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Abstract

This document constitutes a final report for MOU309. The report contains a User’s Manual,
Programmer’s Guide, source code and underlying theory for the program MEDUSA. This
program is capable of simulating both the normative driving dynamics and collision dynamics
of an arbitrary number of vehicles. Its range of validity lies in the assumed nature of the
vehicular collision, and it is recommended for use in studying low relative velocity impact
scenarios at large time-scales.

A significant portion of this report is devoted to presenting the vehicle and road models.
The former model is composed of tire, collision, suspension, and sprung mass models. It is
also augmented by a collision detection algorithm. The road model is sufficiently general to
encompass variations in banking and sloping of the highways.

The report also contains the simulation results of several representative vehicular col-
lision scenarios. These results are supplemented by the input files for MEDUSA and the
visualization program SMARTPATH. Several features of these examples are also discussed
in the light of the improvements to MEDUSA that they motivated.

Keywords: IVHS America, Vehicle Dynamics, Collision Dynamics, Safety, Computer Sim-
ulation, Animation and Simulation.
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Executive Summary

This document constitutes a final report for MOU309. The report contains a User’s Manual,
Programmer’s Guide, source code and theory for the program MEDUSA. This program is
capable of simulating both the normative driving dynamics and collision dynamics of an
arbitrary number of vehicles. Its range of validity lies in the assumed nature of the vehicular
collision, and it is recommended for use in studying low relative velocity impact scenarios at
large time-scales.

A significant portion of this report is devoted to presenting the vehicle and road models.
The former model is composed of tire, collision, suspension, and sprung mass models. It is
also augmented by a collision detection algorithm. The road model is sufficiently general to
encompass variations in banking and sloping of the highways.

The program MEDUSA is an ANSI-C based simulation package which is designed to
simulate the normative and collision dynamics of an arbitrary number of vehicles. One of
the most attractive features of MEDUSA is its open architecture (including dynamic data
management), which facilitates the incorporation of different vehicle models, tire models,
etc.. A precursor to the present version of this code was developed under MOU232. The
present version has a number of new features. These include: an improved tire model, the
ability to simulate vehicles moving on banked and sloped roadways, a more realistic contact
algorithm and the ability to incorporate dissipation during a collision,

As in the earlier versions of MEDUSA, the vehicular models are partially based on the
theory of a Cosserat point. This theory was developed by M. B. Rubin and extended by
A. E. Green and P. M. Naghdi. In the vehicular model, it is used to model the elastic
deformation of the sprung mass of the vehicle. Other features of the vehicle model include
tire and suspension models. These are supplemented by a collision detection algorithm. In
the present version, the lateral surface of the vehicle is modeled using a superellipsoid, which
provide a more realistic representation of the vehicle geometry than regular ellipsoids.

A User’s Manual for the program MEDUSA is also provided in this report to provide the
reader with requisite background on using the program. Complementing this Manual is a
section where several representative simulations are introduced and analyzed. This section is
written in a style that hopetully also provides a simple tutorial on the capabilities of MEDUSA.
The animations of the data provided by MEDUSA were obtained using SMARTPATH, and
the default output of MEDUSA is set to conveniently interface with SMARTPATH.

In order to provide the user with avenues for potentially improving the model, a Program-
mer’s Guide along with the source code for the program is also included in this report. The
source code differs from the older version in its incorporation of the new features discussed
above. It is also shorter than earlier versions because of our efforts to streamline the code.

The reader interested in obtaining these updated versions of MEDUSA should contact
either Professor O. M. O’Reilly (oreilly@me.berkeley.edu) or Professor P. Papadopoulos
(panos@me.berkeley.edu).
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Chapter 0

Conventions

The summation convention over repeated indices is used for the indices ¢, 5,n,m = 1,2,3,
1e.,

3
X'd; = ) X'd; . (0.1)
=1

In all other cases, summation is explicitly stated. The notation x(g) is used to denote a
quantity = belonging to the vehicle 3.

To enhance readability of the text, we will use a few notational conventions: Filenames
such as vehicle.c or medusa will appear slanted. Elements of the ANSI-C source code such
as functions, numbers and variables appear as typed, e.g., main(), 3.1415, dummy. The C
source code is presented as, e.g.,

#include <stdio.h>
void main()

{
printf ("Hello World!");

}
Input and output from the user screen appears in the same form, e.g.,

>> medusa -e
No endtime specified. Type medusa -h for help

The prompt >> is used to indicate the user input on the command line.



Chapter 1

The Vehicle, Road and Contact
Models

1.1 Introduction

In this section, we discuss the vehicle model, the road model, and the contact detection
algorithm used by MEDUSA. Although most of these developments were discussed in our
earlier reports, there are some significant refinements and improvements. For instance, the
tire model is substantially enhanced compared to tire model that was used in earlier versions.
Secondly, it is now possible to simulate vehicles moving on curved or banked roads. Finally,
the contact detection algorithm employs a different, and more realistic vehicle geometry, than
the earlier ellipsoidal model. This chapter closes with a discussion of the numerical time-
integration routines that are used in the simulations and some comments on dissipation.

1.2 The Vehicle Model

In this section of the report, the vehicle model is discussed. This model has been substantially
revised in comparison to our earlier reports. The vehicle model previously used by MEDUSA
is discussed in O’Reilly, Papadopoulos, Lo and Varadi [20, 21]. In response to simulation
results, a new tire model was implemented. This accounts for both lateral and longitudinal
tire forces, and leads to more realistic results. Furthermore, the road-vehicle interaction now
allows curved or banked roads.

1.2.1 The Chassis

In a reference configuration of the chassis, we define a convected Cartesian coordinate system
with coordinates X' (: = 1,2,3) and orthonormal basis vectors E;. The origin of this
coordinate system lies at the center of mass of the chassis and the vectors E; coincide with
the chassis’ principal axes of inertia (see Figure 1.1 for the orientation of these vectors).



Clearly, in this coordinate system, a material point of the chassis has position vector
R (X')=R+X'E; , (1.1)

where R is the position vector of the center of mass of the chassis with respect to an inertial
frame. In writing (1.1), the summation convention over repeated indices was employed (cf.
equation (0.1)).

Figure 1.1: Schematic depiction of the reference configuration of the chassis. The coordinates
of the suspension assembly points are also shown.

The chassis of the vehicle is modeled using the theory of a Cosserat point which was
introduced by Rubin [27], and subsequently developed by Green and Naghdi [11]. In this
model, the position vector r*( X", ) of a material point of the chassis at time # is approximated

by
(X7, 1) = r(t) + X di(t) . (1.2)

The vector r(t) is called the position vector of the Cosserat point. Here, it is the position
vector of the center of mass of the chassis at time ¢ and it corresponds to R in the reference
configuration. The three vectors d;(¢) are called the directors of the Cosserat point. In the
reference configuration, they correspond to the basis vectors E;.

The deformation gradient F associated with the motion (1.2) can be expressed as

where the symbol ® denotes the usual tensor product. The position vector r* can now also
be written as

= F)(R* — R) +r . (1.4)

This notation was employed by Cohen and Muncaster [4] in their theory of pseudo-rigid
bodies which is closely related to the theory of a Cosserat point with three directors. This




1.2. THE VEHICLE MODEL

notation also indicates that a pseudo-rigid ellipsoid remains ellipsoidal in any subsequent
deformation; which is consistent with classical results on homogeneous deformations which
may be found in Truesdell and Toupin [30, Sections 42-46]. We used this property earlier to
determine contact points of two colliding vehicles. However, it was noted that approximating
the lateral surface of a vehicle using a ellipsoid lead to physically unrealistic post-collision
scenarios. Later in this report, a new approximation to a vehicle’s lateral surface will be
discussed.

It is convenient at this point to outline some further notation. We will denote the position
vectors of a material point lying on the surface o of the vehicle in its reference and present
configurations, respectively, by

R” =R (X!) , " =r(X,t) , (1.5)

where X/ are the referential Cartesian coordinates of that surface point.
The velocity and director velocities of the Cosserat point are

V=r 5 W, = d, 5 (16)

where a superposed dot denotes time derivative. The relevant equations of motion of the

chassis are the balance of linear momentum and the three balances of director momenta:
mv=1 ., myVw,=1-k' . (1.7)

In these equations, m is the mass of the vehicle and y = y’' are its inertia parameters.

These parameters are related to the vehicle’s referential inertia tensor Jo = JéjE,' ®E; as
follows:

Jit 011 my'!
J2 =101 my*? . (1.9)
J3? 110 my>3

Equation (1.8) follows from the fact that E; coincide with the principal axes of inertia of
the chassis, and R is the position vector of the center of mass of the chassis in its fixed
reference configuration. Vehicle inertia parameters can be derived from published data, see,
e.g., Garrot [10] and Heydinger et al. [13].

The vectors 1°(¢) and 1'(¢) are called the applied force and the applied director forces,
respectively!. For the vehicle model, they are calculated using

4 4
=Y "f'—mgE; , 1I'=) Xif? . (1.10)
g=1 g=1

Tt is customary to use the symbol n to denote the applied force 1°. However, we use the former symbol
in this report to denote a unit outward normal.




In this equation, ¢ = 9.81[m/s] is the gravitational acceleration. The point forces f¢
(¢ = 1,2,3,4) are generated by the suspensions and the wheels?. These forces act on the
suspension assembly points which are material points of the chassis with the material coor-
dinates

g=1: ( Ly, BJ/2,—H;) left front
i g=2: ( Ly,—B/2,—H;) right front
X gq=3: (—Ly, B/2,—Hy) left rear (1.11)
g=4: (—Ly,—B/2,—H,) right rear

The various quantities in this equation are also depicted in Figure 1.1.

In equations (1.7), k' are called the intrinsic director forces. Their function is similar
to that of a stress tensor in continuum mechanics, and constitutive equations for the ma-
terial response are required. In the present vehicle model, we assume a nonlinearly elastic,
homogeneous, St. Venant—Kirchhoff material with Lamé constants A and p. The resulting
constitutive equations are

, vV 0:1#n
k' = E()\(d] . d]‘ — 3) d, + 2,&((1, . dn — 5m) dn) 3 5m = { 1:i=n 5 (112)
where the volume V' encompasses the entire chassis. The Lamé constants are related to
Young’s modulus E and Poisson’s ratio v by (see, e.g., Sokolnikoff [29]):

Ev F

Q+v)(1-20) * "7 2040) (1.13)

A=

1.2.2 Suspension and Tire Forces

Unlike previous versions of MEDUSA, the road is not assumed to be a horizontal plane. Let
the local orientation of the road be given by the orthonormal vector triad {e;}, where e
is the upward normal to the road plane (cf. Section 1.3.2). Since the highway’s radius of
curvature is large compared to the dimensions of a vehicle, we can take this triad to be the
same for all four wheels (numbered ¢ = 1,... ,4).

It will be assumed that the wheels roll upright on the road plane so that the camber
angles are negligible. The orientations of the wheel planes can now be specified with unit
wheel heading vectors e? For the rear wheels, these heading vectors €3 = e! are chosen to
be parallel to the projection of d; onto the road plane, i.e.,

3 4 d, — (d1 -e3) €3

e’ =e’ = . 1.14
T T [ = (dy - es) e (1-14)

Here, ||.| denotes the length of a vector. The heading vectors of the (steered) front wheels
are derived from the rear wheels using a steering angle 6:

1_ a2 3 el
e, =e, =cosfe, —sinfe, xes |, (1.15)

ZRecall from Chapter 0 that the summation convention does not apply to the index ¢.




1.2. THE VEHICLE MODEL

This corresponds to a planar counterclockwise rotation about es. For each wheel, we can
thus define a local orthonormal basis {el, el e?} by defining e! = —e3 and e! = e? x el (cf.
Figure 1.2).

camber
——
|

wheelplane

suspension
system

road plane

Figure 1.2: Schematic depiction of one tire illustrating the forces and kinematic quantities
defined in the text. The camber angle is shown for completeness but is assumed to be negli-
gible.

The wheels are assumed massless. The applied forces f¢ in equations (1.7) are calculated
as follows:

f9=Flel - Flel - Fle. |, (1.16)

where F? and F! are the longitudinal and lateral wheel forces, respectively, and F? are the
magnitudes of the suspension forces:

Cl,Dl g = ]_,2

CQ,DQ g = 3,4: (117)

—F1=CYA,—A)+ DA, , €9 D= {
In this equations, A, denotes the distance from a suspension assembly point (cf. Figure 1.1)
to the road plane, measured along the normal n3, and A denotes a reference length which is
assumed to be the same for all four suspensions. The parameters {C;, D;} and {C3, Dy} are
the linear spring and damping coefficients of the front and rear suspensions, respectively.
Next, we need to calculate the velocities of the wheel centers v,,. They are the projections
of the suspension assembly point velocities into the road plane:

Vo=ve—(vgres)es . vo=v+X.w . (1.18)




We now provide the formulae to calculate F? and F for each wheel. We have adopted a
particular tire model from Allen et al. [1] for this purpose. Negligible camber thrust will be
assumed. This model extends the popular CALSPAN tire model to provide tire responses over
a full range of maneuvering conditions. The governing model equations represent polynomial
curve fits of measured data and are computationally efficient compared to more elaborate
models such as the magic tire model of Pacejka [25]. A further advantage is the availability of
published parameters and tire data by the CALSPAN corporation, see Schuring [28]. However,
the formulae have certain weaknesses which we will address in several remarks at the end of
this section. In the interest of notational brevity, and without the risk of confusion, we will
drop the explicit index ¢ for the remainder of this section.

To proceed, we define two standard kinematic quantities in tire modeling, namely the
(longitudinal) slip s (cf. Allen et al. [1]) and the (side) slip angle o (cf. Figure 1.2):

Rw V- e,
s=1— — , «a = arctan | — ) (1.19)
vV-e, vV-e,

In this equation, Rw denotes the circumferential speed of the tire, and R is the tire radius.

We now record the formulae for the tire contact patch length a,, the lateral and lon-
gitudinal stiffness coefficients K, and K, respectively, and the peak tire/road coefficient of
friction:

0.0768 /. Fyr

Clpo = TW (Tp _I_ 5) 9
2 Ay
K, = —(Ao+ A4F. — 2 FY |
azo( 0 1 A2 )
2
K. = - F.(CS/FZ) ,
e

SNp
SNt

The parameters that appear in these equations are listed below. For large slips, the tire

looses traction and starts to slide. This transition is captured by the coefficients K and pu:

K' = K.+ (K,—K.)Vsina+s?cosa
o= po(l—K, Vsin o + s? cos? a) . (1.21)

The fact that the longitudinal and lateral forces do not develop independently is captured
by the composite slip o. The force saturation function reflects the fact that the tire forces
do not increase linearly with slip:

7TCL2

p0 - 2 -
= K?t K?—
7 SMOFZ\/ ST A (1—s) ~

;o= c10® 4+ cy0? +4/7 o ‘ (1.22)

103 + 302 + cq0 + 1

2

7



1.2. THE VEHICLE MODEL

Finally, the longitudinal and lateral wheel forces F;! and F? are calculated:

—fK!s fK, tan

F,=uF, 1.23
v H \/Kftanza—l—Kész ( )

F,=ukF.

\/Ks2 tanZ o + K!s?

Figure 1.3: Goodyear 185SR14 tire force diagrams and carpet plot for Fy = 2500 [N].

There is always the concern that the equations presented may be erroneous due to type
setting errors, or that errors are introduced when the tire model is coded. A good way to
examine the validity of the equations is by way of characteristic force diagrams. They exhibit
standard patterns that can reveal errors. For the sake of completeness, we therefore present
the force diagrams for a Goodyear 185SR14 tire in Figure 1.3. These plots were obtained
with the following set of parameters:

Ao =T7092.7808 [N] , A; =11.94[] , A, =13571.0848[N]
By = —2.5446429 x 107° [N™'] |, B3 =1.007[] , By= —5.291374 x 107"
CS/FZ=18[] , SNy=85]] , SNp=85[] . (1.24)




These are the well-known CALSPAN parameters listed in Schuring [28]. The parameters SNy
and SNp are the test skid number and the pavement skid number, respectively. Next, there
are three parameters which must be used with non-SI units in the formulas: the tire design
load at operating pressure Fp [Ibs], the tread width [in] and the tire pressure T}, [pst]. In
particular for our example,

Fzr =1160[lbs] , Tw =5[in] , T,=28[psi| . (1.25)
The remaining parameters are form factors for a bias ply tire (see Allen et al. [1]):
K,=02[] ., e=053]] , e=105[] , e=115[] , e =08[] . (1.26)

We close this section with a number of remarks regarding the coding of the tire model
and the simulation program MEDUSA:

Remark 1: Equation (1.23); is singular for s = 1. Numerically, equations (1.23) are
singular if both s = 0 and o = 0. In the algebraic limit however, F}, and F, can always be
calculated. This is a weakness of the tire model in computations, and appropriate exception
routines have been programmed.

Remark 2: It should be clear from Figure 1.3y, that the lateral tire force F, needs to
satisfy the symmetries F,(a) = —F,(—a) and Fy(7/2 — o) = F,(7r/2 + «). In order to
satisfy the latter symmetry, we implemented |a| > 7/2 — o := 7 — « in the computer code.

Remark 3: The curve fit underlying this tire model fails to be accurate for s much smaller
than —1, and especially if the tire is sliding backwards (i.e., s > 1). In a computer simulation,
these maneuvering conditions cannot be excluded a priori. In order to still obtain reasonable
tire forces in that range, we implemented |s| > 1 — s := (—1) in the computer code.

Remark 4: In reality, vehicle vibrations are absorbed in the compliance of the suspensions
and tires. Since tire compliance is absent in most tire models, these vibrations appear as
noise in the tire forces. More precisely, they affect the slips (1.19). To amend this problem,
we suppress the noise by assuming that the lateral responses of the tires are delayed. This
time lag can be described by a first order differential equation with a parameter 7 (see Allen
et al. [1]). The four delayed or lagged slip angles ay,, are now governed by:

T Mag + Qag = @ (1.27)

In the MEDUSA-code, these lagged side slip angles «y,4 are substituted for « in the tire force
calculations.




1.2. THE VEHICLE MODEL

1.2.3 Differential Equations of Motion

For the sake of computational efficiency, it is convenient to define the vector components of
r, d;, k' (given by equation (1.12)) and f? (given by equation (1.16)) with respect to the basis
{E;} and to introduce the generalized position vector z;, the generalized velocity vector z,
the generalized slip angle vector e, the intrinsic force component vector k, the applied force
component vector f and the body force component vector u as follows:

. F. . —-d. .F. (AN [EI N 9 _ 9 F.
ri=r-E; . d;=d;-E; , kK=k-E , fil=f"E; . (1.28)
T
(Z1 (7“1,7“2,T3,d11,d12,d13,d21,d22,d237d317d32,d33) )
T
(ZZ = (vl,vz,v;;,wll,wlz,w13,w21,w22,w23,w31,w32,w33) s
- T
() = (a1, az, as, o),

1
0,0,0, k', kY, kB2 k2 K2R RS KD
T
RN RN N AN N AN O R LR L
= (0,0, -mg,0,0,0,0,0,0,0,0,0)7. (1.29)

)

)

)
(k) = (

) = (

)

The equations (1.7) can now be written as a set of first-order ordinary differential equations:

il = Zy 5
iZ = M_l [_ k(zl) + Af(Z17Z27ala97t) + ll] = g(ZhZZaalagvuvt) )
Ay = T loggta (1.30)

where the inertia matrix M and the influence matrix A are given by

m1 0 0 0 | | | |
|0 myt 0 0 | xroxiroxi1oxin

M)=1 o "o w21t o | W= x1ox21oxi1oxer1 |
0 0 0 my®1 T X1 X0T X°T

(1.31)

respectively. In these equations, I is the 3 x 3 identity matrix, the coefficients my" (no sum
on i) are calculated from equation (1.9) and the coordinates X; are defined in equation (1.11)
and Figure 1.1.

The program code of MEDUSA makes repeated use of the vector
T 17 T\T
(z) = (21 . 2 , of,,) (1.32)

which has 28 components. This vector will be referred to as the state vector of the sys-
tem (1.30).

10



1.2.4 Energy

The total energy E of the vehicle model consists of the kinetic energy 7', the stored elastic
energy mi of the Cosserat point, the energies V7 stored in the suspension springs and the
gravitational potential U:

4
E=T+mp+> VI+U . (1.33)
g=1

Using the notation from equations (1.17), (1.29) and (1.30), the energy terms are defined as
follows:

1
T = §Z2 . (MZZ) 5 U= mgrs

Vv 1
1 . 2 Cy:q¢=12
PR i g 9= ’

Note that the expression for mu is consistent with equation (1.12) (see O’Reilly, Papadopou-
los, Lo and Varadi [20]).

1.3 The Road Model

In order to study the response of vehicular motion due to excitation from a highway, the flat
road assumption originally used in MEDUSA was generalized. In particular, an interpolation
method is now used to model sloping and banking of the road. First, we consider the road
to be a continuous fixed curve in three-dimensional space. To each point of this curve, a
continuously changing banking angle is associated. Using the banking angle and the tangent
vector to the curve, the normal of the road plane can be calculated.

The curve is specified by supplying a number of its points in three-dimensional space.
In order to avoid the oscillatory behavior that is characteristic of high-degree polynomial
interpolation, the cubic spline function (see, e.g., Bartels et al. [3]) was chosen as a tool
to approximate the road geometry. This selection also has the advantage of not requiring
information on derivatives at each of the interior points. The cubic spline interpolation
ensures not only a continuous curve passing through each point but also the continuity of
first as well as second derivatives at the joints of each successive segment.

11



1.3. THE ROAD MODEL

Figure 1.4: Road spline, spheres and mass center of a vehicle (V)

1.3.1 Interpolating the Road

We now briefly review the interpolation method. Suppose that one wants to interpolate
h 4+ 1 points in space which have Cartesian coordinates, x;, y;, z;, ¢ = 1 ..., h+ 1. Each
of the h segments between these points can be represented parametrically as (X;(s), Y;(s),
Zi(s)). Since X,(s) is determined solely by the x-coordinates of the points, so too are Y;(s)
and Z;(s). In the interests of brevity, we will only discuss Y;(s) which is assumed to be a
cubic polynomial specified by four coefficients:

Yi(s) = a; + bjs + dis® + e, i=1..,h . (1.35)

Here s € [0, 1] is a real-valued parameter. Clearly, we have 4h unknown constants to
determine. At each of the 2—1 interior points, we have four conditions representing continuity
of zeroth, first and second derivatives:

YL = Y(0) . (136)

Since we also require that Y1(0) = yo and Y,,(1) = ym, there are 4h — 2 conditions from
which to determine 47 unknowns. Thus, two more conditions are needed to ensure that Y;(s)
is a unique interpolating spline.

To overcome this indeterminacy, we employ the first four points specified by the user
to construct a cubic polynomial which passes through them. Using the cubic polynomial,
we then calculate the first and second derivatives of Y, say, with respect to s at the fourth
point. This provides the two new conditions to remove the indeterminacy.

12



1.3.2 The Road Plane

After one has calculated the road spline, the unit tangent vector e; at each point of the
spline can be calculated. Using the banking angle and the tangent vector, the road normal
vector e3 can be calculated. Finally, the orthonormal triad {e;,e;, e3} can be determined.
This triad was referred to earlier in Section 1.2.2.

1.3.3 The Vehicle and the Road Section

After the continuous spline curve is formed, a procedure of building the correspondence
between a vehicle and the curve is needed. The reason is that road information such as
elevation and the orientation of road plane is needed by the vehicle suspension models.
Suppose a vehicle at time ¢ lies entirely in segment k. Either, the vehicle remains in segment
k or moves to one of its neighboring segments, k — 1 or k£ + 1, for the next time step. We
construct four spheres, Sy, S1, Sz, 53, centered at points cg, ¢, ¢a, 3, with position vectors
(see Figure 1.4)

rO = xCOEl —I_ yCOE2 —I_ ZCO E3 bl
rl = xcl El —I_ ycl E2 —I_ ch E3 bl

r2 = xCQEl —I_ yCQEZ —I_ ZC2 E3 bl
rs = xc;gEl + y03E2 + 203E3 . (137)

The radii Ry, Ry, Ry, Rs, of the spheres are

Ry = |lro — 1wl

Ry = min(|[ro — mf], [Jrr — r2f)

Ry = min(|[r1 — rf|, [Jr2 — r3))

Ry = |t — rs|| . (1.38)

If the spheres S7 and S, do not overlap, a fifth sphere 54 is added whose center is at the
midpoint of the straight line connecting ry and ry with a radius R4 which equal to %||r2 —rq]].
Next, we find which sphere the center of mass of the vehicle lies in. This gives us the segment
of the road that the vehicle is assumed to move on at the instant of interest.

Suppose that the mass center of a vehicle is inside Sy or S5, then the corresponding curve
segment 1s k — 1 or k 4+ 1. Otherwise, there are three cases to consider. In the first of these
the vehicle lies in the intersection of S; and S,. Secondly, the vehicle may lie in S4. The
last case arises when the vehicle is only in S; or S3. For the third case where the vehicle lies
only in Sy the vector from ry to r is calculated. The dot-product of r — ry and t. , tangent
vector of the road spline at point ¢q, is calculated. If this dot product is positive, then the
vehicle lies in the kth segment, otherwise it is defined to lie in the k-1th segment. For the
third case where the vehicle lies only in S, the vector from r, to r is calculated. The dot
product of r — ry and t., is calculated. If this dot product is positive, then the vehicle lies
in the k+1-st segment, otherwise it is defined to lie in the k-th segment. In either of these

13



1.4. CONTACT CONSTRAINTS AND CONTACT FORCES

third cases, if the dot product is zero, then the vehicle is directly over a node point. Clearly,
for the first and second cases, the vehicle remains in the kth segment.

If a vehicle is not inside any one of the five spheres, it is considered out of road range.
Notice that a virtual flat road segment is added ahead of the first nodal point to prevent
vehicles accidentally moving out of road range at the beginning stages of a simulation. Once
the segment of the curve where the vehicle lies 1s obtained, the corresponding point of a
vehicle on the road curve is defined to be the closest point of the vehicle to that segment.

1.4 Contact Constraints and Contact Forces

When two vehicles come into contact, contact forces associated with the constraint of impen-
etrability (see O’Reilly and Varadi [24]) prevent the vehicles from interpenetrating. During
contact, the position vectors and directors of the vehicles depend on each other and so do
the individual equations of motion. For simplicity, rather than algebraically eliminating the
dependent kinematic quantities from the equations of motion using the constraint equations,
we adopt a numerical scheme in MEDUSA based on a normality assumption using Lagrange
multipliers. Here, the normality assumption presumes frictionless contact. This numerical
approximation allows the surfaces of the vehicles to overlap by a small amount. The resulting
contact forces are then reminiscent physically to those resulting from the compression of a
linearly elastic spring.

Consider now the situation depicted in Figure 1.5. Assume we have determined two
points rf; and Il (cf. equation (1.5)) on the surfaces of the respective vehicles which we
may call contact points. Let n(;) be the outward unit normal to the surface of vehicle one.
The distance function

(e (e

o1 = (r(z) - I'(1))'n(1)
= (rg + Xo@dei — ray — Xonq da)) nuy = 61(2a)1.22)1)  (1.39)

quantifies separation (¢; > 0), contact (¢, = 0) or penetration (¢; < 0). The sign of a
second function ¢, indicates the relative normal velocity of the contact points:

*O

¢2 = (rg —I{y)-ng
= ¢2(Z(1),17Z(l),27z(2),17Z(2),2)' (1-40)

Here I*'((TZ) is the rate of change of the position vector of the particle which occupies r{y at
time t. These two functions generate constraint conditions as they should be zero when the
vehicles are in contact.

During times of contact (defined by ¢; < 0), we modify the equations of motion (1.30)
of the two vehicles 3 = 1,2 as follows:

Z)1 = Z@E)e T €@
Zg2 = 8B T €@
x(B)lag = T(_ﬁ; oB)iag T Q) - (1.41)
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Figure 1.5: Schematic depiction of the kinematical quantities involved in describing the con-
tact between two bodies.

We will refer to c(g),; and c(g); as the (generalized) contact forces. They are calculated from
the constraints (1.39) and (1.40) using a normality prescription:
26, 0oy

Cp1 = N 3Z(ﬁ),1 ) €2 = 72 az(ﬁ),z .

(1.42)

In this equation, the factors +; and 7, are Lagrange multipliers that are determined by
the motion. We will approximate them using a numerical scheme that will be explained in
Section 1.6. In the interest of brevity, we do not write the forces (1.42) in a component form
similar to (1.29). Note however that the contact forces are functions of Xé s and nq).

We also remark that a vehicle may be in contact with several other vehicles at a given
instant. In this case, the above procedure is repeated for each pair of vehicles, and requires
proper book-keeping of the various contact constraints and contact forces.

1.5 Contact Detection

In the previous section, we assumed a priori knowledge of the position vectors r{s) (=1,2)
and the surface normal vector n(;) at the (potential) point of contact. In this section, we
are going to outline a procedure that yields these quantities uniquely. Although the ideas
presented here apply to general contact problems involving convex surfaces, we will restrict
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1.5. CONTACT DETECTION

our discussion to special surfaces known as superellipsoidal surfaces which is discussed in
Section 1.5.1.
Note that if the vehicles were modeled as spheres of radii p(g), the condition

vy — eyl < pay + P2y (1.43)

would be sufficient to determine whether the two vehicles are in mutual contact. The general
situation is however far more complicated. Nevertheless, this simple idea can still be used
as a preliminary fast test for contact while the vehicles are relatively far apart>.

Figure 1.6: Parametric representation of the vehicle superellipsoid in the reference configu-
ration.

1.5.1 A New Vehicle Geometry

In a previous report O’Reilly, Papadopoulos, Lo and Varadi [22], the vehicle geometry was
approximated by an ellipsoid. The related contact information was determined using in-
formation form the surfaces of contacting ellipsoids. An obvious drawback arising from the
differences between the outer surfaces of an actual vehicle and an ellipsoid is that it can result
in different post-contact motions in some situations, e.g., in the offset head-tail collision of

3In MEDUSA, this idea has been implemented with p = max(A4, B, C), where A, B and C are defined in
equation (1.44).
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two vehicles. This defect was partially amended by an improved contact-detection algorithm
discussed in O'Reilly, Papadopoulos, Lo and Varadi [23]. However, the geometric mismatch
between the actual vehicle and an ellipsoid remained, especially near and at the corners of
a vehicle.

The outer surface of a vehicle is similar to a box, however a convex surface is required
by the contact-detection algorithm. Thus, for the purpose of fixing the mismatch in geo-
metric shape, the vehicle geometry is modeled here as a type of superquadric, specifically a
superellipsoid. We recall that the surface of an ellipsoid has the parametric representation

R = Acos(u)cos(v)E; + Bcos(u)sin(v)Ey + Csin(u)E; (1.44)
where A, B and C are the lengths of the semi-axes and E;, ¢ = 1.., 3 are the direc-
tions which are parallel to the ellipsoid in the reference configuration. The parameters
u € [—7/2,%/2], v € [0,27) are curvilinear surface coordinates. The parametric form of a
superquadric, specifically a superellipsoid, is defined as

R = Acos(u)® cos(v)?E; 4+ Bcos(u)® sin(v)?Ey + Csin(u)*E; (1.45)
where €7, €; are the squareness parameters in the longitudinal and lateral directions, respec-
tively (see, e.g., Barr [2])*. In the version of MEDUSA discussed here, the superellipsoid is
used to model the outer (lateral) surface of the vehicle.

Figure 1.7: Comparison of an ellipsoid (e, = €3 = 1.0) and a superellipsoid (e, = €3 =
0.4).

Under the action of the deformation gradient F(#) defined in equation (1.3), the material
surface o defined in equation (1.44) subsequently deforms into a surface which is described
by equation (1.4). In MEDUSA, the program uses the ellipsoid to determine the deformation
of the vehicle, and the deformed ellipsoid is then used to generate a superellipsoidal surface

“The parameters e; and €; are chosen to be equal to 0.4 in the MEDUSA simulations (see Figure 1.7) to
best fit the shape of an actual vehicle.
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1.5. CONTACT DETECTION

which is then used by the contact detection algorithm. The corresponding superellipsoid can
be constructed using a unique mapping in which the ellipsoid and the superellipsoid share
the same semi-axes and principal directions and the two parameters €; and €, reshape the
outer surface of the original ellipsoid.

Finally, the tangent vectors and the outward surface normal vector in the present con-
figuration are given by

or’ or’ a, X a,

Au = ou A =

= — 1.46
0 7 " A x ad| (1.46)

1.5.2 Minimum Distance Searching Scheme

Recall from equation (1.5) that the vectors r{s (8 = 1,2) denote material points on the
surface of the respective superellipsoids. Consider the distance function

f=10 =l = F(x)  x = (uw),va)vue),ve) - (1.47)

We would like to define our contact points from Section 1.4 as those points (labeled K for
vehicle one and L for vehicle two) for which f attains a global minimum. However, before
we embark on finding such a minimum, we should consult Figure 1.8. It is intuitively clear
that we will not able to find unique points K and L when the vehicles are interpenetrating,
in which case min(f) = 0 on the intersection curve. This case needs some additional work
which is outlined in Section 1.5.3.

:
1

Figure 1.8: The contact situations between two bodies

In order to find the points K and L on the respective superellipsoids that minimize the
distance function f, we start with two arbitrary points Ky and L; on the respective surfaces
(see also Figure 1.9). Keeping K; fixed, we find a new point Ly on the surface of the second
vehicle which (locally) minimizes f. Keeping L, fixed, we find a new point K which again
(locally) minimizes f, and so forth. In this manner, we obtain a sequence Ly, Ky, Ls, ...
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Figure 1.9: From initial guesses Ky and Ly a sequence of points Ly, Ky, L, ... is calculated

which minimaizes the distance function f defined in the text.

which converges to two points K and L (which will not be unique if there is a curve of
intersection).

The algorithm employed in MEDUSA to perform the series of local minimizations of the
distance function f is a variable metric method whose details are discussed in Appendix A.
Note that every one of these minimization steps finds a unique (local) minimum of f. This is
due to the fact that, in each step, we minimize the distance from a point to a convex surface
(for further details, see Kowalik [16]).

Now consider Figure 1.8 once more. Having previously found the points K and L and the
corresponding position vectors rs) it is clear that the associated normal vectors n(g) defined
in equation (1.46) satisfy® n(;y = —n(y) only if the superellipsoids are not penetrating. We
can therefore specify the following no-contact condition:

(r‘(’z) — r‘(’l)) ‘ng >0 , ngy=-—ng . (1.48)

If this test fails, then the vehicles are in contact and additional work needs to be done to
determine the unique points of contact for intersecting superellipsoids. We now turn to this
matter.

1.5.3 Unique Contact Point Detection

The basic idea of this scheme is to apply a suitable perturbation to K and L which were
obtained using the previous minimum distance searching iteration. For the case of interest,
the former points may lie anywhere on the curve of intersection of the two superellipsoids.
Hence, the points of contact that we seek are the two points of maximum penetration along
their common normal®.

>Up to the order of numerical accuracy in finite arithmetic.
6Clearly, this is one of many possible ways to define unique contact points. However, it appears that the
detection of the maximum penetration points is the easiest method.

19



1.5. CONTACT DETECTION

Figure 1.10: Unique contact point detection scheme

Recall that the equation of the superellipsoid for each vehicle in its reference configura-
tions has the form (1.45) which can be rewritten as

(Rfs) —Rep) KRl —Rp) =1 , =12 . (1.49)

where (K(g)) = diag(l/A(zﬁ), l/B(zﬁ)7 l/C(zﬁ)) is a second order diagonal tensor. With the
help of (1.4), the equation of the superellipsoid in the current configuration can be expressed
as

(e

(t(s) —r3) K (rls —r@) =1 , f=12, (1.50)

where K(ﬁ) = F(_%K(B)F(_ﬁl;. Thus, the functions of the superellipsoids 1 and 2 in the present
configuration are defined as follows:

N A

fioy = (x(s — 1) - Kp)(rls —re) -1 . =12 . (1.51)

Clearly, f(l) = 0 for a point on the surface o(;) of superellipsoid 1 and f(l) is greater (less)
than 0 for a point located outside (inside) of superellipsoid 1.

"The principal directions and principal semi-axes of the superellipsoid in the current configuration can
be determined by solving the eigenvectors and eigenvalues of Kg4).
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Consider the curve C which is the intersection of two superellipsoids in three-dimensional
Euclidean space and the point K computed using the previous iteration. The point corre-
sponding to the maximum penetration of superellipsoid 1 into the superellipsoid 2, denoted
as T(y), is the point on the surface of superellipsoid 1 whose position vector minimizes the

function f(z). Similarly, the point T{,) can also be used as the maximum penetration point
of superellipsoid 2 into superellipsoid 1. The pair of points, T(;) and Ty, will serve as the
contact points in the case when the penetration has occurred between two superellipsoids.
The procedure for unique contact point detection is commenced by circling around point
K using a small perturbations on the surface of superellipsoid 1. Suppose one picks five
distinct points, denoted by M, Ny), Py), Qu) and Ry, which lie on the curve C. At
these points, f(z) will be zero. Five curves can be plotted from the point K to each of these
points by linearly interpolating between their u — v coordinates. The midpoints of each
curve from K to M, Ny, Puy, Q) and Ry are denoted by M(l), N(l), ]5(1), Q(l) and
R(l), respectively. It N(l) is the point where f(z) i1s minimal among the five midpoints, and
if f(z) decreases along the curve N(l)M(l), then T{y), the point of maximum penetration, can
be found by first searching along the curve connecting N(;y and M(;y and then by searching
along the curve connecting K and T{;). The corresponding point of maximum penetration,
T\3), of superellipsoid 2 into superellipsoid 1 can be obtained using a similar procedure.

1.6 Time Integration

Classical explicit time integration methods have proven to be unsatisfactory when solving
the equations of motion (1.30) and (1.41) even when used with an adaptive step-size control.
Essentially, the required step size of integration is far too small to be of practical use. The
reason for this lies in the intrinsic director forces k' defined in equation (1.12), which produce
very high frequency modes of oscillation. Implicit integration methods on the other hand
can use much larger time steps at the expense of solving (implicit) systems of algebraic
equations.

In this version of MEDUSA, we employ a simple explicit predictor-corrector integration
scheme based on the forward Cauchy-Euler method. We outline here the integration scheme
for equation (1.41) when two vehicles are in contact. The corresponding schemes for equation
(1.30), and for any additional vehicles, are easily inferred. To simplify the notation, we
suppress the vehicle index ( here:

Zig+1 = Zigp+Atzyp .
Tktr = Yk + 1 01(Z1p11)
Yokt1 = Yok T D2 0221 k11, Z2k)
Zikr1 = Zig + Atz + c1(V1kt1, Z1kr1)]
Zojt1 = Zok + AL[G(Z1 k41, 22k Oag s t) + C2(Vokt1, Z1 k415 Z2k)]
Qagit1 = Oggi + At [7’_1 Xag e + (21 jot1, Zz,k)] , (1.52)
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where quantities of the form xj are approximations of x(#x). In these incremental equations,
At is the step size. Equation (1.52); uses the forward Cauchy-Euler method to calculate
Z1 k+1 which serves as a predictor of zj g41. All of the other equations of (1.52) use this
prediction. Equations (1.52)45¢ are the forward Cauchy-Euler integrations steps of equation
(1.41). The use of the predictor z; 41 mainly affects the function g in (1.52)5 since it contains
the stiffest part of the equations of motion (i.e., the intrinsic director forces).

Equations (1.52)s5 compute approximations to the Lagrange multipliers of equation
(1.42) by penalizing the constraint functions ¢; and ¢,. The penalty parameters p; and
p2 are constants that must be properly chosen. When a vehicle is not in contact with an-
other, then clearly ¢; = 0 and ¢, = 0. We then also set 3 = 43 = 0, which serves as initial
conditions for (1.52); 3 whenever contact is initiated.

We close this chapter with a remark concerning At and the transitions to and from
equations (1.30) and equations (1.41) in MEDUSA. Whenever z; ;1 predicts contact between
a pair of vehicles in the next time step, the step size At is reduced in order to keep the
penetration of the vehicles small. The step size is however not reduced below some minimal
value which is hardwired into the code (see Programmer’s Guide and Appendix F). At this
point, the integration continues with the fixed smallest step size. Once contact is lost (i.e.,
#1 > 0), the Lagrange multipliers v; and ~, are reset to zero. If contact does not reoccur
during a certain (hardwired) time interval, the step size is increased again to the maximal
step size which is a quantity provided by the user.

1.7 Collisions and Dissipation

During an actual collision, dissipation can be present due to the irreversible deformation of
the vehicle. For collision with relative velocity up to approximately 5[mp/h], dissipation
i1s exclusively due to the bumper design. For higher relative velocities or side impacts,
dissipation occurs due to the irreversible deformation of the body structure.

To incorporate irreversible deformations and their associated dissipation into the vehicle
model, it suffices to augment the contact forces ¢; and ¢y (see (1.42)) with rate-dependent
terms. This is conveniently accomplished by selecting the penalty coefficients p; and p; (see
(1.52)33) so that they effectively act as viscocity parameters. There coefficients may be
chosen independently for frontal and lateral impacts to differentiate between bumpers and
the weaker side structure. We refer the reader to Section 4.7 of the Programmer’s Guide for
pertinent details.
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Chapter 2

User’s Manual

2.1 Introduction

The MEDUSA-code has the capability of simulating arbitrarily many vehicles driving on a
road free of obstacles. The program allows vehicular collisions with moderately high relative
velocities. Consequently, MEDUSA can be used to qualitatively investigate collision scenarios
that occur within platoons of vehicles. In this chapter, we explain how to run MEDUSA. This
task involves no changes in the program code of MEDUSA. For details on such changes, we
refer the reader to the Programmer’s Guide in Chapter 4. There, possible modifications
of the mathematical models of the vehicles and the road are discussed. The reader is also
referred to Chapter 3, where several examples are discussed in detail.

Note that whenever we use the terms ‘vehicle model’ or simply ‘model’ in this chapter,
we mean a set of parameters that is required by the underlying mathematical model. Thus,
if we say that two vehicles have different models, we mean that their model parameters
are different. Their mathematical model is however the same since it is hardwired into the
program code.

The usage of MEDUSA is quite simple. The user provides the vehicle models, the initial
positions, orientations and velocities of the vehicles and the road data in three separate input
files. These files are written in a plain text format whose contents are explained in Section
2.2. The simulation is run by typing a line similar to

>>medusa -t1.0

at the command prompt of the operating system®. The simulation is controlled with com-
mand line options (such as -t1.0 in the example above). These options are explained in
Section 2.3. MEDUSA writes the simulation data into several plain text files that can be
read and graphically presented by other programs such as MATLAB, MATHEMATICA or the
SMARTPATH-animator. We discuss this in Section 2.4.

'In this chapter, we will assume that the command prompt is >> and that the executable is named
Medusa.
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2.2 The Three Input Files

There are three input files that the user needs to provide to run a simulation which by default
are called model.dat, platoon.dat, and road.dat. Out of these, only the file platoon.dat may
have an alternative name. It can be specified when running the program (see Section 2.3).

The structure of these plain text files is defined as a sequence of mandatory keywords,
or tokens. If keywords are missing or misspelled, a run-time error message is generated.
The keywords for each file are listed in their proper order below. Sample files can be found
in Chapter 3 and Appendix C for reference. Comments can be placed anywhere using the
symbol %. The rest of the line is then ignored. Note that MEDUSA is case-insensitive, i.e.,
the keywords MODEL, Model or MoDeL are considered identical. In this chapter however, we
will use capital letters to highlight keywords. Small italic letters are to be replaced by a
number.

model.dat This file provides MEDUSA with a database of vehicle models. The models in
this file are listed sequentially and are numbered starting from one. Later, models will be
assigned to vehicles simply by choosing the appropriate model number. The file model. dat
must contain at least one set of model parameters.

NUMBER_OF MODELS m This keyword appears only once at the top of the file. MEDUSA will
subsequently read m vehicle models from the file or generate an error message if less
than m models are found.

MODEL m Beginning of model m. The first model in the file is number 1, the second 2 and
so on. An error is generated if the sequence is different.

For each model, the data is grouped for the Cosserat point, the suspension, the tire
model and the contact model. An additional data group defines an equilibrium of the
vehicle which will be used later to define initial conditions for the simulation.

COSSERAT POINT This keyword groups data pertaining to the Cosserat point:
MASS 2 The mass of the vehicle [kg].

IX z IY y IZ 2 The principal moments of inertia Ji', J2? and J3* of equation
(1.9) [kgm?].

E ¢ NU « VOLUME v Young’s modulus [N/m?], Poisson’s ratio and the material
volume of the chassis [m?].

SUSPENSION This keyword groups data pertaining to the suspension models:

L1 v L2 vB zH1 yH2 z These coordinates are defined in Figure 1.1 [m].
SPRING REF z The unstretched length of the suspension springs (As in equation

(1.17)) [m).

C1l z C2 y Front and rear spring constants [N/m].

D1 2 D2 y Front and rear viscous damping coefficients [Ns/m].
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TIRE z Tire lag parameter (7 in equation (1.27)).

CONTACT A1 z A2 y A3 z The three semi-axes of the super-ellipsoid that approximates
the vehicle’s outer geometry.

EQUILIBRIUM This data group defines a reference state (typically an equilibrium) of
the vehicle. The initial conditions of the vehicle are defined relative to this state.

R3 7 Height of the vehicle’s center of mass above ground [m]

D11 z D12 y D13 z Components of director 1 at the equilibrium |.]
D21 z D22 y D23 z Components of director 2 at the equilibrium |.]
D31 2 D32 y D33 z Components of director 3 at the equilibrium |.]

Additional models are added starting again with the keyword MODEL and then following
the above sequence of keywords. If the reference state for the EQUILIBRIUM-section is not
known, it can easily be obtained by simulating a single vehicle on a straight horizontal road
for a period of time. The vehicle will settle into the desired state after all of its vibrations
are damped out.

platoon.dat This file contains the description of the vehicle platoon. As mentioned earlier,
a different filename may be specified when running the program (see Section 2.3).

NUMBER_OF VEHICLES v This keyword appears only once at the top and MEDUSA will sub-
sequently read the definitions for v vehicles from the file or generate an error message
if less vehicles are found.

VEHICLE HAS MODEL m The vehicle is assigned the model m from the database model.dat.

INITIALLY WITH Defines initial conditions for the vehicle:

X Y y The initial position of the vehicle’s center of mass [m].

ORIENTATION u Defines the initial direction in which the vehicle is heading [deg].
The angle is measured about Ej counter-clockwise from E;. For example,

the value 7 corresponds to a heading in the E; direction.

SPEED v Initial speed of the vehicle [m/s].

TIRE_SPEED v Circumferential tire speed of the driven front wheels in [m/s] (Rw
in equation (1.19);). The rear wheels roll free. If v is zero, the front wheels
roll free, too.

STEERING z Constant steering angle [deg]. The value 0 causes the vehicle to
drive straight. A positive value makes the vehicle turn to the left (counter-
clockwise, as viewed from the driver’s perspective.

MEDUSA numbers the vehicles so that they can be identified in the output data. The
first vehicle in the platoon description file is number 1 and so forth.
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road.dat This is the road description file for MEDUSA. It is used to construct a fixed road
curve in three-dimensional space, and, at each point of this curve, a road plane. Data points
are chosen by the user to best approximate the road of interest.

It is important that this file should contains at least four data points (see Section 1.3).
Furthermore, the distance between any two neighboring data points should be several times
larger than a vehicle’s greatest dimension. We also note that if the data points are chosen
to be too closely spaced, then the spline interpolation method used to generate a road will
lead to spurious elevation changes.

NUMBER_OF POINTS: n The number of data points used to define the road.

XYZ_COORDINATES & ANGLE: The Cartesian coordinates [m]| and banking angles [deg] of each
road point.

END_OF FILE No more data points after this keyword.

2.3 Running the Program

After one has written the model database file model.dat, the platoon description file (e.g.,
platoon.dat) and the road description file road.dat, suppose that one wishes to run a simu-
lation. Try:

>>medusa
No endtime specified. Type medusa -h for help

The program stopped execution because no simulation parameters were specified. MEDUSA
suggests one uses its help feature:

>>medusa -h
The command line options are:

-h prints this list

-dx.xxx set fixed stepsize to x.xxx [s] (default: 5e-05)
-ffile parameter file (default: platoon.dat)

-tx.xx simulation ends at x.xx [s] (mandatory)

-sx.xx save data point every x.xx [s] (default: 0.01)

We will explain these options in a moment. Note that the option letters are case-sensitive
and they each start with a dash.

Some of the options have additional parameters. There may be no space between the
option letter and the parameter. If options are misspelled, a run-time error message is
produced. The sequence of options does not matter. Number parameters may be written in
the normal floating point format, e.g., 0.015 or 1.5E-2 are equally valid.
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-dz Step size of the time integrator. Without this option, the stepsize is set to the default
as indicated by the help feature. Note that at times when vehicles are in contact with
each other, the stepsize is reduced to a pre-programmed value.

-fname By default, platoon.dat is the platoon description file. Through this option, a
different file may be chosen.

-h This prints the help screen above.

-sz Data points are stored in fixed time intervals. Without this option, a default value is
used.

-tz The simulation runs for z seconds. This parameter is mandatory.

We now look at a few examples. Assume that we have written the files model.dat and
platoon.dat and that we would like to simulate the vehicles for ten seconds with a fixed
stepsize of 107° seconds. We wish to obtain data every 0.2 seconds. The command that
achieves this is:

>>medusa -t10 -s.2 -dle-5

Assume now that we have named the platoon description file crash_it. We wish to simulate
the vehicles for one second with the default integration stepsize:

>>medusa -fcrash_it -t1

At execution time, MEDUSA displays some information on the screen. If one runs the
program using the sample platoon.dat from Chapter 3, the screen will look something like
this:

>>medusa -t10

The simulation for 2 vehicles will stop after 10 [s]
- stepsize: 5e-0.5 [s]
- save data point every 0.01 [s]

t=2.1300

A counter at the bottom of the screen will show the progress of the simulation by displaying
time in seconds. We will explain the format of the output files in further detail in the next
section.
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24. OUTPUT FILES

2.4 Output Files

As output, the simulation produces several plain text files: path.asc, director.asc, veloc-
ity.asc, energy.asc and oop.asc. These files contain the numerical simulation data as columns
of floating point numbers so that the files can easily be imported into other software packages
such as MATLAB or MATHEMATICA. The first column in each file records elapsed time, the
remaining column record certain quantities at a given time.

path.asc This file contains the simulation data in a form suitable for import into the SMART-
PATH animator. We refer to Eskafi, Khorramabadi and Varaiya [8] for an explanation of
the data format.

director.asc  Following the time column, there are twelve data columns for vehicle one,
twelve for vehicle 2, and so forth. Out of these twelve columns, the first three record the
three components r-E; (¢ = 1,2, 3) of the vehicle’s position vector r. The remaining columns
record the vehicle’s three directors d;, each with three components d; - E; (cf. equation
(1.28)).

velocity.asc This file has the same structure as director.asc, with the exception that instead
of position vectors and directors for all vehicles, velocity v and director velocities w; - E; are
recorded.

energy.asc Following the time column, there is one column for each vehicle that records the
vehicle’s total energy.

oop.asc  This file exists mostly for the purpose of debugging the program. It is empty unless
a programmer wants to use it as a scratch file (see Programmer’s Guide in the next chapter).

28



Chapter 3

Simulations using MEDUSA

An accident on a busy automated highway is a highly complex dynamic event which may
involve many vehicles. Even when only a few vehicles participate actively in collisions, many
more would carry out computer controlled emergency maneuvers. MEDUSA was conceived
to simulate the dynamics of all these vehicles as part of an automated vehicle simulation
package. As a stand-alone program, i.e., open-loop without controller input, MEDUSA can
be used to study the isolated events that make up the complete scenario. The examples
presented in this chapter represent such events. They were also chosen to demonstrate the
capabilities of MEDUSA.

3.1 Animation with SMARTPATH

The five simulated scenarios included in this chapter were animated with the SMARTPATH-
animator. The results are shown in the form of screen snapshots. The MEDUSA input file
platoon.dat is provided for each case. This also helps illustrate the explications in the User’s
Manual. The MEDUSA input file model.dat is the same for all simulations and is provided
in Appendix C. With the exception of the last example in this chapter, the road is assumed
to be plane.

For plane roads, the MEDUSA input file road.dat is

NUMBER_OF _POINTS:

4

XYZ_COORDINATES_&_ANGLE:
0. 0.0 0.0 0.0
100. 0.0 0.0 0.0
500. 0.0 0.0 0.0
1000. 0.0 0.0 0.0

The SMARTPATH-animator requires three input files in order to create an animation
(see Eskafi, Khorramabadi and Varaiya [8] for details). First, there is the simulation data
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3.2. AN OFFSET COLLISION

file which is provided by MEDUSA (it requires the filename extension *.state). Then, there
is a file *.cars which is of the form

3

1 simplel
2 simplel
3 simplel

This file specifies the number of vehicles and their types for the animation. Here, 3 on the
first line 1s the number of vehicles, simplelis the type. The vehicle type is defined in the last
of the three input files which has the extension *.config. This file also defines the highway
for the animation. All the examples use the same file:

SECTION CARTYPE

CARTYPE simplel

LENGTH 4.0

WIDTH 1.6

HEIGHT 1.3

FILE esprit.flt (90 0 0) (0.774 0.015 0.000 1.00)
//

SECTION HIGHWAY

LANEWIDTH 4

HIGHWAY HW1

LANE 1 MANUAL NONE_BARRIER
LANE 2 MANUAL NONE_BARRIER
GEOMETRY LINE 500 O

//

PIN HW1 -50 4 .2 0

3.2 An Offset Collision

The oftset collision of two vehicles is probably the most common scenario expected to trigger
a chain reaction on a highway. This elementary case was also used to debug MEDUSA since
many errors in the vehicle model show up as visible inconsistencies in the simulation data.
For example, an error in the calculation of the contact normal would obviously cause the
vehicles to swerve in the wrong directions.

The offset collision is staged by letting a slower moving vehicle be rear-ended by a faster
one. Both vehicles are in neutral gear, i.e., their front tires are rolling freely. We achieve
this by setting TIRE_SPEED to zero in the file platoon.dat:

% Example: Offset Collision

NUMBER_OF _VEHICLES 2
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Figure 3.1: An offset collision between two vehicles. From left to right: approach, collision
and separation.

% Vehicle 1

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 0.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 22.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

% Vehicle 2

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 6.0 % X coordinate of center of mass [m]
Y 0.4 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 20.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

Clearly, the lateral offset is 0.4 [m].

The simulation results depicted in Figure 3.1 were obtained by running MEDUSA for
10.0 seconds. The vehicles are heading towards the left. Figure 3.1; shows the two vehicles
approaching, Figure 3.1, shows the collision and Figure 3.15 shows the vehicles separating.
The arrows indicate the exchange of linear momentum during the collision.

We observe that both vehicles maintain their principal heading after the collision. This
is attributable to the box-like shape of the superellipsoid which surrounds the vehicles.
However, as expected, the offset in the collision causes both vehicles to drift to the left
which is noticeable after some time, see Figure 3.2. As expected, the larger the offset in the
collision, the stronger the drift. If the vehicles contact at their corners, the contact forces
may even send the vehicles into a spin. However, in the latter case, the outcome of the
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3.3. A WAVE PROBLEM

Figure 3.2: After this offset collision, the vehicles drift towards the left side of the road.

simulation is highly sensitive to the geometry of the vehicles’ outer surfaces due to the rapid
change in the surface normals at the corners. This is a well-understood issue for any vehicle
accident simulation, see Fonda [9] and McHenry and McHenry [19].

3.3 A Wave Problem

One possibility to trigger a chain reaction is to cause a collision of the first vehicle in a
platoon with a slower moving vehicle, see Figure 3.3. This scenario was staged by running
MEDUSA for 20.0 seconds with the following platoon.dat file:

- 9| <
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Figure 3.3: A staged chain reaction.

% Example: Chain Reaction

NUMBER_OF _VEHICLES 4

% Vehicle 1

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 0.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
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Figure 3.4: The consecutive collisions in a chain reaction.

ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 22.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

% Vehicle 2

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 6.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 22.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

% Vehicle 3

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 12.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
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3.4. MERGING OF VEHICLES

SPEED 22.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

% Vehicle 4
VEHICLE_HAS_MODEL 1 INITTALLY_WITH

X 18.0 % X coordinate of center of mass [m]

Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 20.0 % forward speed [m/s]

TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

If all vehicles are aligned, a sequence of collisions will ripple through the entire platoon,
see Figure 3.4. In each collision, translational kinetic energy is partially converted into
internal energy of the Cosserat points. Inspecting a vehicle’s translational speed alone, this
conversion appears therefore as dissipation. This, in return, affects the propagation of the
chain reaction through the entire platoon.

Finally, the rear-end collisions of this scenario also serve to illustrate the three dimen-
sionality of the contact algorithm. Since a vehicle’s center of mass is not centered between
its axles, it naturally pitches forward. When hit straight from behind by a similar vehicle,
its rear is lifted up causing it to pitch forward even more. This is demonstrated in Figure 3.5
where a closeup of the initial collision in Figure 3.4, is shown.

Figure 3.5: The pitching induced by a aligned rear-end collision.

3.4 Merging of Vehicles

One plausible collision scenario involves a rogue vehicle trying to merge into a regular platoon,
see Figure 3.6. We staged such a scenario in MEDUSA with the assumption that the steering
angle of the rogue vehicle is constant (steering failure and lockup). Every vehicle is assumed
to be in neutral gear so that they neither brake nor accelerate. The platoon.dat file for this
example is
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Figure 3.6: A rogue vehicle attempting to merge into a platoon.

% Example: Merging into a Platoon

NUMBER_OF _VEHICLES b

% Vehicle 1

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 0.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 22.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

% Vehicle 2

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 6.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 22.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

% Vehicle 3

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 12.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 22.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

% Vehicle 4
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3.4. MERGING OF VEHICLES
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Figure 3.7: FEvolution of the merging accident scenario.

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

X 18.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 22.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 0.0 % steer angle [deg]

% Vehicle 5

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 6.0 % X coordinate of center of mass [m]
Y -4.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 25.0 % forward speed [m/s]
TIRE_SPEED 0.0 % in [m/s], 0.0 -> free rolling
STEERING 8.0 % steer angle [deg]

This example demonstrates the program’s ability to simulate a large number of vehicles
with multiple collisions. Indeed, the rogue vehicle first collides with the second vehicle
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Figure 3.8: In this scenario, a fast moving vehicle avoids a collision by changing lanes.

in the platoon and then immediately with the third, see Figure 3.7;. The capability of
simulating simultaneous contacts with several vehicles sets MEDUSA apart from standard
vehicle collision codes such as CRASH and SMAC (cf. [18, 19]).

After the initial collisions, the rogue vehicle side impacts the third vehicle in the platoon
several times more while it pushes it aside, see Figures 3.7, 5. We note that during contact,
the tire forces are negligible in comparison to the contact forces. However, a side impact
may send a vehicle into a spin with subsequently high tire slips and slip angles. Therefore,
this example illustrates the importance of an accurate tire model to cover a wide range of
maneuvers (see Section 1.2.2).

3.5 An Evading Maneuver

As mentioned earlier, multiple vehicle accident scenarios involve vehicles that attempt to
avoid collisions with appropriate driving maneuvers. The study of these maneuvers is the core
task to computer controlled accident prevention and does not depend on collision dynamics.
Here, proper tire models are extremely important.

In the example of this section, the stage is set for a potential rear-end collision, see
Figure 3.8;. The vehicle in the front is moving slower than the approaching vehicle. Reasons
for this can be manifold: the slower vehicle may have motor problems or a defective clutch,
or the approaching vehicle may be unable to brake. The platoon.dat file for this case is
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3.5. AN EVADING MANEUVER

% Example: Avoiding a Collision

% Vehicle 1

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 0.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 22.0 % forward speed [m/s]
STEERING 0.0 % steer angle [deg]

% Vehicle 2

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 8.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
SPEED 20.0 % forward speed [m/s]
STEERING 0.0 % steer angle [deg]

The difficulty of running such an example in the present version of MEDUSA lies in the
fact that only constant steering angles can be input using platoon.dat. No time history
or steering control algorithms have been incorporated into MEDUSA. The steering angles
needed for this scenario therefore need to be hardwired into the code. For our example, we
inserted a short piece of code in the file vehicle.c just before the line

equations_of_motion(dz[cv],vehicle+cv);

and then recompiled the program. This code prescribes a steering angle time history for the
first (faster) vehicle:

simulation.vehicle[1]. suspension.steer_angle=
(£<0.30) ? 0.0 :
.0 /180*Pi :

((t<0.50) 7 3

((£t<0.70) ? 9.0 /180%Pi :

((t<0.85) 7 3.0 /180%Pi :

((t<1.10) 7 0.0 :

((t<1.25) 7 -3.0 /180%*Pi :

((t<1.45) 7 -7.0 /180%Pi :

((£t<1.60) 7 -3.0 /180%Pi : 0.0 )))))));

The simulation results are depicted in Figure 3.8. This example illustrates the difficulty of
steering a vehicle in an open-loop manner. Finding the right steering inputs for this scenario
involved many trial and error repetitions of the simulation. This example also demonstrates
the need for an interactive driver’s interface for MEDUSA so that more complex driving
maneuvers may be appropriately and realistically established.
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3.6 A Car on a Banked Road

The road surface of a highway is not necessary horizontal. The highway may run up- or
downhill or it may be banked. For this reason, MEDUSA has a built-in road-geometry
simulation capability. This final example illustrates the influence of a banked road on the
vehicle dynamics. The road.dat file for this example is

NUMBER_OF _POINTS:

4
XYZ_COORDINATES_&_ANGLE:
0 0.0 0.0 5.0
30 0.0 0.0 2.5
60 0.0 0.0 -4.0
90 0.0 0.0 0.0
END_OF_FILE

1.e., the center line of the road remains horizontal and straight, but the road plane tilts first
to the right, then to the left and finally back to horizontal.

_€H) €E) gmy -

Figure 3.9: The influence of a banked road on the vehicle dynamics. From right to left: the
vehicle at various instances. The dashed line is a lateral reference.

We simulated a single vehicle driving straight. Unlike the previous examples in this
section, the front wheels are driven, i.e., they maintain the vehicle’s speed (in this case
12.0 [m/s]). The platoon.dat file for this simulation is

% Example: Driving on a Banked Road

NUMBER_OF _VEHICLES 1

% Vehicle 1

VEHICLE_HAS_MODEL 1 INITIALLY_WITH
X 0.0 % X coordinate of center of mass [m]
Y 0.0 % Y coordinate of center of mass [m]
ORIENTATION 0.0 % heading angle [deg] (cw:"-", ccw:"+")
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3.6. A CAR ON A BANKED ROAD

SPEED 12.0 % forward speed [m/s]
TIRE_SPEED 12.0 % in [m/s], if 0.0, tires roll freely
STEERING 0.0 % steer angle [deg]

Figure 3.9 demonstrates the influence of the banked road on the path of the vehicle.
Clearly, when the road tilts to the right, the vehicle moves to the right. When the road tilts
left, the vehicle’s sideways motion is slowed down. When the road becomes horizontal again,
the vehicle pursues undisturbedly a straight path. The road tilt offsets the vehicle from the
centerline of the road by about 0.5[m]. We note that a driver or the automated highway
controller would counteract the road influence through small steering inputs.
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Chapter 4

Programmer’s Guide

4.1 Introduction

MEDUSA is a program for the simulation of platoons of vehicles that incorporates moderate
vehicle collisions. We reviewed the theory behind the various models in MEDUSA in Chapter 1
and explained the use of MEDUSA in Chapter 2. In this chapter, we describe the program
code itself!. We presume that the reader is familiar the previous chapters and the ANSI-C
programming language. The program consists of several functional blocks which we refer to
as modules. These modules are

e initialization,

time integration and data output,

vehicle model,

road model,

e contact detection.

The modules are contained in separate files and are, as far as possible, independent of each
other. The complete source code is listed in Appendix F.

This guide is structured as follows. After some general guidelines and useful definitions
and functions in Sections 4.2 and 4.3, we explain in Section 4.4 the function main() where
the execution of every C program begins. From there, the initialization module (Section 4.5)
is called which serves as the input interface to the user. Next, the time integration module
is executed (Section 4.6). It integrates the equations of motion of the vehicles (Section 4.7).
Details of the road module are discussed in Section 4.8. The module that detects collisions
is explained in Section 4.9. During integration, data is written to output files (Section 4.10).
For further details of the program, we refer to the source code in Appendix F. Section 4.11 is
intended to give additional information for the programmer who wishes to make substantial
changes and additions to the code.

IThe notation that is used in this chapter is explained in Chapter 0.
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4.2 Generalities

In this section we list some general comments to the code. We have attempted to make the
code sufficiently clear and general so that later modifications and improvements can be easily
performed. Keeping the code modular is one part of this attempt, encapsulating vehicle data
in data structures is another.

MEDUSA is programmed in ANSI-C (see Kernighan and Ritchie [15]) which is platform
independent. Macros (beginning with the #define keyword) are mostly written in capital
letters to distinguish them visually from variables and functions.

Modularity and Global Variables

Each file of the program is considered to be an independent module of the code. Global
variables are sometimes used within a file. The only global variable that is shared between
all the files (using the externkeyword in C)is the variable simulation. It is a data structure
which holds all the data essential to the simulation. If data is passed between modules, it
i1s through this data structure or through function arguments, never through other global
variables.

Data Types for Numerics

Floating point variables are all at least double precision. For intermediate calculations (such
as matrix multiplications), the data type long double is used. Compilers that do not
support this data type generate warning messages which may be ignored.

For the storage of vectors and matrices and for use in vector and matrix operations, we
use the data types Vector and Matrix from the Numerical Recipes in C [26]. We explain
these data types in detail in Section 4.3.1.

Structures and Pointers

Structures and especially pointers to structures are an efficient way to pass large amounts
of different kinds of data between functions. In MEDUSA, almost all of the data used to run
the simulation is stored in structures which are defined in the file common.h. We discuss
the contents of these structures in detail in Section 4.3.2, and list them in Appendix D for
reference. Here, we give a brief description of these important structures:

vehicle_struct This structure is used to store a vehicle’s model parameters and all its
state variables. It contains substructures, scalar variables, vectors and matrices. For
each vehicle, it is initialized at the beginning of the simulation (cf. Section 4.5).

simu struct This structure exists only once in the program and all the simulation param-
eters and simulation data. For example, it contains not only the integration step-size
and the duration of the simulation, but also the array of vehicle_struct data struc-
tures.
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Source Code Listings

The complete MEDUSA code is listed in Appendix F. The lines and pages are numbered.
Each listing has a header containing the filename, the date of modification and a short
description of the file. The global variables and function names are listed with line numbers at
the top of each listing to help localize them in the code. For additional reference, Appendix E
lists the function dependencies, but note that for brevity, we do not list the dependencies on
functions contained in common.h.

4.3 The Files common.h and common.c

The header file common.h provides a body of definitions and function prototypes which are
used as tools in all other parts of the MEDUSA program code. Every source code file contains
the line

#include '"common.h"

to make the definitions available. The functions corresponding to the prototypes are coded
in the file common.c (see Appendix F). Many of these functions are adapted from Numerical
Recipes in C [26]. We refer to that book for a more detailed discussion of them.

4.3.1 Programming Tools for Vectors and Matrices
Vectors

For many vectors with known length, we declare in the source code double precision floating
point arrays such as

double al[N+1];

In this example, the array elements a[il correspond to the vector components a; (i =
1,...,N) of an N-dimensional vector a. The array element a[0] is not used and is void.
Often we write

double al[N+1]1={0.0};

to explicitly set the unused a[0] element to zero. This may be helpful in debugging the
program code.

In the ANSI-C programming language, pointers and one-dimensional arrays are essen-
tially the same (see Kernighan and Ritchie [15]). For instance, in the example above, a[1]
and *(a+1) denote the same array element. For this reason, we have created a new data
type Vector in the file common.h:

typedef double *Vector;
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This data type increases the readability of the source code and helps to identify physical
vectors in the program.

The memory for arrays can also be allocated dynamically during execution time using
the standard C-function malloc(). Numerical Recipes in C [26] offers a more convenient
solution to allocate memory for vectors. We have adopted their solution and define the
following function prototypes in the file common.h:

Vector vector(int n);
void free_vector(Vector);

We explain their use with the following short sample program:

#include <stdio.h>
#include "common.h"
void fun(int n)
{ /* calculate and print the squares of the first n integers: */
Vector a=vector(nm);
int i;
for (i=1;i<=n;i++) ali]l=i*i;
for (i=1;i<=n;i++) printf("/d, ",alil);
free_vector(a);

}

In this example, the function vector(n) allocates memory for a double precision vector of
length n and returns a pointer to that memory to the variable a. This variable can now be
used just like a normal one-dimensional array. The function free_vector(a) de-allocates
the memory once the calculations have been performed. After this, the variable a is void.
We note that vector () does not allocate memory for the array element a[0]. Using a[0]
in the above example would probably lead to a runtime error.

Matrices

We also adapted the ideas proposed in the Numerical Recipes in C [26] to treat matrices.
To denote a matrix, we have created the new data type Matrix:?

typedef double **Matrix;

Similar to the functions vector() and free_vector() for vectors, the following functions
are used to allocate and free memory for a n by m matrix, respectively:

Matrix matrix(int n, int m);
void free_matrix(Matrix);

ZNote that the declarations Matrix, *Vector and #*double are equivalent.
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The Matrix data type can be used just like a two-dimensional array. For example, the
following (admittedly simple) code segment creates a three by three matrix A, assigns the
value 2.0 to the matrix element A5 and eliminates the matrix again:

Matrix A=matrix(3,3);
A[1][2]=2.0;
free_matrix(A);

There is however a fundamental difference between two-dimensional arrays and the Matrix
data type. In the example above, A is actually a pointer to a one-dimensional array of row
vectors of data type Vector. The following code segment illustrates this very useful property
which i1s sometimes used in MEDUSA:

Matrix A=matrix(3,3);

Vector v;

int i,j;

for (i=1;i<=3;i++) for (j=1;i<=3;j++) A[i][j]1=3*%(i-1)+j;
v=A[2];

printf ("The second row of A is %d %d %d",v[1],v[2],v[3]);
free_matrix(A);

Here, the variable v points to the second row of the matrix A. The output from this code
segment 1s therefore:

The second row of A is 4 5 6

Vector and Matrix Operations

There are a number of functions defined in common.h that handle vector and matrix op-
erations. When using these functions, one should remember to allocate memory for the
variables using the functions vector() and matrix() discussed above. Note also that, as
with any dynamically allocated memory, one must be careful to free allocated memory when
it is not used anymore (with free_vector() and free_matrix()).

4.3.2 Structures
The Data Type vehicle struct

The vehicle_struct data structure helps to conveniently manage the parameters and vari-
ables pertaining to a vehicle. It is listed in Appendix D.1 for reference. MEDUSA makes
extensive use of pointers to structures of this type. The following is a complete list of the
contents of vehicle_struct:

int ident: This is a unique number identifying the vehicle.

Vector z: This is the vehicle’s state vector from equation (1.32) that is being integrated.
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4.3. THE FILES COMMON.H AND COMMON.C

Cosserat point: This is a substructure containing the parameters of the Cosserat point
that is used to model the chassis of the vehicle:
double m: The mass of the vehicle chassis.
Matrix I: The inertia matrix M in equation (1.31).
Matrix I_inv: The inverse of the matrix model->Cosserat_point.I.

double lam, tm: The constants %)\ and Vi of equation (1.12).
suspension: This substructure contains the parameters of the suspension model:
double steer_angle: The steering angle of the front wheels. MEDUSA reads it from

STEERING keyword in the platoon description file (cf. Section 2.2).

double X1[5], X2[5], X3[5]: Coordinates of assembly points as defined in equation
(1.11) and Figure 1.1. X1[1] corresponds to Ly, X2[2] to —B/2, X3[3] to —H,,
and so forth.

double spring ref: The unstretched length As of the springs defined in equation
(1.17).

double C[5], D[5]: The spring and damping constants of the suspension as defined
in equation (1.17). For example, C[2] is the spring constant for suspension 2.

Matrix infl: The influence matrix A in equation (1.31).

tire: This substructure contains parameters related to the tire model.

double tire.tau_inv: This is the tire force lag parameter 771

in equation (1.27).

double speed: Circumferential speed of the front tires (Rw in equation (1.19)).

int driven: Can be TRUE or FALSE. If FALSE, the variable speed is ignored and the
front tires are assumed to be rolling freely.

road: This substructure contains information about where the vehicle is with respect to the
road:

int segment: The road segment number (see Section 1.3).

double parameter: The parameter s of the segment (see equation 1.35).
contact: This substructure contains information pertaining to the contact between vehicles:

double dimension box[4 :] Physical dimensions of the vehicle. MEDUSA reads them
from CONTACT keyword in the model description file (see Appendix C).

Vector force: The resultant constraint force of all other vehicles acting on this ve-
hicle (i.e. the contributing forces are those from equation (1.42)).
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Matrix previous This matrix records at which surface points the vehicle was in con-
tact with other vehicles in previous calculations. A surface point corresponds to
the vector x in equation (1.47).

Matrix multiplier: This matrix is in fact a pointer to an array that contains the
Lagrange multipliers v; and 7, of the contact force equations (1.42) for each pair
of vehicles. All the vehicles share this matrix.

init: This substructure defines a state of the vehicle relative to which the initial conditions
are determined:

double r3: The reference value of the vertical component of the vehicle’s position
vector. This value is specified by the keyword R3 in the EQUILIBRIUM sections of
the file model.dat (see Section 2.2).

Matrix F: This matrix corresponds to the deformation gradient F defined in equation
(1.3). It is specified in the EQUILIBRIUM sections of the file model.dat.
The Data Type simu_struct

The simu_struct data structure helps to conveniently manage all the simulation parameters
and the vehicle data. It is listed in Appendix D.2 for reference. The following is a list of its
contents:

char *in file: This string stores the name of the platoon description file. By default it
is DEFAULT_INPUT_FILE. The name is changed during run-time by the option -f (see
Section 2.3).

FILE *ofp: This scratch file is initialized by init (). It exists mainly for the sake of de-
bugging the program.

int NofV: The number of vehicles in the simulation. MEDUSA finds this number in the
platoon description file after the keyword NUMBER_OF _VEHICLES (see also Section 2.2).

int NofM: The number of vehicle models which MEDUSA finds in the file model. dat after
the keyword NUMBER_OF _MODELS (see also Section 2.2).

vehicle struct *model: This array stores the vehicle models that have been read from

the file model.dat.
vehicle struct *vehicle: This is the array of vehicles that has been previously described.
integrate: This substructure contains parameters controlling the integration:

double end time: The simulation ends after a simulated time of end_time seconds.
This corresponds to the run-time option -t (see Section 2.3).
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4.4. THE FUNCTION MAIN(Q)

double delta t: The fixed step-size of the integrator. The default value is DELTA_T.
The value is changed by the option -d in Section 2.3.

double save delta t: In time intervals of length save_delta_t, data points are
written to the output files. The default is SAVE_DELTA_T. The value is changed
by the run-time option -s (see Section 2.3).

double t: Current time.
road: This substructure contains the road geometry parameters:

int nodal points: Number of points that define the road.
Matrix XIN: The Cartesian coordinates of each road points.

Matrix *C: The coefficients of each road spline (see equation 1.35).

4.4 The Function main()

ANSI-C starts the execution of the MEDUSA program code with the function main () which
calls the function init () (see Section 4.5), opens the output files, prints information per-
taining to the simulation to the screen, and calls the function integrate() (cf. Section 4.6)
which performs the actual simulation of the vehicles. After some cleanup, the program then
ends.

4.5 The Initialization Module

The file init.c constitutes the initialization module whose main function is init (). In se-
quence, the command line options are evaluated by the function evaluate_cmd_line() (cf.
Section 2.3), the user input files are read by read_models () and read_vehicles() (cf. Sec-
tion 2.2), and the road geometry is initialized by road_init (). We explain these functions
individually below.

Evaluation of the Command Line

In ANSI-C, the contents of the command line are stored in the variables argv and argc (cf.
Kernighan and Ritchie [15]). The function evaluate_cmd_line() reads the command line
parameters (such as the simulation time) from these variables and stores them in the global
variable simulation according to the following table (cf. Section 2.3):

-f simulation.in_file

-d simulation.integrate.delta_t

-s simulation.integrate.save_delta_t

-t simulation.end_time
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Reading Files

To perform the task of reading one of the input files from the disk into a buffer string,
the function read_file() is provided. This function is blind to comments and multiple
white-space characters®. To search a buffer string for a keyword, or token, the functions
read_expr() and find_token() are provided. These two functions generate error messages
if the guidelines for writing input files are violated. These guidelines are described in Section
2.2.

Evaluation of the File model.dat

The function read_models () uses read_file() to obtain a buffer string which contains the
condensed contents of the file model.dat. The keyword NUMBER_OF_MODELS indicates the
number of vehicle models (stored in simulation.NofM). A vehicle_struct array is then
generated in the variable simulation.model.

According to the guidelines in Section 2.2, for each model m, the buffer string is searched
for the proper sequence of keywords and the corresponding parameters. These parameters
are either stored directly in the structure simulation.model[m] (cf. Section 4.3.2), or else
they are used to calculate further quantities. In particular:

IX, IY, IZ: Using equations (1.8), (1.9) and (1.31), the following matrices are calculated:

simulation.model [m] .Cosserat_point.I
simulation.model [m] .Cosserat_point.I_inv

E, NU, VOLUME: Using equations (1.13), the following variables are calculated:

simulation.model [m] .Cosserat_point.lam
simulation.model [m] .Cosserat_point.tm

L1, L2, B, H1, H2, SPRINGREF, Ci1, C2, D1, D2: These parameters are stored in the
substructure simulation.model[m] .suspension. Using equations (1.11) and (1.31),
the influence matrix model [m] . suspension.infl is calculated.

TIRE: The inverse of this value is stored in simulation.model[m] .tire.tau_inv.

D11, ..., D33: Components of the matrix simulation.model[m].init.F (cf. equation

(1.3)).

3For a definition of white-space characters, see Kernighan and Ritchie [15].
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4.6. TIME INTEGRATION

Reading the Platoon Data File

The function read_vehicles() uses read_file() to obtain a buffer string which con-
tains the condensed contents of the file simulation.in_file. In this buffer, the keyword
NUMBER_OF _VEHICLES indicates the number simulation.NofV of vehicles in the platoon. An
array of vehicle_struct structures is then generated in the variable simulation.vehicle.

For each vehicle v, the buffer string is searched for the keyword VEHICLE_HAS_MODEL, say
m. The structure simulation.model[m] is then copied to simulation.vehicle[v]. Next,
the state vector simulation.vehiclel[v] .z, z for short, is initialized with the initial condi-
tions of the simulation (cf. equation (1.32)). In particular, the parameters X and Y are stored
in z[1] and z[2], while the variable z[3] is copied from simulation.model[m].init.r3.
The variables z[4] through z[12] correspond to the E; ® E;-components of the initial de-
formation gradient Fy from equation (1.3). It is calculated from the reference deformation
gradient F,.; (stored in the matrix simulation.model[m].init.F) as follows:

FO = Q(e) Feq )

where the rotation tensor Q(#) corresponds to a counter-clockwise rotation through an angle
f about the Es-axis, and # is the ORIENTATION parameter.

The variables z[13] and z[14] are the initial speeds of the vehicle in the E; and E,
direction, respectively. They are calculated from the forward speed SPEED and f#. The
remaining states z[15] through z[24] are set to zero.

4.6 Time Integration

The file main.c contains the function integrate() which calculates the left-hand sides of
equations (1.52)1 456 over a period of time simulation.integrate.end_time at the time-
rate simulation.integrate.delta_t. The function set_constraint_forces() supple-
ments hereby the equations (1.52)y5 from which the constraint forces ¢; and ¢y in the
right-hand side of equations (1.52)4 5 are calculated (see Section 4.7). The right-hand sides
of equations (1.52)45¢ are supplied by the function equations_of_motion() which is dis-
cussed in Section 4.7.

To output intermediate integration steps to a file, integrate() calls the functions
save_data_point() and write_to_file() which are discussed in Section 4.10.

It was pointed out in Section 1.6 that the step size At (i.e., the variable dt) of the integra-
tor is reduced just before two vehicles come into contact. For this reason, we use the variable
h to hold a copy of the state vectors of all vehicles. The function set_constraint_forces()
returns a non-zero value when contact is detected (see Section 4.7). In that case, the in-
tegrator restores the state vectors of the vehicles from h and tries another integration step
with a smaller At. The integrator continues to integrate with the current At if no vehicles
are in contact or if At has already been reduced to a value which is smaller then the one
given by the macro DT_MIN.
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Before At can be increased again, the time integration continues with this step size
for at least 100 steps. This is ensured by the counter variable just_reduced and reduces
oscillations in the variable dt. After this period, At is increased again when no vehicles are
in contact.

4.7 The Vehicle Model

The file vehicle.c represents the actual vehicle model. It contains three separate principal
functions: set_constraint_forces() calculates the contact forces (1.42) that act between
the vehicles, equations_of _motion() calculates the equations of motion (1.41) for a single
vehicle and energy () calculates the total energy (1.33) of a single vehicle.

set_constraint forces(): For each pair of vehicles with numbers cv and av, this func-
tion calls the function detect_contact () (see Section 4.9) to determine if they are in con-
tact. If no contact is detected, the Lagrange multipliers (which are stored in the two-vector
vehicle[cv] .contact.multiplier[av]) of the two vehicles are set to zero.

If contact is detected, the function will return a non-zero value to indicate this occurrence.
The constraint function ¢; from equation (1.39); is calculated*. The coordinates Xé(ﬁ)
in equation (1.39), are calculated using equations (1.2) and (1.3). They are also used to
calculate ¢ from equation (1.40). The Lagrange multipliers are now updated using equations
(1.52)2 5. Finally, using equation (1.42), the contact force is added to the contact force
resultants vehicle[cv] .contact.force and vehicle[av] .contact.force, respectively.

equations of motion(): This function contains the vehicle model outlined in Section 1.1.
Its input argument is a pointer to the current vehicle’s data structure. The output argument
is the time derivative Vector dzdt of the vehicle’s state vector.

To simplify matters and for brevity, the vehicle’s state vector is split up into the global
variables r, d1, d2, d3, v, wi, w2, w3 of type Vector which represent the position vector r,
the directors d;, the velocity v and the director velocities w; of the Cosserat point which is
defined in equation (1.2).

For each wheel of the vehicle, the wheel heading is calculated using equations (1.14) and
(1.15). Next, the force vector f from equation (1.30) (see equations (1.16) and (1.29)5) is
calculated. It is composed of the suspension force (cf. equation (1.17)) and the tire force
(cf. equations (1.20)—(1.23)) and remarks in Section 1.2.2. The tire parameters are currently
those for a Goodyear 185SR14 tire, cf. equations (1.24)-(1.26).

The time derivative Vector dzdt of the state vector Vector z is now calculated using

equations (1.32), (1.30) and (1.41). The intrinsic forces are calculated according to equations
(1.30), (1.12) and (1.29),.

4The variables r’("l) and r’("Z) of equation (1.39) correspond to the variables rhol and rho2 in the code.
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4.8. THE ROAD MODEL: ROAD.C

energy(): This function calculates the total energy E of a single vehicle using equations
(1.33) and (1.34). Its input argument is a pointer to the data structure of that vehicle.

4.8 The Road Model: road.c

road(): This function called by vehicle.c calculates the road tangent and normal vectors at
the corresponding points defined in Section 1.3. The input argument is a vehicle structure.

Two functions are programmed in this module to calculate the corresponding point on
the road curve for a vehicle.

e dist_road(): provides the value of the distance between the mass center of a vehicle
and the corresponding point on the road.

e d_road(): outputs the gradient of the distance function in which the coordinates are
defined by the parameter of the road curve.

4.9 The Determination of Contact: contact.c

The module contained in the file contact.c does three major tasks: for a pair of vehicles,
it determines contact, searches for the points of minimum-distance and determines unique
contact points as discussed in Section 1.5. This module returns the contact information
needed by the function set_constraint_forces()(see Section 4.7).

detect_contact () This function is called by set_constraint_forces(). It needs the
following input arguments:

e Vector cml, cm2: the position vectors of the respective centers of mass of vehicles 1
and 2 as defined in equation (1.2)°.

o Matrix deforml, deform2: the deformation gradients of the two vehicles. These two
matrices are reassigned to the matrices F1 and F2 which corresponds to the notation
in equation (1.4).

e Vector state : This is the vector x defined in equation (1.47). It contains the u — v
coordinates of the most recently found contact points on each of the two vehicles.

e vehicle_struct *carl, *car2 : These structures contain the model parameters of
the two vehicles.

and the outputs

e Vector n: the unit outward normal at the contact point of vehicle 1.

SRecall that the position vector of the Cosserat point coincides with the position vector of center of mass
of the chassis.
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Vector r1l, r2: the position vectors of the contact points of the respective vehicles
relative to the center of mass of vehicle 1.

Several functions are programed in this module. These are

info () calculates the matrix K which is discussed in equation (1.50).

eig() calculates the principal lengths and directions of a superellipsoid in the current
configuration.

Two additional functions, jacobi() and eigsrt(), are needed in eig() which are
copied from Numerical Recipes in C [26].

jacobi() calculates the eigenvalues and eigenvectors of the matrix K.

eigsrt () sorts the eigenvalues into descending order and rearranges the eigenvectors
correspondingly.

pos () calculates the position vector of the contact point using equation (1.4).

enorm() calculates the unit outward normals at the contact points using equation (1.46)
which 1s discussed in Section 1.5.1.

norm_angle() normalizes the state vector which 1s calculated in function minimum()
to [0, 27].

dist () provides the value of the distance function at the coordinates given by the
vector variable state.

d_dist1() calculates the components of the gradient of the distance function in which
the coordinates of wu() and v(y) are fixed and wu() and v() are given by the vector
variable state.

d_dist2() calculates the components of the gradient of the distance function in which
the coordinates of wu(y and v(y) are fixed and w(;) and v(y) are given by the vector
variable state.

d_dist () calculates the components of the gradient of the distance function in which
the coordinates are given by the vector state.

The functions dist (), d_dist1(),d_dist2() and d_dist () are required by the func-
tion minimize().

pert (): This function searches for the unique contact points of two vehicles (see Sec-
tion 1.5.3).

func () calculates the value of the function f(ﬁ) (cf. equation (1.51)).
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4.10. DATA OUTPUT

o piksrt () sorts the input matrix brr, which records the curvilinear coordinates of 2n
points by their corresponding values in arr[1. .n]. The latter vector records the values
of the function fg) (cf. equation (1.51)). This module outputs the matrix brr.

e opp() calculates the positions of the points Mgy, Ng), Pg), Q(P) and Rg), 3 = 1,2

(see Figure 1.10). This function converges when the function f(;) at these points is
close to zero.

o search() calculates the point of maximum penetration by first searching along the
curve connecting N1y and M) and then by searching along the curve connecting K
and T(l) (see Section 1.5.3).

4.10 Data Output

The MEDUSA file main.c contains a simple algorithm to handle the output of data following
the guidelines in Section 2.4. The state vectors of all vehicles are first saved to a buffer in
time intervals simulation.integrate.save_delta_t by the function save_data_point ().
When the buffer is full® or at the end of the simulation, it is written to the various output
files by the function write_to_file() using the standard ANSI-C-function fprintf () (cf.
Kernighan and Ritchie [15]).

4.11 Adding User Supplied Code

The user may wish to make modifications and improvements to any part of the program.
We have attempted to simplify this endeavor by keeping the code as modular as possible.
As shown in Section 4.3.2, all the relevant data is accessible through the global variable
simulation. This data structure subsumes, among other quantities, a vehicle_struct
array which represents the vehicles. Besides adding new functions to the code, most mod-
ifications are done by adding additional members to these structures (defined in the file
common.h, see also Appendix D). This has the advantage that the basic structure of the
code remains unaltered. This encapsulation of data parallels somewhat the ideas of object
oriented programming in C++ and simplifies the debugging process considerably. In the
future, real object oriented extensions are envisioned.

As a final comment, we wish to point out the FILE pointer simulation.ofp which
represents a scrap file. It is normally left empty, but remains in the code for the purpose of
debugging a modified program.

5The buffer length is given by KMAX.

54



Bibliography

[1]

R. W. Allen, R. E. Magdaleno, T. J. Rosenthal, D .H. Klyde and J. R. Hogue. Tire mod-
eling requirements for vehicle dynamics simulation. SAE 950312. Society of Automotive
Engineers, Warrendale PA, 1995.

A. H. Barr. Superquadrics and angle-preserving transformations. IEEE Computer
Graphics and Applications. Vol. 1, No. 1, pp. 11-12 and pp. 15-23.

R. H. Bartels, J. C. Beatty and B. A. Barsky. An Introduction to Splines for Use
in Computer Graphics and Geometric Modeling. M. Kaufmann Publishers, California,
1987.

H. Cohen and R. G. Muncaster. The Theory of Pseudo-rigid Bodies. Springer Tracts in
Natural Philosophy, Vol. 33, Springer-Verlag, New York, 1988.

J. W. Daniel. The Approximate Minimization of Functionals. Prentice-Hall, New Jersey,
1971.

T. D. Day. An overview of the HVE vehicle model. SAE 950308. Society of Automotive
Engineers, Warrendale PA, 1995.

J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, New York, 1983.

F. Eskafi, D. Khorramabadi and P. Varaiya. SmartPath: An Automated Highway Sys-
tem Simulator. PATH Research Report UCB-ITS-TM-92-3, University of California at
Berkeley, 1992.

A. G. Fonda. Crush energy formulations and single-event reconstruction. SAE 900099.
Society of Automotive Engineers, Warrendale PA, 1990.

W. R. Garrot. Measured vehicle inertia parameters - NHTSA’s data through September
1992. SAE 930897. Society of Automotive Engineers, Warrendale PA. 1993.

A. E. Green and P. M. Naghdi. A thermomechanical theory of a Cosserat point with
application to composite materials. Quarterly Journal of Mechanics and Applied Math-
ematics, Vol. 44, pp. 335-355, 1991.

55



BIBLIOGRAPHY

[12]

[13]

[15]

[16]

[21]

[22]

23]

J. L. Greenstadt. Variations on variable-metric methods. Mathematics of Computation,
Vol. 24, pp. 1-22, 1970.

G. J. Heydinger, N. J. Durisek, D. A. Coovert, D. A. Guenther and S. J. Novak. The
design of a vehicle inertia measurement facility. SAE 950309. Society of Automotive
Engineers, Warrendale PA, 1995.

W. Kortum and R. S. Sharp, editors. Multibody Computer Codes in Vehicle System
Dynamics, in Vehicle System Dynamics, Vol. 22 Supplement. Swets and Zeitlinger,
Amsterdam, 1993.

B. W. Kernighan and D. M. Ritchie. The C Programmaing Language. 2nd ed., Prentice
Hall, 1988.

J. Kowalik and M. R. Osborne. Methods for Unconstrained Optimization Problems.
American Elsevier Publishing Company, New York, 1968.

B. G. McHenry and R. R. McHenry. HVOSM-87. SAE 880228. Society of Automotive
Engineers, Warrendale PA, 1988.

B. G. McHenry and R. R. McHenry. SMAC-97 — Refinement of the collision algorithm.
SAE 970947. Society of Automotive Engineers, Warrendale PA, 1997.

B. G. McHenry and R. R. McHenry. CRASH-97 — Refinement of the trajectory solution
procedure. SAE 970949. Society of Automotive Engineers, Warrendale PA, 1997.

O. M. O’Reilly, P. Papadopoulos, G.-J. Lo and P. C. Varadi. Models of Vehicular Colli-
sion: Development and Simulation with Emphasis on Safety. I: Development of a Model
for a Single Vehicle. California PATH Research Report UCB-ITS-PRR 97-15, 1997.

0. M. O’Reilly, P. Papadopoulos, G.-J. Lo and P. C. Varadi. Models of Vehicular Col-
lision: Development and Simulation with Emphasis on Safety. II: On the Modeling
of Collision between Vehicles in a Platoon System. California PATH Research Report
UCB-ITS-PRR 97-34, 1997.

O. M. O’Reilly, P. Papadopoulos, G.-J. Lo and P. C. Varadi. Models of Vehicular Colli-
sion: Development and Simulation with Emphasis on Safety. III: Computer Code, Pro-
grammer’s Guide and User Manual for MEDUSA. California PATH Research Report
UCB-ITS-PRR 98-10, 1998.

0. M. O’Reilly, P. Papadopoulos, G.-J. Lo and P. C. Varadi. Models of Vehicular Col-
lision: Development and Simulation with Emphasis on Safety. IV: An Improved Al-
gorithm for Detecting Contact Between Vehicles. California PATH Research Report
UCB-ITS-PRR 98-25, 1998.

56



[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

O. M. O’Reilly and P. C. Varadi. A unified treatment of constraints in the theory of a
Cosserat point. Journal of Applied Mathematics and Physics (ZAMP), Vol. 49, pp. 205-
223, 1998.

H. B. Pacejka. The role of tyre dynamics properties. In: Smart Vehicles. Swets &
Zeitlinger, Lisse, Netherlands, 1995.

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. Numerical Recipes
in C: the Art of Scientific Computing. 2nd ed., Cambridge University Press, 1992.

M. B. Rubin. On the theory of a Cosserat point and its application to the numerical
solution of continuum problems. ASME Journal of Applied Mechanics, Vol. 52, pp. 368-
372, 1985.

D. J. Schuring. Tire parameter determination, Vol. V - tire test data. NHTSA DOT
HS-802 090, Nov. 1976.

I. S. Sokolnikoft. Mathematical Theory of Elasticity. 2nd ed., Mc Graw Hill, New York,
1956.

C. Truesdell, R. A. Toupin. The Classical Field Theories, in Handbuch der Physik.
Vol. III/1, pp. 226-858, edited by S. Fligge, Springer-Verlag, Berlin, 1960.

P. C. Varadi, G.-J. Lo, O. M. O’Reilly and P. Papadopoulos. A novel approach to vehicle
dynamics using the theory of a Cosserat point and its application to collision analyses
of platooning vehicles. Vehicle System Dynamics, to appear 1999.

57



Appendix A
The Variable Metric Method

Here, we review the variable metric method which is used to determine the contact point. The
lateral surface of a superellipsoid can be rather flat. As a result, it may be computationally
difficult (and expensive) to determine contact points on it. Hence, there is a pay-off between
a realistic vehicle geometry and computational expense.

In Section 1.5, the distance function from an arbitrary point outside the superellipsoid
to any point located on the surface of the superellipsoid is given and needs to be minimized
to locate the contact points. In other words, the problem that needs to be solved is an
unconstrained minimization problem [5, 7] which may be expressed as follows:

oin f: R" — R. (A1)

The distance function f(x) can be approximated as a quadratic form using a Taylor’s
series expansion about x;:

1

fx) = flx) + VIx)-(x = %) + 5(x = x)-Hx) (x = x5, (A.2)
where
Vi) = 2 Heg) = 2L (A3)

are the gradient vector and Hessian of the function f(x) evaluated at x = x;, respectively.
Thus, by differentiating (A.2),

Vi) = Vix,) + H(x - x;). (A4)

In Newton’s method, the next iteration point x is computed by setting V f(x) = 0 and is
given by

x — x; = —H™' Vf(x;). (A.5)
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A scalar function f decreases at a point x in the direction of x —x;, 1.e., the Newton direction
in (A.5) is a descent direction if the directional derivative along this direction of the function
f(x) is negative

Vix)(x — x5) = —(x — x;)-H(x — x;) <0, (A.6)

where use has been made of (A.5). In order to search for a local minimum of a scalar function
f(x), (A.6) implies that a necessary condition for the value of the function to decrease during
a full Newton’s step is that the Hessian of the function must be positive definite. Further
details on line search and backtracking can be found in Appendix B.

The variable metric method proceeds by rescaling

x = Tx, (A7)

where T is a nonsingular matrix with the dimension of x. Thus in the new variable space,
the quadratic approximation to f about X; is

F8) = flx) + V() T = %)) + ST - %) HT (% — %), (A8

or

f&)=f(xj) + Vf(x) - T7'(x - %;) + %(ﬁ = %) (TTHT )X — %) . (A.9)

Since the Hessian must be symmetric and positive definite, the basic idea of the algorithm
is to create a symmetric and positive definite approximation to the Hessian.
A common choice of T is

T = VH. (A.10)
Observe that the scaling that leads to an identity Hessian in (A.9) at x;, i.e.,
T"HT' =1, (A.11)
implies (A.10). Following Greenstadt’s updating formula [12]

($j01 — H' ¥,01) ®¥jp1 + V1 ® (801 — H' §,11)

HL = H!'+ A _
o ! Yi+1 *Yjt1
i i - H;1A$’j+12] Vit1 @ ¥t 7 (A.12)
(Yi+1 - Vjt1)
where
Sit1 = X1 — X5 = T — x5) = Tsjp, (A.13)
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Vier = TNV — V) = Ty, (A.14)

r—1 -1 T

H' = TH;' T", (A.15)
and

H ! = TH;, T". (A.16)

Notice that x;41 can be updated by subtracting (A.5) at x,1 from the same equation at x;:
Xjp — X; = H;V (Vi — V), (A.17)

where Vf; = Vf(x;) and V f;;; is evaluated at x = x;;1. This is the result obtained by the
line searches and backtracking scheme [26] along the Newton’s direction from x;.

Using the relations (A.13) to (A.16) to transform (A.12) into the original variable space,
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating formula' is obtained

s ®si (H yin) ® (H yim)

H! H' +
o ! Sjt+1 * Yj+1 Yi+1 'Hfl Yi+1
+ (v -Hj yi)ueu, (A.18)
where
, H! v,
u = s Yot (A.19)
Sjt1 Y41 Vit -H; vy

Since each of these updates can be derived using a scaling of the variable space that is
different at every iteration, the algorithm used above is called the variable metric method.

! Another alternative formulation which is known as the Davidon-Fletcher-Powell (DFP) algorithm differs
from the BFGS scheme only in details of their roundoff error, convergence tolerances, etc. However, it has
become generally recognized that the BFGS scheme is superior in these respects.
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Appendix B

Line Search and Backtracking

Recall that the descent direction used in (A.5) need not decrease the function since the
quadratic approximation may not be valid if the full Newton step has been taken. The
descent direction only guarantees that initially the function f decreases as the point moves
in that direction. The strategy for proceeding from an initial guess which is estimated to
lie far from the root (even be outside the convergence region of Newton’s method) is the
method of line searches and backtracking [7].

The idea is that given a descent direction', say p, an “acceptable” x;, is taken along
that direction. That is,

Xjp1 = X; + )\]‘ P; 0<)\]‘§1. (Bl)

The term “line search” refers to the procedure for choosing A; in the previous equation. In
order to take advantage of the fast convergence of Newton’s method near the solution, it is
important to take a full Newton step whenever possible. Thus, we take A = 1 in the first
attempt.

A simple acceptance rule for the new point x;;; requires that

F(Xj11) < f(x5) - (B.2)

However, this condition does not guarantee that x; will converge to the minimizer of f in
two cases?. The first case arises where the decrease in function values relative to the length
of steps is too small. The first case can be remedied by ensuring

f(xj41) < f(x5) + o V(%)) -p; (B.3)

where o = 107" (see reference [7] for details). This condition requires that the average rate
of decrease (f(x;+1) — f(x;))/A; of f be at least some prescribed fraction (i.e., o) of the

!The initial descent direction in MEDUSA is —V f(xo) since the identity Hessian has been used as the
starting matrix from which we update the Hessian in (A.18).
2See [7] for examples of such cases.
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3 in that direction. The second case arises when the steps are too

small relative to the initial rate of decrease of f. This problem can also be remedied by the

initial rate of decrease

use of a backtracking strategy which we now describe. First, define

P(A) = f(xj + Apj) - (B.4)

The idea is that if the full Newton step is not acceptable, which means that backtracking
is necessary, then A is chosen by using the most current information about > such that the
function ¢(A) is minimized. Initially, we have two pieces of information concerning t(A):

$(0) = f(x;) and ¥'(0) = Vf(x;)-p;- (B.5)

Since the Newton step is always attempted first, ¢»(1) = f(x; + p;) is also known. Thus,
p(A) can be approximated by a quadratic function:

() = [0(1) — »(0) — (0N + &' (0)A + (0). (B.6)

The minimum of () is attained when

. ¢'(0)

S T TR ) (0
for which '(A) = 0. It can be shown that if the full Newton step fails, i.e., (B.3) is not
satisfied, then the upper bound of A is A < % On the other hand, if ¥(1) is much larger
than ¢(0), A can be very small; then A > 0.1 is chosen to be the lower bound.

Suppose ¥(A) = f(x; + A p;j), where A is calculated from (B.7), does not satisfy (B.3).
In this case, the backtracking needs to be executed again. On the second and subsequent
backtracks, ¢()) is approximated as a cubic function of A, using the previous value t(A;)
and the second most recent value 1»(\z),

B(A) = aX® + bA2 + P(0)X 4+ psi(0) (B.8)

(1) = v (il ) G msion i) - mo

Its local minimizing point is

where

R \/b;_ 3a¥(0) (B.10)

A long, but straightforward, calculation shows that A in (B.10) can never be imaginary if
a < %. Since we have previously chosen « to be 107*, A will always be real.

3Since A=1 is used in the first attempt of the step-acceptance criteria, the directional derivative of f at
x; in the direction p; is the initial rate of decrease of f.
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Appendix C

A Sample of the File model.dat

The following is a printout of a sample file model.dat. It defines two vehicle models that
differ in the elastic properties of the chassis, i.e., in F and v:

%

% A sample of physical parameters for two vehicle models
%

NUMBER_OF _MODELS 2

% description of Model 1 starts here
MODEL 1

COSSERAT_POINT

MASS 1573.0 % mass of car [kg]

Ix 479.6 Y moments of inertia along principal axes [kg m"2]
Iy 2594.6

Iz 2782.0

E 600.0e6 J Young’s modulus [N/m"2]

nu 0.30 % Poisson’s ratio

volume 0.42 7, assumed volume of the Chassis [m"3]

SUSPENSION

L1 1.034 % distance from cg to front axle [m]

L2 1.491 % distance from cg to rear axle [m]

B 1.2 % track of axle [m]

H1 0.0 % vertical distance from cg to front assembly pts.
H2 0.0 % and to rear assembly points [m] (assumed)

spring_ref 0.15 Y, reference length of spring [m]

C1 40000.0 % spring constant for front wheel suspension [N/m]
C2 40000.0 Y spring constant for rear wheel suspension [N/m]
D1 1500.0 % damping coeff. for front wheel suspension [Ns/m]
D2 1200.0 % damping coeff. for rear wheel suspension [Ns/m]
TIRE 0.0016 % lag parameter for tire model [s]
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CONTACT

A1 4.0 % dimensions of a vehicle: length [m]
A2 1.6 % width [m]

A3 1.3 % height [m]

EQUILIBRIUM

R3 5.039617e-02 ), vertical position of vehicle’s center of mass [m]
D11 0.9972 D12 0.0 D13 -0.0748 7, director 1 [.]
D21 0.0 D22 1.0 D23 0.0 % director 2 [.]
D31 0.0749 D32 0.0 D33 0.9972 Y director 3 [.]

% description of model 1 ends and description of Model 2 starts
MODEL 2

COSSERAT_POINT
MASS 1573.0 % mass of car [kg]

Ix 479.6 Y moments of inertia along principal axes [kg m"2]
Iy 2594.6

Iz 2782.0

E  200.0e7 ' Young’s modulus [N/m"2]

nu 0.33 % Poisson’s ratio

volume 0.42 7, assumed volume of the Chassis [m"3]

SUSPENSION

L1 1.034 % distance from cg to front axle [m]

L2 1.491 % distance from cg to rear axle [m]

B 0.725 % track of axle [m]

H1 0.0 % vertical distance from cg to front assembly pts.
H2 0.0 % and to rear assembly points [m] (assumed)

spring_ref 0.15 Y, reference length of spring [m]

C1 17000.0 % spring constant for front wheel suspension [N/m]
C2 40000.0 Y spring constant for rear wheel suspension [N/m]
D1 1500.0 % damping coeff. for front wheel suspension [Ns/m]
D2 1200.0 % damping coeff. for rear wheel suspension [Ns/m]
TIRE 0.0016 J lag parameter for tire model [s]

CONTACT

Al 4.5 % dimensions of a vehicle: length [m]
A2 2.5 % width [m]

A3 1.5 % height [m]

EQUILIBRIUM

R3 0.03644925 % vertical position of vehicle’s center of mass [m]
D11 0.9972 D12 0.0 D13 -0.0748 7, director 1 [.]
D21 0.0 D22 1.0 D23 0.0 % director 2 [.]
D31 0.0749 D32 0.0 D33 0.9972 Y director 3 [.]
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% description of model 2 ends here
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Appendix D

Structure Definitions

D.1 The Vehicle Model Structure

Associated with each vehicle is a data structure that holds all its model parameters, as well
as its state vector and other data:

typedef struct {

int ident; /* number that identifies the vehicle */
Vector z; /* state vector */
struct {

double m; /* mass of car in kg */

Matrix I; /* inertia matrix */

Matrix I_inv; /* inverse inertia matrix */

double lam, tm; /* elastic properties of Cosserat point */
} Cosserat_point;
struct {

double steer_angle;
double X1[5], X2[5], X3[5]; /* coordinates of assembly points in m wrt. */
/* Xi[0] is void. */

double spring_ref; /* reference length of the suspension springs in m */
double C[5], D[5]; /* spring and damping constants of the suspension */
/* in N/m. C[0] and D[0] are void. */
Matrix infl; /* Influence matrix */
} suspension;
struct {
double tau_inv; /* lag parameter for tire model in 1/s */
double speed; /* tire speed in m/s */
int driven; /* is the tire driven or undriven? */
} tire;
struct {
int segment; /* road segment number */
double parameter; /* position within the segment */
} road;
struct {
double dimension_box[4];/# physical dimensions of vehicles */
Vector force; /* resultant constraint force */
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Matrix previous; /* previous contact points with other vehicles */
Matrix multiplier; /* Lagrange multipliers */

} contact;

struct { /* equilibrium state */
double r3;
Matrix F;

} init;

} vehicle_struct;

D.2 The Simulation Structure

Medusa uses a structure of the data type simu_struct to store data pertaining to the
simulation. This structure is listed below:

typedef struct {

char #in_file; /* name of the platoon description file */
FILE *ofp; /* scratch file */
int NofV; /* number of vehicles in platoon */
int NofM; /* number of models in model array */
vehicle_struct *model; /* model array */
vehicle_struct *vehicle; /* vehicle array, i.e., platoon */
struct {
double end_time; /* simulation runs for end_time seconds */
double delta_t; /* integration step-size */
double save_delta_t; /* time intervals for saving a data point */
double time; /* current time step */
} integrate;
struct { /* road related parameters */
int nodal_points; /* number of nodes that define the road */
Matrix XIN; /* nodal coordinates */
Matrix *C ; /* road coefficients */
} road;

} simu_struct;
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Appendix E

Function Dependencies

® CIIAETTOT () ottt ittt ittt ettt e e e et e et e e e e e e e e e init.c
® detect _ComBACT () oon ittt e e e e contact.c
e ¢ i X () T PR contact.c
— i g i contact.c
—AngL e ()t e contact.c
— MIn_SeATCR () tit e contact.c
— norm_angle() .. e e contact.c
— POS () e e e e e e e contact.c
L=+ L T PR contact.c
e 5 v () T PP contact.c
e T« 1= i () T PP contact.c
e T« =1 1 ) T PP contact.c
e T« =1 i (P contact.c
— P () i e e e contact.c
L =T - T contact.c
e £ L7 1 <3 (5 PP contact.c
— i ST () i e contact.c
L =0 oy P vehicle.c
e equations_of _MOTION() ...ointitint it e e vehicle.c
S <= K T PP road.c
e T o T i e o =Y () PP vehicle.c
o evaluate _cmd_L1Iine() ...ttt e e e e e e e init.c
e 110 L e G T PP init.c
% (R B o v e+ = (AP init.c



R o T N v €= + X (0 init.c

L e« i () AP init.c
— evaluate_cmd_1ine() ..ottt e init.c
— read MOl a () ittt e e e e init.c
— read_vehicles () ...ttt e init.c
e =T T ¢ 1 () T PP init.c
o dntegrate() ... e e e main.c
— equations_of _MOBIOM() ..ttt ittt e e e vehicle.c
— save_data_podnt() .. ..t e e main.c
— set_constraint _forces () cuuuiitiii i e e e vehicle.c
e 5 =Y Y T e =Y () PP main.c
L - T o () PR main.c
<8 1 (T init.c
e 1 =T 8 2= (O T main.c
® Print_opPtiomS () .oonnntit i e e e i e e init.c
L o 15 v € PP contact.c
e 1 ¥ £ () T AP contact.c
— PERSTE () o et e e e contact.c
0P () e e e e e e e contact.c
= L o3 ¢ () contact.c
® Tead_eXPT ()t e e e e init.c
e 5 B L B ) =3 () T PR init.c
L A=Y Yo B e T - () T init.c
e L 5 o o o () P common.h
R A=Y e B (TeY e K= - () PP init.c
e 5 B L B ) =3 () T PR init.c
e -1 B =Y« o ol () PP init.c
—oread T AT e ()t e e e e e init.c
@ Tead_VeniCles () ottt e e e e e e e e e init.c
e 5 B L B ) =3 () T PR init.c
e -1 B =Y« o ol () PP init.c
—oread T AT e ()t e e e e e init.c
L Ao Y- Yo B B« e () T init.c




o X T I () TP road.c
e B = B o - Y () AP road.c
e T o Y- Vo X () PP road.c
save_data_Poilmt () ...ttt e e e e main.c
— ML BT () i e e e e vehicle.c
e 5 =Y Y T e =Y () PP main.c
Y=Y -+ 1 G init.c
set_constraint _Forces () v i e e e e vehicle.c
— detect _COomBact () vttt e e e contact.c
27 =Y i s o o2 -7 () L P vehicle.c
e =T Y e 0 = () P main.c
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Appendix F

The MEDUSA Source Code

This appendix lists the complete source code of MEDUSA. The pages are individually num-
bered starting anew with page one for each file. The files are listed in this order:

common.h 2 pages

main.c 4 pages
init.c 10 pages
vehicle.c 6 pages
road.c 5 pages

contact.c 17 pages
common.c 8 pages
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/******************************************************************************/

/******** ********/
/******** ********/

/******************************************************************************/

/* created by Peter Varadi, last modified April 21, 1999, 118 lines */
/******************************************************************************/
/* This file defines some general tools and matrix operations. It also de- */
/* Tines the global structure data types simu_struct and vehicle_struct for */
/* storing simulation and vehicle data. */

/******************************************************************************/

#define LANEWIDTH 3.0 /* The width of a lane in meters */

/* scalar product of two 3-vectors */
#define DOT3(X,y) [1]1*vI[11+x[21*Y[21+x[3]1*YI[3])

#define FALSE O
#define TRUE 1
#define Pi 3.1415926535898

double max(double x, double y);

double min(double x, double y);

double square(double x);

double dt(double x[], double y[1);

void nrerror(char error_text[]); /* error handler */

typedef double *Vector;

typedef double **Matrix;

Vector vector(int n); /* allocate Vector */
Matrix matrix(int nrow, int ncol); /* allocate Matrix */

void free_ vector(Vector);

void free_matrix(Matrix);

typedef struct { /* vehicle parameters */
int ident; /* number that identifies the vehicle */
Vector z; /* state vector */
struct {
double m; /* mass of car in kg */
Matrix 1; /* inertia matrix */
Matrix 1_inv; /* inverse inertia matrix */
double lam, tm; /* elastic properties of Cosserat point */
} Cosserat_point;
struct {

double steer_angle;
double X1[5], X2[5], X3[5]; /* coordinates of assembly points in m wrt.

*/

/* Xi[0] is void. */

double spring_ref; /* reference length of the suspension springs in m
*/

double C[5], D[5]; /* spring and damping constants of the suspension
*/

/* in N/m. C[O] and D[O] are

void. */

Matrix infl; /* influence matrix */
} suspension;
struct {



double tau_inv; /* lag parameter for tire model in 1/s */

double speed; /* tire speed in m/s */
int driven; /* 1s the tire driven or undriven? */

} tire;

struct {
int segment; /* road segment number */
double parameter; /* position within the segment */

} road;

struct {
double dimension_box[4]; /* physical dimensions of vehicles */
Vector force; /* resultant constraint force */
Matrix previous; /* previous contact points with other vehicles */
Matrix multiplier; /* Lagrange multipliers */

} contact;

struct { /* equilibrium state */

double r3;
Matrix F;
} init;
} vehicle_struct;
typedef struct { /* simulation parameters */

char *in_file; /* name of the platoon description file */

FILE *ofp; /* scratch file */

int NofV; /* number of vehicles */

int NofM; /* number of models in model array */

vehicle_struct *model; /* model array */
vehicle_struct *vehicle;/* vehicle array, i.e., platoon */

struct {
double end_time; /* duration of simulation */
double delta t; /* integration stepsize */
double save _delta t; /* time intervals for saving a data point */
double time; /* current time */
} integrate;
struct { /* road related parameters */
int nodal_points; /* number of nodes that define the road */
Matrix XIN; /* nodal coordinates */
Matrix *C ; /* road coefficients */
} road;

} simu_struct;

/******************************************************************************/

[FFFFFx Vector and Matrix operations alaiaiaiaied 4
/******************************************************************************/
double dot(Vector x, Vector y, int n);
/* calculates scalar product <x,v> */
void vector_product(Vector a, Vector b, Vector c);
/* calculates a=b x ¢ */
void matrix_times_vector(Vector y, Matrix A, Vector x, int nrow, int ncol);
/* calculates y=Ax */
void matrix_times_matrix(Matrix Y, Matrix A, Matrix B, int M, int N, int P);
/* calculates Y=AB */
void matrix_transpose(Matrix Y, Matrix A, int nrow, int ncol);
/* calculates transpose of Y */
void lin_solve(Matrix A, int n, Vector b);
/* This function solves Ax=b for x and returns x in b. A is changed. */
void matrix_inverse(Matrix A, int n, Matrix Ainv);
/* inverse Ainv of A */



/******************************************************************************/

Y Saiaiaiaiadel other operations alaiaiaiaied 4
/******************************************************************************/
void minimize(Vector, int,
double (*f)(Vector), void (*df)(Vector, Vector),
Vector);
/* solves for the local minimum of the function f(x). */
double projection(Matrix *, Vector, Vector, int);



/******************************************************************************/

/******** *******/
E R = o M R = o o
/ main.c /
/******** *******/

/******************************************************************************/

/* created by Peter Varadi, last modified June 30, 1999, 257 lines
*/

/******************************************************************************/

/* MEDUSA final: integrator and output functions */
/******************************************************************************/
/* Global variables: line 34 */
/* */
/* Functions: */
/* - mainQ line 40 */
/* - integrate() line 108 */
/* - save_data point() line 182 */
/* - write_to_fileQ line 207 */

/******************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include ""common.h"

/* The state vector of a vehicle has 24 states for the Cosserat point and 4
states for the tires: */
#define STATES 28

/* The output is buffered KMAX times before it is written to the output file: */
#define KMAX 100

/*********************/

/* Global Variables: */

/*********************/

extern simu_struct simulation;
static FILE *smart_path_file, *director_Tfile, *energy file, *velocity file;

static Matrix data; /* output data is stored in a Matrix */
static vehicle_struct *vehicle; /* array of vehicle models */
static int nv; /* number of vehicles in the platoon */

int main(int argc, char *argv[])

/* The main function calls the initialization function init(), initializes the
global variables and calls the integrator. The arguments argc and argv are
passed to init(). */

{

time_t timel, time2;

void init(int argc, char *argv[]):
void integrate(void);

/******************************/

/* Initialize simulation run: */

/******************************/

init(argc,argv);

vehicle=simulation.vehicle; /* substitution */
nv=simulation.NofV;



data=matrix(1+25*nv,KMAX) ;

smart_path_file=fopen(''path.asc","w");
setvbuf(smart_path_file,NULL, 10FBF,BUFS12);
director_file=fopen('director.asc","w');
setvbuf(director_file,NULL, 10FBF,BUFSI1Z2);
energy_file=fopen(*'energy.asc","w");
setvbuf(energy_ file,NULL, I0FBF,BUFSIZ);
velocity_ file=fopen(*'velocity.asc","w");
setvbuf(velocity file,NULL, 10FBF,BUFSI1Z2);

/*****************************************/

/* Print some information to the screen: */
/*****************************************/
printfF(''\n\n\n The simulation for %d vehicles will stop after %g [s]\n", nv,
simulation.integrate.end_time);
printf("'\n\t- stepsize: %g [s]\n",simulation.integrate.delta_t);
printf(""\t- save data point every %g [s]\n\n",
simulation. integrate.save_delta t);

/*******************/

/* run simulation: */

/*******************/

timel=time(NULL); /* record when simulation started */
integrate();
time2=time(NULL); /* record when simulation ended */

/*******************/

/* postprocessing: */

/******************/

printf(""\n start time=%s",asctime(localtime(&timel)));

printf(''\n end time=%s",asctime(localtime(&time2)));

printf("'\n The simulation took %e seconds\n",difftime(time2,timel));

fclose(energy file);
fclose(velocity _file);
fclose(director_file);
fclose(smart_path_file);
free_matrix(data);
fclose(simulation.ofp);

return(EXIT_SUCCESS);

}

/******************************************************************************/
/****** ******/
Y folaiaiaiaiel Integration falalaiaiatey 4
/****** ******/

/******************************************************************************/

#define DT_MIN 5.e-6

void integrate(void)

/* This function integrates the equations of motion of the vehicles from t1l=0 to
t2 with a Fixed step-size. The step-size is reduced if any two vehicles

are

{

in contact. */



double t=0.0, t2; /* start and end times */
double dt,dt _max; /* step sizes */

Matrix dz, h; /* intermediate storage */
int i, cv, contact, just reduced=-1;

int set_constraint_forces(void);

void equations_of motion(Vector,vehicle_struct *);
void save _data point(double t);

void write_to_Ffile(void);

/* Initialize: */
t2=simulation.integrate.end_time;
dt_max=dt=simulation. integrate.delta t;

dz=matrix(nv,STATES);
h=matrix(nv,STATES);
for (cv=1l;cv<=nv;cv++) for (i=1;i<=STATES;i++) h[cv][i]=vehicle[cv].z[i];
/* The matrix h contains now a copy of all state vectors. h is used to
trace
the simulation back by one step if the step size needs to be
reduced. */
while (t<=t2) {
simulation. integrate.time=t;
save_data_point(t); /* Make sure that initial conditions are
stored. */

/* calculate prediction of next integration step: */

for (cv=1;cv<=nv;cv++) {
for (i=1;i<=12;i++) vehicle[cv].z[i]=h[cv][i]+dt*h[cv][i+12];
for (i=13;i<=STATES;i++) vehicle[cv].z[i]=h[cVv][i];

}

/* Calculate constraint forces based on this prediction: */
contact=set_constraint_forces();

/* 1T no contact has occured or if integrator runs already on the

smallest
step size, proceed with integration. Else reduce the step size
and
start current integration step all over again: */
if (lcontact || dt<DT_MIN) {
/* Calculate equations of motion and new state vectors: */
for (cv=1;cv<=nv;cv++) {
equations_of _motion(dz[cv],vehicle+cv);
for (i=1;i<=STATES;i++) vehicle[cv].z[i]=(h[cv][i] +=
de*dz[cv][i]):;
t+=dt;
/* 1T there was no contact for a while and the step size is
small, it

is increased again: */

if (Icontact && just reduced<0 && dt<dt _max) {
dt*=1.1;
printf(""t=%F\t delta_t=%f\n",t,dt);

}
Just_reduced--;

} else {



dt/=1.4641; /* decrease step size */
Just_reduced=100; /* keep current step size for at least
80 steps */
printf(""t=%F\t delta t=%f\n",t,dt); /* print current step size
*/
}
}
write_to _file();
free_matrix(h);
free_matrix(dz);

}

/******************************************************************************/
/****** ******/
/****** ******/

/******************************************************************************/

/* When this counter reaches KMAX, then the output buffer output data[] is full
and needs to be written to the disk: */
static int count=0;

void save_data point(double t)

/* This function saves a datapoint to the output data buffer whenever enough
time has passed since the last time a data point was saved. The input t is
the current time. */

int cv, 1i;
static double t old= -100; /* Last saved timestep. This initialization
makes
the function save the initial
conditions to the file. */
void write_to_Ffile(void);
double energy(vehicle_struct *);

/* Has enough time passed?: */
if ((t-t_old)>=0.999999*simulation. integrate.save delta t) {

t _old=t;

count++;

data[1][count]=t; /* saves current time */
for (cv=1;cv<=nv;cv++) { /* saves data of every vehicle */

for (i=1;i<24;i++) data[25*cv-24+i][count]=vehicle[cv].z[i];
/* state */

data[cv*25+1][count]=energy(vehicle+cv);
/* energy */

}
printf("'t=%.4f\n",t); /* write current time
to screen */
if (count==KMAX) write_to file(); /* write to file if buffer is
full */
}
}

void write_to_file(void)

/* This function writes the output files using fprintf() commands. The global
counter variable count is reset. */

{

int i, cnt, cv;



/* Write directors, velocities and energies to individual files: */
for (cnt=1;cnt<=count;cnt++) {
/* time is first on every line: */
fprintf(director_file,"%e\t",data[1l][cnt]);
fprintf(energy_ file,"%e\t",data[1l][cnt]);
fprintf(velocity Ffile,"%e\t",data[1l][cnt]);

/* now for every car: */
for (cv=1;cv<=nv;cv++) {

directors */

velocities */

*/

Xy z?>*/

/*

/*

/*

/*

/*

heading */

pitch */

roll */

speed */

stuff */
¥

for (i=1;i<=12;i++) {
fprintf(director_file,"%e\t",data[25*cv-24+i][cnt]); /*

fprintf(velocity Ffile,"%e\t",data[25*cv-12+i][cnt]);/*

}
fprintf(energy_ file,"%e\t",data[l+cv*25][cnt]); 7/* energy */

/* SmartPATH data: */
fprintf(smart_path_file,"%e\t",data[1][cnt]); /* time */
fprintf(smart_path_file,"%d\tO\tO\t",cv); /* vehicle number

for (i=1;i<=3;i++)
fprintf(smart_path_file,"%e\t",data[25*cv-24+i][cnt]);/*

fprintf(smart_path_file, "%e\the\the\t",
atan2(data[25*cv-19][count] ,data[25*cv-20][count]),

atan2((data[25*cv-14][count]*data[25*cv-20] [count]+

data[25*cv-19][count]*data[25*cv-13][count])/
sgrt(data[25*cv-20][count]*data[25*cv-20] [count]+
data[25*cv-19][count]*data[25*cv-19] [count]),
data[25*cv-12][count]),
atan2((data[25*cv-19][count]*data[25*cv-14] [count]-

data[25*cv-20][count]*data[25*cv-13][count])/
sgrt(data[25*cv-20][count]*data[25*cv-20] [count]+
data[25*cv-19][count]*data[25*cv-19] [count]),
data[25*cv-12][count]));
fprintf(smart_path_file,"O\t"); /* segment ID */
fprintf(smart_path_file, "%e\t",

sgrt(data[25*cv-11][count]*data[25*cv-11][count]+
data[25*cv-10][count]*data[25*cv-10][count]));
fprintf(smart_path_file,”"0 0 0 0 0 O O O\n'");

/* terminate lines: */
fprintf(director_file,'""\n");
fprintf(velocity Ffile,'"\n");
fprintf(energy_file,'"\n");

}

count=0;



/******************************************************************************/

/******** *******/
E R = o M H E R o
/ init.c /
/******** *******/

/******************************************************************************/

/* created by Peter Varadi and Gwo_jeng Lo, modified June 30, 1999, 615 lines */

/******************************************************************************/

/* The code in this file reads the road data, the data for the vehicle models */
/* and the data for the platoon from separate files. The command line options */

/* are evaluated and the simulation is initialized. */
/******************************************************************************/
/* Functions: */
/* - initQ line 51 */
/* - evaluate_cmd_line() line 80 */
/* - print_options() line 123 */
/* - cmderror() line 135 */
/* - read_models(Q) line 148 */
/* - read_vehicles(Q line 262 */
/* - read_fileQ line 354 */
/* - find_token() line 411 */
/* - read_expr(Q line 433 */
/* - road initQ line 458 */
/* - seg_initQ line 580 */

/******************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

#include ""common.h"

/* The position vector and the 3 directors of a Cosserat point have 12 vector
components. The state vector of a vehicle has 24+4 states (Cosserat point plus
tire model) : */

#define N 12

#define STATES 28

#define DEFAULT_INPUT_FILE ‘"‘platoon.dat"
#define MODEL_FILE "model.dat"

#define DELTA T 0.00005 /* default stepsize of the integrator */
#define SAVE_DELTA T 0.01 /* default time intervals for saving a data point */
#define TOKEN_LENGTH 20 /* maximal lenght of a keyword in the input files */

simu_struct simulation={DEFAULT INPUT_FILE};

/******************************************************************************/

/****** ******/
Y folaiaiaialel Main Initialization ialalaiaiatey 4
/****** ******/

/******************************************************************************/

void init(int argc, char *argv[])

/* Main initialization function. argc and argv are the command line options that
are passed down directly from main(). init() initializes the simulation
structure, evaluates the command line options, sets up the road and the
platoon. */

void evaluate_cmd_line(int argc, char *argv[]);



void read_models(void);
void read_vehicles(void);
void road_init(void);

/* Initialize the global simulation structure: */
simulation.integrate.end_time=0.0;
simulation.integrate.delta t=DELTA T;
simulation.integrate.save _delta t=SAVE DELTA T;
simulation.ofp=fopen(*oop.asc","w");
setvbuf(simulation.ofp,NULL, I0FBF,BUFSIZ);

evaluate _cmd_line(argc,argv);
read_models();
read_vehicles();

road_init(Q);

/******************************************************************************/
/****** ******/
[FFFFFx read command line options alaiaiaiaied 4
/****** ******/

/******************************************************************************/

void evaluate_cmd_line(int argc, char *argv[])
/* Command line options are passed down from main() in argc and argv. The
options are evaluated using a switch statement. Error messages are
generated
for missing or unknown options. Refer to a C manual for reference on the
argv

{

and argc variables. */

int i;
void print_options(void);
void cmderror(char text[]):;

/* Refer to print_options() below for an explanation of these options: */
for (i=1;i<argc;i++) {
it (argv[i][0]=="-7)
switch (argv[i][1D {
case "d" : if
(Isscanf(argv[i]+2,"%lf",&simulation. integrate.delta_t))

cmderror(argv[i]);
break;
case "f" : simulation.in_Tfile=argv[i]+2;
break;
case "h" : print_options();
break;
case "s" : if (Isscanf(argv[i]+2,"%lf",

&simulation. integrate.save delta_t))
cmderror(argv[i]);
break;
case "t : if
(Isscanf(argv[i]+2,"%lf",&simulation. integrate.end_time))
cmderror(argv[i]);
break;
default : cmderror(argv[i]);

} else {



printf('\n\n unknown command line option %s .",argv[i]);
printf("" Type %s -h for help\n\n",argv[0]);
exit(EXIT_FAILURE);
3
b
/* An error message is generated if the simulation ending time (option -t)
was not specified: */
if (simulation.integrate.end time==0.0) {
printfF('\n\nNo endtime specified. Type %s -h for help\n\n",argv[0]);
exit(EXIT_FAILURE);

}

void print_options(void)
/* Prints command line otions and exits program. */

{
printfF('\n\n The command line options are:\n\n");
printf(" -h prints this list\n");
printf(" -dx.xxx set fixed stepsize to x.xxx [s] (default:
%g)\n"*,DELTA T);
printf(" -ffile parameter file (default: %s)\n",DEFAULT INPUT_FILE);
printf(" -tx.xx simulation ends at x.xx [s] (mandatory)\n'");
printf(" -SX.XX save data point every x.xx [s] (default:

%g)\n",SAVE_DELTA T);
exit(EXIT_FAILURE);
s

void cmderror(char text[])
/* Generic error handler for evaluate cmd _line(). */

printf(''\n\n error in command line option %s .",text);

printf(’" Use option -h for help\n\n'");

exit(EXIT_FAILURE);
/******************************************************************************/
/****** ******/
Y Saiaiaiaiaiel Read vehicle models from file alalaiaiated 4
/****** ******/

/******************************************************************************/

void read_models(void)
/* Reads the number of models and the individual models from the file
model .dat */

{
vehicle_struct *v; /* short for simulation.model */
int i,j,k,m;
char *buffer, *ptr; /* ptr points to character inside buffer[] */

char str[]="D11";

/* variables for intermediate results: */
double Ix, ly, 1z, E, nu, vol, 1[4]1[4];
Matrix M;

char *read_file(char *filename);
double read_expr(char token[], char **ptr);
void find_token(char token[], char **ptr);



/* Read the reduced file contents into the buffer array: */
ptr=buffer=read_file(MODEL_FILE);
/* ptr points to start of buffer array */

simulation.NofM=(int) read_expr("'NUMBER_OF_MODELS",&ptr);

/* Allocate memory for the models (v[O0] is void): */
v=simulation.model=(vehicle_struct *)

malloc((size_t) ((simulation.NofM+1l)*sizeof(vehicle_struct)));

if (Iv) nrerror("allocation failure in read _models()"'™);

/* Read models: */
for (m=1;m<=simulation.NofM;m++) {
if(mI=Cint) read_expr(*"*MODEL",&ptr))
nrerror(""Wrong Model Number in file model.dat");
v[m].ident=m;

model number */
find_token(""'COSSERAT_POINT",&ptr); /* Cosserat point related

material: */

for (i=1;i<=N;i++) for (J=1;j<=N;j++) M[i][J]=0.0; /* zero
matrix */

ME11[11=M[2]1[2]=M[3][3]=Vv[m] -Cosserat_point.m;

M[4]1[4]1=M[5]1[5]=M[6]1[6]1=0.5*(-Ix+ly+1z);

M[71[71=M[81[8]=M[9]1[9]=0.5*(1x-1y+12);

M[10][10]1=M[11][11]=M[212][12]=0.5*(Ix+1ly-1Z);

v[m].Cosserat_point.l_inv=matrix(N,N);

matrix_inverse(M, N, v[m].Cosserat point.l_inv);

find_token("'SUSPENSION",&ptr); /* Suspension related material:
*/

/* Read data: */
v[m].Cosserat_point.m=read_expr(*'"MASS",&ptr);
Ix=read_expr(*'IX",&ptr);
ly=read_expr(*'1Y",&ptr);
Iz=read_expr(*'1Z",&ptr);
E=read_expr(*'E",&ptr);
nu=read_expr(*'NU",&ptr);
vol=read_expr("'VOLUME", &ptr);

/* Calculate material constants: */
v[m].Cosserat_point. lam=0._.5*vol*E*nu/(1+nu)/(1-2*nu);
v[m].Cosserat_point.tm=0.5*vol*E/(1+nu);

/* Calculate inertia matrix and its inverse: */
v[m].Cosserat_point.I1=M=matrix(N,N);

/* Read data: */

v[m].suspension.X1[1]=v[m]-suspension.X1[2]= read_expr(''L1",&ptr);
v[m] .suspension.X1[3]=v[m]-suspension.X1[4]= -read_expr(''L2",&ptr);

v[m] .suspension.X2[2]=v[m].suspension.X2[4]=
—(v[m].suspension.X2[1]=v[m].suspension.X2[3]=
0.5*read_expr("'B",&ptr));

v[m] .suspension.X3[1]=v[m]-suspension.X3[2]= -read_expr("'H1",&ptr);
v[m] .suspension.X3[3]=v[m] -suspension.X3[4]= -read_expr("'H2",&ptr);

v[m] .suspension.spring_ref=read_expr("'SPRING_REF",&ptr);

/* store

v[m].suspension.C[1]=v[m] -suspension.C[2]=read_expr(*'C1",&ptr);
v[m] .suspension.C[3]=v[m] -suspension.C[4]=read_expr(*'C2",&ptr);



v[m].suspension.D[1]=v[m] -suspension.D[2]=read_expr(*'D1",&ptr);
v[m] .suspension.D[3]=v[m] -suspension.D[4]=read_expr(*'D2",&ptr);

/* Calculate influence matrix: */

v[m] .suspension. infl=matrix(N,N);

for (i=1;i<=N;i++) for (=1;j<=N;j++)
v[m] -suspension.infl[1][j]=0.0;

1[O1[O0]=1[O][1]1=1[01[2]=1[0][3]=1.0;
for (i=0;i<=3;i++) {
I[1][i]=v[m]-suspension.X1[i+1];
I[2][1i]=v[m] -suspension.X2[i+1];
1[3][i]=v[m]-suspension.X3[i+1];
}
for (i=0;i<=3;i++) for (J=0;j<=3;j++) for (k=1;k<=3;k++) /* Till
in */
v[m]-suspension. infFl[3*i+k][3*j+k]=I[i1[i]:

/* Read remaining data for current model: */
v[m].tire.tau_inv=1.0/read_expr("TIRE",&ptr);

find_token("'CONTACT", &ptr);

v[m].contact.dimension_box[1]=read_expr(*'Al",&ptr);
v[m].contact.dimension_box[2]=read_expr(*'A2",&ptr);
v[m].contact.dimension_box[3]=read_expr(*'A3",&ptr);

find_token("EQUILIBRIUM",&ptr);
/* Define the equilibrium state of the vehicle: */
v[m].init.r3=read_expr(*'R3",&ptr); /* Height of center of mass */
v[m].init.F=matrix(3,3); /* Deformation
gradient */
for (i=1;i<=3;i++) {
str[1]="0"+i;
for (g=1;j<=3;j++) {
str[2]="0"+j;
vim]-init_F[j][i]=read_expr(str,&ptr);

free(buffer); /* Free memory allocated by read_file */
/******************************************************************************/
/****** ******/
[FFFFFx Read platoon data from file alaiaiaiaied 4
/****** ******/

/******************************************************************************/

void read_vehicles(void)
/* Read vehicle models from the file simulation.in_file. */
{
vehicle_struct *vehicle; /* short for simulation.vehicle */
char *buffer, *ptr; /* ptr points to a character inside buffer[] */
char error_msg[]="allocation failure in read_vehicles(Q";
int Nofv; /* Number of vehicles */
int i,j,k,m,v;
/* intermediate variables: */
double theta, Fij, vel;



Matrix Q=matrix(3,3);

char *read_file(char *filename);
double read_expr(char token[], char **ptr);
void find_token(char token[], char **ptr);

/* Read the reduced file contents into the buffer array: */
ptr=buffer=read_file(simulation.in_file);
/* ptr points to start of buffer. */

NofVv=simulation.Nofv=(int) read_expr(*'NUMBER_OF VEHICLES",&ptr);
/* Allocate an array of vehicles: */

simulation.vehicle=vehicle=
(vehicle_struct *) malloc((size_t)

((NofV+1D)*sizeof(vehicle_struct)));

model

*/

if (Ivehicle) nrerror(error_msg);

/***********************************************************/

/* Associate vehicles and initial conditions with a model: */
/***********************************************************/
for (v=1;v<=NofV;v++) {

m=(int) read_expr("'VEHICLE_HAS MODEL",é&ptr);

/* Each vehicle is a copy of a model and all vehicles of a certain

share some memory through pointers! */
if (>0 && m<=simulation.NofM) {
vehicle[v]=simulation.model[m]; /* copy model structure */
vehicle[v].ident=v; /* store vehicle number */
/* allocate individual memory: */
vehicle[v].z=vector(2*N+4);
vehicle[v].contact. force=vector(2*N);
vehicle[v].contact.previous=matrix(NofV,2);
vehicle[v].contact.multiplier=matrix(NofV,2);
/* initialize: */
for (i=1;i<=NofV;i++) Ffor (J=1;j<=2;j++) {
vehicle[v].contact_multiplier[i][j]=0.0;
vehicle[v].contact._previous[i][J]=Pi/4.0;

}

} else {
printf('\n\n Model nummer %d does not exist\n\n",m);
exit(EXIT_FAILURE);

}
find_token("INITIALLY_WITH",&ptr);

/* Position of center of mass: */
vehicle[v].z[1]=read_expr("'X",&ptr);
vehicle[v].z[2]=read_expr("'Y",&ptr);
vehicle[v].z[3]=simulation.model[m].init.r3;

/* orientation means a rigid body rotation about the vertical axis:

theta=read_expr(""ORIENTATION",&ptr);

theta *=Pi/180;

QI11I11=C[2][2]=cos(theta); /* rotation matrix */
Q[2]1[1]=sin(theta);



QI11[21= -QI2]1[11;
QI11[31=QI31[1]1=Q[2][31=Q[31[2]=0.0;
QI31[3]=1.0;
for (i=1;i<=3;i++) for (J=1;j<=3;j++) { /* F=QF_equilibrium */
Fij=0.0;
for (k=1;k<=3;k++)
Fij+=Q[i][k]*simulation.model[m].init.F[K][i];
vehicle[v].z[3*j+i]=Fij; /* copy F to the state vector */
by

/* Velocity of the center of mass: */

vel=read_expr(*'SPEED", &ptr);

vehicle[v].z[13]=vel*cos(theta);

vehicle[v].z[14]=vel*sin(theta);

for (J=15;J<=STATES;vehicle[Vv].-z[j++]=0.0);

/* tire speed */
vehicle[v].tire.speed=read_expr("TIRE_SPEED",&ptr);
vehicle[v].tire.driven= (fabs(vehicle[Vv].tire.speed)<=0.1) ? FALSE :

TRUE;

/* Steer angle: */

vehicle[v].suspension.steer_angle=read_expr("'STEERING",&ptr)*Pi/180.;

}

free_matrix(Q);

free(buffer); /* free memory allocated by read file */
}
/******************************************************************************/
/****** ******/
[FFFFFx Supplements

******/

/****** ******/

/******************************************************************************/

char *read_file(char *filename)

/* Read the contents of the file "filename®™ into a string whose adress is then
returned. Sequences of white space characters are reduced to a single space.
Everything between a "%" character and the following newline character is
considered a comment and ignhored. The return string is allocated using malloc().
The corresponding memory must be freed by the calling function. The term “"white
space” is defined in any C manual. */

{

FILE *File;

int Filelength;

char *buffer, *ptr; /* ptr points to character inside buffer[]
*/

char c; /* Temporary storage place for
current character. */

int space=FALSE; /* Indicates contnuous white space to be
ignored. */

int comment=FALSE; /* Indicates a comment which is ignored. */

/* Open file for reading: */
if ((File=fopen(Filename,'r'"))== NULL) nrerror(‘'cannot open model Ffile");
setvbuf(file,NULL, I0FBF,BUFSIZ);

/* determine length of file and create a buffer of that size: */
for (Filelength=0;fgetc(Ffile)!=EOF;filelength++);
ptr=buffer=(char *) malloc((size_t) ((Ffilelength+3)*sizeof(char)));



if (Tbuffer) nrerror(allocation failure in read file()");

rewind(Ffile); /* back to start of file */
/* copy file to buffer and ignore comments, multiple spaces, etc.: */
while ((c=Fgetc(Ffile))!=EOF) { /* Read character from file. */
if (c=="%") { /* This indicates a comment. lIgnore everything */
comment=TRUE; /* until newline character is found. */
if (Ispace) { /* A comment is trated as white space.

*/
space=TRUE;
*ptr++ —- -;

}
continue;
}
if (comment) { /* lgnore comments. */

if (c=="\n") comment=FALSE; /* The end of the line ends a
comment. */
continue;

}
if (isspace(c)) {
if (Ispace) {

space=TRUE; /* A sequence of white space
characters is */
*ptr=" *; /* reduced to single space in
the buffer. */
ptr++;
} -
continue;
}
if (Icomment) *ptr++ =c; /* copy character to buffer */
space=FALSE;
}
*ptr++=" "; /* add a space as break for
other functions */
*ptr="\0"; /* end of string */

fclose(file);
return buffer;

}

void find_token(char token[], char **ptr)

/* This function reads a word from the position that *ptr points to and compares
it to token. If there is a match, then after execution, *ptr points to the
character following the word. If there is no match, the program is aborted and
an error message is generated. A space character leading the word is ignored.
The word ends with the occurrence of a space character. */

{
char word[TOKEN_LENGTH+1];
int i=0;
if (F*ptr==" ") *ptr+=1; /* skip a leading space character */
while (*ptri=" ") { /* Read word */
word[i++]=toupper(**ptr); /* Uppercase */
*ptr+=1; /* Advance one character */
word[i]="\0"; /* terminate string */

if (strcmp(token,word)) {



printf(""\n\n Unexpected token %s. %s expected.\n\n",word,token);
exit(EXIT_FAILURE);

}

double read_expr(char token[], char **ptr)

/* This function works as find_token() (see description there) but also returns
the number which follows the token. The number has to be in the that can be
converted by atof() (see C manual for reference). */

{
int i=0;
char word[31];
void find_token(char token[], char **ptr);
find_token(token,ptr); /* get a match for the token */
if (F*ptr==" ") *ptr+=1; /* skip a leading space character */
while (*ptri=" ") { /* Read word */
word[i++]=**ptr;
*ptr+=1; /* Advance one character
*/
}
word[i]="\0"; /* terminate string */
return atof(word); /* conversion */
}
/******************************************************************************,
/****** ******/
Y Aaiaiaiaiaiel Initialize Road alalaiaiaied 4
/****** ******/

/******************************************************************************/

void road_init(void)

/* Initialize the road section of the simulation structure. In particular,
XC[NP+1][4], YCI[NP+1][4] and ZC[NP+1][4] are the coefficients of cubic
polynominals for NP+1 segments, where NP is the number of nodal points. */

{
char dummy[200];
Matrix XIN, *C; /* Coefficients of cubic polynomials */
int NP; /* number of nodal points */
int i, j, k;
double p;

FILE *road_geo, *ofp;
int seg_init(Vector);

/* Read data from file road.dat */

if((road_geo=fopen(''road.dat",'r'"))==NULL) nrerror(*"Cannot open
road.dat');

fscanf(road_geo, "%s" ,dummy) ;

if (strlen(dummy) !=17) nrerror("Input data error in road.dat.');

fscanf(road_geo,"%d",&NP) ;

simulation.road.nodal_points=NP;
XIN=simulation.road.XIN=matrix(NP+2,4); /* coordinates of NP nodal points
*/

/* Allocate matrix array C, the coefficients of cubic polynomials where



**/

*/

*/

*/

**/

there are NP+1 segment numbers: */
simulation.road.C=C=(Matrix *) malloc((size_t) (4*sizeof(Matrix)));
if (1C) nrerror(allocation failure in road_init():C");
for (i=1;i<=3;i++) C[i]=simulation.road.C[i]=matrix(NP+1,4);

fscanf(road_geo, "%s" ,dummy) ;
if (strlien(dummy) != 24) nrerror("'lnput data error in road.dat.");

/* Read the 2nd to (NP+1)th points from road.dat. */
/* The Ffirst and NP+2 points are virtual points. */

/*************************************************************************

/* 1 2 3 4 5 6 ..... NP original nodal points
/* 1---2---3-—-4---5---6---7 __ ... ----NP+1----NP+2 modified nodal points
/* 1 2 3 4 5 6 ..... NP NP+1 segment number

/*************************************************************************

for (i=2;i<=NP+1;i++)
fscanf(road_geo,"%lf %l1f %If

%IF", XIN[§]+1,XIN[i]+2, XIN[§]+3,XIN[i]+4);

fscanf(road_geo, "%s" ,dummy) ;
if (strlen(dummy) != 11) nrerror("'lnput data error in road.dat.");
fclose(road_geo);

/* add virtual points at both ends: */
XIN[I][21=XIN[2]1[1]-20 . *(XIN[ST[11-XIN[2]1I1D):
XIN[1][21=XIN[2]1[2]-20 . *(XIN[3T[2]1-XIN[2]1I2D):

XIN[1][3]= XIN[2][3]; /* same height as that of first nodal point. */
XIN[1][4]=0.0;

XININP+2][1]=XIN[NP+1][1]+20.*(XIN[NP+1][1]-XININPI[1D):;
XININP+2][2]=XIN[NP+1][2]+210.*(XIN[NP+1][2]-XIN[NP1[2D):;

XIN[NP+2][3]= XIN[NP+1][3]; /* same height as that of last nodal point. */
XIN[NP+2][4]=0.0;

/* let the first segment be a straight line. */
for (g=1;j<=3;j++) {

COI[11[4]1=XIN[1]1[]i];

for (i=1;i<=3;i++) C[J1[1]1[1]1=0.0;
}
p= (XIN[1][1]+XIN[2]1[1]D)/3;
CI11[11[3]1=-11*XIN[1][1]1/2+9*p-9*p+XIN[2][1]:
CIA1[11[2]1=9*XIN[1][1]-45*p/2+18*2*p-9*XIN[2][1]/2;
CILAI11[11=C-9*XIN[1][1]+27*p-27*2*p+9*XIN[2][1])/2;

/*****************************************************/

/* Compute the cubic polynomial: */
/* X(8)=XCIK][1]s"3+XC[K]I[2]s"2+XC[K][3]1s+XC[K]1[4]=0 */
/* by the fisrt four nodal points in road.dat, where */
/* k is the segment number. */
/*****************************************************/
for (i=1;i<=3;i++) {

/* The coefficients of 2nd curve segment */

CLi1L21[41=XIN[2][i];



CLi1[21[3]1=-11*XIN[2][1]1/2+9*XIN[3][1]-9*XIN[4]1[11/2+XIN[5][i];
CLilI21[2]=9*XIN[2][1]-45*XIN[3][1]/2+18*XIN[4][1i]-9*XIN[5][i]/2;
CLI21[21=C-9*XIN[2] [ 1+27*XIN[3][1]-27*XIN[4][1 1+9*XIN[5]1[i1)/2;
/* Coefficients of 3rd and 4th segments are the same as for the 2nd:

Y for (4=1:;j<=4:;j++) CLilB1LI=CLill410L1=CLi1[2]11i]1:
/********************************************************/

/* Compute remaining cubic polynomials by the continuty */

/* of nodal points, first and second derivatives. */

/********************************************************/

for (J=1;j<=3;j++) for (i=5;i<=NP+1;i++) {
CO1Li1[4]1= XIN[i1Lj];
CO1Ci13]= cOolli-1]131+2*Cj1[i-11[2]+3*Ca1[1-11[1];
CLILi12]= COIli-11[21+3*CLiLi-1111]1; .

o COICI[1]= XIN[i+11031-XINCi1O1-CO10i-11031-3*CLi1li-1112]1-
e*CO1li-11[1]1;

/************************************************/

/* Output the coefficients of polynomials */
/************************************************/
ofp= fopen(''co™,"w™);
for (i=2;i<=NP+1;i++) {

for (k=1;k<=3;k++) for (G=1;j<=4;j++)

fprintf(ofp,"%wA\t",C[KI[i1D):

fprintf(ofp,'\n\n'");

}

fclose(ofp);

/************************************************/

/* Determine the initial segment number and the */

/* corresponding parameter of each vehicle */

/************************************************/

for (i=1;i<=simulation.NofV;i++) /* initial guess of parameter s: */
switch (simulation.vehicle[i].road.segment

=seg_init(simulation.vehicle[i]-2)) {

case 3: simulation.vehicle[i].road.parameter=1.0/3.0;

*/

break;

case 4: simulation.vehicle[i].road.parameter=2.0/3.0;
break;

case 5: simulation.vehicle[i].road.parameter=1.0;
break;

default: simulation.vehicle[i].road.parameter=0.0;

}

/* convert angle in road.dat from degree to radian: */
for (i=2;i<=NP+1;i++) XIN[i][4] *= Pi/180.;

/******************************************************************************/
[FFFFFx Segment initialization FrIxK)

/******************************************************************************/
int seg_init(Vector r)
/* Returns the initial segment number of the vehicle. Vector r is the

position of vehicle. */

Matrix XIN=simulation.road.XIN;
Matrix *C=simulation.road.C;
int i, k;



double dist_23, dist 34, radl, rad2, rad3, rad4, rad5;
Matrix cen=matrix(6,3); /* coordinates of the centers of the spheres */

/* Initially, a vehicle has to be within the Ffirst four segments. Thus,
define the five spheres by the first five nodal points: */

for (i=1;i<=3;i++) for (k=1;k<=5;k++) cen[K][i]=XIN[K][i];

radl=dt(cen[1],cen[2]);

rad2= min(radl, dist_23=dt(cen[2],cen[3]));

rad3= min(dist 23, dist_34=dt(cen[3].,cen[4])):

rad4= min(dist_34, rad5=dt(cen[4],cen[5]));

/* 1s vehicle inside any of the spheres? */

if (dt(r,cen[1]) <= radl) k=1;

else if (dt(r,cen[5]) <= rad5) k=4;

else if (dt(r,cen[2]) <= rad2) k=(projection(C,cen[2],r,2) < 0.0

else if (dt(r,cen[3]) <= rad3) k=(projection(C,cen[3],r,3) < 0.0

else if (dt(r,cen[4]) <= rad4) k=(projection(C,cen[4],r,4) < 0.0

else if ((dist_34>sqrt(rad3*rad3-LANEWIDTH*LANEWIDTH)+sqrt(rad4*rad4-
LANEWIDTH*LANEWIDTH))

) ? 1 2;
) ? 2 : 3;
) ? 3 4;

Il (min(rad3,rad4)<dist_34) ) {
/* 1T the spheres 3 & 4 don"t overlap over at least the lanewidth,
then a
sixth sphere is needed: */
for (i=1;i<=3;i++) cen[6][11=CXIN[3]L[i]+XIN[4]1[i]1)/2;
if (dt(r,cen[6])<=dt(cen[3],cen[4])/2) k=3;
else nrerror('Vehicle position on road cannot be determined!™);
}
else nrerror("'The initial position of vehicle is not in the first four
segments!');
free_matrix(cen);
return k;



/******************************************************************************/

JRFFA KA Y 4
JRFFFI KKK vehicle.c v2.0

KkkARAK [

JRFFA KA Y 4

/******************************************************************************/

/* created by Peter Varadi, last modified June 30, 1999, lines 377 */
/******************************************************************************/
/* The code in this file calculates */
/* - the constraint forces acting on the individual vehicles when they */
/* are in contact with each other

*/

/* - the equations of motion of a vehicle */
/* - the total energy of a vehicle */
/******************************************************************************/
/* Functions: */
/* - set_constraint_forces() line 39 */
/* - equations_of _motion() line 135 */
/* - tire_forces(Q line 287 */
/* - energy(Q line 340 */

/******************************************************************************/

#include <stdio.h>
#include <math.h>
#include ""common.h"

extern simu_struct simulation;

/* These definitions reflect the 12 vector components and 24 states of the
position vector and the directors of the Cosserat point: */

#define N 12

#define twoN 24

/******************************************************************************/

/******* ******/
Y falaiaiaiaiaia calculate contact forces falalaiaiatey 4
/******* ******/

/******************************************************************************/

#define CONSTRAINT _MULTIPLIER1 2e4 /* for updating the Lagrange multipliers */
#define CONSTRAINT_MULTIPLIER2 100

int set_constraint_forces(void)

/* This function repeatedly calls detect contact() (defined in contact.c) to
determine if any two vehicles are in contact. If so, the function calculates
the constraint forces acting on these vehicles. The function returns TRUE if
any vehicles are in contact, FALSE otherwise. */

{

vehicle_struct *vehicle=simulation.vehicle; /* substitutions */

Vector z1, z2, cl, c2, gamma;

Matrix F=matrix(3,3);

double previous[5]; /* contact points from previous

time_step */

double normal[4]; /* surface normal vector */

double rhol[4], rho2[4]; /* relative position vectors of contact
points */

double X1[4], X2[4]; /* Cosserat labels of the contact
points */

double phil, phi2, nl, n2;



int i,jJ, return_value=FALSE, cv, av;

int detect_contact(Vector, vehicle_struct *,vehicle_struct *,
Vector, Vector, Vector);

for (cv=1;cv<=simulation.NofV;cv++) for (i=1;i<=twoN;i++)
vehicle[cv].contact.force[i1]=0.0; /* reset contact
forces */

for (cv=1l;cv<=simulation.NofV;cv++) for (av=cv+1l;av<=simulation.NofV;av++)

/* substitutions: */

zl=vehicle[cv].z;

z2=vehicle[av].z;
cl=vehicle[cv].contact.force;
c2=vehicle[av].contact.force;
gamma=vehicle[cv].contact.multiplier[av];

previous[1l]=vehicle[cv].contact.previous[av][1];
previous[2]=vehicle[cv].contact.previous[av][2];
previous[3]=vehicle[av].contact.previous[cv][1];
previous[4]=vehicle[av].contact.previous[cv][2];

/* Are the the two vehicles In contact? */
if (detect _contact(previous,vehicle+cv,vehicle+av,normal,rhol,rho2)) {
return_value=TRUE;

/* position constraint: */
phil=(rhol[1]-rho2[1]D*normal[1]+(rhol[2]-rho2[2])*normal[2]+
(rhol[3]-rho2[3])*normal [3];

/* labels X~i for the contact point on each of the Cosserat points:
*/
for (i=1;i<=3;i++) {
X1[i]=rhol[i];
X2[i]=z1[i]-z2[i]+rho2[i];
}
for (i=1;i<=3;i++) for (=1;j<=3;j++) FL[il[1=z1[3*j+i];
lin_solve(F,3,X1);
for (i=1;i<=3;i++) for (=1;j<=3;j++) FL[il[1=z2[3*]j+i];
lin_solve(F,3,X2);

/* Calculate velocity constraint: */
phi2=0.0;
for (i=1;i<=3;i++)
phi2+=(z1[12+i]+X1[1]*z1[15+i]+X1[2]*z1[18+i]+X1[3]*z1[21+i]-
z2[12+i]-X2[1]*z2[15+i]-X2[2]*z2[18+i]-
X2[3]*z2[21+i])*normal[i];

gamma[1]-=CONSTRAINT_MULTIPLIER1*phil;
gamma[2]-=CONSTRAINT_MULTIPLIER2*phi2;

/* Calculate contact forces: */

for(i=1;i<=3;i++) {
nl=gamma[l]*normal[i];
n2=gamma[2]*normal[i];



cl[i]+=n1;
c2[i]-=n1;
cl[12+i]+=n2;
c2[12+i]-=n2;
for (g=1;j<=3;j++) {
cl[3*j+i]+=X1[j]*n1;
c2[3*j+i]-=X2[j]*n1;
cl[12+3*j+i]+=X1[Jj]*n2;
c2[12+3*j+i]-=X2[Jj]1*n2;
}
}
} else gamma[1]=gamma[2]=0.0; /* no contact */
/* store for next time-step: */
vehicle[av].contact.multiplier[cv][1]=gamma[1];
vehicle[av].contact.multiplier[cv][2]=gamma[2];
vehicle[cv].contact.previous[av][1]=previous[1];
vehicle[cv].contact.previous[av][2]=previous[2];
vehicle[av].contact.previous[cv][1]=previous[3];
vehicle[av].contact.previous[cv][2]=previous[4];
}
free_matrix(F);
return return_value;

/******************************************************************************/
/****** ******/
[FFFFFx calculate equations of motion of a single vehicle alaiaiaiaied 4
/****** ******/

/******************************************************************************/

void equations_of _motion(Vector dzdt, vehicle_struct *vcl)
/* This function calculates the time derivative dzdt of a vehicle"s state
vector. Input is the pointer vcl to the vehicle data. */

{

Vector r=vcl->z, v=vcl->z+12;

Vector dl=vcl->z+3, d2=vcl->z+6, d3=vcl->z+9;

Vector wl=vcl->z+15, w2=vcl->z+18, w3=vcl->z+21;

double a, laged alpha, S; /* Slip and laged slip for the tire */

double vi[4]; /* velocity of an assembly
point */

double d11, di2, di13, d22, d23, d33, lam, tm; /* constitutive quantities
*/

/* temporary variables for projection, steering, suspension and tires: */

double sinphi=sin(vcl->suspension.steer_angle);

double cosphi=cos(vcl->suspension.steer_angle);

double dummy_ vector[N+1], dumdum, diff[4], Fx, Fy, Fz;

double el[4], e2[4], e3[4]., exp[4]. eyp[4]. ex[4], ey[4]., ez[4]. tp[4].
vt[4];

double K[N+1]={0.0}, forces[N+1]={0.0}; /* intrinsic and applied
forces */

/* placeholders for variables within the simulation structure: */
Matrix M_inverse=vcl->Cosserat _point.l_inv;
Matrix influence_matrix=vcl->suspension.infl;



double *X1=vcl->suspension.X1l, *X2=vcl->suspension.X2, *X3=vcl-

>suspension.X3;

*/

point:

tp[i];

*/

- 0.0;

*/

double *C=vcl->suspension.C, *D=vcl->suspension.D;
double spring_ref=vcl->suspension.spring_ref;

long double dummy; /* Long double reduces numerical error. */
int i,j;

void road(Vector normal, Vector tangent, Vector tp, vehicle_struct *v);
void tire_forces(double *, double *, double, double, double);

road(e3,el,tp,vcl); /* road vector triad */

vector_product(e2,e3,el);

dumdum=D0OT3(d1,e3); /* rear wheel heading vectors */
for (i=1;i<=3;i++) {
exp[i]=d1[i]-dumdum*e3[i];
ez[i]= -e3[i];
}
dumdum=sqrt(DOT3(exp,exp));
for (i=1;i<=3;exp[i++]/=dumdum);

vector_product(eyp,ez,exp);

/**********************************************/

/* Tire and suspension forces for each wheel: */
/**********************************************/
for (g=1;3<=4;j++) {
if (>2) for (i=1;i<=3;i++) { /* wheel basis vectors */
ex[i]=exp[i];
ey[il=eyp[i];
} else for (i=1;i<=3;i++) {
ex[i]=cosphi*exp[i]-sinphi*eyp[i];
ey[i]=sinphi*exp[i]+cosphi*eyp[i];
b
laged_alpha=vcl->z[24+j]; /* lagged slip angle of the current tire

/* Calculate vt (=\tilde{v} from the velocity vi[] of the assembly
*/

for (i=1;i<=3;i++) vi[i]=av[i]1+X1[g1*wi[i]+X2[1*w2[i]+X3[j]1*w3[i]:

dumdum=DOT3(Vvi,e3);

for (i=1;i<=3;i++) vt[i]=vi[i]-dumdum*e3[i];

/* suspension force: */
for (i=1;i<=3;i++) diff[i]=r[i]+X1 1 d1[i]+X2[J 1 *d2[i ]+X3[J]1*d3[i]-

Fz= -(C[j1*(DOT3(diff,eld)-spring_ref)+D[j]*DOT3(vi,e3)); /7* normal force
if (Fz<0.0) printf(’'\n Tire %d lift off!",j);
/* wheel forces: */
if (Fz>0.0) {
S= (vcl->tire.driven && j<3) ? 1.0-(vcl->tire.speed)/(DOT3(vt,ex))

a=atan2(DOT3(vt,ey),DOT3(vt,ex)); /* slip angle for next time step



*/

}

/******************************************************************************/

dzdt[24+j]=vcl->tire.tau_inv*(a-laged_alpha); /* tire state vector

tire_forces(&Fx,&Fy,Fz,laged_alpha,S);
} else Fx=Fy=Fz=0.0;

for (i=1;i<=3;i++) Fforces[i+3*(-1)]=Fx*ex[i]-Fy*ey[i]-Fz*ez[i];
}

/**************************/

/* Constitutive Equations */

/**************************/

d11=D0T3(d1,d1)-1.0;

d12=D0T3(d1,d2);

d13=D0T3(d1,d3);

d22=D0T3(d2,d2)-1.0;

d23=D0T3(d2,d3);

d33=D0T3(d3,d3)-1.0;

tm=vcl->Cosserat_point.tm;

lam=vcl->Cosserat_point. lam*(d11+d22+d33);

for (i=1;i<=3;i++) {
k[1i]=0.0;
k[3+i]=lam*d1[i]+tm*(d11*d1[i]+d12*d2[1]+d13*d3[i]);
k[6+i]=lam*d2[i]+tm*(d12*d1[i]+d22*d2[1]+d23*d3[i]);
k[9+i]=lam*d3[i]+tm*(d13*d1[i]+d23*d2[1]+d33*d3[i]);

}

/*****************************/

/* Build return vector dzdt: */
/*****************************/
for (i=1;i<=N;i++) {
dzdt[i]=vcl->z[N+i];
dummy=0.0;
for (J=1;j<=N;j++) dummy+=influence matrix[i][J]*forces[j]:
dummy_vector[i]=dummy-k[i];
¥

dummy_vector[3] -= 9.81*vcl->Cosserat_point.m; /* gravity */

for (i=1;i<=N;i++) { /* multiply with inverse mass matrix */
dummy=0.0;
for (J=1;j<=N;j++) dummy+=M_inverse[1][j]*dummy_vector[j];
dzdt[i+N]=dummy;

3

for(i=1;i<=twoN;i++) dzdt[i]+=vcl->contact.force[i]; /* contact force */

Y foiaiaiaiaiel tire model

/******************************************************************************/

/* Goodyear 185SR14 */

#define A0 7092.7808 /* 1583.21*4.48 */
#define Al 11.94

#define A2 13571.0848 /* 3029.26*4.48 */
#define A3 0.264 /* check dimensions! */
#define A4 -1765.46 /* check dimensions! */

#define B1 -0.0000254464285714286 /* -1.140E-04/4.48 */



#define B3 1.007

#define B4 -5.2913743622449e-11 /* -1.062E-09/4.48/4.48 */
#define K1 -2.595E-04 /* check dimensions! */
#define K2 2.198E-04 /* check dimensions! */
#define K3 0.073 /* check dimensions! */

#define SNT 85 /* test skid number */
#define SNP 85  /* pavement skid number */

#define CSFZ 18
#define Kmu 0.2

#define FZT 1160 /* tire design load at operating pressure (lbs) */
#define TW 5 /* tread width (inches) */
#define Tp 28 /* tire pressure (psi) */

/* bias ply tire: */
#define Ka 0.2
#define cl 0.535
#define c2 1.05
#define c3 1.15
#define c4 0.8

void tire_forces(double *Fx, double *Fy, double Fz,
double slip_angle, double slip_ratio)
/* Calculates the tire longitudinal (Fx) and side (Fy) force using the modified
STI1/CalSpan tire model. The inputs are the slip_angle, longitudinal slip
slip_ratio and the normal force Fz. */

{

double s=slip_ratio, alpha=slip_angle;

double sig, f, Kc_prime, mu, Ks, Kc, muO, apO;

double sina, cosa, tana, S1, S2, S3;

/* The formulas work only applicable for slip ratios between -1 and 1 and
for

slip angles smaller than 90 degrees. We need to extrapolate: */
if (fabs(s)>1) s=(-1.0);
if (fabs(alpha) > .5*Pi) alpha=Pi-alpha;

if (fabs(s)==0.0 && fabs(alpha)==0.0) *Fx=*Fy=0.0;
else {

tana=tan(alpha);

sina=sin(alpha);

cosa=cos(alpha);

/* tire contact patch length: */
ap0=0.0768*sqrt(Fz*FZT)/(TW*(Tp+5.0));

/* lateral and longitudinal stiffness coefficients: */
Ks=2.0/(ap0*ap0)*(A0+A1*Fz-A1l/A2*Fz*FZz);
Kc=2.0/(ap0*ap0)*Fz*CSFZ;

/* peak tire/road coefficient of friction: */
muO=(B1*Fz+B3+B4*Fz*Fz)*SNP/SNT;

/* slip to slide transition: */



S3=sgrt(sina*sinat+s*s*cosa*cosa);
Kc_prime=Kc+(Ks-Kc)*S3;
mu=mu0*(1.0-Kmu*S3);

/* composite slip and force saturation function: */
S1l=Ks*Ks*tana*tana;

sig=Pi*ap0*ap0/ (8*mu0*Fz)*sqrt(S1+Kc*Kc*s*s/((1-s)*(1-5)));
f=sig*(sig*(cl*sig+c2)+4.0/Pi)/(sig*(sig*(cl*sig+c3)+c4)+1.0);

/* side and longitudinal force: */
S2=mu*Fz*f/sqrt(S1+Kc_prime*Kc_prime*s*s);
*Fy= S2*Ks*tana;

*Fx= (-S2*Kc_prime*s);

/******************************************************************************/
/******* ******/
[FFFFFIE total energy of the vehicle alaiaiaiaied 4
/******* ******/

/******************************************************************************/

double energy(vehicle_struct *vehicle)

/* The total energy of a vehicle is calculated. The vehicle parameters are in
the structure vehicle. */

{

Vector r=vehicle->z, dl=vehicle->z+3, d2=vehicle->z+6, d3=vehicle->z+9;
double *C=vehicle->suspension.C;

double *X1=vehicle->suspension.X1;

double *X2=vehicle->suspension.X2;

double *X3=vehicle->suspension.X3;

double s _ref=vehicle->suspension.spring_ref;

Matrix M=vehicle->Cosserat _point.|;

long double dummy[N+1];

double d11, di12, di13, d22, d23, d33, energy=0.0;

int i,j;

/* Calculate Kkinetic energy of Cosserat point: T=1/2 v_.Mv */
for (i=4;i<=N;i++) {

dummy[i]=0.0;

for (J=4;j<=N;j++) dummy[i]+=M[i]1[j]1*vehicle->z[N+j];
3

for (i=4;i<=N;i++) energy+=0.5*dummy[i]*vehicle->z[i+N];

/* Add stored energy of cosserat point: */
dil1 = DOT3(d1,d1)-1.0;
di12 = DOT3(d1,d2);
d13 = DOT3(d1,d3);
d22 = DOT3(d2,d2)-1.0;
d23 = DOT3(d2,d3);
d33 = DOT3(d3,d3)-1.0;
energy+=0.25*(vehicle->Cosserat_point. lam*(d11+d22+d33)*(d11+d22+d33)+
vehicle-
>Cosserat_point.tm*(d11*d11+d22*d22+d33*d33)+
2*vehicle-
>Cosserat_point.tm*(d12*d12+d13*d13+d23*d23));
/* Add energy stored in the suspensions: */
for (i=1;i<=4;i++)



energy+=0.5*(C[i]*square(r[3]+X1[i]*d1[3]+X2[i]*d2[3]+X3[i]*d3[3]-
s _ref));
/* Add potential energy of gravity: */
return energy+vehicle->Cosserat _point.m*9.81*r[3];



/******************************************************************************/

/******** *******/
*******/
/******** *******/

/******************************************************************************/

/* created by Gwo-Jeng Lo and Peter Varadi, modified June 30, 1999, 290 lines */

/******************************************************************************/

/* The functions in this file compute the road surface. */
/******************************************************************************/
/* Functions: */
/* - road(Q line 27 */
/* - range_error() line 245 */
/* - dist_road(Q) line 255 */
/* - d_roadQ line 271 */

/******************************************************************************/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include ""common.h"
#include <string.h>

extern simu_struct simulation;

/******************************************************************************/

Y Saiaiaiaiaiel Orientation of the road FxkAx)

/******************************************************************************/

void road(Vector normal, Vector tangent, Vector tp, vehicle_struct *v)

/* Calculates the road tangent and the road normal at the tracking point tp of
the road spline. The input is the vehicle structure *v. */

{

int NP=simulation.road.nodal_points;
Matrix XIN=simulation.road.XIN;

Matrix *C=simulation.road.C;

Vector r=v->z;

int i, j, k=v->road.segment, vn=v->ident;
double s=v->road.parameter;

int node=FALSE; /* Flag indicates if the vehicle is very close to a node. */

double radl, rad2, rad3, rad4, pro, angle;

Matrix cen=matrix(5,3); /* coordinates of the centers of the spheres */
double tan[4], q[4], si[14];

double s a, c a, s_ t, c_t, s b, alpha, dist 23, c_s,s s;

double dummy;

double dist_road(Vector);
void d_road(Vector, Vector);
void range_error(int, int);

/****************************************************************************/

[FFFFTE Determine in which road segment k the vehicle is alaiaiated 4
/****************************************************************************/
/* From the previous segment number, say seg=P, we consider only nodes P-1,

P, P+1 and P+2 since the position of vehicle assumed could only locate in
current or neighboring segments for the next time step. Each of these four
nodes is the center of a sphere. The radius of sphere P-1 is the distance



between the nodes P-1 & P. The radius of sphere P+2 is the distance between
the nodes P+1 & P+2. The radius of sphere P is the smaller of the two
distances between the nodes P-1 & P and P & P+1, respectively. And similarly
for the P+1 sphere. If the P and P+1 spheres don"t overlap, we add a fifth
sphere in between. */

/*****************************************************/

/* Is vehicle in the first segment (a virtual one)? */

/*****************************************************/
It (k==1){
for (i=1;i<=3;i++) cen[3][i]=XIN[k+1][i];
pro=projection(C,cen[3],r,2);
if (fabs(pro)<l.e-12) {
node=TRUE;
s=0.0;
} else if (pro > 0.){
for (i=1;i<=3;i++) cen[1][1]1=XIN[K][i];
if (dt(r,cen[1])> dt(cen[1],cen[3])) {
/* real segment number is one less than the modified segment
number */
printf("'\nVehicle %d moves forward to segment %d.\n",vn,k);
k++;
s=0.0;
} else s=1.0; /* k+=0; */
} else s=1.0; /* k+=0; */

/***********************************************/

/* 1s vehicle on the road defined by the user? */

/***********************************************/

} else {
/* Define four spheres: */
for (i=1;i<=3;i++) Ffor (J=1;j<=4;j++) cen[J1Li]=XIN[k-2+j][i];
radl= dt(cen[1],cen[2]);
rad2= min(radl,dist 23=dt(cen[2],cen[3]));
rad3= min(dist_23,rad4=dt(cen[3],cen[4]));

/***************************************/

/* 1s vehicle inside the first sphere? */

/***************************************/

if (dt(r,cen[1]) <= radl) {
priatf("\nVehicle %d moves backward to segment %d.\n",vn,k-1);
if (k>4) s=1.0;

/**********************************************************************/

/* 1s vehicle inside the fourth sphere and outside the second
sphere? */

/**********************************************************************/

} else if (dt(r,cen[4]) <= rad4 && dt(r,cen[2])>dist 23 ) {
printf('\nVehicle %d moves forward to segment %d.\n",vn,k);
k++;
if (k>4) s=0.0;

/****************************/

/* 1f we have four spheres: */
/****************************/
} else if (1(dist_23>sqgrt(rad2*rad2-LANEWIDTH*LANEWIDTH)+
sqgrt(rad3*rad3-LANEWIDTH*LANEWIDTH)) || (min(rad2,rad3)<dist _23)) {

/**********************************************************/



/* Is vehicle in the region close to the nodal point k? */
/**********************************************************/
if (dt(r,cen[2]) <= rad2 && dt(r,cen[3]) > rad3d) {
pro=projection(C,cen[2],r,k);
/* Check if the tracking point is right on the nodal point k: */
if (fabs(pro)<l.e-12) {
node=TRUE;
s=0.0;
} else if (pro < 0.) {
k--;
printf(""\nVehicle %d moves backward to segment %d.\n",vn,k-
1);
if (k>4) s=1.0;
} /7* else k+=0; */

/************************************************************/

/* Is vehicle in the region close to the nodal point k+1? */
/************************************************************/
} else if (dt(r,cen[3]) <= rad3 && dt(r,cen[4]) > rad4 ) {
pro=projection(C,cen[3],r,k+1);
/* Check if the tracking point is right on the nodal point k+1: */
if (fabs(pro)<l.e-12) {
node=TRUE;
s=1.0;
} else if (pro>0.0 && dt(r,cen[2])> dist 23){
printf('\nVehicle %d moves forward to segment %d.\n",vn,k);
k++;
if(k>4) s=0.0;
} /7* else k+=0; */

/*******************************************************************/
/* 1f vehicle isn"t in the region of segment k, print error
message*/

/*******************************************************************/

} else if (1{dt(r,cen[2]) <= rad2 && dt(r,cen[3]) <= rad3 ))
range_error(l,vn);

/******************************/

/* It we need a fifth sphere: */
/******************************/

} else {
for (i=1;i<=3;i++) cen[S][11=(XIN[KJL[i]+XIN[k+1][i])/2;
if (dt(r,cen[5]) > dt(cen[2].,cen[3])72) {

/*********************************************************/

/* 1s vehicle in the region close to the nodal point k? */
/*********************************************************/
if (dt(r,cen[2]) <= rad2) {
pro=projection(C,cen[2],r,k);
/* Check if the tracking point is right on the nodal point k:
*/
if (fabs(pro)<l.e-12) {
node=TRUE;
s=0.0;
} else if (pro < 0.0) {

priﬁtf("\nVehicle %d moves backward to segment

%d.\n",vn,k); fon
i >4) s=1.0;



} /* else k+=0; */

/**********************************************************/

/* 1s vehicle in the region close to the nodal point k+1? */
/**********************************************************/
} else if (dt(r,cen[3]) <= rad3) {
/* compute the tangent vector at nodal point k+1:*/
if (k!'=NP-1) for (i=1;i<=3;i++) tan[i]=C[i][k+1][3];
else for (I=1;i<=3;i++)
tan[i]=3*CLi]l[Kl[1]+2*CLi][K]1[2]+CLi]1[K]1[3];
for (i=1;i<=3;i++) q[i]=r[i]-cen[3][i];
pro=DOT3(q,tan);
/* Check if the tracking point is right on the nodal point
k+1: */
if (fabs(pro)<l.e-12) {
node=TRUE;
s=1.0;
} else if (pro > 0. && dt(r,cen[2])> dist 23){
printf('\nVehicle %d moves forward to segment
%d.\n",vn,k);
k++;
if(k>4) s=0.0;
} /* else k+=0; */
} else range_error(2,vn);
} else range_error(3,vn);

}
}
if (k<1) range_error(4,vn);
if (k>NP) {
printf(C"\n\n r=%1¥ %IFf %1f\n",r[1],r[2].r[3]);
printf(""The vehicle %d reaches the end of the road!\n',vn);
exit(EXIT_FAILURE);
3*********************************************************************/
[FFFFE Determine the tracking point within the road segment: alaiaieied 4

/*********************************************************************/

/* The tracking point on the road corresponds to the smallest distance from
the vehicle to the road curve. */
if (Inode) {
/* parameters for minimize() and dist road() and d_road() */
si[l]=s;
for (i=1;i<=4;i++) for (J=1;j<=3;j++) si[4*j-3+1]=CLH1IK]1[i]:
si[5]-=r[1];
si[9]-=r[2];
si[13]-=r[3];
minimize(si,1l,dist road,d _road,si);
s=si[1];

if (s<-0.0001 ]| s>1.0001){
printf(""k=%d s=%1f v=%d \n",k,s,vn);
printfF('\nWarning! Tracking of vehicle lost!\n");
printf("'Please modify the %dth data point in file: road.dat.\n",k);
nrerror("'\n'");
}
by
/* cubic interpolation: compute tracking point and tangent vector: */
C_S= Ss*s*s; s _s=Ss*s;
for (i=1;i<=3;i++) {



tp[i]= CLi1[K]I[11*c_s+CLi][k1[2]*s_s+CLi][KI[3]1*s+CLi]1[K1[4];
tangent[i]= 3*CLi][K]I[1]*s_s+2*C[i1Ik1[21*s+C[i1IK]1[3]:
}
tangent[1]= fabs(tangent[1]);
/* and make it a unit tangent vector: */
dummy=sqrt(DOT3(tangent,tangent));
for (i=1;i<=3;tangent[i++]/=dummy);

/****************************************************/

/* compute the unit normal vector of the road plan: */
/****************************************************/

/* linear interpolation of banking angle: */

/* positive: cw, negative: ccw viewed from the origin of tangent vector */
if(k==1) angle= 0.0;

if(k==2) angle= 3*(XIN[k+1][4]-XIN[K]I[4D*s+XIN[K][4]:

if(k==3) angle= 3*(XIN[k+1][4]-XIN[K][4])*s+2*XIN[Kk][4]-XIN[k+1][4];
if(k==4) angle= 3*(XIN[k+1][4]-XIN[K][4])*s+3*XIN[K][4]-2*XIN[k+1][4]:
if(k>4) angle= (XIN[k+1][4]-XIN[K][4]D)*s+XIN[Kk][4];

s_t=sin(angle); c_t=cos(angle);

alpha=atan(tangent[2]/tangent[1]);

s_a=sin(alpha); c_a=cos(alpha); s b= tangent[3];

normal[1]= -c_t*s b*c_a+s t*s a;

normal[2]= -c_t*s b*s _a-s t*c _a;

normal[3]= c_t*sqgrt(square(tangent[1l])+square(tangent[2]));
free_matrix(cen);

v->road.segment=k;
v->road.parameter=s;

}

void range_error(int k, int n)

{
printfFC''\n\nErr %d: vehicle %d is out of road range!\n",k,n);
printf(""Now exiting to System!\n\n'");
exit(EXIT_FAILURE);

/******************************************************************************/
Y folaiaiaialel Distance function ialalaiaiatey 4

/******************************************************************************/

double dist_road(Vector x)
/* Input Xx[1] is the natural parameter of the tracking point on the road.
dist_road() returns the distance between the mass center of vehicle and
the
corresponding tracking point on the road. x[2]-x[16] are used to pass the
values XC[1]-XC[4], YC[1]-YC[4] and ZC[1]-ZC[4] for the current segment.
*/

double g=x[1]., sq=g*q, cg=sg*q;

return sgrt(square(x[2]*cg+x[3]*sq+x[4]*q+x[5])+
square(X[6]*cqg+x[7]*sq+x[8]*g+x[9])+
square(xX[10]*cg+x[11]*sg+x[12]*q+x[13]));
}

/******************************************************************************/

Y folaiaiaialel Gradient function ialalaiaiatey 4



/******************************************************************************/

void d_road(Vector g, Vector Xx)

/* Input x[1] is the natural parameter of the tacking point on the road.
Output g is the gradient at the tracking point x[1]. x[2]-x[13] are

used
to pass the values XC[1]-XC[4], YC[1]-YC[4] and ZC[1]-ZC[4] for the
current
segment. */
int i;

double g=x[1], sg=9*q, cg=sq*q;
double dummy[4], s=0.0;

for (i=1;i<=3;i++) dummy[i] = cg*x[4*i-2]+sg*x[4*i-1]+g*x[4*i]+x[4*i+1];
for (i=1;i<=3;i++) s += dummy[i]*dummy[i];
g[11=(3*sg*x[2]+2*q*x[3]+x[4])*dummy[1]+
(B*sg*x[6]+2*g*x[7]+x[8]) *dummy[2]+
(B*sg*x[10]+2*g*x[11]+x[12])*dummy[3] ;

g[1] /= sart(s):



/******************************************************************************/

/******** *******/
/******** *******/

/******************************************************************************/

/* created by Gwo-Jeng Lo, last modified on June 30 1999, 1123 lines */
/******************************************************************************/
/* This file contains 24 functions which do two major jobs: */
/* (1) detecting the contact situations of two vehicles, */
/* (11) computing the positions of contact points on two vehicles and the */
/* direction of contact force acting on the vehicle 2 by vehicle 1. */
/******************************************************************************/
/* Functions: */
/* - detect_contact() line 66 */
/* - infoQ line 255 */
/* - eig(Q) line 282 */
/* - jacobi(Q line 296 */
/* - eigsrt(Q) line 380 */
/* - enorm() line 407 */
/* - posQ line 555 */
/* - angle(Q) line 519 */
/* - norm_angle() line 541 */
/* - dist(Q line 595 */
/* - d_distl(Q line 621 */
/* - d_dist2Q) line 674 */
/* - d_distQ line 725 */
/* - pert(Q line 802 */
/* - funcQ line 935 */
/* - piksrt(Q) line 959 */
/* - oppQO line 995 */
/* - search(Q line 1052 */

/******************************************************************************/

#include <stdio.h>
#include <math.h>
#include ""common.h"

#define EP 1.e-4

#define EP1 5.e-7

#define MAXSTEP 20

#define SHIFT1 5.e-2

#define SHIFT2 1.e-6

#define DEV 2e-4

#define DEV1 1.5e-4

#define VARY_X1X2 1

#define VARY_X3X4 2

#define VARY_X 3

#define EXP 0.4 /* Cannot be assigned as an integer. */
#define STEP1MAX 300

#define STEP2MAX 300

#define FREE_MATRIX free_matrix(KHAT1); free_matrix(KHAT2); free matrix(vl);
free_matrix(v2); free matrix(Fl); free _matrix(F2);

extern simu_struct simulation;

/******************************************************************************/

/* Global Variables */

/******************************************************************************/

static double xbar[4]={0.0}; /* relative position of the vehicles */



static double A[4], B[4], null[4];
static double di1[4], d2[4], leni[4], 1en2[4];/* eigenvalues of the ellipsoids */
static Matrix KHAT1, KHAT2, v1, v2;

/******************************************************************************/

/******** *******/
V Asiaiaiaiadaiaial main detection procedure falaiaiaiaiaied 4
/******** *******/

/******************************************************************************/

int detect _contact(Vector state, vehicle _struct *carl, vehicle_struct *car2,
Vector nl, Vector rl, Vector r2)

/* Detect contact point between two cars. Inputs are the state={ul,vi,u2,v2} of
the previously found contact point and vehicles carl and car2 point to the
vehicle geometries. Outputs are position vectors rl, r2 of the contact points
and the normal vector n at that point. Returns TRUE when contact happens, else
FALSE. */
{

int i,j,stepl,step2;

double delt=10.0*EP;

double roldl[4],rold2[4],deep[4].enl[4],en2[4],temp[4];

double check,pt;

Matrix Fl=matrix(3,3),F2=matrix(3,3); /* deformation gradients */

void pos(Vector, Vector, Vector);

void enorm(Vector, Vector, Vector);
void eig(Matrix, int, Vector, Matrix);
void info(Vector, Matrix, Matrix);

int pert(Vector, double);

double dist(Vector);

void d_dist(Vector,Vector);

void d_distl(Vector,Vector);

void d_dist2(Vector,Vector);

void norm_angle(Vector,int);

/* nl is defined in vehicle.c */
KHAT1=matrix(3,3); KHAT2=matrix(3,3); vli=matrix(3,3); v2=matrix(3,3);

/* Read the deformation gradients of the two vehicles: */

Fil[1][1]=carl->z[4] , Fli[1][2]=carl->z[7] , F1[1][3]=carl->z[10];
Fi1[2][1]=carl->z[5] , Fl[2][2]=carl->z[8] , Fl1l[2][3]=carl->z[11];
F1[3][1]=carl->z[6] , F1[3][2]=carl->z[9] , F1[3][3]=carl->z[12];

F2[1][1]=car2->z[4] , F2[1]1[2]=car2->z[7] , F2[1][3]=car2->z[10];
F2[2][1]=car2->z[5] , F2[2][2]=car2->z[8] , F2[2][3]=car2->z[11];
F2[3][1]=car2->z[6] , F2[3][2]=car2->z[9] , F2[3][3]=car2->z[12];

for(i=1;i<=3;i++) xbar[i]=car2->z[i]-carl->z[i];

A[1]=carl->contact.dimension_box[1]/2;
A[2]=carl->contact.dimension_box[2]/2;
A[3]=carl->contact.dimension_box[3]/2;
B[1]=car2->contact.dimension_box[1]/2;
B[2]=car2->contact.dimension_box[2]/2;
B[3]=car2->contact.dimension_box[3]/2;

/* Check the potential contact of two vehicles: */



if (dt(car2->z,carl->z) <
(max(A[1],max(A[2],A[3]))+max(B[1].max(B[2],B[3]))+1.e-8)){
info(A, F1, KHAT1);
info(B, F2, KHAT2);

eig(KHAT1, 3, di1, v1); /* di[i]=1/(semi-axes)2 */
eig(KHAT2, 3, d2, v2);

for (4=1;j<=3;j++) {
temp[j1=vilj1[1]; viO1[i1=vi31L3]; vilil[3]=temp[jl;

for (=1;j<=3;j++) {
tempj1=v2j1[11; v20ill11=v2j1[3]1; v2Lil1[3]=temp[j];

b
lenl[1]= 1/sqrt(di[3]); lenl[2]= 1/sqrt(di[2]); lenl[3]= 1/sqrt(di[1]);
len2[1]= 1/sqrt(d2[3]); len2[2]= 1/sqrt(d2[2]); l1en2[3]= 1/sqrt(d2[1]);

info(A, F1, KHAT1);
info(B, F2, KHAT2);
/* This minimization procedure finds the minimum distance from a given
point
on the surface of an ellipsoid to the surface of the other ellipsoid.
Notice
that the following procedure is independent of the positions of starting
points: */
minimize(state,2,dist,d _distl,state);
norm_angle(state,2);
pos(state,rl,r2);
/* Minimization of distance by Variable Metric Method w/two variables */
/* Minimization Phase I: SHIFT1 is provided to perturbate a sequence
of points computed by minimize() */
i=1;
do {
for (g=1;j<=3;j++) {
rold1[jl=ri[j];
rold2[j]1=r2[j]:
}
state[3] += SHIFT1;
state[4] += SHIFT1;
minimize(state+2,2,dist,d _dist2,state);
norm_angle(state+2,2);
state[1l] += SHIFT1;
state[2] += SHIFT1;
minimize(state,2,dist,d_distl,state);
norm_angle(state, 2);
pos(state,rl,r2);
delt=max(dt(rl,roldl),dt(r2,rold2));
} while ((delt > EP) && (i++ <= MAXSTEP));
/* Minimization Phase 1l: SHIFT 2 is provided at this step */
if (delt > EP) {
stepl=1;
for (; delt > EP && stepl < STEPIMAX ;){
for (g=1;j<=3;j++) {
roldi[j]=r1[i]:
rold2[j]1=r2[i]:
}

state[3] += SHIFT2;



state[4] += SHIFT2;
minimize(state+2,2,dist,d _dist2,state);
norm_angle(state+2,2);
state[1l] += SHIFT2;
state[2] += SHIFT2;
minimize(state,2,dist,d_distl,state);
norm_angle(state, 2);
pos(state,rl,r2);
delt=max(dt(rl,roldl),dt(r2,rold2));
stepl++;
}
}
if{dt(rl,r2) < min(A[1],.min(A[2],.min(A[3].min(B[1].min(B[2].B[3))))){
/* Minimizations by Variable Metric Method w/ four variables */
minimize(state,4,dist,d_dist,state);
norm_angle(state,4);
pos(state,rl,r2);
enorm(state,enl,en2);
/* Check the contact occurs: */
check=(r2[1]-ri[1D*enl[1]+(r2[2]-r1[2])*enl[2]+(r2[3]-
r1[3])*enl[3];
pt= dot(enl,en2,3);
if(check > 0. && pt<= -1+DEV) {

FREE_MATRIX;
return FALSE; /* no real contact */
} else {
/* Minimization Phase I11: EP1 which is smaller than EP to obtain

the
converged points with better accuracy*/
step2=1;
for (;delt > EP1 && step2 < STEP2MAX;) {
for (g=1;j<=3;j++) {
rold1i[jl=ri1[ij];
rold2[j]1=r2[i]:
}

state[3] += SHIFT2;
state[4] += SHIFT2;
minimize(state+2,2,dist,d _dist2,state);
norm_angle(state+2,2);
state[1l] += SHIFT2;
state[2] += SHIFT2;
minimize(state,2,dist,d_distl,state);
norm_angle(state,2);
pos(state,rl,r2);
delt=max(dt(rl,roldl),dt(r2,rold2));
step2++;
}
minimize(state,4,dist,d_dist,state);
norm_angle(state,4);
pos(state,rl,r2);
enorm(state,nl,en2);
/* Check the contact occurs: */
check=(r2[1]-ri1[1D*n1[1]+(r2[2]-r1[ 2D *n1[2]+(r2[3]-r1[3])*nl[3];
pt= DOT3(nl,en2);
if(check > 0. && pt<= -1+DEV1) {
FREE_MATRIX;
return FALSE; /* no real contact */



} else {

/* Searching for the unique contact point*/
if (pert(state,l.e-7)) { /* pert() returns TRUE or FALSE */
for (i=1;i<=4;i++) deep[i]=state[i];
pos(deep,rl,r2);
enorm(state,nl,en2); /* for superqudratic model */
FREE_MATRIX;
return TRUE; /* contact happens */
} else {
FREE_MATRIX;
return FALSE;

} /* end perturbation procedure */
} /* end Phase 111 */
} else {
FREE_MATRIX;
return FALSE; /* no real contact */

} else{ /* end potential contact detect */
FREE_MATRIX;
return FALSE; /* no potential contact */

}
}
/******************************************************************************/
/******** *******/
/******** *******/

/******************************************************************************/
/******************************************************************************/

/* Compute the matrix KHAT=FN(-T)KF(-1) */

/******************************************************************************/

void info(Vector SA, Matrix F, Matrix KHAT)

{
Matrix FINV, FT, K, C;
FINV=matrix(3,3); FT=matrix(3,3); K=matrix(3,3); C=matrix(3,3);
matrix_inverse(F, 3, FINV);
matrix_transpose(FINV,FT,3,3);
K[11[1]1=1/(SA[11*SA[1]); K[1]1[2]=0.; K[1][3]=0-;
K[21[1]1=0-; K[2][2]1=1/(SA[2]*SA[2]); K[2][3]=0.;
K[31[11=0-; K[31[2]=0-; K[31[3]1=1/(SA[31*SAL[3D);
matrix_times_matrix(C,FT,K,3,3,3);
matrix_times_matrix(KHAT,C,FINV,3,3,3); /* KHAT=F*"(-T)KF(-1) */
free_matrix(C);
free_matrix(FT);
free_matrix(K);
free_matrix(FINV);
}
/******************************************************************************/
/* Compute and sort the eigenvalues and eigenvectors */

/******************************************************************************/

void eig(Matrix a, int n, Vector d, Matrix v)



int nrot;

void jacobi(Matrix a, int n, Vector d, Matrix v, int *nrot);
void eigsrt(Vector d, Matrix v, int n);

jacobi(a, n, d, v, &nrot);
eigsrt(d, v, n);
}

/******************************************************************************/

/* Compute the principal directions and principal values of the ellipsoids */
/* 1In the current configuration */
/******************************************************************************/
#define ROTATE(a,i,j.k,1) g=a[illjl; h=a[K]1[1]1; alillJ]1=g-s*(h+g*tau);
a[kK][1]=h+s*(g-h*tau);

void jacobi(Matrix a, int n, Vector d, Matrix v, int *nrot)
/* Compute all eigenvalues and eigenvectors of a real symmetric matrix

a[l..n][1..n]. On output, the elements of above the diagonal are
destroyed.

d[1..n] returns the eigenvalues of a. v[1..n][1..n] is a matrix whose
columns

contain, on output, the normalized eigenvectors of a. nrot returns the
number

Jacobi rotates that were required. See Numerical Recipes on C pp.467-468.
*/

{ - - - - -
int j, 1q, 1Ip, 1I;
double tresh, theta, tau, t, sm, s, h, g, c;
Vector b, z;

b=vector(n); z=vector(n);

for(ip=1;ip<=n;ip++){
for (ig=1;iqg<=n;ig++) v[ip][iq]=0.0;
Y vlip][ip]=1.0;

for (ip=1;ip<=n;ip++){
bLip]=d[ip]=alip]Lip];
z[ip]=0.0;
}
*nrot=0;
for (i=1;i<=50;i++) {
sm=0.0;
for (ip=1l;ip<=n-1;ip++) Ffor (ig=ip+l;iqg<=n;ig++) sm += fabs(a[ip]l[iq]);
if(sm==0.0){
free_vector(2);
free_vector(b);
return;

}
if (i<4) tresh=0.2*sm/(n*n);
else tresh=0.0;
for (ip=1l;ip<=n-1;ip++) {
for (ig=ip+l;ig<=n;ig++) {
g=100.*fabs(aLip]l[iql);
if (i>4 && (double)(fabs(d[ip])+g)==(double)fabs(d[ip])



&& (double) (fabs(d[ig])+g)==(double)fabs(d[ip]))
alip][iq]=0.0;
else if (fabs(alip]ll[iq]l)>tresh) {
h=d[iq]-d[ip];
if ((double)(fabs(h)+g)==(double)fabs(h)) t=(a[ipl[iq])/h;
else {
theta=0.5*h/(a[ip]l[igal);
t=1.0/(fabs(theta)+sqgrt(l.0+theta*theta));
if (theta<0.0) t= -t;

c=1.0/sqrt(l+t*t);
s=t*c;
tau=s/(1.0+c);
h=t*a[ip]Liq];

z[ip] -= h;
z[iq] += h;
dLip] -= h;
d[iq] += h;

alip][iq]=0.0;

for (g=1;j<=ip-1;j++) {
ROTATE(a,j,ip.j,iq)
}

for (j=ip+l;j<=ig-1;j++) {
ROTATE(a, ip,j.J.iq)
}
for (g=ig+l;j<=n;j++) {
ROTATE(a, ip,j,id.j)
}
for (g=1;j<=n;j++) {
ROTATE(V,j,ip.j,iq)
}
++(*nrot);
¥
}
}
for (ip=1;ip<=n;ip++){

b[ip] += z[ip];
dLip]=b[ip];

z[ip]=0.0;
nrerror("'Too many iterations in routine jacobi(");
/******************************************************************************/
/* Sorting the eigenvalues and eigenvectors */

/******************************************************************************/

void eigsrt(Vector d, Matrix v, int n)
/* Given the eigenvalues d[1..n] and the eigenvector in matrix v[1..n][1..n]
as the output from Jacobi, this routine sorts the eigenvalues into decending
order, adn rearranges the eigenvectors correspondingly. See Numerical Recipes
in C on p.468. */
{
int k, j, i;
double p;



for (i=1;i<n;i++) {

p=d[k=i];
for (g=i+1;j<=n;j++) if (dLil >= p) p=dlk=j1;
if (k1= 1) {
dk]=d[i];
dLi]=p;
for (g=1;j<=n;j++) {
p=vly1Lil;
vOlLil=vLillKkl;
vO1[k]=p;
}
}
}
}
/******************************************************************************/
/* Compute the outward unit normal on the surface of the ellipsoids */

/******************************************************************************/

void enorm(Vector x, Vector nvecl, Vector nvec2)

{

/* xX[1]=ul, x[2]=v1, x[3]=u2, x[4]=v2 */

int i,j,k1,k2,s[5],c[5],K[5];

double testl, test2, tangl[4], tang2[4]., cpl[4], tang3[4], tang4[4]., cp2[4];
double norml, norm2, L1[4], L2[3], L3[4].L4[3],temp[5];

double s x1,s x2,c_xl1l,c x2,s x3,Ss_X4,c_X3,c_Xx4;

double s x1n,c_x1ln,s x2n,c_X2n,s x3n,c_x3n,s x4n,c_x4n;

double s x2p,c_Xx1lp,Cc_Xx2p,Ss_Xx4p,C_X3p,C_X4p;

for (i=1;i<=4;i++) temp[i]=x[i];

for (i=1;i<=4;i++) {
KLil=(int) (x[i1/(2*Pi));
if (x[i]>=0) x[i]=x[i]-2*k[i]*Pi;
else x[i]=x[i]-2*(k[i]-1)*Pi;

}

for (i=1;i<=4;i++) {
ifT (x[i]>=0 && x[i]<=Pi/2) {
s[i]1=1; c[i]=1;
} else if (xX[1]>Pi/2 && x[i]<=Pi) {
x[i]= Pi-x[i]; s[i]=1; c[i]= -1;
} else if (X[1]>Pi && x[i]<=3*Pi/2) {
x[i]=x[i]-Pi; s[i]= -1; c[i]= -1;
} else {
x[i]=2*Pi-x[1]; s[i]= -1; c[i]=1;
}

}
it (EXP==1) {
s_Xx1ln=c_x1ln=s_x2n=c_x2n=s_x3n=c_x3n=Cc_x4n=s_x4n=1.0;
} else {
if (X[1]<l.e-16) s x1n=1.el6;
else s x1n= pow(sin(X[1]),EXP-1);
if (X[1]> (Pi/2-1.e-16)) c_x1n=1.el6;
else c_x1ln= pow(cos(X[1]).,EXP-1);
if (X[2]<l.e-16) s x2n=1.el6;
else s _x2n= pow(sin(x[2]),EXP-1);
if (X[2]> (Pi/2-1.e-16)) c_x2n=1.el6;
else c_x2n= pow(cos(x[2]).,EXP-1);



if (X[3]<l.e-16) s x3n=1.el6;
else s x3n= pow(sin(X[3]),EXP-1);
if (X[3]> (Pi/2-1.e-16)) c_x3n=1.el6;
else c_x3n= pow(cos(X[3]).,EXP-1);
if (X[4]<l.e-16) s x4n=1.el6;
else s _x4n= pow(sin(x[4]).,EXP-1);
if (X[4]> (Pi/2-1.e-16)) c_x4n=1.el6;
else c_x4n= pow(cos(x[4]).,EXP-1);

b

s_x2p= s[2]*pow(sin(x[2]).EXP);

c_xlp= c[1]*pow(cos(X[1]).EXP);

c_x2p= c[2]*pow(cos(xX[2]).EXP);

s _x4p= s[4]*pow(sin(x[4]).EXP);

c_x3p= c[3]*pow(cos(X[3]).EXP);

c_x4p= c[4]*pow(cos(x[4]).EXP);

s x1= s[1]*sin(X[1]D);

s x2= s[2]*sin(X[2]);

c_x1= c[1]*cos(X[1D);

c_x2= c[2]*cos(X[2]D);

s x3= s[3]*sin(X[3]);

s x4= s[4]*sin(X[4]);

c_x3= c[3]*cos(X[3]D);

c_x4= c[4]*cos(X[4]D);

L1[1]= -lenl[1]*c_x1n*s_Xx1*c_ x2p;
L1[2]= -lenl[2]*c_x1n*s_X1*s Xx2p;
L1[3]= Ilenl[3]*s_xln*c_x1;

L2[1]= -lenl[1]*c_xlp*s_Xx2*c_x2n;
L2[2]= lenl[2]*c_xlp*c_Xx2*s x2n;

L3[1]= -len2[1]*c_x3n*s_x3*c_x4p;
L3[2]= -l1en2[2]*c_x3n*s_x3*s_x4p;
L3[3]= len2[3]*s_x3n*c_x3;
L4[1]= -l1en2[1]*c_x3p*s_x4*c_x4n;
L4[2]= Ilen2[2]*c_x3p*c_x4*s_ x4n;
L2[3]=L4[3]=0.-;

for (i=1;i<=3;i++) tangl[i]=tang2[i]=tang3[i]=tang4[i]=0.0;
for (i=1;i<=3;i++) {
for (g=1;j<=3;j++) {
tangl[i] += EXP*L1[j]1*Vvi[illi]l:
tang2[i] += EXP*L2[j]*Vvi[illi]l:
tang3[i] += EXP*L3[j1*v2[illi]l:
tang4[i] += EXP*L4[j]1*Vv2[illi]:
Y }
/* Cross product of the two tangent vectors: */
cpl[l]=tang2[2]*tangl[3]-tangl[2]*tang2[3];
cpl[2]=tang2[3]*tangl[1]-tang2[1]*tangl[3];
cpl[3]=tang2[1l]*tangl[2]-tang2[2]*tangl[1];
cp2[1]=tang4[2]*tang3[3]-tang3[2]*tang4[3];
cp2[2]=tang4[3]*tang3[1]-tang4[1]*tang3[3];
cp2[3]=tang4[1]*tang3[2]-tang4[2]*tang3[1];

/* Compute unit normal vectors */
norml=sqgrt(square(cpl[1])+square(cpl[2])+square(cpl[3]));
norm2=sqgrt(square(cp2[1])+square(cp2[2])+square(cp2[3]));



kil=(int) (temp[1]/(2*Pi));
testl=fabs(temp[1]-2*k1*Pi);

k2=(int) (temp[3]/(2*P1));
test2=fabs(temp[3]-2*k2*Pi);

if (testl<=Pi/2 || testl>=3*Pi/2) for (i=1;i<=3;i++) nvecl[i]=cpl[i]/norml;
else for (i=1;i<=3;i++) nvecl[i]= -cpl[i]/norml;

if (test2<=Pi/2 || test2>=3*Pi/2) for (i=1;i<=3;i++) nvec2[i]= cp2[i]/norm2;
else for (i=1;i<=3;i++) nvec2[i]= -cp2[i]/norm2;

for (i=1;i<=4;i++) x[i]=temp[i];
}

void angle(Vector x, int s[], int c[])
int 1, k[5];

for (i=1;i<=4;i++) {
k[i]=Gnt) X[1]1/(2*Pi1));
if (X[i]>= 0) x[i]=x[i]-2*k[i]*Pi;
else x[i]=x[i]-2*(k[i]-1)*Pi;
if (X[1]>=0 && x[i]<=Pi/2) {
s[i]=1; c[i]=1;
} else if (X[i]>Pi/2 && x[i]<=Pi) {
x[i]= Pi-x[i]; s[i]=1; c[i]= -1;
} else if (X[i]>Pi1 && x[1]<=3*Pi/2) {
x[i]=x[1]-Pi; s[i]= -1; c[i]= -1;
} else {
x[i]=2*Pi-x[1]; s[i]= -1; c[i]=1;

/******************************************************************************/
/* Angle normalization */

/******************************************************************************/

void norm_angle(Vector x, int n)
/* normalize the state vector to [0, 2*Pi] */
{

int i, Kk[5];

for (i=1;i<=n;i++) {
KLil=(int) (x[i1/(2*Pi));
ifT (x[i]>= 0.0) x[i]=x[i]-2*k[i]*Pi;
else x[i]=x[i]-2*(k[i]-1)*Pi;

/******************************************************************************/
/* Compute the position vectors of the contact points */

/******************************************************************************/

void pos(Vector x, Vector rl, Vector r2)
/* x={ul,vl,u2,v2}, ri is the position vector on the surface of body i



}

/******************************************************************************/
/*
/*

/******************************************************************************/

int s[5],c[5]:

double L1[4],L2[4],temp[5];

double s x1, c x12, c x34, s x3, cs_x12, cs x34, c_x1, c_Xx3;
void angle(Vector, int s[], int c[]);

for (i=1;i<=4;i++) temp[i]=x[i];
angle(x,s,c);

s _x1= s[1]*pow(sin(X[1]),.EXP);
s_x3= s[3]*pow(sin(X[3]),.EXP);
c_x1= c[1]*pow(cos(X[1]),.EXP);
c_x3= c[3]*pow(cos(X[3]),.EXP);
c_x12= c_x1*c[2]*pow(cos(x[2]).,EXP);
C_x34= c_x3*c[4]*pow(cos(x[4]).EXP);
cs_x12= c_x1*s[2]*pow(sin(X[2]),.EXP);
cs_x34= c_x3*s[4]*pow(sin(xX[4]) ,.EXP);

Li[1]=lenl[1]*c_x12; L1i[2]=1enl[2]*cs_x12; L1[3]=lenl[3]*s_x1;
L2[1]=1en2[1]*c_x34; L2[2]=1en2[2]*cs_x34; L2[3]=1en2[3]*s_Xx3;

for (i=1;i<=3;i++) rl[i]=r2[i]=0.0;

for (i=1;i<=3;i++) {
for (g=1;j<=3;j++) {
rif[i] += L1g1*vi[illil:
r2[i] += L2pgg1*velillil:
}

r2[i] += xbar[i];

}
for (i=1;i<=4;i++) x[i]=temp[i];

Calculate the distance S(ul,vl,u2,v2) at x[1..4]:
x[1]=ul, x[2]=v1, x[3]=u2, x[4]=v2

double dist(Vector x)

{

int i, s[5],.c[5];
double dummy=0.0, st[5], ct[5], t[5]; /* substitution variables */
void angle(Vector, int s[], int c[]);

for (i=1;i<=4;i++) t[i]=x[i];
angle(t,s,c); /* note: angle() modifies t! */
for (i=1;i<=4;i++) {
ct[i]=c[i]*pow(cos(t[i]),.EXP);
sti]=s[i]*pow(sin(t[i]),.EXP);
}

for (i=1;i<=3;i++){
dummy += square(-xbar[i]+vi[i][1]*ct[1]*ct[2]*lenl[1]-
V2[i1[1]*ct[3]*ct[4]*Men2[1]+Vvi[i][3]*1enl[3]*st[1]+
vi[i][2]*ct[1]*1enl[2]*st[2]-Vv2[i][3]*1en2[3]*st[3]-
Vv2[i][2]*ct[3]*1en2[2]*st[4]);
}
return sqrt(dummy);



/******************************************************************************/

/* Calculate the gradient g=(dS/dul,dS/dvl) at the point p[1,2]=(Cul,vl) */
/* given q[1,2]=(u2,v2). */

/******************************************************************************/

void d_distl(Vector g, Vector x)

{
int i, s[5], c[5];
double st[5], ct[5], t[5], sine[5], cose[5];
double cnl, cn2, snl, sn2;
double m, ds=0.0, sqds, dummyl=0.0, dummy2=0.0;
void angle(Vector, int s[], int c[]);

for (i=1;i<=4;i++) t[i]=x[i];
angle(t,s,c); /* note: angle() modifies t! */
for (i=1;i<=4;i++) {
sine[i]=sin(t[i]);
cose[i]=cos(t[i]);
ct[i]=c[i]*pow(cose[i],.EXP);
st[i]=s[i]*pow(sine[i],EXP);

}
it (EXP==1) {
cnl=cn2=snl=sn2=1.0;
} else {
if (t[1]> (Pi/2-1.e-14)) cnl=1l.el4;
else cnl=pow(cose[1],EXP-1);
if (t[2]> (Pi/2-1.e-14)) cn2=1.el4;
else cn2=pow(cose[2],EXP-1);
if (t[1]<l.e-14) snl=l.el4;
else snl=pow(sine[1l],EXP-1);
if (t[2]<l.e-14) sn2=1.el4;
else sn2=pow(sine[2],EXP-1);
}

for (i=1;i<=3;i++) {
m= -xbar[i]+vi[i][1]*ct[1]*ct[2]*1enl[1]-
V2[i1[1]*ct[3]*ct[4]*en2[1]+Vvi[i][3]*1enl[3]*st[1]+
vi[i][2]*ct[1]*1enl[2]*st[2]-Vv2[i][3]*1en2[3]*st[3]-
v2[i][2]*ct[3]*1en2[2]*st[4];

ds += square(m);

dummyl+= (-vi[i][1]*cnl*lenl[1]*s[1]*sine[1]*ct[2]-
vi[i][2]*cnl*lenl[2]*s[1]*sine[1l]*st[2]+
vi[i][3]*sn1*lenl[3]*c[1]*cose[1])*EXP*m;

dummy2+= (-v1i[i][1]*ct[1]*cn2*lenl[1]*s[2]*sine[2]+
vi[i][2]*ct[1]*sn2*1enl[2]*c[2]*cose[2])*EXP*m;

by

/* dS/sul=(1/25)*ds”2/dul, since there is a 2 in dummy, so dummy is divided by
S only. */

sqds=sqrt(ds);

g[1]= dummyl/sqds;

g[2]= dummy2/sqds;
}

/***************************************************************************/

/* Calculate the gradient g=(dS/du2, dS/dv2) at the point p[1,2]=(u2,v2) */



/* given g[1,2]=(Cul,vl). */

/***************************************************************************/

void d_dist2(Vector g, Vector x)

{
int i, s[5], c[5];
double st[5], ct[5], t[5], sine[5], cose[5];
double cn3, cn4, sn3, sn4;
double m, ds=0.0, sqds, dummy3=0.0, dummy4=0.0;
void angle(Vector, int s[], int c[]);

for (i=1;i<=4;i++) t[i]=x[i];
angle(t,s,c); /* note: angle() modifies t! */
for (i=1;i<=4;i++) {
sine[i]=sin(t[i]);
cose[i]=cos(t[i]);
ct[i]=c[i]*pow(cose[i],.EXP);
st[i]=s[i]*pow(sine[i],EXP);

}
it (EXP==1) {
cn3=cn4=sn3=sn4=1.0;
} else {
if (t[3]> (Pi/2-1.e-14)) cn3=1l.el4;
else cn3=pow(cose[3],EXP-1);
if (t[4]> (Pi/2-1.e-14)) cnd4=1.el4;
else cnd4=pow(cose[4],EXP-1);
if (t[3]<l.e-14) sn3=1l.el4;
else sn3=pow(sine[3],EXP-1);
if (t[4]<l.e-14) sn4=1.el4;
else snd4=pow(sine[4],EXP-1);
3
for (i=1;i<=3;i++) {
m= -xbar[i]+vi[i][1]*ct[1]*ct[2]*1enl[1]-
V2[i][1]*ct[3]*ct[4]*en2[1]+Vvi[i][3]*1enl[3]*st[1]+
vi[i][2]*ct[1]*1enl[2]*st[2]-Vv2[i][3]*1en2[3]*st[3]-
v2[i][2]*ct[3]*1en2[2]*st[4];

ds += square(m);

dummy3 += (v2[i][1]*cn3*len2[1]*s[3]*sine[3]*ct[4]+
v2[i1[2]*cn3*1en2[2]*s[3]*sine[3]*st[4]-
Vv2[i]1[3]*sn3*1en2[3]*c[3]*cose[3])*EXP*m;

dummy4 += (v2[i][1]*ct[3]*cnd4*len2[1]*s[4]*sine[4]-
V2[i][2]*ct[3]*snd*1en2[2]*c[4]*cose[4])*EXP*m;

}

sqds=sqrt(ds);
g[1]= dummy3/sqds;
g[2]= dummy4/sqds;

}

/***************************************************************************/
/* Calculate the gradient g=(dS/dul, dS/dvl, dS/du2, dS/dv2) at */
/* Xx[1..4]=Cul,v1,u2,v2) */

/***************************************************************************/

void d_dist(Vector g, Vector Xx)
{
int i, s[5], c[5]:
double st[5], ct[5], t[5], sine[5], cose[5];



}

double sn[5], cn[5];

double m, ds=0.0, sqds, dummy[5]={0.0, 0.0, 0.0, 0.0, 0.0};

void angle(Vector,

int s[], int c[]);

for (i=1;i<=4;i++) t[i]=x[i];

angle(t,s,c);

/* note: angle() modifies t! */

for (i=1;i<=4;i++) {
sine[i]=sin(t[i]);
cose[i]=cos(t[i]);
ct[i]=c[i]*pow(cose[i],.EXP);
st[i]=s[i]*pow(sine[i],EXP);

}
it (EXP==1) {
for (i=1;i<=4;i++) cn[i]=sn[i]=1.0;
Yelse {
if (t[1]> (Pi/2-1.e-14)) cn[1l]=1.el4;
else cn[1l]=pow(cos(t[1]),.EXP-1);
if (t[2]> (Pi/2-1.e-14)) cn[2]=1.el4;
else cn[2]=pow(cos(t[2]),.EXP-1);
if (t[1]<l.e-14) sn[1]=1.el4;
else sn[1l]=pow(sin(t[1]),.EXP-1);
if (t[2]<l.e-14) sn[2]=1.el4;
else sn[2]=pow(sin(t[2]),EXP-1);
if (t[3]> (Pi/2-1.e-14)) cn[3]=1.el4;
else cn[3]=pow(cos(t[3]),.EXP-1);
if (t[4]> (Pi/2-1.e-14)) cn[4]=1.el4;
else cn[4]=pow(cos(t[4]),.EXP-1);
if (t[3]<l.e-14) sn[3]=1.el4;
else sn[3]=pow(sin(t[3]),EXP-1);
if (t[4]<l.e-14) sn[4]=1.el4;
else sn[4]=pow(sin(t[4]),.EXP-1);
3
for (i=1;i<=3;i++) {
m= -xbar[i]+v1i[i][1]*ct[1]*ct[2]*lenl[1]-

V2[i1[1]*ct[3]*ct[4]*en2[1]+Vvi[i][3]*1enl[3]*st[1]+
vi[i][2]*ct[1]*1enl[2]*st[2]-Vv2[i][3]*1en2[3]*st[3]-

v2[i][2]*ct[3]*1en2[2]*st[4];

ds += square(m);

dummy[1] += (~-vi[i][1]*cn[1]*lenl[1]*s[1]*sine[1]*ct[2]-

dummy[2]

dummy[3]

dummy[4]

}
sqds=sqrt(ds);
for (i=1l;i<=4;

=+

=+

vi[i][2]*cn[1]*1enl[2]*s[1]*sine[1l]*st[2]+
Vvi[i][3]*sn[1]*1enl[3]*c[1]*cose[1])*EXP*m;

(-vi[i]l[1]*ct[1]*cn[2]*1enl[1]*s[2]*sine[2]+

vi[i][2]*ct[1]*sn[2]*1enl[2]*c[2]*cose[2])*EXP*m;

v2[i]l[1]*cn[3]*1en2[1]*s[3]*sine[3]*ct[4]+

V2[i][2]*cn[3]*1en2[2]*s[3]*sine[3]*st[4]-
V2[i][3]*sn[3]*1en2[3]*c[3]*cose[3])*EXP*m;

v2[i][1]*ct[3]*cn[4]*1en2[1]*s[4]*sine[4]-

V2[i][2]*ct[3]*sn[4]*1en2[2]*c[4]*cose[4])*EXP*m;

i++) g[i]= dummy[i]/sqds;



/******************************************************************************/

/******** *******/
V Asiaiaiaiadaiaial Unique Contact Point Detection falalaiaiaiaied 4
/******** *******/

/******************************************************************************/

/******************************************************************************/

/* Input a[l..4] is the vector from detect contact and a[l..4] is also the */
/* output vector as which corresponds to unique contact points on both bodies.*/
/******************************************************************************/
#define EPS1 1.e-15

#define EPS2 1.e-15

#define NT 32

#define FAC1 0.7

#define FAC2 2

#define MAX 300

int pert(Vector a, double SHIFT)
{
int i,j,Ipl,I1p2;
double func(Vector, Vector, Vector, Matrix);
void pos(Vector state, Vector rl, Vector r2);
void piksrt(int, int , Vector a, Matrix atri);
void opp(Vector a, Vector b);
void search(Vector, Vector, double, double, double);

double diffl, diff2, fcl, fc2, val, va2;
double ftempl, ftemp2;
double ri[4], r2[4], b[5], c[5], fa[NT+1], fb[NT+1];

Matrix atri=matrix(NT,4);
Matrix btri=matrix(5,4);

fb[5]=1.0; fa[5]=1.0; val= 1.0; va2= 1.0;
for (;fb[5]>0.0 || fa[5]>0.0 ;) {
for (i=1;i<=NT;i++) { /* perturbation along NT directions */
atri[i][1]=a[1]+cos((i-1)*2*Pi/NT)*SHIFT; /* SHIFT : radian */
atri[i][2]=a[2]+sin((i-1)*2*Pi/NT)*SHIFT;
atri[i][3]=a[3]+cos((i-1)*2*Pi/NT)*SHIFT;
atri[i][4]1=a[4]+sin((i-1)*2*Pi/NT)*SHIFT;
for (J=1;j<=4;j++) b[jl=atri[il[]]:
pos(b,rl,r2); fb[i]=Ffunc(rl,xbar,len2,v2);
fa[i]=func(r2,null,lenl,vl);
ks
/* Sorting (atri[i][1].atri[i][2]) which are on the body 1 by index
fb[1l..n]*/
/* Sorting (atri[i][3].atri[i][4]) which are on the body 2 by index
fa[l..n]*/
piksrt(1,NT,fb,atri);
piksrt(3,NT,fa,atri);

if (fb[5]>0.0 || fa[5]>0.0 ) {
if (fa[l] > val || fb[1] > va2) SHIFT *= FAC1;
else SHIFT *= FAC2;
if (SHIFT > 0.1) {
free_matrix(atri); free_matrix(btri);
return FALSE;
}



if (SHIFT < 1.e-9) {
free _matrix(atri); free matrix(btri);
return FALSE;

¥
val=fa[l]; va2=fb[1];
}
¥
/* perturbating along the five directions with smallest function values on
body 1 & 2 */
for (J=1;j<=5;j++){
for (i=1;i<=4;i++) b[i]=atri[J][i]:
opp(a,b);
for (i=1;i<=4;i++) btri[j][i]1=b[i];
/* btri[]1[] are the oppsite points to a[], the start points. */
¥

free_matrix(atri);

/* Take five middle points on body 1 & 2 */
for (g=1;j<=5;j++){
for (i=1;i<=4;i++) btri[j][i]l=Ca[il+btri[J]1[i]1)/2;
/* btri[][] are the middle points now. */
for (i=1;i<=4;i++) b[i]=btri[j]1[i];
pos(b,rl,r2); fb[j]=func(rl,xbar,len2,v2); fa[j]=Func(r2,null,lenl,vl);
}
piksrt(1,5,fb,btri);
piksrt(3,5,fa,btri);

/* Using the smallest three middle points to perturbate along a c! */
for (g=1;j<=3;j++){
for (i=1;i<=4;i++) c[i]= btri[j]l[i]:
fcl= fb[j];: fc2= fa[j]l;
search(a,c,fcl,fc2,EPS2);
for (i=1;i<=4;i++) btri[j][i]= c[i]:
/* btri[][] are the points with smallest function value along curves
formed

}

/* Perturbate along the previous three points */

for (i=1;i<=4;i++) b[i]=btri[1][i]+0.01*(btri[2][i]-btri[1][i]):
pos(b,rl,r2); ftempl=func(rl,xbar,len2,v2); ftemp2=func(r2,null,lenl,vl);
it (ftempl < fb[1]) for (i=1;i<=2;i++) c[i]=(btri[1][i]+btri[2][1])/2;
else for (i=1;i<=2;i++) c[i]=(btri[1][i]+btri[3][i])7/2;

it (ftemp2 < fa[1]) for (i=3;i<=4;i++) c[i]=(btri[1][i]+btri[2][1])/2;
else for (i=3;i<=4;i++) c[i]=(btri[1][i]+btri[3][i])7/2;

pos(c,rl,r2); fcl=Func(rl,xbar,len2,v2); fc2=Func(r2,null,lenl,vl);
diffl=fabs(fabs(fb[1])-fabs(fcl));

by start point and middle points. */

for (i=1;i<=4;i++) b[i]=btri[1][i];
/* Loop to search for the direction corresponding to the min function value */
/* points on body 1 */
Ipl=1;
for (;diffl > EPS1 && Ipl < MAX;){
if (fb[1]<fcl) {
/* update vector c */
for (i=1;i<=2;i++) c[i]=(c[i]+b[i])/2;
pos(c,rl,r2); fcl=Func(rl,xbar,len2,v2);
} else {



/* update vector b */
for (i=1;i<=2;i++) b[i]=(c[i]+b[i])/2;
pos(b,rl,r2); fb[1]=Ffunc(rl,xbar,len2,v2);

¥
diffl=Fabs(fabs(fb[1])-fabs(fcl));
Ipl++;
¥
/* points on body 2 */
diff2=fabs(fabs(fa[1])-fabs(fc2));
1p2=1;
for (;diff2 > EPS1 && Ip2 < MAX;) {
if (fa[1]<fc2) {
/* update vector c */
for (i=3;i<=4;i++) c[i]=(c[i]+b[i])/2;
pos(c,rl,r2); fc2=Func(r2,null,lenl,vl);
} else {
/* update vector b */
for (i=3;i<=4;i++) b[i]=(c[i]+b[i])/2;
pos(b,rl,r2); fa[l1]=func(r2,null,lenl,vl);

¥
diff2=fabs(fabs(fa[1])-fabs(fc2));
1p2++;
by
/* Final perturbation along the a c direction */
search(a,c,fcl,fc2,EPS2);
free_matrix(btri);
return TRUE;

}

/******************************************************************************/
/* Find the corresponding function value of the point x in the current */
/* configuration. */
/******************************************************************************/
/* x-xbar=F(X-XBAR) Inputs are x:current position, */
/* z=xbar: current mass center, and F: deormation gradient. */
/* Ellipsoidal function(reference): (X-Xbar).K(X-Xbar)=1. */
/* Ellipsoidal function(current): (x-xbar).F (-T)KFM(-1)(x-xbar)=1. */
/* K=diag(1/A"2,1/B"2,1/C"2). */

/******************************************************************************/

double func(Vector x, Vector z, Vector L, Matrix v)

{ - - -
int i,j;
double y[4], proj[4]., p[4]., dummy, inx;
double dot(Vector, Vector, int);

for (i=1;i<=3;i++) {
for (g=1;j<=3;j++) {
pLil=vLilLil;
yO1= x0O1-z01:

}
proj[i]= fabs(dot(y,p,3));

¥
dummy=0.0;
inx= 2./EXP;

for (i=1;i<=3;i++) {
dummy+= pow((proj[i]/L[i]),inx);



}

return dummy-1;

/******************************************************************************,
/* Sorting */
/******************************************************************************,
void piksrt(int k, int n, double arr[], Matrix brr)

/*Sorting an array[l..n] into ascending numerical order, by

straight insertion, while making the corresponding rearrangement

of the Matrix brr._*/

{
int i,j;
double a,b,c;

for (g=2;j<=n;j++) {

a=arr[j];

b=brr[j]1[k]:

c=brr[j][k+1];

i=j-1;

while (i>0 && arr[i] > a){
arr[i+l]=arr[i];
brr[i+1][K]=brr[i]1[k];:
brr[i+1][k+1]=brr[i][k+1];
i--;

}

arr[i+1]=a;

brr[i+1][k]=b;

brr[i+1][k+1]=c;

/******************************************************************************/
/* Find the oppsite points on the intersection curve */

/******************************************************************************/

/* Input:(a[l].a[2]): original point on body 1 */

/* (a[3].a[4]): original point on body 2 */

/* Input:(b[1].b[2]): perturbation point on body 1 */
/* (b[3].,b[4]): perturbation point on body 2 */
/* output:(b[1],b[2]): the opposite point on body 1 */
/* (b[3].b[4]): the opposite point on body 2 */

#define FVMIN 1.e-15
#define ITERMAX 200

void opp(Vector a, Vector b)

double func(Vector , Vector ,Vector , Matrix);
void pos(Vector state, Vector rl, Vector r2);

int i, itel,ite2;
double sht[5], ri[4], r2[4], shtmin[3], ENLARGE[3], fvl, fv2;

for (i=1;i<=4;i++) sht[i]=b[i]-a[i];
shtmin[1]=min(sht[1],sht[2]);
shtmin[2]=min(sht[3],sht[4]);

for (i=1;i<=2;i++) {
if (fabs(shtmin[i])<1l.e-7) ENLARGE[i]=1.e7;
else ENLARGE[i]=Fabs(1/(shtmin[i]));



}
for (i=1;i<=2;i++) b[i]=a[i]+ENLARGE[1]*sht[i];
for (i=3;i<=4;i++) b[i]=a[i]+ENLARGE[2]*sht[i];
pos(b,rl,r2); fvi=func(rl,xbar,len2,v2); fv2=func(r2,null,lenl,vl);
for (;fvli<O. ;) {
ENLARGE[1] *= 2;
for (i=1;i<=2;i++) b[i]=a[1]+ENLARGE[1]*sht[i];
pos(b,rl,r2); fvi=func(rl,xbar,len2,v2);
}
for (;fv2<0. ;) {
ENLARGE[2] *= 2;
for (i=3;i<=4;i++) b[i]=a[1]+ENLARGE[2]*sht[i];
pos(b,rl,r2); fv2=func(r2,null,lenl,vl);
}
itel=1;
for (;(fabs(fvl))> FVMIN && itel < ITERMAX;){
ENLARGE[1]=ENLARGE[1]/2;

it (fv1>0){
for (i=1;i<=2;i++) b[i] -= ENLARGE[1]*sht[i];
} else {
for (i=1;i<=2;i++) b[i] += ENLARGE[1]*sht[i];
}
pos(b,rl,r2); fvi=func(rl,xbar,len2,v2);
itel++;
}
ite2=1;

for (;(Ffabs(fv2))> FVMIN && ite2 < ITERMAX;){
ENLARGE[2]=ENLARGE[2]/2;

it (fv2>0){
for (i=3;i<=4;i++) b[i] -= ENLARGE[2]*sht[i];
} else {

for (i=3;i<=4;i++) b[i] += ENLARGE[2]*sht[i];

}
pos(b,rl,r2); fv2=func(r2,null,lenl,vl);
ite2++;
}
}

/******************************************************************************/

/* Searching along the current and starting points located on the surface of */
/* the ellipsoid */

/******************************************************************************/

void search(Vector a, Vector c, double fcl, double fc2, double g)

{
int i,Ipl,1p2;
double ri1[4], r2[4], anew[5], fanewl, fanew2, fbnewl, fbnew2, factor;
double func(Vector , Vector , Vector, Matrix);
void pos(Vector state, Vector rl, Vector r2);

factor= 0.1;
for (i=1;i<=4;i++) anew[i]=c[i]+1l.e-12*(c[i]-a[i]);
pos(anew,rl,r2); fanewl=func(rl,xbar,len2,v2); fanew2=Func(r2,null,lenl,vl);
for (i=1;i<=4;i++) anew[i]=c[i]-1.e-12*(c[i]-a[i]);
pos(anew,rl,r2); fbnewl=func(rl,xbar,len2,v2); fbnew2=Func(r2,null,lenl,vl);
if (fcl<fanewl && fcl<fbnewl){
a[1]=c[1]; al[2]=c[2]; /* The final point on body 1 */
} else if (fanewl<fcl){



for (i=1;i<=2;i++) anew[i]=c[i]+Ffactor*(c[i]-a[i]);
pos(anew,rl,r2); fanewl=func(rl,xbar,len2,v2);
Ipl=1;
for (;fabs(fanewl-fcl)> g && Ipl < MAX;){

if (fanewl<fcl){

c[1]=anew[1]; c[2]=anew[2]; fcl=fanewl;
} else factor=factor/2;

for (i=1;i<=2;i++) anew[i]=c[i]+Ffactor*(c[i]-a[i]);
pos(anew,rl,r2); fanewl=func(rl,xbar,len2,v2);
Ipl++;
} /7* end of for loop */
a[1]=c[1]; al[2]=c[2]; /* The final point on body 1 */
} else {
for (i=1;i<=2;i++) anew[i]=c[i]-factor*(c[i]-a[i]);
pos(anew,rl,r2); fanewl=func(rl,xbar,len2,v2);
Ipl=1;
for (;fabs(fanewl-fcl)> g && Ipl < MAX;){
if (fanewl<fcl){
c[1]=anew[1]; c[2]=anew[2]; fcl=fanewl;
} else factor=factor/2;
for (i=1;i<=2;i++) anew[i]=c[i]-factor*(c[i]-a[i]);

pos(anew,rl,r2); fanewl=func(rl,xbar,len2,v2);
Ipl++;

} /7* end of for loop */

a[1]=c[1]; al[2]=c[2]; /* The final point on body 1 */
}
factor= 0.1;
it (fc2<fanew2 && fc2<fbnew2){

a[3]=c[3]; a[4]=c[4]; /* The final point on body 2 */
} else if (fanew2<fc2) {
for (i=3;i<=4;i++) anew[i]=c[i]+Ffactor*(c[i]-a[i]);
pos(anew,rl,r2); fanew2=func(r2,null,lenl,vl);
1p2=1;
for (;fabs(fanew2-fc2)> g && Ip2 < MAX;){
if (fanew2<fc2) {

c[3]=anew[3]; c[4]=anew[4]; fc2=Fanew2;
} else factor=factor/2;

for (i=3;i<=4;i++) anew[i]=c[i]+Ffactor*(c[i]-a[i]);
pos(anew,rl,r2); fanew2=func(r2,null,lenl,vl);
1p2++;
} /7* end of for loop */
a[3]=c[3]; a[4]=c[4]; /* The final point on body 2 */
} else {
for (i=3;i<=4;i++) anew[i]=c[i]-factor*(c[i]-a[i]);
pos(anew,rl,r2); fanew2=func(r2,null,lenl,vl);
1p2=1;
for (;fabs(fanew2-fc2)> g && Ip2 < MAX;) {
if (fanew2<fc2) {
c[3]=anew[3]; c[4]=anew[4]; fc2=Fanew2;
} else factor=factor/2;
for (i=3;i<=4;i++) anew[i]=c[i]-factor*(c[i]-a[i]);

pos(anew,rl,r2); fanew2=func(r2,null,lenl,vl);
1p2++;

} /7* end of for loop */
a[3]=c[3]; a[4]=c[4]; /* The final point on body 2 */



/******************************************************************************/

/****** ******/
/****** ******/
/****** ******/

/******************************************************************************/

/* created by Peter Varadi and Gwo-Jeng Lo, modified June 30, 1998, 479 lines */

/******************************************************************************/

/* common.c contains some programing tools and vector and matrix related */
/* material. It is adapted from: */
/* W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, */
/* Numerical Recipes in C: the Art of Scientific Computing. 2nd ed., */
/* Cambridge University Press, 1992. */
/******************************************************************************/
/* Functions: */
/* - max() line 49 */
/* - minQ) line 50 */
/* - square() line 51 */
/* - dtQ line 52 */
/* - nrerror() line 55 */
/* - vector(Q) line 71 */
/* - ivector(Q line 80 */
/* - matrix line 89 */
/* - free_vector(Q) line 108 */
/* - free_ivector() line 110 */
/* - free_matrix(Q line 112 */
/* - dotQ line 124 */
/* - vector_product() line 134 */
/* - matrix_times_vector() line 142 */
/* - matrix_times_matrix() line 156 */
/* - matrix_transpose() line 170 */
/* - matrix_inverse() line 177 */
/* - lin_solve(Q) line 202 */
/* - ludcmpQO line 222 */
/* - lubksb(Q line 281 */
/* - minimize(Q) line 330 */
/* - linsearch() line 412 */
/* - projection() line 467 */

/******************************************************************************/

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <math.h>

#include ""common.h"

void ludcmp(Matrix a, int n, int *indx, Vector d);
void lubksb(Matrix a, int n, int *indx, double b[]);

double max(double x, double y) { return (x>y) ? x
double min(double x, double y) { return (x<y) ? X
double square(double x) { return x*x; }

double dt(double x[], double y[])

{ return sqgrt(square(xX[1]-y[1])+square(X[2]-y[2])+square(X[3]1-Y[3D): }

Dys o}
Ty}

void nrerror(char error_text[])
/* Numerical Recipes standard error handler */

{



fprintf(stderr,"Run-time error...\n");
fprintf(stderr,"%s\n",error_text);
fprintf(stderr,”...now exiting to system\n');
exit(EXIT_FAILURE);

/******************************************************************************/
/****** ******/
Y foiaiaiaialel memory management falalaiaiatey 4
/****** ******/

/******************************************************************************/

#define FREE_ARG char*

Vector vector(int n)
/* allocate a double vector with subscript range v[1..n] */

{
Vector v;
v=(double *) malloc((size_t) (n*sizeof(double)));
if (Iv) nrerror("allocation failure in vector()");
return v-1;

}

int *ivector(int n)
/* allocate an int vector with range v[1..n] */

{ -
int *v;
v=(int *) malloc((size_t) (n*sizeof(int)));
if (Iv) nrerror(allocation failure in ivector()");
return v-1;
}

Matrix matrix(int nrow, int ncol)
/* allocate a double matrix with range m[1..nrow][1..ncol] */
{ - -

int i;

Matrix m;

/* allocate pointers to rows */

m=(double **) malloc((size_t)(nrow*sizeof(double*)));
if (Im) nrerror("allocation failure 1 in matrix(Q)");
m-=1;

/* allocate rows and set pointers to them */
m[1]=(double *) malloc((size_t)((nrow*ncol)*sizeof(double)));
if (Im[1]) nrerror(allocation failure 2 in matrix(Q)"™);
m[1]-=1;

for(i=2;i<=nrow;i++) m[i]=m[i-1]+ncol;

/* return pointer to array of pointers to rows */
return m;

}

void free_vector(Vector v) { free((FREE_ARG) (v+1)); }
/* free a double vector allocated with vector() */
void free_ivector(int *v) { free((FREE_ARG) (v+1)); }
/* free an int vector allocated with ivector() */
void free_matrix(Matrix m)

/* free a double matrix allocated with matrix() */

{



free((FREE_ARG) (m[1]+1));
free((FREE_ARG) (m+1));

/******************************************************************************/
/****** ******/
[FFFFFx matrix operations alaiaiaiaied 4
/****** ******/

/******************************************************************************/

double dot(Vector x, Vector y, int n)
/* calculates scalar product <x,v> of two n vectors */
{ - -

int i;

double dummy=0.0;

for (i=1;i<=n;i++) dummy += x[i]*y[i];
return dummy;

}

void vector_product(Vector a, Vector b, Vector c¢)

/* calculates a=b x ¢ */

{
a[1]=b[2]*c[3]-c[2]*b[3]:
a[2]=b[3]*c[1]-c[3]*b[1];
a[3]=b[1]*c[2]-c[1]*b[2]:

}

void matrix_times_vector(Vector y, Matrix A, Vector x, int nrow, int ncol)
/* calculates y=Ax. A and x are input, y is output. A is a nrow by ncol matrix.
X is a ncol vector, y is a nrow vector. */

{
long double dummy; /* This reduces numerical error. */
int i,j;
for (i=1;i<=nrow;i++) {
dummy=0.0;
for (J=1;j<=ncol;j++) dummy+=A[i11*x[J1:
y[i]=dummy;
}
}

void matrix_times_matrix(Matrix Y, Matrix A, Matrix B, int M, int N, int P)
/* calculates Y=AB. A is a M by N matrix, B is a N by P matrix and Y is a M by
P matrix. */

{ -
int m,n,p;
long double dummy;
for (m=1;m<=M;m++) for (p=1;p<=P;p++) {
dummy=0.0;
for (n=1;n<=N;n++) dummy += A[m][n]1*BI[n]1Ipl;
Y[m] [p]=dummy;
}
}

void matrix_transpose(Matrix Y, Matrix A, int nrow, int ncol)
/* A=Y~T , where Y is a nrow*ncol matrix, A is a ncol*nrow matrix */



{

int i,j;

for (i=1;i<=ncol;i++) for (=1;j<=nrow;j++) A[T101=YLi1[i]1:
}

void matrix_inverse(Matrix a, int n, Matrix y)

/* Calculates the inverse y of a square matrix a. n is the size of the matrix.
This function is explained in the Numerical Recipes in C on page 48. */

{

double d;

int i, j, *indx;

Vector col;

Matrix b;

col=vector(n);

indx=ivector(n);

b=matrix(n,n); /* create a working copy of a in
b */

for (i=1;i<=n;i++) for (=1;j<=n;j++) b[illd]1=alillil:
ludcmp(b,n, indx,&d);
for (g=1;j<=n;j++) {
for (i=1;i<=n;i++) col[i]=0.0;
col[j]=1.0;
lubksb(b,n, indx,col);
for (i=1;i<=n;i++) y[i][j]=col[i];
}
free_matrix(b);
free_ivector(indx);
free_vector(col);

}

void lin_solve(Matrix a, int n, Vector b)

/* This function solves ax=b for x. a iIs an quadratic matrix of size n that
is subsequently changed. The vector b is replaced by x. This function is
explained on page 48 of the Numerical Recipes in C. */

{

double d;

int *indx;

indx=ivector(n);

ludcmp(a,n, indx,&d);

lubksb(a,n, indx,b);

free_ivector(indx);
}
/******************************************************************************/
/****** ******/
Y Aaiaiaiaiaiel Utility Routines alalaiaiated 4
/****** ******/

/******************************************************************************/

#define TINY 1.0e-20;

void ludcmp(Matrix a, int n, int *indx, Vector d)

/* Numerical Recipes in C, page 46/47:
Given a matrix a[l..n][1..n], this routine replaces it by the LU
decomposition of a rowwise permutation of itself. a and n are input. a is
output, arranged as in equation (2.3.14); indx[1..n] is an output vector
that records the row permutation effected by the partial pivoting; d is



output as +/-1 depending on whether the number of row interchanges was

even
or odd, respectively. This routine is used in combination with lubksb()
to
solve linear equations or invert a matrix. */
{
int i, imax, j, k;
double big, dum, sum, temp;
Vector vv;
vv=vector(n);
*d=1.0;
for (i=1;i<=n;i++) {
big=0.0;
for (J=1;j<=n;j++)
it ((temp=fabs(a[i][j])) > big) big=temp;
if (big == 0.0) nrerror(Singular matrix in routine ludcmp™);
vv[i]=1.0/big;
}
for (g=1;j<=n;j++) {
for (i=1;i<j;i++) {
sum=ali][j];
for (k=1;k<i;k++) sum -= a[i]l[k]*a[Kk]1[i];
a[i][J]=sum;
}
big=0.0;
for (i=j;i<=n;i++) {
sum=a[i][i]l:
for (k=1;k<j;k++)
sum -= a[i][k]*a[k1[il:
a[i][J]=sum;
if ( (dum=vv[i]*fabs(sum)) >= big) {
big=dum;
imax=i;
}
}
if g = imax) {
for (k=1;k<=n;k++) {
dum=a[imax][K];
alimax][k]=alj1[k1:
a[j]1[k]=dum;
}
*d — _(*d);
vv[imax]=vv[j]
}
indx[j]=imax;
it (alil] == 0.0) a[J10J1=TINY;
if (gi=n) {
dum=1.0/CalJ10D):
for (i=j+1l;i<=n;i++) a[i][i] *= dum;
}
}
free_vector(vwv);
}

void lubksb(Matrix a, int n, int *indx, double b[])
/* Numerical Recipes in C, page 47:



Solves the set of n linear equations AX=B. Here a[l1..n][1..n] is input,

not
as the matrix A but rather as its LU decomposition, determined by the
routine ludcmp(). indx[1..n] is input as the permutation vector returned
by
ludcmp(). b[1l..n] is input as the right-hand side vector B, and returns
with
the solution vector X. a,n and indx are not modified by this routine and
can
be left in place for successive calls with different right-hand sides b.
This routine takes into account the possibility that b will begin with
many
zero elements, so it is efficient for use in matrix inversion. */
{
int i, 1i=0,ip, j;
double sum;
for (i=1;i<=n;i++) {
ip=indx[i];
sum=b[ip];
bLip]=b[i];
if (ii) for (g=ii;j<=i-1;j++) sum -= a[i][J1*bJ];
else if (sum) ii=i;
b[i]=sum;
}
for (i=nji>=1;i--) {
sum=b[i];
for (J=i+l;j<=n;j++) sum -= a[i][i1*b[i];
b[i]=sum/a[i][i];
}
}
/******************************************************************************/
/******** *******/
Y Ssiaiaiaiaiaiolel Variable Metric Method falaialaiaiaiel 4
/******** *******/

/******************************************************************************/

/******************************************************************************/

/* Global Variables */
/******************************************************************************/
static double dsgrarg;

static double maxargl, maxarg2;

#define DSQR(a) ((dsqgrarg=(a)) == 0.0 ? 0.0 : dsgrarg*dsqrarg)

#define FMAX(a,b) (maxargl=(a),maxarg2=(b),(maxargl) > (maxarg2) ? (maxargl) :
(maxarg2))

#define 1TMAX 500

#define EPS 1l.e-15

#define TOLX (4*EPS)

#define STPMX 200.

#define GTOL 1.e-12

void minimize(Vector x, int n, double (*f)(Vector),
void (*df)(Vector, Vector), Vector parameter)
/* Uses the Variable-Metric method to solve for the local minimum of the



fO
*/

test;

function f(x) where x is a vector of length n<=4. df() is the gradient of

and parameter is a vector containing constant parameters for f() and df().

void linsearch(Vector, int, double, Vector, Vector,double *, double,
double (*f)(Vector), Vector);

int i, its, j;

double fret, den, fac, fad, fae, fp, stpmax, sum=0.0, sumdg, sumxi, temp,

double dg[5], gl[5]., hdg[5], xold[5], xi[5];
Matrix hessin=matrix(4,4);

fp= (*F)(parameter);
(*df) (g,parameter);

for (i=1;i<=n;i++) { /* dfpmin begins here */
for (J=1;j<=n;j++) hessin[i][j]=0-0;
hessin[i][i]= 1.0;
xi[i]= -g[i];
sum += x[i]*x[i];
}
stpmax=STPMX*FMAX(sqrt(sum), (double)n);
for (its=1;its<=ITMAX;its++) {
for (i=1;i<=n;i++) xold[i]=x[1i];
linsearch(x, n, fp, g, xi, &fret, stpmax, f, parameter);
fp= fret;
for (i=1;i<=n;i++) xi[i]=x[i]-xold[i];
test=0.0;
for (i=1;i<=n;i++) {
temp=fabs(xi[1])/FMAX(fabs(x[i]).,1.0);
if (temp > test) test=temp;

}

if (its >ITMAX-1 && test>1l.e-5) test=0.;

if (test < TOLX) {
free_matrix(hessin);
return;

}

for (i=1;i<=n;i++) dg[i]=g[i];

(*df) (g, parameter);

test=0.0;

den=FMAX(fret,1.0);

for (i=1;i<=n;i++) {
temp=Fabs(g[i])*FMAX(fabs(x[i]),1.0)/den;
if (temp > test) test=temp;

f (its >ITMAX-1 && test>1l.e-5) test=0.;
if (test < GTOL){
free_matrix(hessin);

return;
b
for (i=1;i<=n;i++) dg[il=g[i]-dg[i];
for (i=1;i<=n;i++) {
hdg[i]=0.0;
for (J=1;j<=n;j++) hdg[i] += hessin[i][J]1*dg[il;
b

fac=fae=sumdg=sumxi=0.0;



for (i=1;i<=n;i++){
fac += dg[i]*xi[i];
fae += dg[i]*hdg[i];
sumdg += DSQR(dg[i]);
sumxi += DSQR(xi[i]);

if (fac*fac > EPS*sumdg*sumxi){
fac=1.0/fac;
fad=1.0/fae;
for (i=1;i<=n;i++) dg[i]=Fac*xi[i]-fad*hdg[i];
for (i=1;i<=n;i++) for (J=1;j<=n;j++)
hessin[i][J] += fac*xi[i]*xi[j]-
fad*hdg[i]*hdg[j]+fae*dg[i]*dg[j]:
}

o |
.0;
1:J<=n;j++) xi[i] -= hessin[ili]1*9i]:

nrerror("'too many iterations in minimize");
free_matrix(hessin);

}
#undef TOLX

#define ALF 1.e-4
#define TOLX 1.e-9
void linsearch(Vector x, int n, double fold, Vector g, Vector p, double *f,
double stpmax, double (*funct)(Vector), Vector parameter)
/* Given the vector x of length n<=4, the value of the function fold and
gradient g there, and a direction p[1..2 or 4], linsearch finds a new point
state along the direction p from the original state where the function func()
has decreased "sufficiently'”. The new function value is returned in f. stpmax is
an input quantity that limits the length of the steps. p is usually the Newton
direction. Parameter is the vector for funct(). */
{ - -
int i;
double a, alam, alam2, alamin, b, disc, 2, rhsl, rhs2, slope, sum;
double temp, test, tmplam, xold[5];

for (i=1;i<=n;i++) xold[i]=x[i];
for (sum=0.0, i=1;i<=n;i++) sum += p[i]*p[i];
sum=sqrt(sum);

if(sum > stpmax) for (i=1; i<=n; i++) p[i] *= stpmax/sum;
for (slope=0.0,i=1; i<=n; i++) slope += g[i]l*p[i];
test=0.0;
for (i=1; i<=n; i++){
temp=fabs(p[i])/FMAX(xold[i],1.0);
if (temp > test) test=temp;
}
if (test == 0.0) alamin= 1.e+12;
else alamin=TOLX/test;
alam=1.0;
for (G:) {
for (i=1; i<=n; i++) x[i]=xold[i]+alam*p[i];
*f= (*funct) (parameter);
if(alam < alamin) {



for (i=1; i<=n; i++) x[i]=xold[i];

return;

} else if (*F <= fold+ALF*alam*slope) return;

else {
if (alam == 1.0) tmplam = -slope/(2.0*(*f-fold-slope));
else {

rhsl= *f-fold-alam*slope;
rhs2= f2-fold-alam2*slope;
a= (rhsil/(alam*alam)-rhs2/(alam2*alam2))/(alam-alam2);
b= (_
alam2*rhsl1/(alam*alam)+alam*rhs2/(alam2*alam2))/(alam-alam2);
if (a==0.0) tmplam= -slope/(2.0*b);
else {
disc= b*b-3.*a*slope;
tmplam= (-b+sgrt(fabs(disc)))/(3.0*a);

}
if (tmplam > 0.5*alam) tmplam= 0.5*alam;
}
}
alam2=alam;
2= *f;

alam=FMAX(tmplam, O.l1*alam);

}

double projection(Matrix *C, Vector cen, Vector r, int k)
/* This function returns the projection of a vector q[] along tangent direction
of nodal point k. */
{ - -
int i;
double tan[4].,ql[4];

tan[1]=fabs(C[1]1[k]1[3]1); /* tangent vector at nodal point k */
tan[2]=C[2] [K]1[3]:

tan[3]1=C[31[K]1[31;

for (i=1;i<=3;i++) q[i]=r[i]-cen[i];

return DOT3(q,tan);



MEDUSA = MOU309_main.c MOU309 common.o MOU309 init.o MOU309 contact.o
MOU309_vehicle.o MOU309 road.o
medusa: $(MEDUSA)

cc -g -stdl $(MEDUSA) -Im -0 medusa

common.o:

cc -g -c MOU309_common.c -o MOU309_common.o
init.o:

cc -g -c MOU309 init.c -o MOU309 init.o
contact.o:

cc -g -c MOU309_contact.c -0 MOU309_ contact.o
vehicle.o:

cc -g -c MOU309 vehicle.c -o MOU309 vehicle.o
road.o:

cc -g -c MOU309 road.c -o MOU309 road.o



% physical parameters for the vehicle models

%

% created by Peter Varadi,

NUMBER_OF_MODELS 2

last modified May 6, 1997

% description of Model 1 starts here
MODEL 1
COSSERAT_POINT

MASS 1573.0

I1x 479.6
ly 2594 .6
1z 2782.0
E 600.0e8
nu 0.30

volume 0.42

SUSPENSION

TIRE 0.0016

L1 1.0
L2 1.6
B 1.2
H1 0.0
H2 0.0

spring_ref 0.15

C1 40000.0
C2 40000.0
D1 1500.0
D2 1200.0

CONTACT

Al 4.0
A2 1.60
A3 1.30

EQUILIBRIUM

L-1

R3 5.039617e-02

D11
D21

1.0
0.0

D31 0.0

% mass of car [kg]

% moments of inertia along principal axes [kg m"2]

% Young®"s modulus [N/m"2]
% Poisson"s ratio
% assumed volume of the Chassis [m"3]

% distance from cg to front axle [m]
% distance from cg to rear axle [m]
% track of axle [m]

% vertical distance from cg to front assembly pts.

% and to rear assembly points [m] (assumed)
% reference length of spring [m]

% spring constant for front wheel suspension [N/m]
% spring constant for rear wheel suspension [N/m]
% damping coeff. for front wheel suspension [Ns/m]
% damping coeff. for rear wheel suspension [Ns/m]

% lag parameter for tire model [s]

% dimensions of a vehicle: length [m]

% width [m]

% height [m] (Don"t make two of them equall)

D13 0.0 % director 1 [.]
D22 1.000000e+00 D23 0.0

D12 0.0

D32 0.0 D33 1.0 % director 3 [.]

% description of model 1 ends here

% description of Model 2 starts here
MODEL 2
COSSERAT_POINT

MASS 1573.0
I1x 479.6
ly 2594 .6
1z 2782.0
E 600.0e6
nu 0.30
volume 0.42
SUSPENSION
L1 1.0
L2 1.6
B 1.2
H1 0.0
H2 0.0

spring_ref 0.15

%
%
%

% mass of car [kg]

% vertical position of vehicle®s center of mass [m]

% director 2

% moments of inertia along principal axes [kg m"2]

% Young®"s modulus [N/m"2]
% Poisson"s ratio
% assumed volume of the Chassis [m"3]

distance from cg to front axle [m]
distance from cg to rear axle [m]
track of axle [m]

% vertical distance from cg to front assembly pts.

% and to rear assembly points [m] (assumed)
% reference length of spring [m]



C1 40000.0 % spring constant for front wheel suspension [N/m]

C2 40000.0 % spring constant for rear wheel suspension [N/m]

D1 15000.0 % damping coeff. for front wheel suspension [Ns/m]

D2 12000.0 % damping coeff. for rear wheel suspension [Ns/m]
TIRE 0.0016 % lag parameter for tire model [s]

CONTACT
Al 4.0 % dimensions of a vehicle: length [m]
A2 1.60 % width [m]
A3 1.30 % height [m] (Don"t make two of them equall)
EQUILIBRIUM
R3 5.039617e-02 % vertical position of vehicle®s center of mass [m]
D11 -0.001 D12 1.0 D13 0.0 % director 1 [.]
D21 -1.0 D22 -0.001 D23 0.0 % director 2 [.]
D31 0.0 D32 0.0 D33 1.0 % director 3 [.]

% description of model 2 ends here



%
%
%
o

X

NUMBER_OF_VEHICLES 1

%

Initialization of Platoon

created by Peter Varadi,

Vehicle 1

last modified june 26, 1997

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

%

X 0.0

Y 0.0
ORIENTATION 0.0
SPEED 50.0
TIRE_SPEED 50.0
STEERING 0.0

Vehicle 2

% X coordinate of center of mass [m]

% Y coordinate of center of mass [m]

% heading angle [.] (cw:"-", ccw:"+"

% forward speed [m/s]

% in [m/s], if 0.0, tires roll freely
% steer angle [rad]

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

%

X 6.0

Y 0.4
ORIENTATION 0.0
SPEED 20.0
TIRE_SPEED 0.0
STEERING 0.0

Vehicle 3

% X coordinate of center of mass [m]
% Y coordinate of center of mass [m]
% heading angle [.] (cw:"-", ccw:"+"
o Forward speed [m/s]

6 Iin [m/s], if 0.0, tires roll freely

v steer angle [rad]

XXX

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

%

X 12.0

Y 0.0
ORIENTATION 0.0
SPEED 22.0
TIRE_SPEED 0.0
STEERING 0.0

Vehicle 4

% X coordinate of center of mass [m]
% Y coordinate of center of mass [m]
% heading angle [.] (cw:"-", ccw:"+"
% forward speed [m/s]

% in [m/s], if 0.0, tires roll freely
% steer angle [rad]

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

%

X 18.0

Y 0.0
ORIENTATION 0.0
SPEED 22.0
TIRE_SPEED 0.0
STEERING 0.0

Vehicle 5

% X coordinate of center of mass [m]
% Y coordinate of center of mass [m]
% heading angle [.] (cw:"-", ccw:"+"
% forward speed [m/s]

% in [m/s], if 0.0, tires roll freely
% steer angle [rad]

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

X 6.0

Y -4.0
ORIENTATION 0.0
SPEED 25.0
TIRE_SPEED 24.1
STEERING 8.0

6 X coordinate of center of mass [m]
6 Y coordinate of center of mass [m]
% heading angle [.] (cw:"-"", ccw:"'+"
% forward speed [m/s]

% in [m/s], if 0.0, tires roll freely
% steer angle [rad]






NUMBER_OF_POINTS:

;
XYZ_COORDINATES_& ANGLE:
0. 0.0 0.0 0.0
20. 0.0 0.0 0.0
40. 0.0 0.0 0.0
60 0.0 0.0 0.0
120 0.0 0.0 0.0
280 0.0 0.0 0.0
700 0.0 0.0 0.0
END_OF_FILE





