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Abstract

This paper proposes a theoretical explanation to the common empirical resultsin which different tests
for cointegration give different answers. Using local to unity parametrization | compute the analytical power
of some tests for the null of no cointegration: The ADF test on the residuals of the cointegration regression,
Johansen’s maximum eigenvalue test, the t-test on the Error Correction term and Boswijk (1994) Wald test.
The tests are shown to be functions of Brownian Motions and Ornstein-Uhlenbeck processes and to
depend on a single nuisance parameter, which is, in turn determined by the correlation at frequency zero of
the independent variables with the errors of the cointegration regression. Monte Carlo experiments show
that the tests can have significantly different performances for different values of the nuisance parameter.
An application to the money demand equation is presented.
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1 INTRODUCTION

Since its formd introduction by Granger (1983) and Engle and Granger (1987), the
concept of cointegration has been widdly used in empirica andlyss to sudy the rdaionship
between integrated variables. If agroup of variables are individudly integrated of order one and
there exigs a least one linear combination of these variables that is Sationary, then the variables
are sad to be cointegrated. Cointegrated variables will never move too far gpart, and will
revert to their long-run relationship. For this reason the knowledge that some variables are
cointegrated can have a sgnificant impact on the andysis of the long and short run dynamics of
economic variables. As usud, testing the assumptions of the mode  (testing for cointegration)
has become an important step in any empirica andyss of economic data.

The current literature is prolific in dl sort of different tests for cointegration: tests for the
presence of cointegration (Park (1990, 1992), Phillips and Hansen (1990)), tests for the
absence of cointegration (Engle and Granger (1987), Phillips and Ouliaris (1990), tests on the
Error Correction Modd introduced by Hendry (1987), Boswijk (1994) Wald test), test for the
number of unit roots (Johansen (1988), Stock and Watson (1998), Saikonnen (1992)), and
tests on the null hypothesis on the cointegrating vector (Saikonnen (1992), Johansen (1995) and
Elliott (1998)) among others (see Watson(1994) for areview). Currently there is no consensus
asto the best test for cointegration and the genera empirica approach isto report the results for
avaiety of teds.

This paper looks at the class of tests that have no cointegration as the null hypothesis.
There are two types of tests proposed in the literature to test for the absence of cointegration.
One group of tests looks at the full system of equationsin a VAR framework (Johansen’s tests,
Stock and Watson (1988) SW tedt, tests on the coefficient of the error correction terms among
others) while a second group looks a single equation regressions involving the variables that are

potentialy cointegrated (Engle and Granger Augmented Dickey Fuller test, Phillips and Ouliaris
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Z and Z, tests). Such tests are non-standard and their asymptotic distributions are non-

norma (functions of Brownian motions). In this non-standard environment, no uniformly most
powerful (UMP) test exists so there is no theoretica “best” test. Until now, tests have been
compared on the basis of Monte Carlo analysis for particular Data Generating Process (Haug
(1996), Gonzao and Lee (1998), Bewley and Yang (1998), Boswijk and Frances (1992),
Kremers et a. (1992) and Ericsson and Mackinnon (1999) among others). The problem with
Monte Carlo smulations is that the results of the experiments are dependent on the particular

design run and no generd conclusions are available.

Haug (1996), for example, used Monte Carlo andysis to study the small sample power of
some of the most common tests for cointegration. In particular, he examined the case of afixed
dternative in which the root of the resduals of the cointegration regresson is equd to 0.85. He
found that, in generd, single equation tests have smdler sze digortions, but dso have lower
power than system-based tests. Although Haug (1996) shows that for larger samples the
power increases congderably, differences in the performance of the two sets of tests perss.
The paper is unable to find any ranking of the tests or to find important parameters that would
alow such aranking, and so concludes by recommending the application of both sets of testsin

empirica exercises.

In this paper, | derive andytica results for power of the tests that unify these experiments
and | show which features of the modd are important for power. Using locd-to-unity
parametrization, | am able to anayticaly compute the power for some of the most commonly
used tegts for the null of no cointegration: the Augmented Dickey Fuller test (ADF) applied to
the resduds from the cointegrating regresson and Johansen's maximum eigenvaue tedt.
Andytical power is dso computed for 3 tests in the Error Correction Modd: The t-test on the
error correction term (that is unfeasible if the cointegration vector is not known), a feasible

version of the t-test obtained by adding a redundant regressor, and the Wald test proposed by
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Boswijk (1994). Once we have a full understanding of which parameters are important for
power, the results of previous Monte Carlo analysis can be easily understood and a more

informative set of Monte Carlo can be designed.

The tests are shown andyticdly to depend on a single nuisance parameter under the
dternative. This parameter is afunction of the long run correlation of shocks to the independent
vaiable with the erors of the cointegration regresson.  As intuition suggests, when this
correation is high, we would expect a full system approach to perform better through exploiting
this correlation. Evauations of the andytical power functions confirm the intuition and show that
the tests have significantly different performances for different vaues of the nuisance parameter.
These results suggest which test could be better used for the particular application a hand,
depending on which level of amultanaity is suspected.

The next two sections introduce the model and the tests for the absence of cointegration.
The andytica asymptatic power functions are andyzed in section 3 while section 4 presents the
results for the Monte Carlo smulations.  Section 5 contains an empiricad gpplication to the
money demand equation. All the proofs arein the Appendix.

2. THE MODEL

Consder the modd!:
Dxt = dlt +Vlt
(1.1) vy, =d, +xb+u
U =ru,_, +V,

where t=1,....T ;x is a n 1 vector; vy,is a scda, d, =Gz, and d, =G,z,.

Ve = [vy VZI]I, F(L)v, =e,, e =[e, e,] isa n” 1 vector of martingde differences with



postive definite variance covariance S such tha the patid sum Fé_;vt sidies a

multivariate invariance prindple’. F (L) is an invetible lag polynomid of known order

fa(L) f,(L
partitioned conformably to v, such that F(L):[ (L) Tp(l)

£ fzz(l-)} The spectral densty of

v, at frequency zero (scaled by 2p ) is W=F (1) *SF (1) Y where F (1) = a4 F . Wcanbe

partitioned as:

W, W2 w, D
W=| ., ) )
D'w, W, w2

where D' =[d, d, ..d, | contains the bivariate zero frequency correlations of each elemert of

v, with v, . W,; isassumed to be non-singular (so thet the elementsof x, are not individudly
cointegrated with each other). For the purpose of this paper, the following cases for the
deterministic part of the mode! are considered: (i) z, =0 and z, =0, (i) z, =0, z, =1 ad
acondant isincluded in the regresson, (iii) z, =1, z, =1 and a congtant and a time trend are
included in the regressons.

When r <1, y,and x, are cointegrated and the system (1.1) contains n, unit roots,
when r =1 the two variables are not cointegrated and there are n unit roots in the system.

Thus atests for no cointegrationistesting Hy:r =1 vs H,:r <1.

21 TESTSONTHE RESIDUALS

As mentioned a variety of tests for no cointegration exist. This section briefly introduces the
resdud based tests for cointegration. To tests the hypothesis of no cointegration, Engle and

! Thisisvalid for general case of weakly dependent heterogeneous variables. For conditions under which
theinvariance principle holds see Phillips and Solo (1992) for the univariate case. For the multivariate case
see Chan and Wei (1988) or Wooldridge (1994).

4



Granger (1987) first suggested the application of unit root tests to the residuas of the
cointegrating regresson

(12) y,=m+xb+u,.

Rejection of a unit root in the resduds from (1.2) is an indication of cointegration
between the two variables. A variety of tests for autoregressive unit roots are available (Stock
(1999) offers an exhaudtive survey on the argument). One of the suggestions of Engle and
Granger (1987) wasto usethe t, ratio test in the Augmented Dickey-Fuller regresson:

(1.3) Dy :aq_1+é_fpiD0t_i +X,

Where 0, are the resduds from the LS estimation of the cointegration regresson (1.2)
run respectively with no mean, mean only and mean and trend for case (i), (ii) and (iii)2. The t-
test is not the only choice of test: Phillips and Ouliaris (1990) suggest aso the use of Phillips
(1987) Z, and Z, tests, and propose avariance retio test, P, , and a trace atistic, P,. Asin
unit roots tests, the T(f - 1) test and the Z, test may be expected to perform better in small

samples. Although it may be interesting to compare the difference in power between different
unit root tests on the residuds, in this paper | will only look at the most commonly used ADF
test. Extensons of resultsin this paper to other unit root tests are applications of the theorems
presented here and can be found in Pesavento (2000).

22 TESTSON THE ERROR CORRECTION TERM

The ADF test on the resduas presented in the previous section is based on OLS
edimates of a sngle equetion for y,. As the Granger Representation theorem shows, a



necessary and sufficient condition for cointegration is for the cointegrated series to be
represented by an Error Correction mode!:

Xi1
(L4) B“} = PE ()G +PEM| y,., |+ P(L)[D"“}+ Pe,
t ZQt_l t-1

where G iszeoif z,=0and z,=0or z, =0 and z, =1. For the case in which
z, =1and z, =1 as Boswijk(1994) dso mentions, a time trend need to be included in the

regression to have smilar tests under the null. In this case then G contains the parameters

1 0

representing the  drift  in the varidbles Findly, P:[b J and

v :{-b(?- 1) (r(-)l) '”(?' 1)]

As the theorem suggedts, testing whether the error correction term is sgnificant can be
used as a test for the null of no cointegration. In fact, under the null r =1, M =0 and the

error correction term does not enter the model. Under the dternative r <1 and the coefficient

on the error correction term is different from zero.

If the right hand variable of the cointegration equation (1.2) is wesakly exogenous for b

under the null, as it is in the case of the triangular modd (1.1), dl information about the
cointegration vector is contained in the conditiond equation for y, and the andyss can be

limited to the single equatior?:

(15) Dy,=auy,+ Dx+Q pyDx +a.P.Dy.; X,

% For the case (iii) in which z, =1land z, =1, Hansen(1992) shows that, if the cointegrating regression is

run only with a constant, the distribution of the test will be different. In this paper | only consider the more
widely used case in which the regression isrun with atrend if the variables have a drift.

% See also Assumption 1’ in Boswijk (1994).
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where u,_, =y, , - X_,b- G,z,_, isthe Error Correction teem and a =(r - 1)q where q is
functionsof F(1) and W*. If no bounded linear combination among the levels of the variables
exigts, one would expect the coefficient on the error correction term to be zero. This suggests
thet, if b isknown, at-test on the parameter a esimated from the single equation (1.5) could

be used to test the null of no cointegratiorr.

The assumption of known cointegrating vector is avery restrictive assumption. Unlessthe
econometrician finds himsdf in the unlikely case of perfect knowledge of the cointegrating
vector, the error correction test presented in the previous section is not feasble. Banerjee et d.
(1986, 1993, 1998) suggest adding a redundant regressor to avoid imposing a particular
cointegrating vector. The equation to be estimated is then

(16) Dy, =m+a (Yop- %o+ Xy +] D +Q [PuDx +A Pa DY
where a is the same as before while f =a (1- b)and m=-a G,z .If z, =1 and z, =1,
theregression (1.6) is estimated with mean and trend to obtain Smilar tests under the null. A
test of the hypothesis a =0, based on the t-statistic t, in (1.6) is dill a vaid tes for the

absence of cointegration.

In Section 4.2 | derive the asymptotic digtribution of the Error Correction (EC) test in
(1.5) and the Error Correction with Redundant Regressor (ECR) test in (1.6) under the loca
dternative T(r - 1) =c.

In equation (1.6) under the null of no cointegration inwhichr =1 both coefficients on the
vaiadlesin level are zero. A F test can then be used to test for the joint significance of the
coefficients. Thistest is equivalent to the Wald test proposed by Boswijk (1994). As Boswijk
(1994) shows, the asymptotic digtribution of this test under the null is a function of standard

* Specifically g =[f ,(Df (D - L DFf LD/ f L@+ L QW W]



Brownian Motions. In the next sections the power of the Wad test is andyzed and compared
with the power of the ADF and ECR tests.

23 MAXIMUM EIGENVALUE TEST.

Johansen (1988,1991) and Johansen and Jusdius (1990) suggest the use of a full
information maximum likelihood® approach to determine the number of cointegrating vectorsin a
n-dimensiona vector.

The Error Correction modd (1.4) can be written as:

(L7) DY,=G+PY ,+P(L)DY_ +w,
with Y, =[x y,] ad Y, =[x vy, z,]'. Themean G’ is zero in the case in which
z, =0 and z, =0 andinthe caseinwhich z, =0, z, =1°. Thematrix P = PF()P"*M
givesinformation about possible cointegrating vectors anong the variablesin Y, . If P hasfull
rank n thendl thevaridbles are sationary. If rank(P) =h<n, thereexist two n” h matrices
a and g of rank h suchtha P =ag . Inthiscase dthough each dement of Y, is integrated

of order one, the linear combination gy, is stationary, and h cointegrating vectors exist.

To test the hypothesis that there are h cointegrating vectors againg the dternative that
there are n cointegrating vectors (thet is, Y, is stationary), Johansen proposes the likelihood

ratio trace test, defined as;

® Theinvertibility of F (L) impliesthat all the roots of the polynomial are outside the unit circle so that

F(1) ! 0. At-testforthesignificanceof a correspondsto testing r =1.

® Of courseif the right hand variables are not weakly exogenous a full system approach is necessary. The
triangular form (3.1) precludesthis possibility as, under the null, x, isawaysweakly exogenousfor b .
"G=PF()G

® The Johansen procedure is presented for the case in which the constant isimposed equal to zero under the

null asin model (3.1).
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s 1, :-Té\n In(2- 1',)

i=h+1
where | | are the eigenvalues of the matrix  §'S,S;'S,, listed in descending order. S, and
S,, are the variance-covariance matrices of the residuas of a regresson of Y. , and DY,
respectively, on DY ,,...,DY_ ;. Spand §,; are the covariance matrices between the

resduds of the two equations.

A smilar approach can be used to test the hypothesis of h cointegrating vectors againgt
thedternativeof h+1 cointegrating vectors. In this case, the likelihood ratio test becomes:

19 I,=-Tinl-1,,)

In particular, when the test (1.9) is used to test the hypothesis of no cointegrating vectors
againg the dternative of 1 cointegrating vector, the test is called the maximum elgenvaue test:

110) | =-TIn1-1))

Notice that the trace test (1.8) is testing for h cointegrating vectors, or that there are
n- h unitrootsin Y, againg the hypothesis that there are no unit roots, so dl the elements of
Y, areddionay. Thisisadifferent set of hypotheses compared to the one tested by the Engle
and Granger procedure. In the ADF test (1.3), in fact, under the null hypothess, r =1 and
there are n unit roots in the sysem while under the dternative of r <1 Y, contains n- 1 unit
roots. This is exactly the hypothess tested by the maximum eigenvdue test (1.10). For the
purpose of this paper, only the | test is directly comparable to the ADF and the Error

Correction tests introduced in the previous sections.

3. ASYMPTOTIC POWER FUNCTIONS

Given that the traditiond optimality theory cannot be applied to the case of tests for the

absence of cointegration, there is, in generd, no reason to expect one test to perform uniformly



better. Almost dl the literature comparing tests for cointegration uses Monte Carlo experiments
with various possible combinations of vaues for the parameters of the data generating process.
To understand the previous studies we need to know how the nuisance parameters affect the
power. One way of capturing this is to compute the andytical power of the tests. The
knowledge of which nuisance parameter enters the local power will help us design the correct
experiment and will suggest in which direction of the parameter space to look.

Since dl tests are consstent, they al have power equa to one asymptoticaly and thus the
asymptotic power for fixed dternatives cannot be used to rank the tests. The usua approach is
to examine a sequence of locd aternatives (eg. Van der Vault p.194). In this case the tests
aedl diverging a rae T so we need a sequence of dternatives that collgpses on the null at
rate T, leading to the use of the dternative r =1+ ¢/T. When cis equa to zero the errors u,

are integrated of order one. For ¢ negetive, the variables in equation (1.1) are cointegrated.
Using this parameterization and the results of Philips (1988) | evauate the power of the tests for
the absence of cointegration previoudy presented. This section is one of the main contributions
of this paper in that, in my knowledge, the andytica power of the ECRR, the Wad and the
resduals based tests for cointegration have never been computed before.  For this verson of
the paper the asymptotic power functions are computed for the univariate case only.

31 ADFTEST

In the case of the ADF test, Phillips and Ouliaris (1990) show thet, under the null, t, has
a non-sandard digtribution that is a function of standard Brownian motions, and they compute
the critical values. The authors aso show that resdua s-based tests are consstent provided that
first differences are used as dependent variables in the resdud regresson. This paper goes one
step further and computes the loca analytica power.
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LEMMA 1. When the model is generated according to (1.1) with n, =1, then,as T® ¥ °,
~ : oy-1
(21)  (by,-b) P (JB) ([ B Ks)
where Bms is the LS estimator in the cointegration regression (1.2) and B =[B, B,] isa

n” lvector Brownian motion partitioned conformably to v, and v,, with covariance

matrix W. K, isascaled Ornstein Uhlenbeck process such that:
Kye(l )= Byl )+chI ' "9°B,(s)ds and
() B*=B and K§, =K, if z, =0 and z, =0
(i) B'=B- [B and Kj, =K,.- [K,, if z =0 and 2, =1 and a mean is
included in the regressions.
(iii) B =B- (4- 61 )[B- (12| - §)sB if z, =1 and z, =1 and mean and

trend are included in the regressions.

If D'=0and c=0,then K$, ° Bf and (2.1) coincides with the usud distribution for
spurious regressions as defined by Granger and Newbold (1974). In the origind definition of
spurious regression, there is no cointegration and indeed no reationship between the two
vaiables. As Phillips (1986) shows, the same result is vaid in the more generd case in which
Dt 0. In this case, even though there is a reaionship between the two variables, this
relaionship is not consstently estimated; the estimated beta does not converge in probability to
the true vadue and the asymptotic digribution of Lemma 1 is the same as in Phillips and Ouliaris
(1990).

THEOREM 1: When the model is generated according to (1.1) with n =1, then, as

T® ¥:

° From now on | adopt the conventional simplified notation B to denote B(l ) . All theintegrals are

intended to be between 0 and 1, unless otherwise specified.
11
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where £ is the t ratio test from the Augmented Dickey Fuller regression (1.3) and

Jpe =d Iy +(1- dz)ﬂ2 J,.. J_ are standard Ornstein-Uhlenbeck process defined as

J (1) =w(l )+c_[0I €' 9W(sg)ds for i=12, W(I) are standard Brownian motions
and

(i) W'=wW and J3, =J,,. if z,=0and z, =0.

(i) W =W- [W and 33 = 3~ [ Iy if 2,=0and 2, =1

(iii) W' =W- (4- 6l )[W- (12| - 6)] swand

I = Jpe- (4- 61)[ Iy - (120 - §)[ Yy, if 7, =1and 7, =1.

The result of Theorem 1 shows that the asymptotic didtribution of the ADF test on the
resduds is a function of few parameters. It depends on the dternative ¢ thorough the first
block of the test and the Orngtein-Uhlenbeck process. The test dso contains a nuisance
parameter d in the second block of the test and in the functiond  JZ,.. Findly, dthough the
proof is presented for the univariate case, the test will depend on the dimension of x, .

When c=0, J,. =dW +(1- d*)”?W, so the asymptotic distribution of the t tatistic

under the null is afunction of sandard Brownian motions and depends only on the dimension of



X, (see a0 theorem 4.2 in Phillips and Ouliaris (1990)). So, while under the null hypothesis

the limiting digtribution of the test is free of nuisance parameters, when ¢! 0 the asymptotic
power dependson ¢ and on the vaue of d, the correlation between error terms.  Notice that

the power does not depend on ether thetrue b or the variances of the errors.

32 EC,ECRANDWALDTESTS

Various papers have been written on the properties of the EC test. Assuming b known,
Banerjee et d (1986) and Kremer et d. (1992) compute the asymptotic distribution of the EC
test in (1.5) for the case in which the correlation between the two error termsin (1.1) (d ) is
zero. They dso compute the power of the test under fixed and locd dterndive. As the
mentioned paper shows, the asymptotic digtribution of the EC test is non-standard and it is a
function of Brownian Mations. The following theorem extends their results to the case in which

D isdifferent from zero™.

THEOREM 2: When the model is generated according to (1.1) with n, =1, then as
T® ¥:

23 f<p ([ 92) (] )
(l' d2) (I ‘]122c)

where £ isthet ratio test on the Error Correction termin (1.5), and J,,. and W, are

defined asin Theorem 1.

As Zivot (2000) dso shows the EC test has the same asymptotic distribution as Hansen's
(1995) (Theorem 3) unit root test on u, when Dx, is used as the stationary covariate.  When

% The results of this paper assume that the common factor restriction imposed by the ADF regression is
valid. For astudy on the effects of violation of this restriction on the DF test when the cointegration vector

13



d =0, asfor example in the case in which x, are strictly exogenous, the result of Theorem 2

agrees with of Kremer et d. (1992) in the particular caseinwhich a =1 (i.e. what they cal “ a

common factor regtriction ” isvdid).

When ¢ =0, J,,, =dW, +(1- d)"*W, and the asymptotic distribution of = coincides
with the result theorem 3 in Hansen (1995). Under the null the test is not invariant with respect
to a nuisance parameter under the null. For this reason a unique set of critica vaues for the

tests cannot be obtained.

As we showed, when the EC equation (1.5) is extended by adding a redundant
regressor, a test for no cointegration can be performed by looking at the significance of the
difference of the variables in level without the knowledge of the cointegrating vector. This
transformation also renders the studentized test setigtic invariant with respect to d under the
null. Banerjee et d. (1998) compute the distribution of this test under the null for the case in
which d =0. Theorem 3 presents the genera asymptotic distribution of the test under the loca
dternative T(r - 1).

THEOREM 3. When the model is generated according to (1.1), thenas T® ¥ :

172

é d2 \qd 2 dqd \2U

R 8(" ‘“{ c d\/ J c] K

(24) P c i M( :2 112) d
SRR

2
dvld C\)szcdwz - dlvld‘]leC leddWZ
2 d/2 2 1/2

€psd2 xqd 2 dqd YU @éxpsd
éle 12¢ '(6/\{ JlZC)g gaNl H

+

isimposed, see Kremers et al. (1992). Ostermark and Hoglund (1998) generalize Kremers et a.(1992) resultsto
the case in which the cointegration vector is estimated.
14



where R isthet ratio test in equation (1.6), and JZ. and W’ are defined as in

a

Theorem 1.

Under the locd dternative, the ECR test depends not only on the particular dternative c,
but dso on the vaue of the nuisance parameter d . In contrast with the results for the EC tedt,
under the null the asymptotic distribution of the ECR is free of the nuisance parameter. In fact
when c =0,

o wgawg - o wy? v dwg

o e - (e | ]

t* " p

S0 in this case the asymptotic distribution of the test depends only on the dimenson of x, and it

isinvariant of any other parameter of the DGP. Zivot (2000) aso computes the local power for
the ECR test in adightly different modd.
Under the null hypothesis of no cointegration, both a and f in (1.6) are zero o, as

Boswijk (1994) suggests, the null hypothesis can be tested using ajoint test on both parameters.
Theorem 4 computes the loca power of Boswijk (1994) Wald test.

THEOREM 4: When the model is generated according to (1.1), thenas T® ¥ :

(25)  Fp c*(1-d?) s +2c(1-d?) " at.aw, +
1dz ((‘)Jldzcdwz)z - Zdlvld‘]leC d\/lddWZ (‘)J1d2ch2 + (‘):|1dzC2 (d/\{ddwz)z
d2 x qd 2'(dvd‘]d )2
12c 1 Y12c

where F isthe Wald test for thejoint significanceof a and f in (1.6) and J2, and W*

are defined asin Theorem 1.

15



In this case too the only parameter entering the asymptotic distribution of the test are the
particular dternative ¢ and the corrdationterm d . The test does not depend on the variances

of the error term or the true value of the cointegrating vector.

For c=0 the asymptotic digtribution of the test does not depend on any nuisance
parameter and coincides with the result of Theorem 1 of Boswijk (1994):

2

o T ()" fwe” (e awg ) - 2{fwews) ) fweaw,)
o fwe - (wpwg)

33 JOHANSEN TEST

The ECM representation of thesmple modd (1.1) is

(2.6) DY, =G+PY_,+P(L)DY_,+w,
where P =agc with a,=[fL,O -2 [f,@D+bf ,DI(r - D) and
g¢=[-b 1 -m]. Whileunder the null of no cointegration r =1 and rank(P) = 0, when
y, and x, arecointegrated r <1 and rank(P) =1.

The locd dternative for the rank test suggested by Johansen (1995) is of the form:

H,: P :ag¢+—alg£
=

wherea,and g,are n” s matrices. Under the local dternatives the process has s extra
cointegrating vectors, g, , that enter the process with very small adjustment coefficients T-'a , .

Inthecaseof the |, test therdlevant locd dternativeis

wherea ¢=c[f ,(0) f,@Q)+bf (D] andgg=[-b 1 -m].
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Johansen (1995) discusses the power of the rank test under this generd locd dternative.
Since the maximum eigenvalue test is just a gpecia case of the rank tegt, it can be shown that:

THEOREM 5: When the model is generated according to (1.1), thenas T® ¥ :

(2.7 |Amax P maxag{(o,vcwc)l O/\é dejW\NC .
(o) o aw A+ {onw) " a () (i) Ay

where maxeig{M} denotes the maximum eigenvalue of the matrix M, , W:[V\q,

W
1 O ]
A= C(l- dz)-uz JV\é Ji,. and
i W = \;M if z, =0 and z, =0 and no mean isincluded in the VAR
L “Y12c |
"W
(i) W, =| J,,. | If z, =0 and z, =1 and the mean is restricted to enter the
1

Error Correction term.
;"
(i) W, = ngdch if z,=1and z, =1, a mean is restricted to enter the Error
814
Correction term and the VAR is estimated with a mean. W* and JZ,_ are demeaned

Brownian Mations.

d
If the mean is not restricted to enter the Error Correction term then W, = [V\g } and the

12c

Brownian Motions are demeaned for case (ii) and detrended for case (iii). See dso Johansen
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(1995) and Saikonnen and Lutkepohl (1999). Again the only parameter entering the power
function is the correlation coefficient d . Under the null hypothesis, W, =W and the distribution

of thetest isfree of nuisance parameters as in Johansen and Jusdius (1990).

4. MONTE CARLO RESULTS

Previous Monte Carlo comparisons of cointegration tests have shown that different tests
can perform very differently depending on the particular desgn. Haug (1996), for example,
compares 9 different tests for cointegration on the basis of power and size distortions due to the

presence of moving average component for endogenous or exogenous X, . Haug found that, in

generd, the sngle equation tests have smaler sze distortions, but aso have lower power than
system-based tests. The paper concludes by recommending the application of both sets of tests
in empirica exercises.

As Haug (1996) dso points out “A theory that gives the direction in which to experiment
would be necessary but this theory is not avalable a the moment”. The andytica power
computed in the previous section tells us exactly which parameters are important for power and
gives a precise indication of which direction we need to look in the Monte Carlo andyss: The
asymptotic digtribution is a function of a unique nuisance parameter, the number of unit rootsin
the system and the loca dternative. Because of the lack of asymptotic normaity and the fact
that the test is not invariant on the particular dternative, an uniformly most powerful test for
model (1.1) cannot be computed. There is no reason then why we should expect one of the
tests to behave uniformly better than the others. At the same time, if the right hand varidbles in
(1.2) were highly corrdated with the errors from the cointegration regression (i.e. ddtaislarge),
we would expect a full system agpproach to exploit this correlation, to have smaler standard
errors, and to perform better.

Using a Monte Carlo experiments, this section compares the power of the tests for the
absence of cointegration presented in the previous sections.
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41 LARGE SAMPLE

The power functions are computed as the probability that the tests are less than some
critical vdue. Since we have an expression for the limit digtribution of dl the tests we can
goproximate the asymptotic power by smulating the digtributions presented in the previous
sections. For this experiment | condder c¢c=0,-1-5-10,-15 ad
d=0,02,03 05 07,09, negative vdues of ddta give amilar results. Each Brownian
Moations piece in the asymptotic digtribution is approximated by step functions usng Gaussan
random walk with T=1000 observations. To diminate initia condition effects, in practice |
generated 1100 observations and discarded the first 100. For example, T™2Su? is used to

approximate J'ch , where u, =(1+c¢/T)u,., +e,, and e, is randomly generated form a

standard normal. 5000 replications for are used to compute the critical values and the rejection
probabilitiesfor each ¢ and delta.

Since we showed that the local power for dl the tests depends on a nuisance parameter,
the power functions of the tests are compared for different vaues of delta. The large sample
results in Figure 1 confirm the intuition. For d smal, in a cdlose neighbor of one, the ECR test
has dightly higher power than the ADF and Wald test. For d equd to zero using a full system
approach is inefficient and the ADF, Wald and ECR tests perform better thanthe | | test. As
d increases, dl the tests with the exception of the ADF test perform better. As expected, given
that they are both based on the conditional error correction equation on a rotated model, Wald
and ECR tedis have in general smilar large sample power.
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For large values of ddta, we expect the single equation gpproach of the ADF test on the
resduds to have very low power. Infact when d is higher than 0.5, this test performs badly
when compared to the other tests.  Although the power of the maximum eigenvadue test is
ggnificantly higher than the power of the ADF test, the power of both the ECR and the Wald is
even higher than the Johansen’stest. For d equd to 0.9, the difference between the ADF and
the other testsis even more significant. All other tests have very smilar power.

Figure 2 and 3 show the local power of the tests for the demeaned and detrended cases.
For the Wald and the ECR | congder the case in which a mean enters the cointegration
regression but the mean or the trend in equation (3.6) are left uncongtrained. Although the tests
have generdly lower power when | include a determinidtic, as is the generd case for unit root

tests, the rankings between the testsis unchanged

42  SMALL SAMPLE

To examine the ussfulness of these asymptotic gpproximation in practice we need to
Sudy the smal sample behavior of the tests. Using the DGP of equation (1.1), | randomly

generate the errors from a bivariate Normal with mean zero and variance-covariance matrix

We wi o ow,w,d
w,wd  wl

| consder d =0,03,05,07,09 and ¢c=0,- 1,- 5- 10,- 15 that corresponds for
T=100 to vaues for r =1, 099, 0.95, 0.9, 085. The tests are dl invariant to b and the
variances S0 | can choose any number. 1usew, =w, =025 and b =1. Table 1 presents the

Sze adjusted rejection retes for the case in which there is no serid corrdation in the error terms.

Since no serid correlaion is assumed al the regresson are estimated with no lags.



As Table 1 shows, dl tests have a low power when the root is close to one. For d
smal, the ECR and the Wad tests have in generd power higher than al the other tests for any

vadueof r . The rdative ranking of the tests is the same as in the large sample case. When

ddtais 0.9, the difference in the small sample power of the tests is Sgnificant even when r is

large.

More interesting is the case in which there is some serid correlation in the error terms. It
is known that in this case tests for integration and cointegration may have very severe sze
digortions. Since atest with very good power but very bad size may not be the best choice, it
isimportant to evaluate the size properties of the tests. For this experiment | looked at case (i)

in which there in no drift in the variables but a mean is present in the cointegration regresson.

7 f AY
The data are generated asin model (1.1) with (1- FL)v, =(1+QL)e, and F = 9‘ H flz ﬂ
21 22U
Q= g“ 212 ﬂ and T=100 obsarvations. All the regressions are estimated with a mean and
21 22U

the lag length is chosen by BIC with a maximum of four lags. Table 4 presents the results for
different combinations of vaues for the autoregressive and moving average components. In
generd if only an autoregressive component is present in the error terms the BIC performs redlly
well in choosing the appropriate number of lags. In this case the Wad test has the worse
performance in term of Sze digtortions with an empirical sze of 10%. Asit iswel known, large
Sze digtortions occur when large negative roots are present in the moving average components.
In this case dl tests present large empirica Szes with a remarkable performance of the Wald

test that shows aSze of less than 20% when dl the other tests are well above 50%.

As a generd conclusion, table 1-3 and table 4 seam to indicate that the ECR and the
Wald test, dthough the less commonly used of the tests presented in this paper, not only
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perform better than the other testsin term of power in large and smal samples, but they are dso

not worse or better in term of sze distortions.

S. EMPIRICAL APPLICATION

As an empiricd application | andyze whether there exids a sable rdation between
money baances and the determinants of money demand. There is a vadt literature testing for
cointegration in the generd money demand equation m - p, =a +by, +gi, or its vaious
redricted forms. The results are in generd inconclusive; the regjection of the hypothess of no
cointegration is very sendtive to the sample sze and the particular data used. Miller (1991), for
example, condders 5 dternatives for the monetary aggregates, two dternatives for the interest
rate and three different specifications for the money demand equation. The data are quarterly
data for the period from 1959 to 1987. The ADF test on the resduals of the 15 cointegration
regressons, finds cointegration only in few cases. The results change with the choice of the
interest rate and the lag length used in the test.

A full system approach has aso been used in various cases: Hoffman and Rasche (1991),
Friedman and Kuttner (1992), Hafer and Jansen (1991), among others, studied the money
demand relaion in a Vector Error Correction Modd (VECM) model and used the Johansen
tedts to test for cointegration. Some evidence of cointegration can be found in data up to the
beginning of 1990 athough the results are again highly sengtive to the choice of the monetary
variable and the interest rate.

Miyao (1996) argues that the evidence of cointegration found in previous studies is not
grong even though the data show sgn of cointegration in samples up to 1990. When the
sample is increased to include data up to 1993, the hypothes's of no cointegration cannot be



rgected. Only Johansen’'s maximum eigenvaue test finds cointegration in few cases. Miyao
argues that this is due to size digtortions in Johansen’s test and concludes that the regjections of

the maximum eigenvaue te are highly questionable.

Following our andyds above, in cases in which the right hand vaiables in the
cointegration vector and the errors in the cointegration equation are highly correlated, the power
of the ADF test is s0 low that a rgjection is highly unlikely. The money demand equetion is a
clear example of a Stuation in which we would expect the correlation between the resduds to

be large and a full system approach to have better power.

| test for cointegration in the three verson of the money demand equation: one with
unrestricted coefficients for both the income and the interest rate, one where the coefficient on
income is imposed equd to one and findly one in which the interest rate is not included. The
data consdered are from the Federd Reserve Economic Database (FRED). | use quarterly
data from the first quarter of 1959 to the fourth quarter of 1997. The variables consdered are
the logarithm of GDP in 1992 dollars, the logarithm of M2 and real GDP deflator. For the
interest rate | follow Miyao (1996) and use the three-month Treasury bill rate not in logarithm
transformation. For M2 and the interest rate quarterly data are obtained by averaging monthly
observations over the months within the quarter.

Preliminary unit roots tests are conducted on al variables and are available upon request.
We then test for cointegration between m - p, and y, and i,, and between m - p, - y, ad

I,. Since it is arguable that the interest rate does not contain a unit root, we aso test for
cointegration only between m - p, and y,. For dl cases a condant is included in the

regressons and for both the ECR and the Wald test the congtant is aso jointly tested to be
equd to zero. Thelag lengthis chosen using BIC in the resdud regresson for the ADF test and
on aVAR on differences and levels for dl other tests.
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Table 5 presents the results for al the tests consdered where the regressons are
estimated with mean and trend to adlow for a drift in the variables. As we can see from the
table, the ADF tet never reects the null of no cointegration. The maximum eigenvaue strongly
rgects in dl three modds while the Wad test rgects in most cases. Since we can expect that
thereisalot of smultaneity in the money demand equation, table 5 also presents an estimate for
D. The edtimated vaue for the correlation at frequency zero are between 0.3 and 0.8. In light
of my theoreticd results it is not surprising that the ADF test is not adle to rgect the null of no
cointegration. On the other hand, system based tests regject the null more frequently suggesting
the existence of cointegration in the money demand equation. Obvioudy these results are only
preliminary and a more in degp analyss of the money demand problem is necessary. At the
same time, Table 5 and the theoretical andlysis of this paper can help in underganding the
puzzling empiricd reaults that different tests for cointegration can lead to contradictory

conclusions.

6. CONCLUSIONS

Over the past years testing for cointegration has become a very important step in any
empiricd andyss. This paper illugtrates how the andytica andyss of the locd power of the
tests can help identifying what nuisance parameters are relevant. A complete theoretica
understanding of current methods can help in designing the appropriate Monte Carlo experiment
to evauate the relative performance of the tests. In particular, this paper look at the class of set
of tests for the absence of cointegration and show that a very important role is played by the
correlaion of the independent variable with the errors of the cointegration regresson. As the
intuition suggests, when this corrdation is very high, sysem approaches like the Johansen
maximum eigenvaue or tests of the Error Correction model can exploit this correation and

sgnificantly outperform single equation tests. An empirical gpplication to the money demand
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equation explains why the Augmented Dickey Fuller test on the resduds of the cointegration
regression and other tests can give contradictory results.

Further research ill needs to be done to fully undersand how dal the tests for
cointegration work. The absence of asymptotic normdity and the fact that under the null the
cointegration vector is not identified, destroy the usud optimdity theory. This new
understanding of the asymptotic power functions of tests for the absence of cointegration is a
good stepping-stone for future research.
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Figure 1. Large Sample Power
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Large Sample Power delta= 0.5
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Figure 2: Large Sample Power, Demeaned case.
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Large Sample Power delta=0.5 , demeaned
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Large Sample Power delta=0.9 , demeaned
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Figure 3: Large Sample Power, demeaned and detrended case

Large Sample Power delta=0, detrended
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Large Sample Power delta=0.5, detrended
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Large Sample Power delta=0.9, detrended
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Table 1. Size adjusted small sample power, no constant, no serial correlation

-C 0 5 10 15 20

d\r 1 0.95 0.90 0.85 0.80
ADF 0.050 0.141 0.386 0.695 0.912

0 ECR 0.050 0.208 0.493 0.802 0.955
wadd 0.050 0.117 0.326 0.615 0.864

| max 0.050 0.083 0.202 0.422 0.679

0.3 ADF 0.050 0.141 0.373 0.687 0.913
ECR 0.050 0.231 0.542 0.841 0.971

wadd 0.050 0.138 0.385 0.701 0.908

| max 0.050 0.090 0.239 0.492 0.761

0.5 ADF 0.050 0.134 0.353 0.670 0.905
ECR 0.050 0.267 0.645 0.907 0.986

wadd 0.050 0.190 0.516 0.818 0.965

| max 0.050 0.121 0.338 0.643 0.884

0.7 ADF 0.050 0.129 0.324 0.646 0.893
ECR 0.050 0.358 0.645 0.907 0.986

wadd 0.050 0.330 0.757 0.951 0.995

| max 0.050 0.215 0.586 0.896 0.990

0.9 ADF 0.050 0.106 0.294 0.604 0.870
ECR 0.050 0.700 0.984 1.000 1.000

wadd 0.050 0.788 0.988 1.000 1.000

| max 0.050 0.684 0.986 1.000 1.000

Note: The power is computed with T=100 and 5000 replications.



Table 2: Size adjusted small sample power, demeaned, no serial correlation

-C 0 5 10 15 20

d\r 1 0.95 0.90 0.85 0.80
ADF 0.050 0.098 0.227 0.454 0.702

0 ECR 0.050 0.113 0.268 0.514 0.758
wadd 0.050 0.102 0.227 0.452 0.695

| max 0.050 0.063 0.118 0.250 0.451

0.3 ADF 0.050 0.093 0.213 0.431 0.691
ECR 0.050 0.115 0.298 0.560 0.806

wadd 0.050 0.107 0.267 0.515 0.764

| max 0.050 0.068 0.138 0.299 0.521

0.5 ADF 0.050 0.084 0.191 0.387 0.650
ECR 0.050 0.123 0.349 0.655 0.883

wadd 0.050 0.132 0.348 0.652 0.868

| max 0.050 0.075 0.193 0.411 0.683

0.7 ADF 0.050 0.069 0.154 0.321 0.588
ECR 0.050 0.145 0.487 0.814 0.973

wadd 0.050 0.198 0.565 0.853 0.976

| max 0.050 0.112 0.352 0.693 0.916

0.9 ADF 0.050 0.041 0.086 0.217 0.462
ECR 0.050 0.309 0.848 0.993 1.000

wadd 0.050 0.550 0.944 0.998 1.000

| max 0.050 0.382 0.908 0.998 1.000

Note: The power is computed with T=100 and 5000 replications.



Table 3: Size adjusted small sample power, demeaned and detrended , no serial correlation

Note: The power is computed with T=100 and 5000 replications.
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-C 0 5 10 15 20

d\r 1 0.95 0.90 0.85 0.80
ADF 0.050 0.072 0.155 0.317 0.535

ECR 0.050 0.075 0.162 0.327 0.538

0 wad 0.050 0.075 0.153 0.300 0.508
| e 0.050 0.059 0.100 0.180 0.319

ADF 0.050 0.069 0.140 0.294 0.502

ECR 0.050 0.076 0.166 0.350 0.587

0.3 wad 0.050 0.077 0.168 0.348 0.574
| e 0.050 0.059 0.106 0.206 0.378

ADF 0.050 0.065 0.124 0.253 0.438

ECR 0.050 0.074 0.185 0.407 0.681

0.5 wad 0.050 0.085 0.218 0.453 0.709
| e 0.050 0.062 0.131 0.286 0.512

0.087

ADF 0.050 0.050 0.243 0.178 0.344

ECR 0.050 0.080 0.361 0.561 0.839

0.7 wad 0.050 0.114 0.228 0.691 0.905
| e 0.050 0.075 0.507 0.797

ADF 0.050 0.024 0.032 0.072 0.174

ECR 0.050 0.094 0.535 0.906 0.994

0.9 wad 0.050 0.314 0.844 0.988 1.000
| e 0.050 0.218 0.769 0.985 1.000




Table4: Size distortions

AR erors MA erors ADF ECR wad max
0.059 0.057 0.102 0.058

fy=f,=0 Jy=J,=0 (1.1) (1.3) (0.3) (1.1)
0.060 0.059 0.102 0.063

f,=f,,=02 Ju=J,=0 (1.1) (1.3) (1.3) (1.7)
0.061 0.084 0.151 0.112

fy=f,=08 J;,=3,=0 (1.1) (1.3) (1.3) (2.1)
fn =1, =02 0.036 0.045 0.116 0.075
fp=fy=05 J,=J,=0 (1.3) (1.3) (1.3) (2.1)
0.068 0.064 0.098 0.061

fu=fp=0 Jy,=J,=02 (1.1) (1.3) (1.3) (1.7)
0.069 0.065 0.122 0.073

fy=fp,=0 J3,=J,=08 (2.7) (3.0) (3.0) (3.7)
J1=3,=02  opg90 0.065 0.115 0.067

fyu=fp=0 J,=J,=05 (1.1) (1.8) (1.8) (3.0)
0.673 0.592 0.194 0.629

fn=f,=0 J3,=J,=-08 (1.6) (1.9) (1.9) (2.4)
Ju=J,=-08 g9 0.290 0.159 0.537

fy=f=0 Ju=J, =05 (1.5) (1.5) (1.5) (2.2

Note: The size distortions are computed with T=100 and 5000 replications. Lagsin each regression are
chosen using BIC with a maximum of 4 lags: the number in parenthesis represents the average number of
lags chosen by BIC.



Table5: Cointegration tests for the money demand equation.

Model ADF | ECR WALD D
M- p=ctby +gic 3041 78.90 (3)** 0.506 (3) 14.58(3)** 0.39, -0.30
m- p =c+by, -2.95(1) 61.97 (1)** -1.43 (1) 2.22 (1) 0.56
m - P~ Y =c+gi, -3.08 (4) 55.98 (2)** -3.226 (2) 15.03 (2)** -0.76

Note: The number in parenthesis represent the number of lags selected by BIC. The maximum possible number of lags was set to 4.
Critical values are obtained by simulations, asterisk denotes rejection at 5%.
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APPENDIX

LEMMA Al: When the model is generated according to (3.1) with T(r - 1) =c, then,
asT® ¥

) TSxx"p [B]B"

(i) T°Sx'y P [B{K,

(i) T°SWp [K

iv) T'Su,_e P S¥*[K, dw

V) T'Sx'.e P S”[Bldw

where i =1,2, the summation goes from 1to T and b denotes weak convergence,
[ ]. denotes the ii element of a matrix. B’ =[Bl' Bz] isa n” lvector Brownian
motion partitioned conformably to v, and v,,, with covariance matrix W. K, isa
scaled Ornstein Uhlenbeck process such that: K, (1 )= B,(l )+cj; ' "9°B,(s)ds and
(1) if z, =0 and z, =0, X' =x and B =B.

(@ ifz =0and z, =1, ' =x - X and B' =B- [B.

Q) if z =1 and z,=1, x* is x detrended by OLS and
B = B- (4- 6l )jB- (12l - 6)st.

Proof of Lemma Al:
By the multivariate FCLT and Phillips(1987) we have that Tl’zé;les P B(l) ad

T Y2, b K,(l). Results (i)-(ii) follows from the Continuos Mapping Theorem (CMT)
while (iv) and (v) follows directly from Chan and Wei(1988) or Phillipg(1987).

Proof of Lemma 1:
b can be esimated by regressing y® on x°. If z, =0 then x’ =x and y' =y,, for
case (ii) both variable are demeaned and for case (iii) both variables are demeaned and

| follow the usual convention and suppress the (I) from the Brownian motion terms. Unless specified
otherwise, al the integrals are intended to be between 0 and 1.
40



detrended. In the general casethen b - b =(T'zs(x{’)z)_l(T'zsxdqd). From LEMMA

Aland the CMT wehavethat b- b b ([ B°) ([ BIKY,) .

COROLLARY A1: When the model is generated according to (3.1) withT(r - 1) =c ,
then,as T® ¥ :

() T2sda”p hd Ah?
(i) T'sa?,D6’ P ch? Alh? +d(Dh¢ [BYdBh?
(i) § b d(*h"Wh

where U, are the residuals from the cointegration regression (3.2) and § =T *Sx? is
the estimated variance of the residuals of the ADF regression.

([B) (JBrKs) 1. A= B! IBldszﬂ ae = B | ang
e[ ) ) ) we| B R e[

J Bldszc J Kgc 2c
B,
B=
o

Proof of Corollary AL:
(i) By OLS projections, we canwrite 4, =07 =y - x'b =’ - (6- b)x"
By LemmaAland CMT T4 b K, - ([B) (jBl B!

TESE R [k ([87) (JBiKa) =he A

(i) Follows from the same exact argument of Phillips and Ouliaris (1990).
The only difference is that now there is the extra piece (r - 1u,,. In fact we can write

D, =04 =Dy - (b- b)Dx’. ! =u-g,- Gt and X' =x - - Mt where §,

and M arethe OLS estimates from regressing u, and x, on a mean and trend (or mean

only for z,=0). Then Du'=Du -§, with §, converging a rae /T ad
= Dx, - m if detrended.
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Subdtituting we have that

D = DA, = - 1, + - (B~ by - G,+(5 - b - (B~ b)m.

Alou , =0, +(6 - b)xt_1 S0

DG’ =(r - )0, +Vy, - (6 - b)v1t - Ql+(6 - b)(fq- rq)+(6- b)(r - Dx,

Write v, - (6 - b)vn =b'v,. b'v, P h',v, =z, sys Following the same exact argument
in Phillips and Ouliaris (1990) p 183, | can write w, =d(L)z, that is an absolute summable

sequence. The variance of the orthogona sequence x, can the be written as d(1)*h', Wh_.

If the lag order in (3.3) islarge enough to capture the correlation structure of the errorsit can
be shown thét, condiitionaly on h_,

DA’ = d(1(r - 1)d,.,- d(F,+(b - b)d@(fy- m)+(b- b)(r - Yd(L)x., +d(L)DY +w
Note that:
T'SDG DG, is 0,(), d()T 'S0, G, =d()T¥*su_,(T**§,) b 0 snce TY?g, is
0,(1).
-1

T%s0,,p [Ki- ([B”) ([BKS)[B"=0 sne [K§ =0 ad [B=0.
Similarly d()(b- b)T St ,(fy - m) P 0 since VT(ffy - m) is O, (2).

-1
Al TS0, , P [BIKy, - ([BY) ([ BKS)[ B =00
(b- b)(r - DTS4 1%, =(b- b)eT?SG %, P O
Using the above results it easy to seethat :
TS!, DU = cT°S@, +b' TSz’ w, +0,(1) P ch¢ A'h? +d(Dh{ [ BYdBhY.

(i) If the log order p in the autoregressve part of the ADF test islarge enough to capture the
corrdation sructure of the errors (see Phillips and Ouliaris (1990) theorem 4.2), the
estimates of the ADF regression will be consgtent. (& ® r - 1).

X, =D{j - 40, ;- lags=-d(Dg, +(b- b)d@(f- m)+(b- b)(r - Dd(L)x_,+w,
g =TSx2=T'SwZ+0,(1) P d()*h¢ Wh’

Proof of Theorem 1:

The ADF test gatidtic isthe usud t ratio test for the regression (3.3):
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T'la_'1M Da
ta = \ . 1/2
s [T, M0,
Under the condition for Lemmal and Lemma 2,
= T_lsQ—lDuAt +op(1)
) @[T' ’sa? 1]1/2 +0,(D)

By Corollary A1,

d@h? A'h¢]" d(Dh{'[BJdBh{
d@hwhe]”  [d@?hewne]“[ne Athe]™

Define G= .» |- Noticethat B, =CGW, and B=CW, and where W, =
0 \/\/12 12c
V\q
and W, = :
" |:V\42

he' A'hd =h{' [ BIBthY =h!'G[WW' Gh{ =W,,h" [wiw h¢
with hd':[-(jwdz)'l(jvwfk) 1}

Smilady h' [ B'dBh =W,h ' [W'dwh®,

Firally (h¢"Whe )" = (h!"W2Wh!)

SincehS'Ww :|:_ (J~ Ble)'l(J' Bld K(ch) 1:||:W\A\l/}\/l/21/2 V\;)jz} =

oo (o (o]

Subgtituting these expressons in the tegts, dl the terms involving the variances smplifies, and
only d appearsin the asymptotic power as stated in Theorem 1.

Notethat when ¢ =0, B, and A.inour notation coincidewith Band A matricesin Phillips

and Ouliaris (1990) and the asymptotic distribution of the tests coincides with Theorem 4.2
in Phillips and Oudliaris.

Proof of Theorem 2;
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Following the same methodology of Sims, Stock and Watson (1990) rewrite equation (3.5)
as

Dy, =z'g+e,where  Z.=[u, Dx, Dx, .. Dx, Dy, .. Dy,| ad

g:[a Py Pip P2 - p2p]'
Let | denotesthe (2p+2)” (2p+2) diagond matrix

T 0 0 O
o 4JT 0 o
Tl o0 e

0 0 - AT

With this notation it is easy to show the asymptotic digribution of the LS estimator of
equation (3.5)§ .
We can write

CY i G-9)=(i"Szz"i ) (i *Szx,) where

T-zsutz_ 1 -I--3/28ut_ DX T_S/zsut- DXy o T_3/ZSQ-1Dyt- p_
T¥%suy, ,Dx, T 'SDx T'SDxDx., - T 'SDxDy,.,
(i -1SZtZt'i _1): T8y ,Dx., T 'SDxDx_, T'SDx, T_lsDXt-lDyt—p
T'”Su' T'S ' T'S . T'1S. 2
i L 1DYep Dx Dy:.., Dx._.Dy.. p Dyi-,

The convergence of this matrix can be analyzed piece by piece.

T?su?,P [ K by Lemmal

TSy ,Dx, ® 0 since TSy, Dx =TSy v, b [K,dB, +SG; by Phillips(1988)
where G, = E(e,e,). Similaly we can show that T"*?Su,_,Dy, , ® 0 so that we have

the usud block diagonality between stationary and non-dationary varigbles.
For the sationary block we havethat T 'SDx’, =T 'Sv;, , ® W,

T'SDxDx_, =T 'Svv,,® G,

T_lsDXtDYt- p = T_lSVltVZt— p ® Glz,p where G!z,i = E(anzi)
T'SDy} ,® W,

and T'SDx_,Dy, , ® G, sotha



[k 0o 0o - 0
0 W11 Q,l Q2p

(i'Szz'i")p| 0 G, W, - Gy,
L 0 Giz,p Glz,p-l e W, ]
Findly we have that
TSU X | | WS [ KoodW
T 'SDX X, z
(i *Sze,)=|T'SDx_X, (P Z,
T 'SDy,. X5, I Z, |

The convergence of the firs ement comes directly from Lemmal, while the convergence of
the other dements of the vector to (multivariate) norma digtributions comes form the
dationarity of Dx, and Dy, .
Given the block diagondity the asymptotic digtribution of the parameter of interest is
-1
T@-a)p aWii(J KZ) (] Koavs)
If enough lags are included in the regresson to get rid of the serid correation (p is assumed
-2
to be known) the standard error for & converges to q\/\é’f(J K,fc) and the loca

asymptotic digtribution of the t-gtat for a is:
T(rema | AWE(KE) ([ Kaaw)
awi(fKz) " awe(k)

4

1/2

Since how shown in Lemma2, K, =W, J,,, and B, = WEAW and WEZ = Wo7(1- d?)

SN LSNP

) (faz) " (o)

the t-stat smplifiesto t, =

Proof of Theorem 3:
To compute the loca asymptotic power of the ECR test we can follow the same gpproach
used to prove Theorem 1 and Theorem 2. Equation (3.6) can be written as

(C2) Dy,=m+au,+y x_,+j Dx +Q "p,Dx_ +4 "puDy.; Xy
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S0 that the mode is again in the same framework of Sims, Stock and Watson(1990) with 2
non-dationary and 2p+1 dationary variables. a is defined as in (3.5) such tha  with
g defined in note 1. The coefficient y  on the redundant regressor is truly zero. Since the

mean has been moved back in the error correction term, the true value for m is aso zero.

The model can be written in compact form as Dy, =m +2z,'g +X,,. Asfor Theorem 1 §
can be esimated by firs detrending both the right and the left Sde of the equation.
Dy;’ =7''g +xj where

zi=[ul, DX’ D¢, . D¢ Dy . D,

gvz[a Yy Pu 0 Py Pa o pr]m
i isnow a(2p+4)” (2p+4) diagond matrix

T 0 0 0 O]
OT O 0 O
i=|0 0 4T 0 0O
O 0 0 ° :
00 O VT
| T-Zsutd-zl T-Zsutd—lxtd-l T-Blzsutd-lDXtd T-Blzsungygp_
T-zsuglxtd—l T-stgzl Thslzsxtd-lDXtd T_lSXtd-lD)/tqp
(i"sz'7"i 7)=| T2su!,Dx' T ¥ex! D¢  TISDX” - TSD'Dy!,
_T_3/28u31W£p T_lsxtqlDytd—p T_lsDxthyﬁp TlSDytzp

Following exactly the same idea of Theorem 2 we can look at the asymptotic distribution of
the LS estimates piece by piece.
The only extra pieces are now:

TS ¢, b [BIKS, TP b [BY.

Moreover, T*?Sx. . Dx; =T **Sx{,v, - T¥*Sx’ i =0, (1) since

T'Sx!w P [B/dB,+SG, and T'SDy,, ad T'SDx, (for i=01..,p) are
0,(2) since are dl dationary variables. All other pieces behave as in Theorem 1 with the
exception that now are dl detrended BM.



From mode (3.1) we can write v, =W'*h, and e, =S"*h, where h, is a vector of
uncorrdated martingde differences erors  with  unit  vaiances. Given that
W=F (1) *'SF(D)*, | can writeS"?> = F()W'?. Because of the way the errors are
orthogonalized in equation (3.5), it can be shown that x,, =qWe%h,,. By Chan and Wel

(1988) and Phillips (1987) then follows that T 'Sx'x, P qV\é’ijde\é
TISU i, P AWEZ [ KEW,

The matrix of cross product then weskly convergesto:

K& [BiKE 0 0 0
[BiK: B 0 0 - 0
(i 'lSZ[dth'i'l)ID 0 0 W, G, - G,
0 0 Q,l W]_’L Q2,p-1
0 0 Gop Gopr =+ Wiy |
Smilaly
Tise i, | [aws]Kiaw
TISxXa | |aW3[Bldw
) T-]/ZSDXth Z
(i 1SthX2t): - 12 oM “p
TSDx X, z,
_T'l’ZSD)/S p€2t | i Z2p |

Theinverse of the (2~ 2) non-stationary block is (by the inverted partitioned formula)

1 J.sz 'J.Kchf _ (wd2[ pda2 dped )
F[-IKZ"CBI’ ke ]WhereD’—_[chjBl - ([ BKs,)

The asymptotic digribution of & is:

i QW [ BY” [KEav, - [ KBy [ Blavy]

T(é-a d2 d?2 dyd)?
JBL _[KZC '(J.Blec)
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aw? [ B ]"

IESCRICISE

. Ta T@A-a) . c
Noticethat t, = + th =T|=|g=
otice CER =R with Ta T(T)q cq

Now SE(A)P

So
i
al e ()| quejer[kea.- [xietfaran]
+

t,Pc 172 27V2 12
av][ ] aws] Jer' s’ (feeke) ] [[]

a

1/2

Since how shown in Lemma2, K, =W, J,,. and B, = WAW and WEZ = Wo7(1- d?)
the test smplifiesto

[J W a5 - (Wt )} LIwe v - [ ot Jwgaw
oo e fwefon (was | [Jwe]”

tébc

Proof of Theorem 4:

Using the same parametrization of Theorem 3, the modd can be written in compact form as
Dy = z''g +x5 where Z* and g are defined previoudly.
The Wdd test for the joint Sgnificance of a and f is equivdent to testing for the joint
ggnificanceof a andy in(C.2) and it can be written as
F=(Ri §)[RVR] (R §)
where qis the number of redrictions R is 2" (3+2p) marix defines a
100 --
R=
[O 10 -

the standard error of the LS estimates. For the purpose of this proof the F test can be
decomposed as:

0 A A 1,
0}, i isthe same as Theorem 3and V =S (i *Sz'7"i ) tis



C3) (R QIRVR(I] =(Ri (§- 9)) q\[RVRG} Ri (§-9))+

+Ri 9)]RV R (Ri 6- 0))+(Ri (6-9) [RVR] " (Ri g)+
+(Ri 9) [RVRY"(Ri g)

Looking at the asymptotic behavior piece by piece (recal that § = q\Ngf):

[R\iRﬂ]'lb qzvvziD“[ JB JKin] =q” 21[JK IKRBd]

[kaB K LS
w01y {5

o qwe | [BETKGaw - [KE B! [ Blaw,
Ri (§-9)P [J’K _[BdVV jKZCB JKZdel

where, as defined earlier, D' = J K, J B’ - (J' B! ch) is the determinant of the submatrix
corresponding to the non-stationary block.

For the firs dement of the (C.3) note that

2 2 d? d _ d pd 2 d
[R\iRG]_l(Ri (g - g))p qu\/\é/l —[K JB JKZC 2 (J KZZBl)ZJchdV\/z _
O | (e [eraw+ ke[ B [Braw,
| | KW
=q W'llthdez

So
(Ri (4~ 9))¢3R\7 RE(Ri (§-g))p
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W/Z
“‘? 7 OKEAW, - OSBRIV, (K5 QRIAWY - K5 BY K s W, Ug w3 €

_JBr(Jaaw) - 2f Brica Braw [ikiaw, + ke devvzf
Jorfre- (ferkc)

(Ri 9) [RVRY(Ri G- 9))P

g RdW,

_ [Kaaw, |
P [ca Ofq 1VV2_11’2[ [8ran, ]—cv\fz?ﬂ K5

The third element is the trangpose of the previous one and findly the fourth dement on the
right hand side of (C.3) convergesto c®W,; j KZ,

Remember that K,, =W&2J,,., B, = \WAN and B, =WEAW,, the local asymptotic power
of the Wald test smplifiesto:

Fp c(1-d?) [ 35,7 +20(1- d?) [ 35.aw +

J([ 3y - 2fwe . Jwetawg o + [ ag,(we awg)

Jog fas- (fwias.)

+

Proof of Theorem 5:

The proof of Theorem 5, follows Johansen (1995). | give here a less forma proof than
Johansan's.  The proof | present is only for the case in which there is a mean in the
cointegrating vector. For a more general and forma proof for the asymptotic distribution
and local power of the trace statistics of which, the | test is just a special case, see

Johansen (1995) or Saikonnen and Lutkepohl (1999, 2000).

As | showed in Section 3.3, the |  test isdefined as |, =-TIn(1- IAl). Johansen
(1995) showsthat - TIn(1- | )= ul ,+0,(1).Since IA1 is the maximum eigenvaue of the
metrix §7'S,S,S, the test can be written as |, = maxeig{TS'S, S5} +0, (D).
The asymptatic digtribution of the tests can be computed by looking &t the limit of each sngle
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matrix. For the case in which z, =0 and z, =1, 0 that there is mean only in the
cointegrating vector, the Error Correction modd is.

X1
{gﬂ = PF()M 2_1 +P(L)[[D)yxi:j+ Pe,

For theoretical purposes | can re-parametrize the modd as (see dso Saikonnen and
Lutkepohl (1999)).

X 1
{Dxt}: PF(OM'| vy, +P(L){DX“}+ Pe,
DYt \/?Ztl t-1
0 0 0 . .
where M :[-b(r-l) (r-1) -n(r-l)T‘”Z} and Y, —[Xt Yi ﬁzt]

Of course thisis an unfeasible regression but it such that the eigenvalues of the tests can dso
be obtained from this regression.

As Johansen (1995)
p
showsS,,® VAR DY]Y,., past] =VAR| Pe] = PSP'= PF ()WF (3)' P
B, ]
TS, P T2S(Y.,Y,})+0,() P J“écﬁc' where B, =| bB, + Ky,
1 -
W2 0 o0
Recdl tha K, =Wi2J,., B =WMW ad define G=| 0 WY 0| ad
0o 0 1

s0 T'S, canbewrittenas T°'S, b PG[WWGP".

ol

Il
© T P
o r O
P O O

Findly §, = S,P+ +S; +0,(1) where S, = T'S(Y ) +0,(1) where & = Pe,.
From Lemma 1 we have that
S.P [BdB" where B=PS"AW and, asbefore, B, = PGW,.
S,P;=S,M"F(A)P. Under the locd dtendive (r-1)=¢T =0
. 60 v _ S
SPr=cT'sSyé GF ()®PCh cPGAYVW.GP'M'F (1)®¢
: G

0 0
&b 1 -m/JT§
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_, 0O 0O . : _
where M :[ b 1 0] The limit of the tests can then be decompaosed into the limit of 4

matrices:

TSSp S S =TSSP +SnSe + TSy SuP + S0P+ S + TS:S: S0Se +TS:SeSpP+ S

For thefirst block:

TSIS,P1SiS, P ¢(P'G) §VwW.i G PG
@Ncwc'G'ﬁ'M*F(1)'P'P"1F(1)"1W1F(1)'1P'1g(3/vcdwg'e'5'

| W w e
sncewl/z ={ n 21 JJ;Z ﬂi|
0 W3
© o & 0 u
_ . .. Z 8

tiseasy toshowthet G MW =8 W= (1-d?) g and that
~ 0 . e L,,I
€0 i@ 0 g

J.\A{‘]lzc

c[[ww]eP M w® =c(1-d2) “lo [JZ, |=

J. J12(:

Thefirg block the smplifiesto
, , _ - -1
Si8,PrSis. b (FG) | Jww] Alfwaw|cP
Similarly for the other blocks we obtain:
TSIS.P;SIP. S, P (F'G) gV AAGP'
TSS, S0P, S, b (P'G) " §VW. Y SN AW L AG P!
1SS, SiS. P (P'G) gV, B’lg(‘y\/cdwgg@/\/cdwg GP
Finally, snce maxeig{ M } = maxei g{(G' PIM(P’ G)'l} the theorem is proved.

The case with no mean can be proved smilarly with

o A A N I

o
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The proof for the case with mean and trend follows exactly from Saikonnen and L utkepohl
(1999).
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