncertain. In the second case, all the consumers have the same
reservation value, whicﬁ is unknown. Section III develops a useful analytical
tool for learning through experimentation problems, which is used in Section.
IV. This last section discusses the extension of the results obtained.in

Sections II and III to arbitrary continuous demand curves. It is argued that

eventually set a price arbitrarily close to a local optimum of the profit
function but may never learn the global optimum. Finally, Section V cffers some

concluding comments.




Section II: The case where the consumers' reservation values are distri-
buted on a finite grid of prices.

In this first model, we assume that there are two types of consumers:
those who attach a high value to the monopolist's product and those who
attach a low value. Each consumer purchases at most one unit of the good.
Thus some consumers have a reservation value v and others a reservation

L

value v2 , where Vl > VZ .

The proportion of consumers with a high reservation value is given by
u e [0,1] . The consumers are infinitely lived and have the same demand
for the good each period. The monopolist produces the good at unit cost,
c=0 , and has a discount factor & e (0,1) . Every peried he can set a
new price. If one period is a day, for example, then the monopolist must
charge the.same price to every customer during that day. (One can imagine
a situation where the firm advertises its prices in the newspapers and thus
can only change its price by changing the advertisement.)

If the firm has complete information about demand it will set its

prices as follows:

P =y <=> U e v 2V

(1)

P = <m> Yy v y_ < v

L 1

| Thus, when the firm has complete information about demaﬁd, the price Pt
is constant through time. WNow suppose that vy and v, are known to tha
firm, but that u is unknown. Then, if the firm sets the initial price
P =v » it will learn nothing about u . Hence, if it is optimal to

set Pl = VZ » it must also be optimal to set Pt = v2 s for all ¢t 2z 1 .




Next, if the monopolist sets Pl =V, o he will learn immediately the true
value 0of u and he will set Pt as in (1} for all t =z 2 .
Let £(u) be the prior distribution of 1 on [0,1] , then the

expected net present value of profits for the monopolist, when he sets

?l =V is given by:
u 6v, L Suv,
(2) Hl = 6 (wl +-l_—6) £(u) du + |_ (szl Y13 )y £(u) du
U
v
where U = 2 .
V1

And it will be optimal to set Pt =V, for all t , when
v
2
(3) 1= 2 Iil

where the LHS of (3) is the net present value of profits, when Pl =V, is
the optimal initial price. Wow suppose, for example, that f£(u) 1is

uniform on [0,1] , then we obtain:

2
vy 5v2

@ty R e

v

so that E%g 2 Hl' is equivalent to
71 —

{5)... — S5 1+ /1=6 e
vy

This model is very simple, but rather instructive. Firstly, note that

the monopolist may choose to set Pt = vz for all t , while the true:

proportion u may be such that wv, > v, That is, the monopolist may

set the wrong price forever, Thus, in this very simple model we obtain

similar conclusions to those of Rothschild (1974) and Mclennan (1284), The




main difference between our model and, for example, Rothschild's model is
that here when the firm learns something zbout the demand, it learns
everything. The inference problem in the context of é deterministic demand
ig trivial. 1In Rothschild's model, on the other hand, the firm's inference
problem is complicated because demand is stochastic, He shows that even if
the firm ends up setting the right price, it will never be certain of this
fact. 1In our model, this is only true if the firm sets P = v . If the.

t 2
firm gets Pt =V for some t , then it learns everything about demand
and it will know that it sets the correct price.
Secondly, we obtain the Grossman-Kihlstrom-Mirman (1977) result, that

learning considerations tend to push up prices. If the firm were only to

set one price forever, then it would choose

(6}

(4 being uniformty distributed on [0,1] , the mean prbportion is given
by U= 1/2)., However, if the firm takes into account learning considera-
tions it will set:

Vi

(7 P, =v = —— 2 v

1 1 + /13 2

n

“Thius, when thefirmwishes to learn—about its demandcurve - (irer; & > 0]
it tends to set higher prices.

Finally, we also obtain the.result that prices are either constant
through time or decreasing. This is akin to a result obtained by Lazear

(1986) in a two-periecd model.



Do these results extend to more general models where there are n
possible reservation values, (vl,vz,...,vn) and where demand is not
necessarily decreasing everywhefe? Unfortunately, only the rasult of
incomplete learning is robust. As soon as we have more than two
reservation values, the other two results are in general no longer valid.
The following two examples illustrate the possibility of having on the one
hand, prices increasing over time and on the other hand, the initial price
being set below the price that equates marginal cost with expected marginal
revenue (in other words, learning consideratioms pull prices down).

Example 1: Suppose that there are three possible reservation values,
V2V, 2V, o, and that Hyslosly are respectively the proportion of
consumers with reservétion values, Vi Y, and Vaq (ui e [0,1] ; 1 = 1,2,3

3 _
~and ifl My = 1 }. Each proportion uy can take two possible values.

.fese are given in the table below.

! Ho M3
a 2/3 0 1/3
(1-a) 0 - 1/3 2/3

" (where o = Pr(u1 = 2/3: Mo =0 uy = 1/3 Y. Thus uy, can take the
value 2/3 with probability a and zero with probability (l-a) . The
moncpolist does not know in advance what the proportion of consumers with a

particular reservation value is, but he knows o .




We shall assume that 3v3 >'v2 and 2v1 > 3v3 y S0 that if a =1 |,

the optimal price is Vo and if « =0 , the optimal price is Vq

When @ ¢ (0,1) , the momopolist can learn the true proportions by setting

the initial price P, equal to v . His intertemporal profits then are:

1 2
2v v, v v
- 2 i 2 3
el s5agmy 1 r U L5155
If he sets Pl =Vy o he learns nothing and his intertemporal profits are
given by:
v
3
1351535

If he sets Pl =V he also learns the true proportions and his

intertemporal profits are:

v, v

- 1 - 3

We then have prices incfeasing from Vs, to vy with probability «

whenever Hz > Hl and Hz > HB . That is, when:
v
. 2
(8) @ < m————
ZVI—VZ

(3v3 - Vz)(l-ﬁ)
vy * 6(2v1 -V

(9 a >
g = vy

5 (3v3 - VZ)(I-G)

+ (2vl -V, - 3V3)

v

(10} >
2v1 v2 v2

And {10) is always verified when & 1is large or when vy is small.

Specifically when



3v3V2

1 3v3wv2

(11) v

This example illustrates the possibility that the monopolist will be
cautious in experimenting with prices and will only raise prices as he
beccmes more optimistic about demand.

Example 2: Suppose now that there are four possible reservation
values v, > v_ > v3 > v, and that the proportions HysHyslqsl, are given

1 2

as follows:

IJl uz !-13 !-14
@ 2/3 0 1/3 0
l-a 0 2/3 0 1/3
: . 2v 2v 2v 2v1
We assume that: =5 > av3 + {(1-a) = and that 3 > a =5 -

Then, if the monopolist can only set one price forever, he would choose

P = v2 . We will show, however, that if he can set a different price each

periocd, it is possible that learning considerations will induce him to

first set Pl =V, and then Pt = v, if it turns out that uy * Ky + Ha

=1, Otherwise he will set P =v, forall t22 . If P =_y3”mthe

monopolist's expected intertemporal profits are:

52vl 2v3 52v2
Ty =alvg * gy 1+ () [ 5%+ 5y ]




alv 62v

1 2
T = e - —_
A Yot RS R S Tg Py
Finally, v, and v, are completely uniformative prices, sg that
2v v
_ 2 _ 4
L=3as ™ %= oy
Now, Pl =V, is optimal if and only if H3 > Hi for i =1,2,4. And,
2v
_ 3 2
5{3 > IIl <=> g < 2vl-v3 . Assume that 3V, > v, so that rr2 > II4 , then
2
= (v,~v
3 2 3
Ty > I, <=> a> Zv, v,

73
3T 7318 T 39

Therefore, for o small enough and & large enough, all the inequalities
are verified and P = Vq is optimal. Thus, this example shows that the

principle that learning considerations tend to push up prices is not valid

in general.1




Section III: The case where all consumers have the same reservation value.
Model II.

In the preceding section, we developed a medel where the reservatibn
prices were known to the monopolist, but not the proportion of consumers
corresponding to each reservation value. Here we will analyze a polar
case, where all consumers have the same reservation value, but where the
monopelist does not-know this value. Thus, when hé sets a price, cthe
monopolist either serves the entire market and learns that the reservation
value is above this price or he does not serve any customer and learns that
the reservation value is below the price he set,

We shall consider two typeg of firms: wmyopiec and non-myopic price
setters. The former learn from experience but do not understand that
today's experiment can be maﬁipulated so as to acquire more or less
information tomorrow. The latter are aware of the effect of today's
pricing décision on tomorrow's value of information.

Assume that the consumers' reservation value v can be any number in
the interval [O,i] . As in the previous section, consumers purchase at
most one unit everf period and do not behaverstrategically (i.e., they buy
whenever Pt < Vv ). The firm produces the good at unit cost ¢=0 and has
a discount factor & ¢ (0,1) . The monopolist's prior distribution on v

is assumed to be uniform om [0,1] .2

This is essentially the same as Lazear's model except that here we
have repeat purchase while in Lazear (19865, consumers buy the good only'
once. It turﬁs cut that allowing for repeat purchase changes the
conclusions substantially. While the above model is 6verly simplistic, it
can be viewed as a representation of markets where consumers' tastes are

very similar and vhere each consumer has a unit demand. Surprisingly, even
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within such a simple framework the firm's dynamic pricing policy is very
difficult to characterize.

We begin with the decision problem faced by a non-myopic monopolist:
For any pair (x,y)} where 0 ¢ x <y g 1l , we denote by Vd(x,y) the
maximum expected intertemporal profits when the firm's initial information
is that v 1is uniform on {x,y] . The optimization behavior of the
non-myopic firm can then be described as follows: At time t =10 , it
chooses some price PO £ {0’l],= IO . Since all consumers are identical,
there are only two possible ocutceomes: Either the firm serves the entire
market at price PG (we denote this by uO = ]} , where uﬂ is the volume
of sales at time t =0 ), or the firm does not sell to anyone (this is
denoted by uO =0 ). If uO = 1 , the monopolist can update his
information aboutr v to Vv g [Pd,i] = Il . Similarly, if 'uo =0 , the
monopolist's information about v becpmes: v g {0,?0] = I1 . Now, the
optimal choice of the initial price PO made by arnon-myopic monopolist is
the solution to the following maximization program:

P* = arg max [(1-P.)P. + s(1-P.) V (P.,1) + §P..V (0,P )]
Pog[o,l] 00 G §°0 0 s 0

Thus, the characterization of the optimal price schedule followed by a-
non-myopic firm involves essentially the study of the valuation function

v . This is the main difference with the case of a myopic firm. The

latter simply chooses P0 to maximize:

0
max Pr(y =1/PO)-PO = (1-PO)PO .
POE{Osl}

As in most dynamic programming problems, it is useful to redefine Vé as

the solurion to a Bellman equation., This equation will enable us to derive
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important properties of this valuation function and to characterize the

learning process followed by the firm.

Proposition l: Vé(x,y) is the unique bounded selution of the following

Bellman equation:
(B): Vix,y) = max 1/y-x {{y-2)z + 8+(y=2)V(z,y) + 8§(z-x)V(x,z)} .
ze[X,y]
Proof: Suppose that the monopolist starts with the information that v is
uniformly distributed on [x,y] ; When he sets the first-period price,
ze{x,y] , he will know at the end of period 1 whether wvelx,z] or

vefz,y] , and his expected profits will be:

T(z,2z,y) = 229, (z.x,7) + 89, (2,%,y)V (z,y) + 3(1—¢1(z.x,y))'V5(x,z)
=z () + SCI V(e + 8022V (x,2)

Now, Vd(x,y) is the maximum of [(z,x,y) over =z ¢ [x,y] . This
shows that V6 is a seolution of the Bellman equation (B). Next, we show
that VG 1s actually the unique bounded solution of this equation. Vé(x,y)
is bounded since it can be written as an infinite sum: Eét'ﬁt(x,y) ,
where 0 S Ht(x,y) €1 for 2ll t and all pairs (x,y) . (Ht(x,y) is the
maximum expected profit at time t given the prior information at time O:

v e [x,¥] .f

Now, let BO denote the space of bounded functions on [0,1]2 . BO

is a Banach space for the uniform norm defined by: !f|m =

sup 2|f(x)| <+« for all f ¢ BO . Next, consider the following
xe[0,1]

mapping [ :
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0 0
V> I(V)
where:
! = y...:..z. 1-___2. z_—)i
(1 T (x,y) zs?::fyl{ yx 27 . y-x Vizoy) + 8 y=x VG2 }
= gv(x,y,Z)

We know that VG £ BO is a solution of the Bellman edquation (B) (i.e., a

fixed point of the mapping I ). The following lemma establishes that such

a fixed point is unique on BG .

Lemma: [ is a contrazetion mapping on BD .
Proof of the lemma: Let ¥V and V' ¢ B0 ., and
zv(x,y) = arg max gv(x,y,Z)

zE[X,¥]

We have:

[H(V) (X,Y) - H(V')(X,Y)l |gv(x!Yszv(st)) - gvl(x,YszV!(XsY))t

WA

gv(x,y,zv(x,y)) - gv,(x,y,zv(x,y))
(VhEnEVEr gv(X,y,zv(X.y)) E gvy (x3Yazvf (X,Y)) ’

which we can assume w.l.o0.g.)}.

Thus:
I 2, (x,7)-x
SRR 1 | 2 SR | 6. 0 B S d [V (%yz (7))
|H(V)(x.y) ¢ (x,y)’ y - x (= zy ey
' vz, (x,7)
- Vix,z (x,9))] + R (Viz Gy)57)
- V'(ZV(XsY),Y)I}
z (x,y)=-x+y-z (x,y)
gs.v__vll .{V v ]
$ S|V -]
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Since 8 <1 , I is a contraction mapping on BO ,» which proves the
lemma, Now, givén that B0 is a Banach space, I has a unique fixed

point on B, , namely V This completes the proof of Propositiom 1. [J

0 §

V5 as the unique fixed point of [ can be approximated arbitrarily

closely by using the fact that:

V, = lim T (£)
Ti-»+ea

n

. {where: 1) £ is any element of Bo ;: 2) 1T is the n-iterate of J 3

, norm on BO W)

3) the limit is taken w.r.t. the |-
Using such an iteration procedure we have been able through simulations to
map Vé(x,l) as a function of x ¢ [0,1] . The figures below reprasent

Vs(x,l)_ for three different values cf § .

Insert Figure | about here.

Corollary: Vs(x,y) is homogeneous of degree 1, convex and increasing in

x and y . .

Proof: Given that VG is the unique fixed point on BO of the con-

order to prove this corollary, to show that for all V ¢ BO where V 1is
homogeneous of degree 1, convex, and increasing in x and y , that (V)

inherits the same properties. So, let V ¢ BO verify these three

properties:
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Figure 1
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(a) (V) is homogeneous of degree one,

AY~Z AV=2

(V) Ox,Ay) = mnax (T vz + & « V{(z,Ay)
ze[ A%, Ay] A(y=x) A(y-x)
Z=-AX
-+ 5-—1—(;-_T) V()\K,Z)]’

- t - 4
max  { L%~ oyez! + 5. *y_LiV(}\z',Ay)

z'efx,y]  TF
'-
+ & ;-xx V{xx,xz'}} , where z' = %
= A-H(V)(x v by homogeneity of degree 1 of V ,
»

(b)) TI(V) is convex.

Using the fact that any z ¢ [x,y] can be written as
z = (y-x}q + x , where q €[0,1] , we can express [I{V) as:
H(V)(X y = omax {h(q,x,y) = (1=q)«((y-x)q+x)
77 qef0,1]
+ 6(1-q)+V((y-x)q+x,y)
+ §q+V{x, (y=x)q+x) }

Given that V ¢ B, is convex, and that (x,y)r? (y-x)g+x defineé a linear

0
mapping on [0,1]2 for each q £[0,1] , we have:
(a) for each q ¢[0,1] , h(q,%,y) 1is convex in x and y , and
(b) for each (x,y)s[D,l]2 » hiq,x,y) is continuous in gq

Thus, M(V) 1is the upper envelope of a continuous family of convex

_mappings so that [O(V) must also be convex in x and y .

(c) nm(V) is increasing in x and Vv

For each q ¢ [0,1] , (X,y)= (y-x)gq+x = qy + (1-q)x is increasing in x
and y since 0 £qs5 1l . Given that V 1is assumed to be increasing in
x and y , for each q ¢ {0,1] , h{q,x,y) increases with x and vy

and also 1I(V) = max h(q,x,vy).
(x,¥) qef0,11




This establishes the coroiléry. O

Proposition 1 and its corollary prévide us with the main analytical
tools for solving our problem. To see how powerful these tools are, it is
instructive to contrast the case of a non-myopic firm with the myopic case.

We know that a myopic price setter chooses his initial price PO so

as to maximize his short-run expected profit: (l—PO)PO y i.2., he chooses

Pa =1/2 . Then, if uo =1 , i.e., if the firm sells at price P6 , it

will learn that v ¢ [1/2,1] = Il . In this case the myopic firm will

choose Pl at time t =1 so0 as to maximize:

1
nl(?L’Il) Pr{u --1/Pl and VEII).PI

U

Pr(vZPl/VEIl = [1/2,1])-Pl

(lfPl)
=117z " Bz 2Q-EpeRp

Therefore, when u 1 (i.e., v 2 1/2), the myopic firm will again choose

its optimal price P? equal to I/2. But this price is uninformative since

we already know that v is greater than 1/2. This means that a myopic

monopolist who sells at time t = ¢ will fix P: =1/2 forall tz1 .
In other words, it stops experimenting from period 1 on.
What happens now if the monopolist is non-myopic? Would it stop

experimenting once it is known that v 2 1/2 (or more generaily, by

__hqmqgeneit? of degree one, when v e [x,v] with =x/v 2 1/2 )7 This

question, among others, can be answered by making use of Proposition 1 and
its corollary.

Proposition 2: For & e (0,1) , let Xg = 1/2-5§ , then:

iy .

{a) 'Vﬁ(x,l) = x/1-8 if and only if x ¢ Exé,

In other words, whenever x 2 Xs o the optimal policy for a non~mvopic

monopolist whose prior information is v ¢ [x,1] is to play Pc = X




forever and not learn anything more on v . However, for 0 < x < x

the non-myopic monepolist will optimally set its first-period price P
strictly above x

(b) VG(Osl) > M‘S(Oal) for 5 > 0 I Where

_ 1 . , .
Md(O,l) = =) (1-8) is the maximum expected intertemporal

profit of a myopic monopolist with prior information: v £{0,1]

Proof: Let Wa(x) = Vs(x,l) for all x e [0,11 . .(By homogeneity of

degree one of V ,» we have:

é
Vﬁ(x,y) = yowa(x/y) , for all 0 g x<ys1l.)
{(a) let z be the smallest x such that Wé(y) = y/l-§ for all

vy e [x,1}] . Then, from the Bellman equation (B), we must have:

= 1 - - Zz
ws(z) = max o— {y(l-y) + 6Q1 y)Ws(y) + 8(y Z)YWG(Y)}
YE[znll
« pax - { y(l-y) + 5(1:?)? N cs(y:Z_)z } = max G(y)
i=-z 1-4 1-§
velz,1] velz,1]
since z/y 2z and y 2 z and by definition of z . The first order

condition for the above maximization is:
1-2Y+62=09

1+4
i.e., y = 3 z .

Now, y»z <=> z < L = x
e 2=8 §

So, for =z 2 xa , we must have:
y* = arg max G(y) =z , i.e.:

_ .2
W (2) = 6(2) = 75

This proves that V(x,l) = u/l-§ 1is the solution of the Bellman

equation (3) on the set {xef{0,1]1/x = Xx.} , and that xé, is less than or

]
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equal to the smallest x such that Va(y,l) = y/1-8 for all vy ¢ [x,1] .

Since we know from Proposition 2 that VG is the unique bounded solution

of this Bellman squation on [0,l] , we necessarily have:

X
Vs(x,l) =155

3 for all x ¢ [xs,l] s

Insert Figure 2 about here

and Va(x,l) = x/1=6 for = < x x close to x,. .

5’ 8
But since VS igs convex (Propositicn 1), there cannot be any other
X < XS such that: Vs(x,l) = x/1-§ . (See Figure 2 above.)

This establishes (a).

(b} Take the case of a myopic monopolist starting with the prior
information: v ¢ [0,1] . We know that such a monopolist will choose to
set the price Pa = 1/2 at time ¢t =0 . And, if the firm sells at that

price, it learms that v e [1/2,1] . But them, our myopic agent sets

Pg = 1/2 forever, i.e.:

1
Mﬁ(f’l)" - .

mnin the other case, v e[0,1/2] , the monopolist faces tha same
problem as if v e [0,1] , by homogeneity of degree cne. Thus, the

maximum intertemporal profit he can expect is:

. MG(O,K)

NI»—-—-

1
M6(O’-2_)-

We have:



4 VcS {(x, 1)

Figure 2

A hump~-shaped Va(x,l) » as in Figure 2, is imposéible.




Ll ol 1 L 1
M (0,1) =5 v (5 + M (5, 1)) =5 M0, 5)
S S S
T T T M0
=> M (0,1) + (4=6) = —=
60 -3
=2 M (0 1) =......_._.L............._.
s (4-8) (1-6)

In the non-myopic case we have the following inequality:

L e l,8y 1 Sy oo L
Va(O,l) z R + ) Vé( 7 1 ).+ 5 v. (0, > )

§

where the RHS represents the non-myopic firm's profit when PO = 1/2
By homogeneity we have:

V0, 3) =% V(0,1
for &§ > 0, 1/2 4is strictly less than X5 = 1/2-8 . Therefore, from
Proposition 3(a) and from the convexity of V(5

1l

V(g D =W (3) > s
Therefore:

v (0,1) >-}+—+%ﬁ+%v6(0,1)

I

feew, V(0,1 > 7Ty

= Mé(O,l)

Proposition 2 is proved. [J

Thus a nonwmyOPic firm continues experimenting, unless its information
about v 1is such that v ¢ [xa,l] . Notice that when § = 0 this
corresponds to the myopic solution and when § = 1 , the firm experiments

until it has all the information about demand.



An important consequence of Proposition 2 (the main result of this
section), is that unless § = 1 , the non-myopic firm (and a fortiori the
myopic firm) never ends up with perfect information about demand. As a
result it cannot be certain that iﬁ is setting the best pos#ible price,
Theorem 1:

(a) Except when the true value v 1is zero, the sequence (Pt(v))

is eventually non-decreasing.

(b) Except when the true value v is zero, the nested sequence of

information sets I_ = [v,

. A ;t] will never converge to the

singleton {v} . The length 2(It) will remain bounded away

from 0 when t » =« ,

(Part b) of the theorem is represented in the diagram below:)

Insert Figure 3 about here.

Although the sequence (Pt) may converge to the true value v = v, » the
monopolist’s information converges to I, = [v,v] , where v > v 3 and
the monopolist does not know that he is setting the correct price.

Proof:

(b) Suppose that the true reservation value v 1is strictly positive,

and suppose that the sequence of information sets (It) (where.I0 = [0,11)

converges to the singleton {v} . Then, for t 2 T (T large enough),
= v . v 2 . = -G r
It [!t ’ Vt] mist be such that: Et/vt‘ Xg 1/2=6 . But then, by

homogeneity of degree one of the valuation function VS , and from

Proposition 3(a), we know that the monopolist will sec: Pt = v for all

-t



[
i
H
L]
L 4
[
—

—————— 1
= = d
Iz [Plsl] I2 [Pl"z

Figure 3



t 2T . This implies that It = IT for all t 2T , a contradiction of
the assumption that It - {v} .

(a) Assume that v = Q0 and suppose that (a) is not satisfied for
some price sequence Pt(v) . Then we could always extract a subsequence

of Pt which is decreasing and bounded below by v > 0 (if Pt < v for

some t , then necessarily P Pt and Pt would not be decreasing!).

2
t+i-

Therefore the sequence Pt should converge from above to some accumulation

point w 2 v > 0 . This means in particular that for t large enough,

- the price Pt+1 set at time t+l should be chosen arbitrarily close to

the previous value Pt s which is also the upper bound of the information
set of the monopolist at time ¢+l : It+1 = [v, Pt] .
However, the following lemma excludes that Pt+1 be too close to
P_:
t
Lemma: There exists a uniform bound k6 £ [xa,l} such that for all
X € {O,XG} s the optimal initial price PG(X) played by the monopolist

whose prior information is that v ¢ [x,l] verifies: Po(x) <k

5 -
The proof of this lemma is technical and c¢an be found in the appendix.

However, the intuition is simple: By thoosing his initial price Po(x)

arbitrarily close to 1, the monopolist loses a lot in terms of his

short-run expected profits (l-PO)PO . On the other hand, he does not

gain much in terms of information if it turns out that PO > v (u0=0) .

23

“ In this case, his information set becomes [x,PO] = Ii , which is almost
as large as the previous IO = {x,1] .. The gain in terms of information
(learning) and also in termé-of the future expected profits is, however,
substantial if PO < v (u0=l) . But this case can only occur with a very

small probability when F is arbitrarily close to l.

0

Now the proof of (b) is immediate: Suppose that the effective

sequence of prices (Pt) is eventually decreasing (e.g., for t 2 tO Y.
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is such

that 2 % for ¢ large. In this case (Pt) would become stationary

t P
t

P
t

at Pt , 1L.e., non-decreasing, a contradiction. Or we have:

(1{5
for all t , in which case the lemma applies so that, by homogeneity of

our problem, we get:

{(where k., < 1)

P_ = k5 * sup It =k, + P s for all ¢ 2 ¢t 5

t 8 t-1 0

But this is impossible, since we know that (Pt) cannot be decreasing
(for t 2 1:0 ) without being uniformly bounded below by v > 0 .

This establishes (a} and the theorem is proved. [J

We conclude this section with a few remarks:

1) We have shown, part (b) of the .neorem, that except when ;he true
valuation v is zero, the sequence of prices (i.e., the optimal
intertemporal pricing policy when v 1is the true value) is eventually
non-decreasing., This property is mainly a consequence of the fact that it

is never optimal (even for a non--v+pic monopolist) to choose the price Pt

at any period £ , too close to ta= ppeT bound of the information set It

at that time; we must have instead: Pt s k5 + sup It , where ks <1 .
The intuition is that by setting the price too close to the upper bound,

.the monopoly faces too high a risk of not seiling anyziing

2) To characterize. the pricing path Pt(v) further, we need to make
additional assumptions. For example, we are unable to obtain the result
that Pt(v) is decreasing at first and eventually constant, as in Lézear
(19868), without making additional assumptions on the information set
ve [0,I] . 1In fact, we can prove that if v e [0,1] the price sequence
may be sometimes increasing; This follows straightforwaraly from the

proposition below:



it

(W]

Proposition 4: The optimal initial price P0 set by the monopolist whose

prior information is v ¢ {0,1] satisfies the inequality:
0 § .
The proof can be found in the appendix.
Whenever v 2 P the next price, P > will be strictly greater than

0 i
PO (see Proposition 3(a)). Thus, prices may actually be increasing. The
reason why Lazear obtains a decreasing sequence of prices 1is that consumers’
purchase only once.3
3) Experimentation is costly because the firm discounts the future

{(8<1) and as § tends to 1, x tands to 1, so that in the limit the

§
firm only stops experimenting when it knows the exact value of v . Now,
8 can be interpreted as a measure of the frequency of pricé offers within
a giveﬁ period of time. Then one may ask what prevents the firm from
making an arbitrarily large number of price offers in a given time
interval. Several informal arguments can'bg given, which explain why the
interval between two price offers is not arbitrarily small. TFirst, the
-flow of demand may be irregular: for example, consumers may_purchase the
good only on Saturdays (or for some goods, only every Christmas). Second,
demand is usually stochastic. Then the firm may have to keep its price

fixed for awhile in order to separate the random component from the

deterministic component. More generally, whenever demand is stochastic,

the firm's inference problem is harder and it takes time to learn expected

revenue at any given price.




Section IV: Continuous demand funcrions:

The models developed in Sections II and III are special in at least cne
important respect: the demand function is discontinuous. Here we consider
continuous demand functicns and ask whether continuity is a sufficient condition
to achieve complete learning of the monopoly~price in the limit. With a
centinucus demand function the monopolist can learn about the demand function
without incurring too high experimentation costs by keeping price-variations
small. This was not possible in the examples analyzed so far. Consequently,
one may conjecture, first, that since experimentation costs can 5e arbitrarily
small with a continuous demand, the firm would enly want to stop experimenting
when it has learned the monopoly-price. Second, since experimentation only
stops when the monopoly-price is attained cne may believe that the firm will
eventually learn the monopoly-price. ' '

To illustrate the first point, consider the following modificaticn of the
demand functién defined in Section III: instead of having all consumers
purchase one unit when p < v , suppose that consumers buy q = min {v-mp:1}
units when p < v/m (see Figure 4). (We assume that m is known to the firm.
but that the firm's prior beliefs over v are given by the uniferm distribution
over [0,1] .)

It is straightforward to show that under the modified demand curve, complete

TTEATNIng is the only equilibrium outcome. The difference with the discontinucus
case is that the cost of local price experimentation can be made arbitrarily
small (if the firm varies its price slightly above some price at which a=1
it loses at worst only a small fraction of demand, whereas in the discontiﬁuous
case it couid lose the entire market). Since experimentation costs can be made

arbitrarily small, it is always profitable for the firm to Keep on experimenting
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until it reaches a price at which the derivative of the profit-function is zero.
That is, until it reaches a local optimum. It turns out that in the above
example there is a unique local optimum which corresponds to the moncpoly price.
Thus, the firm only staps experimenting when it learns the monopoly-price.

In the above example, the key point is that the firm continues experimenting
until it has reached & price at which the derivative of the profit-function is
zero. For more general spaces of continuous demand functions tﬁe firm will

follow the same learning rule only if the profit function is known to be

sufficiently smooth. We establish this in the theorem below:

Let 1(P,8) denote the one-shot profit function where 8 is some unknown
parameter. We assume that [{(s;8) is C2 in P and that {-;8) and its
derivative with respect to P (denoted HlﬁP;S)) dre measurable in 8
Finally, let Hll(P,B) denote the second partial derivative of I(P;8) with

respect to P and let Ht denote the information set of the menopolist at time

t+1

Theorem 2: Assume that HII(P’B) is locally bounded in P ; that is, for all
P there exists a > 0 and a neighborhood V{P) such that EHll(g,G)! < g
for all g = V(P) , tniformly on 8§ ¢ Ht

Then, at each time period t+! the firm either keeps on experimenting by

.setting P ., #P ., or mPtmmismsugh_Lhat"mEg@LKI@BET&)+”¢_HE}.zmou:w__m”m””

The proof of Theorem 2 can be found in the appendix. Here we provide a sketch

of the praof:

Sketch of Proof: The intuition of the proof is the rfollowing:




Suppose that the siope Hl(Pt,S) of the profit function T at P  is
non-zero with positive probability given information Ht (i.e., EB(IHI(Pt,B)f
/ Hc) > 0 ) . Then, by experimenting with a new price P = Pt+l close enaugh
to Pt but different from Pt ,» the monopolist can ohbtain a very good
approximation of the slope HiiPt;B) and in particular he can learn the sign
of this slope: This, in turn, will enable him to choose a price Pt+2 next
period, such that: P:+2 > Pt if Hl(Pt’B) >0 and P <P if Hl(Pt,S)
<0 . The assumption that the second partial derivative Hll(P,B) is uniformly
bounded around Pt guarantees that profits H(Pt+2,8) cannot change too
rapidly as Pt+2 moves away from Pt ; in particular the monopolist can always
choose Pt+2 So as to make sure that his short-run expected profits ar this
point are strictly larger than H(Pt,e) : E(H(Pt+2,8)fPt+l=P,Ht} > H(Pt, 8)
Now, by taking P = Pt+l arbitrarily close to Pt » the monopolist will raduce
the short-run loss on his expected profits down to zero because [ is continucus
in P . But at the same time he will get a better estimate of the slope
Hl(Pt’s} and this can only increase his expected profits at time <t¢+2
Therefore, local experimentation around Pt iz more profitable for the
monopolist than charging the uninformative price Pt forever. -
| Another important feature of the demand function represented in Figure'A

is that there is only one isolated price at which the derivative of the

profit-functicn is zerc, namely the full-information monepoly-price. This

feature must be preserved in more general spaces of continuous demand funcrions, :

in order to establish that experimentation onlymégops-when tﬁe monopoly price
is -attained. To illustrate this we will present an example, where the profit
funcrion has a zero derivatiﬁe at two isolated prices aﬁd where the firm may
decide to stop experimenting even though it knews that it has not vet found the

full-information monopoly-price.




In this example, the firm's profit-function, 1(P) , is assumed to take

the following form:

2(P) for Pe [0,v] U (v+A, + =)

P = : :
®) £(P,v) for Pe [v,vtA] ; A > 0

where f£(v,v) = g(v) and f(v+A,v) g(v+4) furthermora m%x g(P) =1 and the

maximum is reached at P = 1 ; next max f(P,v) = 1+X where 1\ > 0
P

The figure below represents I(P)

[Figure 5 about here. ]

Suppese first that the firm knows everything about its profit function. Then
it is clear that the firm will chcose the cptimal price in [v,v+A] and make

total intertemporal profits of (1+X} / 1-8

But when the firm is uncertain about the exact value of v we show that it may

decide to always set the price P=1 » even though it knows that this is not the

full-information monopoly-price. e

Let the prior distribution over v be uniform over the interval [g,;] where
l<y<vy, Initially the firm can either set P=! or choose some price P

efv.v+A] . When the firm sets P e[v,v+A] the maximum intertemporal profits

are less than cor equal to



T(P) a

1+X
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(4.1) Prob(P g[v,v+A]){1+3) + Prob(P¢[v,v+A])g(P) +
S(1+))
1-4
The above expression is obtained by assuming first, that if P g[v,v+A] the

firm attains the maximum profits, 1+X , and second, that whatever happens in

the first period the firm ends up knowing everything about its profit-functicn
in all subsequent periods, so that its net present value of profits thersafter
is given by (1+))

1-8

{4.1) can be rewritten as follows:

(4.2) g(P) + Prob(P e{v,v+A]) (1+X-g(P)) + 8(1+))
1-3

&_,

Since v is uniformly distributed on [v,v] we have Prob(P £[v,v+A]) < -
v-v

for any P cly,w4] .
Thus we obtain the following upper bound:

(4.3)  g®{1- L+ A a4 551?)

Assuming that gf{P) £ g(v) for all P E[g,§+A} we cobtain that whenever,

1-8 Y-y Vv 1-4
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the firm will never choose P elv,v+A] . That is, it will stop experimenting
and set the price P=1 , even though it knows that this is not the

full-information monopoly-price.

Whether cr not the firm will decide to play safe and set P=1 forever depends
on the degree of prior uncertainty about the monopoly-price (measured by the

ratio :%L—} ; on the potential gains of experimentation (measured by ) and
V=V

finally, on the potential cost of experimentation (measured by gz(v)) .

In the above example small price variations are not sufficient to learn about
the full-information monopoly-price. Once the firm has reached the price
P=1 , it cannot learn about the optimal price without engaging in large price
experimentations. Thus it cannot learn about the profit=-function by incurring
only arbitrarily small experimentation costs. This brings us back to the models
analyzed in Sections II and III: because expected learning costs are large the
firm prefers to stop experimenting before it knows all the relevant information
about demand.

To summarize cur discussion in this section, we have shown that continuity
of the profit-function is not a suffi;ient condition to obtain complete learning

in the limit. The profit-function must be known to be both continuous and

guasi-concave. The firm will step experimenting only when it has learned the

So far we have only established that if the profit-function is continuous
and quasi-concave the firm will not stop experimenting before it has reached
the monopoly-price. This does not imply that the learning. process will
eventually converge to the full-information monopolv-price. It is conceivable

thav although the firm never stops experimenting the price seguence penerated




by the learning process converges to an accumulation point which is not the
full-infermation monopoly-price. We conjecture, however, that if the firm's
learning strategy is optimal (and if the profit-function is sufficiently smooth)
such an outcome can be ruled ocut. Intuitively, if the price sequence converges
to an accumulation point which is not the monopoly-price, then the firm will
eventually know thét the slope of the profit-function at that point is different
from zero. This information ought to induce the firm to move away from that
point so that the only possible accumulation.point must be the monopoly-price.
We tried, without success, to provide a formal proof of convergence based on
the above intuition. The difficulty in proving convergence arises frem the
possibility that the firm may be able to acquire most of its informaticn about
the profit-function by experimenting forever in a small neighborhood, so that
the price sequence never converges to the monopoly price. We have not been able

to rule out such an outcome.
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Section V: Conclusion:

We have found two reasons for which it may not be in the firm's interest
to continue learning until it has all the relevant information about demand:
discontinuities in the demand curve and/or non-concavities in the
profit-function. In either of these cases the firm cannot avoid large
changes in profits while it is learning and therefore expected benefits from
experimentation will beroutWeighted at some point during the learning procass-
by_expected costs. It is then in the firm's interest to stop learning even
though it does not possess all the relevant information about demand.

We have shown that it is not necessary toc assume that demand is stochastic
to obtain incomplete learning results. In fact, randomness of the demand curve
by itself does not imply that the firm will stop learning before it has all the
relevant information about demand. Undoubtedly, though the firm's learning
problem becomesrworse if demand is random: First, the firm's inference problem
‘becomes harder. Secend, if there are shocks on demand, the firm does mnot have
the same incentive to learn since the knowledge it acguires about demand will
become obsolete after every shock on demand. In the extreme case where demand
is independent from period to period, there is no incentive to learn anything.

We hope that the methodology developed here will be useful in studying a
number of interesting extensions. Remaining in the context of a monopoly, one

may ask what the consequences are of allowing consumers to adopt a strategic

behavior in order to influence the firm's inferences about demand? Another
interesting question is experimentation with quantity or price or a combination
of beth to learn most effectively about demand: When a firm experiences a shoek
on demand, should it first change the price and keep its sales fixed or keep

the price fixed and adjust output, or use a combination of price and guantity
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changes? ore generally, when the firm does not know the demand the question
arises whether it should produce to order or determine its output first and then

sell whatever it is able to sell (up to capacity). This involves a detailed

study of production technologies. We plan to study two extensions in the

immediate future. The first is how the stochastic nature of demand may lead

to short-run price rigidity and how keeping the price fixed in the short run
influences the adjustment process towards long-run equilibrium. (A firm may
wish to keep its price fixed in the short run when demand is Stochastic to

improve its inference problems.) The second extenmsion is learning the demand

curve by duopolists.



Footnotas

Examples (1) and {(2) are similar in spirit to Rothschild's example,
which shows that when the distribution of prices across firms is
unknown to conSuﬁers the optimal Bayesian search rules do not have the
reservation price property (see Rothschild 1974b). His example and
examples (1) and (2} above rely heavily on the property that some
prices reveal a lot of information about the demand curve (or in
Rothschild's model about the distribution of prices).

Qur main results can actually be established in the more general case
of a continuous density distribution £(v} such that 0 < g s f{v)

s fs1 forall ve (0,1] . See Appendix.

An immediate consequence of Proposition &4 is that v =0 will
eventually be learned by the monopolist if this is the true

reservation value. To be precise, v = 0 1is such that (Pt(O))t

converges to zero and most importantly, the nested sequence of

information sets It(v=0) eventually shrinks to the singleton v = 0,

WA

The argument goes as follows: We know that the initial price PO is
strictly less than X o If v=0 , the firm will not sell at
price PO and the information set shrinks from IO = [0,i] to
Il = {O,PO] . By homogeneity, VG(O’PO) = POVG(O’I) . Thus

P = 2 Z 21 - - - .p Z t
Pl PO and I2 {O,POJ . By iteration we obtain that 2. (PO)

is the sequence of prices associated with v =0 , to which
. . t-1
corresponds the sequence of information sets It = [0,(?0) 1 .

t . ’
: - 4’ =7
Since P, < Xg < I, we have (PO) -0 , i.e., It 0=v} . (O
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Appendix

Proof of Theorem 2:

Let Pt be such that Ee(|H1(Pt,8){ / Ht) >0 , and let V(?t) denote
the neighborhood of Pc where !Hll(P’e)l <a for all 8 ¢ Ht

Step 1: TFor all P ¢ V(Pt) , and for all 8 ¢ Ht

N(?,8) - M(P,,8) |P-P |
Hl(Pt,e‘) - P-Pt fa —2——-

i.e., Hl(Pt,B) can be arbitrarily approximated by the slope
H(P)e) - H(Pt’e)

P-P
t

d(P) = as P moves closer to Pt

Proof: 1 being c2 , we have:

P

ne,s) - H(Pt,a) = j Hl(QsB)dq

P

and:

. _
L@ - .0 = [ 0 e

P

Now for q ¢ V(Pt) s q > Pt

q
|1,(q,8) - 1,9 s J a dr = a(q-P )

P

Therefore, if P > Pt , and P ¢ V(Pt) » we must have:

A

p S —
J (1,(P.,8) + alq-P )]dq

P

2
(P-P)
2

Hl(Pt,B)-(P—Pt) +oa .

and similarly:
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(P
(2) WP,8) - I(P.,8) 2

th

(M (B.,8) - ala-P )]dq

2
(P-2))
—_—

Hl(Pt,B)-(P—Pt) - a

(1) and (2) suffice to establish Step 1l in the case P > Pt . The
proof is identical when P < Pt . 0
Step 2: Suppose that Ee(ﬂl(Pt,5)|Ht) = 0 , so that a myopic mono-
polist would stop experimenting at Pt . Then 3K > 0 and
¥ > 0 such that, for P close enough to Pt :
Pr(d(P) > K|Ht) >u .
Proof: From Step 1, we know that for P ¢ V(Pt) :
-2, |
(3) 4B 2 M (P.8) - a—p— .
But by assumptionm, Hl(Pt,a) is non-zero with positive probability,
given informatiog H . Ia particular, Hl(Pt,S) is strictly
positive with positive probability, otherwise EG(HI(Pt’S)|Ht) would
be different from zero, which we assumed away in this Step 2. This
means that we can find L > 0 and p > 0 such that:
(4) Pr(m,(P_,8) > L]Ht) >u .
From (3) and (4) it turms out that we can always choose P close

encugh to Pt .

Pr(d(P) > L/2[Ht) >u .
It suffices now to take K = L/2 in order to complete the proof. ]
Step 3: Under the assumption of Step 2, for P = Pt+1 close enough

to Pt but P = Pt , there exist F > 0 and a2 new price

PC+2

]

Pt+2(P) € V(Pt) such that:
>
Ee(n(Pt+2,a)|Ht and P) 2 (P ,8) +F .

Proof: Let £ be a positive number smaller than XK : 0 < ¢ < K



=>

7,

For P =P close enough to Pt » @ —5—— can be made smaller

than € , so that by Step 1l:
Hl(Pt,a) > d(P) - £
Now, for any q ¢ V(Pg) , we have:

2
(a=P.)

M(q,8) 2 H(Pt,e) + (d(P)—E)(q-Pt) -a 3

£ V(Pt) be defined as follqws:

Let Pt+2
( _ d(P)-¢ d(P)-¢
P "B v 3 £ 0<—r—x<r1
where r = sup {q-P )
{ qeV(P,)
_ Lo d(P)-e
Pt+2—Pt+r if -a—>r
L - Pt+2 = Pt otherwise,
We have:
T¢P, . .,8) 3 M(P_,8) + 22— 4if d(p)=c > O
t+2? t’ 2
where <1 = min(r,d(z)-s)
and H(Pc+2,a) z H(Pt,a) if d(P) < ¢
: a7
E(H(Pt+2,9)lﬂt and P) 2 Pr(d(2)>¢)-[M(P,,8) + ——]
+ Pr(d(P)ss)°H(?t,8)

W

(2, ,8) + Pr(d(P)>e)- g

We know from Step 2 that:
Pr(d(P)>K) > u
Given that € < K , we necessarily have: Pr(d(P)>e) > u

aT

This establishes Step 3, with F =y —-— >0 . O
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Now the proof of Theorem 2 goes as follows:

+ Either Ee(Hl(Pt,8)|Ht) is different from zero, in which case even a
myopic monopolist would keep on experimenting at time t+l (a forriori,
would the non-myopic monopolist do so),

-+ or ES(HI(Pt’B)!Ht) = 0 ; in which case, by experimenting through
P = ?t+1 different from Pt but close enough to Pt , the monopolist

can obtain an expected intertemporal profit HS(PIHC) , where, from

Step 3:

. 3
na(PlHt) 2 I(P,8) + =5 (I(R_,9) + F) .

Now, by continuity of @I , we have: 1lim I(P,8) = H(Pt,e) ,» SO that:

P »P
t
e ,8)
Lim T(plH) 2 —S— + ffé
psp
t
sF
= HS(PtIHt) *ISE e

Therefore, given that & > 0 , the monopolist is better off experimenting
locally around Pt than charging this uninformative price forever.

This concludes the proof. [J

Proof of Lemma:

..There exists a uniform bound k
the optimal initial price po(x) played by the monopolist whose prior
information is that v ¢ [x,l} verifies:
<
po(x) o k6 .

Proof: Let =x e [0,x and suppose that the optimal initial price

]
51
po(x) £ {xd,ll . Then we know that V(po,l) = pO/i-ﬁ so that:

5 Lealdo . Such Ehat rox all B



’
=1

(l-po)pO
(1-x) V(x,l) = —_— 6(po—x)V(x,p0)

and, using V(x,po) < V(x,1) ,

(l-po)po‘

V(X,l) < (1_6) (l_ﬁpo—(l—d)x)

1

T 18 {(Proposition 3), the

Since x < xa_,and V{x,1) > V(o,1) 2

price P, must verify:

1 1 R
(l-po) P, > 75 | 75 ~ %p, 1 or

2 8 1 ; .
0>p  -5s5p, * =y 8y - g(po) . It is straightforward to

verify that for all § <1, g(x) <0 and g(l) > 0 . Thus, there exists
1>k, >»x. , such that:
§ 8
=> >
p, € [kgs1] =>glp ) >0
Therefore, if the optimal price 18 is larger than s it must be
strictly less than kﬁ

The lemma is proved. [J

Proof of Proposition 4:

Filrst step: The optimal initial price P, verifies:

.
Py s s T 73
.Proof: Suppose that P, E%E- . We have
(1): v (0,1) = max {P(1-P) + §(I-B)V_(P,1} + &P V_(0,P)}
s Pe(0,1] s ®

The f.o.c. corresponding to this maximization are given byv:

SB,  8(1-R)
L= 22y = 7=5 + —5— *+ 28P,V;(0,1) = 0

o

(we use the fact that ¥ (P,1) = ng , since P, > —

» by hvpothesis).




The above f.o.c. are rewritten as follows:

1-27
o - 1 i
f(PO) e + 25P0V6(0,l) =0 , so f(PO} =0 , for PO > 57 if
and only 1f V_(0,1) ><——£——— But, since P, > L we know that
Y &' 2(1-3) ° ’ 0> 2-5 ° '
PO 2
VGCG,l) = PO(I-PO) + 6(1"P0) T:E'+ 6P0 VG(O,l)
P .(1=-P_ )
=70, = ——=L— g .
(1-8P5 ) (1-8)
It iz straightforward to compute that for P0 > S S s g'(PO) <0 .
1 + /1-4 :
. 1 1
Therefore, since x_. = I < ,» we have:
° ° 1+ /1%
1 i 1

8(Py) < 8(x) =y =gy -+ That is, V(0.1) < TSy C Iee)

a contradiction.
Step 1 is proved. [J

Second step: P, < x

0 §
Proof: We know, from Step l-above, that PO S Xe - Now suppose that
PO =X - We would have:
Wg(0) = (1 - E%E)'Eé3'+ ¢t - 215) (2-6§(l-6) +'z;§5)2 W
> W, (0) = L — =" = = 4,(0,1) , i.e., the
(2-§)7 -3 (4=8) (1-8)

mvopic intertemporal profit; but this is impossible by Propesition 3. This

completes the proof. [J
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