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Abstract

This paper proposes a theoretical explanation to the common empirical results in which different tests
for cointegration give different answers.  Using local to unity parametrization I compute the analytical power
of some tests for the null of no cointegration: The ADF test on the residuals of the cointegration regression,
Johansen’s maximum eigenvalue test, the t-test on the Error Correction term and Boswijk (1994) Wald test.
The tests are shown to be functions of Brownian Motions and Ornstein-Uhlenbeck processes and to
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that the tests can have significantly different performances for different values of the nuisance parameter.
An application to the money demand equation is presented.
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1. INTRODUCTION

 Since its formal introduction by Granger (1983) and Engle and Granger (1987), the

concept of cointegration has been widely used in empirical analysis to study the relationship

between integrated variables.  If a group of variables are individually integrated of order one and

there exists at least one linear combination of these variables that is stationary, then the variables

are said to be cointegrated.  Cointegrated variables will never move too far apart, and will

revert to their long-run relationship.  For this reason the knowledge that some variables are

cointegrated can have a significant impact on the analysis of the long and short run dynamics of

economic variables.  As usual, testing the assumptions of the model  (testing for cointegration)

has become an important step in any empirical analysis of economic data.

 

 The current literature is prolific in all sort of different tests for cointegration: tests for the

presence of cointegration (Park (1990, 1992), Phillips and Hansen (1990)), tests for the

absence of cointegration (Engle and Granger (1987), Phillips and Ouliaris (1990), tests on the

Error Correction Model introduced by Hendry (1987), Boswijk (1994) Wald test), test for the

number of unit roots (Johansen (1988), Stock and Watson (1998), Saikonnen (1992)), and

tests on the null hypothesis on the cointegrating vector (Saikonnen (1992), Johansen (1995) and

Elliott (1998)) among others (see Watson(1994) for a review).  Currently there is no consensus

as to the best test for cointegration and the general empirical approach is to report the results for

a variety of tests.

 

 This paper looks at the class of tests that have no cointegration as the null hypothesis.

There are two types of tests proposed in the literature to test for the absence of cointegration.

One group of tests looks at the full system of equations in a VAR framework (Johansen’s tests,

Stock and Watson (1988) SW test, tests on the coefficient of the error correction terms among

others) while a second group looks at single equation regressions involving the variables that are

potentially cointegrated (Engle and Granger Augmented Dickey Fuller test, Phillips and Ouliaris
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$Zα and $Zt  tests).  Such tests are non-standard and their asymptotic distributions are non-

normal (functions of Brownian motions).  In this non-standard environment, no uniformly most

powerful (UMP) test exists so there is no theoretical “best” test.  Until now, tests have been

compared on the basis of Monte Carlo analysis for particular Data Generating Process (Haug

(1996), Gonzalo and Lee (1998), Bewley and Yang (1998), Boswijk and Frances (1992),

Kremers et al. (1992) and Ericsson and Mackinnon (1999) among others).  The problem with

Monte Carlo simulations is that the results of the experiments are dependent on the particular

design run and no general conclusions are available.

Haug (1996), for example, used Monte Carlo analysis to study the small sample power of

some of the most common tests for cointegration. In particular, he examined the case of a fixed

alternative in which the root of the residuals of the cointegration regression is equal to 0.85.  He

found that, in general, single equation tests have smaller size distortions, but also have lower

power than system-based tests.  Although Haug (1996) shows that for larger samples the

power increases considerably, differences in the performance of the two sets of tests persist.

The paper is unable to find any ranking of the tests or to find important parameters that would

allow such a ranking, and so concludes by recommending the application of both sets of tests in

empirical exercises.

 In this paper, I derive analytical results for power of the tests that unify these experiments

and I show which features of the model are important for power. Using local-to-unity

parametrization, I am able to analytically compute the power for some of the most commonly

used tests for the null of no cointegration: the Augmented Dickey Fuller test (ADF) applied to

the residuals from the cointegrating regression and Johansen’s maximum eigenvalue test.

Analytical power is also computed for 3 tests in the Error Correction Model: The t-test on the

error correction term (that is unfeasible if the cointegration vector is not known), a feasible

version of the t-test obtained by adding a redundant regressor, and the Wald test proposed by
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Boswijk (1994).  Once we have a full understanding of which parameters are important for

power, the results of previous Monte Carlo analysis can be easily understood and a more

informative set of Monte Carlo can be designed.

 

 The tests are shown analytically to depend on a single nuisance parameter under the

alternative.  This parameter is a function of the long run correlation of shocks to the independent

variable with the errors of the cointegration regression.  As intuition suggests, when this

correlation is high, we would expect a full system approach to perform better through exploiting

this correlation.  Evaluations of the analytical power functions confirm the intuition and show that

the tests have significantly different performances for different values of the nuisance parameter.

These results suggest which test could be better used for the particular application at hand,

depending on which level of simultaneity is suspected.

 

 The next two sections introduce the model and the tests for the absence of cointegration.

The analytical asymptotic power functions are analyzed in section 3 while section 4 presents the

results for the Monte Carlo simulations.  Section 5 contains an empirical application to the

money demand equation.  All the proofs are in the Appendix.

2.  THE MODEL

Consider the model:

(1.1)

∆x d v

y d x u
u u v

t t t

t t t t

t t t

= +

= + +
= +−

1 1

2

1 2

'β
ρ

where t=1,….T ; xt  is a n1 1×  vector; yt is a scalar, d G zt t1 1 1=  and d G zt t2 2 2= .

v v vt t t= 1 2
' '

, Φ( )L vt t= ε , ε ε εt t t= [ ]' '
1 2  is a n ×1  vector of martingale differences with
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positive definite variance covariance Σ  such that the partial sum 
1

1T
vt

t∑ satisfies a

multivariate invariance principle1.  Φ( )L  is an invertible lag polynomial of known order

partitioned conformably to vt  such that   Φ( )
( ) ( )
( ) ( )

L
L L
L L

=
L
NM

O
QP

φ φ
φ φ

11 12

21 22

.  The spectral density of

vt  at frequency zero (scaled by 2π ) is 1 1(1) (1)− − ′Ω = Φ ΣΦ  where Φ Φ( )1 = ∑ ii
.  Ω  can be

partitioned as:

Ω
Ω Ω

Ω
=
L
NM

O
QP

11 11
1 2

2

2 11
1 2

2
2

/

' /

ω

ω ω

D

D

where D n
' = δ δ δ1 2 1

K  contains the bivariate zero frequency correlations of each element of

v t1  with v t2 .  Ω11  is assumed to be non-singular (so that the elements of xt  are not individually

cointegrated with each other). For the purpose of this paper, the following cases for the

deterministic part of the model are considered: (i) z t1 0=  and z t2 0= , (ii) z t1 0= , z t2 1=  and

a constant is included in the regression, (iii) z t1 1= , z t2 1=  and a constant and a time trend are

included in the regressions.

When ρ < 1, yt and xt  are cointegrated and the system (1.1) contains n1  unit roots;

when ρ = 1  the two variables are not cointegrated and there are n  unit roots in the system.

Thus a tests for no cointegration is testing H0 1:ρ =  vs Ha :ρ < 1.

2.1 TESTS ON THE RESIDUALS

As mentioned a variety of tests for no cointegration exist.  This section briefly introduces the

residual based tests for cointegration.  To tests the hypothesis of no cointegration, Engle and

                                                                
1 This is valid for general case of weakly dependent  heterogeneous variables.  For conditions under which
the invariance principle holds see Phillips and Solo (1992) for the univariate case.  For the multivariate case
see Chan and Wei (1988) or Wooldridge (1994).
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Granger (1987) first suggested the application of unit root tests to the residuals of the

cointegrating regression

(1.2) y x ut t t= + +µ β' .

Rejection of a unit root in the residuals from (1.2) is an indication of cointegration

between the two variables.  A variety of tests for autoregressive unit roots are available (Stock

(1994) offers an exhaustive survey on the argument).  One of the suggestions of Engle and

Granger (1987) was to use the tα  ratio test in the Augmented Dickey-Fuller regression:

(1.3) ∆ ∆$ $ $u u ut t i
p

t i t= + +− −∑α π ξ1 1

Where $ut  are the residuals from the LS estimation of the cointegration regression (1.2)

run respectively with no mean, mean only and mean and trend for case (i), (ii) and (iii)2.  The t-

test is not the only choice of test: Phillips and Ouliaris (1990) suggest also the use of Phillips

(1987) Zα  and Zt  tests, and propose a variance ratio test, Pu , and a trace statistic, Pz .  As in

unit roots tests, the T $ρ − 1b g  test and the Zα  test may be expected to perform better in small

samples.  Although it may be interesting to compare the difference in power between different

unit root tests on the residuals, in this paper I will only look at the most commonly used ADF

test.  Extensions of results in this paper to other unit root tests are applications of the theorems

presented here and can be found in Pesavento (2000).

2.2  TESTS ON THE ERROR CORRECTION TERM

The ADF test on the residuals presented in the previous section is based on OLS

estimates of a single equation for yt .  As the Granger Representation theorem shows, a
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necessary and sufficient condition for cointegration is for the cointegrated series to be

represented by an Error Correction model:

(1.4)
∆
∆

Φ Φ Π
∆
∆

x
y

P G P M
x
y
z

L
x
y

Pt

t

t

t

t

t

t
t

L
NM

O
QP = +

L

N
MMM

O

Q
PPP

+
L
NM

O
QP +

−

−

−

−

−

( ) ( ) ( )1 1
1

1

2 1

1

1

ε

where G  is zero if z t1 0=  and z t2 0=  or z t1 0=  and z t2 1= .  For the case in which

z t1 1= and z t2 1=  as Boswijk(1994) also mentions, a time trend need to be included in the

regression to have similar tests under the null.  In this case then G  contains the parameters

representing the drift in the variables.  Finally, P =
L
NM

O
QP

1 0
1β

 and

M =
− − − − −
L
NM

O
QP

0 0 0
1 1 1β ρ ρ µ ρb g b g b g .

As the theorem suggests, testing whether the error correction term is significant can be

used as a test for the null of no cointegration.  In fact, under the null ρ = 1 , M = 0  and the

error correction term does not enter the model.  Under the alternative ρ < 1 and the coefficient

on the error correction term is different from zero.

If the right hand variable of the cointegration equation (1.2) is weakly exogenous for β

under the null, as it is in the case of the triangular model (1.1), all information about the

cointegration vector is contained in the conditional equation for yt  and the analysis can be

limited to the single equation3:

(1.5) ∆ ∆ ∆ ∆y u x x yt t t i t i
p

i t i
p

t= + + + +− − −∑ ∑α ϕ π π ξ1 11 21 2

                                                                                                                                                                                                
2 For the case (iii) in which z t1 1= and z t2 1= , Hansen(1992) shows that, if the cointegrating regression is

run only with a constant, the distribution of the test will be different.  In this paper I only consider the more
widely used case in which the regression is run with a trend if the variables have a drift.
3 See also Assumption 1’ in Boswijk (1994).
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where u y x G zt t t t− − − −= − −1 1 1 2 2 1
' β  is the Error Correction term and α ρ θ= −( )1  where θ  is

functions of Φ 1b g  and Ω 4.  If no bounded linear combination among the levels of the variables

exists, one would expect the coefficient on the error correction term to be zero.  This suggests

that, if β  is known, a t-test on the parameter α  estimated from the single equation (1.5) could

be used to test the null of no cointegration5.

The assumption of known cointegrating vector is a very restrictive assumption.  Unless the

econometrician finds himself in the unlikely case of perfect knowledge of the cointegrating

vector, the error correction test presented in the previous section is not feasible.  Banerjee et al.

(1986, 1993, 1998) suggest adding a redundant regressor to avoid imposing a particular

cointegrating vector.  The equation to be estimated is then

(1.6) ∆ ∆ ∆ ∆y y x x x x yt t t t t i t i
p

i t i
p

t= + − + + + + +− − − − −∑ ∑µ α φ ϕ π π ξ( )1 1 1 11 21 2

where α is the same as before while φ α β= −( )1 and µ α= − G z t2 2 . If z t1 1=  and z t2 1= ,

the regression (1.6) is estimated with mean and trend to obtain similar tests under the null.  A

test of the hypothesis α = 0 , based on the t-statistic t $α  in (1.6) is still a valid test for the

absence of cointegration.

In Section 4.2 I derive the asymptotic distribution of the Error Correction (EC) test in

(1.5) and the Error Correction with Redundant Regressor (ECR) test in (1.6) under the local

alternative T c( )ρ − =1 .

In equation (1.6) under the null of no cointegration in whichρ = 1  both coefficients on the

variables in level are zero.  A F  test can then be used to test for the joint significance of the

coefficients.  This test is equivalent to the Wald test proposed by Boswijk (1994).  As Boswijk

(1994) shows, the asymptotic distribution of this test under the null is a function of standard

                                                                
4 Specifically θ φ φ φ φ φ φ= − + −

11 22 21 12 11 12 21 11
11 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )Ω Ω
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Brownian Motions.  In the next sections the power of the Wald test is analyzed and compared

with the power of the ADF and ECR tests.

2.3  MAXIMUM EIGENVALUE TEST.

Johansen (1988,1991) and Johansen and Juselius (1990) suggest the use of a full

information maximum likelihood6 approach to determine the number of cointegrating vectors in a

n-dimensional vector.

The Error Correction model (1.4) can be written as:

(1.7) ∆ Π Π ∆Y G Y L Y wt t t t= + + +− −1 1
* ( )

with Y x yt t t= '  and [ ]*
2 't t t tY x y z= .  The mean G 7 is zero in the case in which

z t1 0=  and z t2 0=  and in the case in which z t1 0= , z t2 1= 8.  The matrix Π Φ= −P P M( )1 1

gives information about possible cointegrating vectors among the variables in Yt
* .  If  Π  has full

rank n  then all the variables are stationary. If rank h n( )Π = < , there exist two n h×  matrices

α  and γ  of rank h  such that Π = αγ ' .  In this case, although each element of Yt  is integrated

of order one, the linear combination γ ' *Yt  is stationary, and h  cointegrating vectors exist.

To test the hypothesis that there are h  cointegrating vectors against the alternative that

there are n  cointegrating vectors (that is, Yt  is stationary), Johansen proposes the likelihood

ratio trace test, defined as:

                                                                                                                                                                                                
5 The invertibility of Φ( )L implies that all the roots of the polynomial are outside the unit circle so that
Φ( )1 0≠ .  A t-test for the significance of α  corresponds to testing ρ = 1 .
6 Of course if the right hand variables are not weakly exogenous a full system approach is necessary.  The
triangular form (3.1) precludes this possibility as, under the null, x t  is always weakly exogenous for β .
7 G P G= Φ( )1
8 The Johansen procedure is presented for the case in which the constant is imposed equal to zero under the
null as in model (3.1).
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(1.8) λ λtr i
i h

n

T= − −
= +
∑ ln( $ )1

1

where $λ i are the eigenvalues of the matrix S S S S11
1

10 00
1

01
− −  listed in descending order.  S11  and

S00  are the variance-covariance matrices of the residuals of a regression of Yt p−
*  and ∆Yt

respectively, on ∆ ∆Y Yt t p− − +1 1, ,K . S10 and S01  are the covariance matrices between the

residuals of the two equations.

A similar approach can be used to test the hypothesis of h  cointegrating vectors against

the alternative of h +1  cointegrating vectors.  In this case, the likelihood ratio test becomes:

(1.9) λ λtr hT= − − +ln( $ )1 1

In particular, when the test (1.9) is used to test the hypothesis of no cointegrating vectors

against the alternative of 1 cointegrating vector, the test is called the maximum eigenvalue test:

(1.10) λ λmax ln( $ )= − −T 1 1

Notice that the trace test (1.8) is testing for h cointegrating vectors, or that there are

n h−  unit roots in Yt
*  against the hypothesis that there are no unit roots, so all the elements of

Yt
*  are stationary.  This is a different set of hypotheses compared to the one tested by the Engle

and Granger procedure.  In the ADF test (1.3), in fact, under the null hypothesis, ρ = 1  and

there are n  unit roots in the system while under the alternative of ρ < 1 Yt  contains n −1  unit

roots.  This is exactly the hypothesis tested by the maximum eigenvalue test (1.10).  For the

purpose of this paper, only the λ max  test is directly comparable to the ADF and the Error

Correction tests introduced in the previous sections.

3.  ASYMPTOTIC POWER FUNCTIONS

Given that the traditional optimality theory cannot be applied to the case of tests for the

absence of cointegration, there is, in general, no reason to expect one test to perform uniformly
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better.  Almost all the literature comparing tests for cointegration uses Monte Carlo experiments

with various possible combinations of values for the parameters of the data generating process.

To understand the previous studies we need to know how the nuisance parameters affect the

power.  One way of capturing this is to compute the analytical power of the tests.  The

knowledge of which nuisance parameter enters the local power will help us design the correct

experiment and will suggest in which direction of the parameter space to look.

Since all tests are consistent, they all have power equal to one asymptotically and thus the

asymptotic power for fixed alternatives cannot be used to rank the tests.  The usual approach is

to examine a sequence of local alternatives (e.g. Van der Vault p.194).   In this case the tests

are all diverging at rate T  so we need a sequence of alternatives that collapses on the null at

rate T, leading to the use of the alternative ρ = +1 c T .  When c is equal to zero the errors ut

are integrated of order one.  For c  negative, the variables in equation (1.1) are cointegrated.

Using this parameterization and the results of Philips (1988) I evaluate the power of the tests for

the absence of cointegration previously presented.  This section is one of the main contributions

of this paper in that, in my knowledge, the analytical power of the ECRR, the Wald and the

residuals based tests for cointegration have never been computed before.  For this version of

the paper the asymptotic power functions are computed for the univariate case only.

3.1 ADF TEST

In the case of the ADF test, Phillips and Ouliaris (1990) show that, under the null, tα  has

a non-standard distribution that is a function of standard Brownian motions, and they compute

the critical values.  The authors also show that residuals-based tests are consistent provided that

first differences are used as dependent variables in the residual regression.  This paper goes one

step further and computes the local analytical power.
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LEMMA 1: When the model is generated according to (1.1) with n1 1= , then, as T → ∞ 9,

(2.1) $ '
β βols

d d
c

dB B K− ⇒ z − ze j e j e j1

2 1

1 2

where $βols  is the LS estimator in the cointegration regression (1.2) and B B B' = 1 2  is a

n ×1vector Brownian motion partitioned conformably to v t1 and v t2  with covariance

matrix Ω .  K c2  is a scaled Ornstein Uhlenbeck process such that:

K B c e B s dsc
s c

2 2 20
λ λ λ

λb g b g b g= + −z ( )   and

(i)  B Bd =   and K Kc
d

c2 2=   if z t1 0=  and z t2 0=

(ii)  B B Bd = − z   and K K Kc
d

c c2 2 2= − z  if z t1 0=  and z t2 1=   and a mean is

included in the regressions.

(iii)  B B B sBd = − − − −z z( ) ( )4 6 12 6λ λ  if z t1 1=  and z t2 1=  and mean and

trend are included in the regressions.

If D' = 0  and c = 0 , then K Bc
d d
2 2≡  and (2.1) coincides with the usual distribution for

spurious regressions as defined by Granger and Newbold (1974).  In the original definition of

spurious regression, there is no cointegration and indeed no relationship between the two

variables.  As Phillips (1986) shows, the same result is valid in the more general case in which

D ≠ 0 .  In this case, even though there is a relationship between the two variables, this

relationship is not consistently estimated; the estimated beta does not converge in probability to

the true value and the asymptotic distribution of Lemma 1 is the same as in Phillips and Ouliaris

(1990).

THEOREM 1: When the model is generated according to (1.1) with n1 1= , then, as

T → ∞ :

                                                                
9 From now on I adopt the conventional simplified notation B to denote B( )λ . All the integrals are
intended to be between 0 and 1, unless otherwise specified.
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 (2.2)   $

/

/t c
W J W J

W W J W W J

ADF

d
c

d d
c

d

d d
c

d d d
c

d
α

δ
⇒

−L
NM

O
QP

+ −L
NM

O
QP

+
z z z

z z z z−

1
2

12
2

1 12

2 1 2

1

2

1 12

2

1

2 1

1 12

1 2

2

e j
e j e j

+
−L

NM
O
QP −LNM OQP + − −

−L
NM

O
QP + −L

NM
O
QP

z z z z z z z z z z
z z z z z z z

−

−

W J W W J W dW J dW W W J dW W J W dW

W J W J W W J W W J

d
c

d d d
c

d d
c

d d d
c

d d
c

d d

d
c

d d
c

d d d
c

d d d
c

d

1 12 1

2
1

1 12 1 1 12 1 1

2 2 1 2

1

2

12 2 1 12 1 2

1

2

12

2

1 12

2 1 2

1

2

1 12

2

1

2
1

1 12

1 2

1

2

e j e j c h
e j e j e j

δ δ

δ

/

/ /

where $t ADF
α  is the t ratio test from the Augmented Dickey Fuller regression (1.3) and

J J Jc c c12 1
2 1 2

21= + −δ δc h /
.  Jic  are standard Ornstein-Uhlenbeck process defined as

J W c e W s dsic i
s c

i( ) ( ) ( )( )λ λ λ
λ

= + −z0   for i = 1 2, , Wi( )λ  are standard Brownian motions

and

(i)  W Wd =   and J Jc
d

c12 12=  if z t1 0=  and z t2 0= .

(ii)  W W Wd = − z   and J J Jc
d

c c12 12 12= − z  if z t1 0=  and z t2 1=

(iii)  W W W sWd = − − − −z z( ) ( )4 6 12 6λ λ and

J J J sJc
d

c c c12 12 12 124 6 12 6= − − − −z z( ) ( )λ λ  if  z t1 1=  and z t2 1= .

The result of Theorem 1 shows that the asymptotic distribution of the ADF test on the

residuals is a function of few parameters.  It depends on the alternative c  thorough the first

block of the test and the Ornstein-Uhlenbeck process.  The test also contains a nuisance

parameter δ  in the second block of the test and in the functional J c
d
12 .  Finally, although the

proof is presented for the univariate case, the test will depend on the dimension of xt .

When c = 0 , J W Wc12 1
2 1 2

21= + −δ δ( ) /  so the asymptotic distribution of the t  statistic

under the null is a function of standard Brownian motions and depends only on the dimension of
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xt  (see also theorem 4.2 in Phillips and Ouliaris (1990)).  So, while under the null hypothesis

the limiting distribution of the test is free of nuisance parameters, when c ≠ 0  the asymptotic

power depends on c  and on the value of δ , the correlation between error terms.  Notice that

the power does not depend on either the true β  or the variances of the errors.

3.2 EC, ECR AND WALD TESTS

Various papers have been written on the properties of the EC test. Assuming β  known,

Banerjee et al (1986) and Kremer et al. (1992) compute the asymptotic distribution of the EC

test in (1.5) for the case in which the correlation between the two error terms in (1.1) (δ  ) is

zero.  They also compute the power of the test under fixed and local alternative.  As the

mentioned paper shows, the asymptotic distribution of the EC test is non-standard and it is a

function of Brownian Motions.  The following theorem extends their results to the case in which

D  is different from zero10.

THEOREM 2: When the model is generated according to (1.1) with n1 1= , then as

T → ∞ :

(2.3) $
/ /

/
t

c

J
J J dWEC

c

c cα

δ
⇒

−
+z z z−

−

1 2 1 2

12
2

1 2 12
2

1 2

12 2c h e j e j e j

where  $t EC
α  is the t ratio test on the Error Correction term in (1.5), and J c12  and W2  are

defined as in Theorem 1.

As Zivot (2000) also shows the EC test has the same asymptotic distribution as Hansen’s

(1995) (Theorem 3) unit root test on ut  when ∆xt  is used as the stationary covariate.   When

                                                                
10 The results of this paper assume that the common factor restriction imposed by the ADF regression is
valid.  For a study on the effects of violation of this restriction on the DF test when the cointegration vector
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δ = 0 , as for example in the case in which xt  are strictly exogenous, the result of Theorem 2

agrees with of Kremer et al. (1992) in the particular case in which a = 1  (i.e. what they call “ a

common factor restriction ” is valid).

When c = 0 , J W Wc12 1
1 2

21= + −δ δb g /  and the asymptotic distribution of $t EC
α  coincides

with the result theorem 3 in Hansen (1995).  Under the null the test is not invariant with respect

to a nuisance parameter under the null.  For this reason a unique set of critical values for the

tests cannot be obtained.

As we showed, when the EC equation (1.5) is extended by adding a redundant

regressor, a test for no cointegration can be performed by looking at the significance of the

difference of the variables in level without the knowledge of the cointegrating vector.  This

transformation also renders the studentized test statistic invariant with respect to δ  under the

null. Banerjee et al. (1998) compute the distribution of this test under the null for the case in

which δ = 0 .  Theorem 3 presents the general asymptotic distribution of the test under the local

alternative T ρ − 1b g .

THEOREM 3: When the model is generated according to (1.1), then as T → ∞ :

(2.4)
( )

( )

1 /222 2
1 12 1 12

1 /21/2 22
1

ˆ
1

d d d d
c c

ECR

d

W J W J
t c

W
α

δ

 −  ⇒ +
 −  

∫ ∫ ∫

∫

( )

2

1 12 2 1 12 1 2

1/2 1/222 2 2

1 12 1 12 1

d d d d d
c c

d d d d d
c c

W J dW W J W dW

W J W J W

−
+

   −    

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

                                                                                                                                                                                                
is imposed, see Kremers et al. (1992). Ostermark and Hoglund (1998) generalize Kremers et al.(1992) results to
the case in which the cointegration vector is estimated.



15

where  $t ECR
α  is the t ratio test in equation (1.6), and J c

d
12  and W d

1  are defined as in

Theorem 1.

Under the local alternative, the ECR test depends not only on the particular alternative c ,

but also on the value of the nuisance parameter δ .  In contrast with the results for the EC test,

under the null the asymptotic distribution of the ECR is free of the nuisance parameter.  In fact

when c = 0 ,

$
/ /

t
W W dW W W W dW

W W W W W

ECR
d d d d d

d d d d d
α ⇒

−

−L
NM

O
QP

z z z z
z z z z

1 2 2 1 2 1 2

1
2

2
2

1 2

2 1 2

1
2 1 2e j

so in this case the asymptotic distribution of the test depends only on the dimension of xt  and it

is invariant of any other parameter of the DGP.  Zivot (2000) also computes the local power for

the ECR test in a slightly different model.

Under the null hypothesis of no cointegration, both α  and φ  in (1.6) are zero so, as

Boswijk (1994) suggests, the null hypothesis can be tested using a joint test on both parameters.

Theorem 4 computes the local power of Boswijk (1994) Wald test.

THEOREM 4: When the model is generated according to (1.1), then as T → ∞ :

(2.5) ( ) ( )1 1/222 2 2
12 12 2

ˆ 1 2 1d d
c cF c J c J dWδ δ

− −
⇒ − + − +∫ ∫

          
( ) ( )

( )

2 22 2

1 12 2 1 12 1 2 12 2 12 1 2

22 2

1 12 1 12

2d d d d d d d d
c c c c

d d d d
c c

W J dW W J W dW J dW J W dW

W J W J

− +
+

−

∫ ∫ ∫ ∫ ∫ ∫ ∫
∫ ∫ ∫

where $F  is the Wald test for the joint significance of α  and φ  in (1.6) and J c
d
12  and Wi

d

are defined as in Theorem 1.
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In this case too the only parameter entering the asymptotic distribution of the test are the

particular alternative c  and the correlation term δ .  The test does not depend on the variances

of the error term or the true value of the cointegrating vector.

For c = 0  the asymptotic distribution of the test does not depend on any nuisance

parameter and coincides with the result of Theorem 1 of Boswijk (1994):

$F
W W dW W W dW W W W dW W dW

W W W W

d d d d d d d d

d d d d
⇒

+ −

−

z z z z z z z
z z z

1
2

2 2

2

2
2

1 2

2

1 2 1 2 2 2

1

2

2

2

1 2

2

2e j e j e je je j
e j

3.3 JOHANSEN TEST

The ECM representation of the simple model (1.1) is

(2.6) ∆ Π Π ∆Y G Y L Y wt t t t= + + +− −1 1
* ( )

where Π = ′α γ  with α φ ρ φ βφ ρ1 12 22 121 1 1 1 1' ( )( ) [ ( ) ( )]( )= − + −  and

′ = − −γ β µ1 1 .  While under the null of no cointegration ρ = 1  and rank ( )Π = 0 , when

yt  and xt  are cointegrated ρ < 1 and rank ( )Π = 1.

The local alternative for the rank test suggested by Johansen (1995) is of the form:

H
Ta : Π = ′ +

′
αγ

α γ1 1

where α 1 and γ 1 are n s×  matrices.  Under the local alternatives the process has s  extra

cointegrating vectors, γ 1 , that enter the process with very small adjustment coefficients T −1
1α .

In the case of the λ max  test the relevant local alternative is:

H
Ta : Π =

′α γ1 1

where ′ = +α φ φ βφc 12 22 121 1 1( ) ( ) ( )  and ′ = − −γ β µ1 11 .
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Johansen (1995) discusses the power of the rank test under this general local alternative.

Since the maximum eigenvalue test is just a special case of the rank test, it can be shown that:

THEOREM 5: When the model is generated according to (1.1), then as T → ∞ :

(2.7) ( ){ 1
' ' '

max
ˆ max c c c ceig W W W dW dWWλ

−
⇒ +∫ ∫ ∫

( ) ( ) ( ) ( )1 1 1
' ' ' ' ' ' '

c c c c c c c c c c c cW W W dW A W W A dWW W W A A
− − − ′

+ + + 


∫ ∫ ∫ ∫ ∫

where maxeig Ml q  denotes the maximum eigenvalue of the matrix M, , W
W
W

=
L
NM

O
QP

1

2

,

A
c

W Jc c c' '/=
−

L
NM

O
QP− z0

1 2 1 2 12δc h  and

(i)  W
W
Jc

c

=
L
NM

O
QP

1

12

 if  z t1 0=  and z t2 0=  and no mean is included in the VAR

(ii)  W
W
Jc c=

L

N
MMM

O

Q
PPP

1

12

1
 if z t1 0=  and z t2 1=  and the mean is restricted to enter the

Error Correction term.

(iii)  
1

12

1

d

d
c c

W
W J

 
 

=  
  

 if 1 1tz =  and 2 1tz = , a mean is restricted to enter the Error

Correction term and the VAR is estimated with a mean. W d
1  and J c

d
12  are demeaned

Brownian Motions.

If the mean is not restricted to enter the Error Correction term then W
W

Jc

d

c
d=

L
NM

O
QP

1

12

 and the

Brownian Motions are demeaned for case (ii) and detrended for case (iii).  See also Johansen
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(1995) and Saikonnen and Lutkepohl (1999).  Again the only parameter entering the power

function is the correlation coefficient δ .  Under the null hypothesis, W Wc =  and the distribution

of the test is free of nuisance parameters as in Johansen and Juselius (1990).

4. MONTE CARLO RESULTS

Previous Monte Carlo comparisons of cointegration tests have shown that different tests

can perform very differently depending on the particular design.  Haug (1996), for example,

compares 9 different tests for cointegration on the basis of power and size distortions due to the

presence of moving average component for endogenous or exogenous xt .  Haug found that, in

general, the single equation tests have smaller size distortions, but also have lower power than

system-based tests.  The paper concludes by recommending the application of both sets of tests

in empirical exercises.

As Haug (1996) also points out “A theory that gives the direction in which to experiment

would be necessary but this theory is not available at the moment”.  The analytical power

computed in the previous section tells us exactly which parameters are important for power and

gives a precise indication of which direction we need to look in the Monte Carlo analysis: The

asymptotic distribution is a function of a unique nuisance parameter, the number of unit roots in

the system and the local alternative.  Because of the lack of asymptotic normality and the fact

that the test is not invariant on the particular alternative, an uniformly most powerful test for

model (1.1) cannot be computed.  There is no reason then why we should expect one of the

tests to behave uniformly better than the others.  At the same time, if the right hand variables in

(1.2) were highly correlated with the errors from the cointegration regression (i.e. delta is large),

we would expect a full system approach to exploit this correlation, to have smaller standard

errors, and to perform better.

Using a Monte Carlo experiments, this section compares the power of the tests for the

absence of cointegration presented in the previous sections.
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4.1 LARGE SAMPLE

The power functions are computed as the probability that the tests are less than some

critical value.  Since we have an expression for the limit distribution of all the tests we can

approximate the asymptotic power by simulating the distributions presented in the previous

sections.  For this experiment I consider c = − − − −0 1 5 10 15, , , ,  and

δ = 0 0 2 0 3 0 5 0 7 0 9, . , . , . , . , . , negative values of delta give similar results.  Each Brownian

Motions piece in the asymptotic distribution is approximated by step functions using Gaussian

random walk with T=1000 observations.  To eliminate initial condition effects, in practice I

generated 1100 observations and discarded the first 100.  For example, T uct
−2 2Σ  is used to

approximate J c1
2z , where u c T uct ct t= + +−1 1 1b g ε , and ε1t  is randomly generated form a

standard normal.  5000 replications for are used to compute the critical values and the rejection

probabilities for each  c  and delta..

Since we showed that the local power for all the tests depends on a nuisance parameter,

the power functions of the tests are compared for different values of delta.  The large sample

results in Figure 1 confirm the intuition.  For δ  small, in a close neighbor of one, the ECR test

has slightly higher power than the ADF and Wald test.  For δ  equal to zero using a full system

approach is inefficient and the ADF, Wald and ECR tests perform better than the λ max test.  As

δ  increases, all the tests with the exception of the ADF test perform better.  As expected, given

that they are both based on the conditional error correction equation on a rotated model, Wald

and ECR tests have in general similar large sample power.
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For large values of delta, we expect the single equation approach of the ADF test on the

residuals to have very low power.  In fact when δ  is higher than 0.5, this test performs badly

when compared to the other tests.  Although the power of the maximum eigenvalue test is

significantly higher than the power of the ADF test, the power of both the ECR and the Wald is

even higher than the Johansen’s test.  For δ  equal to 0.9, the difference between the ADF and

the other tests is even more significant.  All other tests have very similar power.

Figure 2 and 3 show the local power of the tests for the demeaned and detrended cases.

For the Wald and the ECR I consider the case in which a mean enters the cointegration

regression but the mean or the trend in equation (3.6) are left unconstrained. Although the tests

have generally lower power when I include a deterministic, as is the general case for unit root

tests, the rankings between the tests is unchanged

4.2 SMALL SAMPLE

To examine the usefulness of these asymptotic approximation in practice we need to

study the small sample behavior of the tests.  Using the DGP of equation (1.1), I randomly

generate the errors from a bivariate Normal with mean zero and variance-covariance matrix

Ω =
L
NM

O
QP

ω ω ω δ

ω ω δ ω
1
2

1 2

1 2 2
2

I consider δ = 0 0 3 0 5 0 7 0 9, . , . , . , .  and c = − − − −0 1 5 10 15, , , ,  that corresponds for

T=100 to values for ρ = 1 099 0 95 0 9 085, . , . , . , . .  The tests are all invariant to β  and the

variances so I can choose any number.  I use ω ω1 2 0 25= = .  and β = 1.  Table 1 presents the

size adjusted rejection rates for the case in which there is no serial correlation in the error terms.

Since no serial correlation is assumed all the regression are estimated with no lags.
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As Table 1 shows, all tests have a low power when the root is close to one.  For δ

small, the ECR and the Wald tests have in general power higher than all the other tests for any

value of ρ .  The relative ranking of the tests is the same as in the large sample case.  When

delta is 0.9, the difference in the small sample power of the tests is significant even when ρ is

large.

More interesting is the case in which there is some serial correlation in the error terms.  It

is known that in this case tests for integration and cointegration may have very severe size

distortions.  Since a test with very good power but very bad size may not be the best choice, it

is important to evaluate the size properties of the tests.  For this experiment I looked at case (ii)

in which there in no drift in the variables but a mean is present in the cointegration regression.

The data are generated as in model (1.1) with ( ) ( )1 1t tL v L ε− Φ = + Θ  and 11 12

21 22

φ φ
φ φ

 
Φ =  

 
,

11 12

21 22

θ θ
θ θ

 
Θ =  

 
 and T=100 observations.  All the regressions are estimated with a mean and

the lag length is chosen by BIC with a maximum of four lags.  Table 4 presents the results for

different combinations of values for the autoregressive and moving average components.  In

general if only an autoregressive component is present in the error terms the BIC performs really

well in choosing the appropriate number of lags.  In this case the Wald test has the worse

performance in term of size distortions with an empirical size of 10%.  As it is well known, large

size distortions occur when large negative roots are present in the moving average components.

In this case all tests present large empirical sizes with a remarkable performance of the Wald

test that shows a size of less than 20% when all the other tests are well above 50%.

As a general conclusion, table 1-3 and table 4 seam to indicate that the ECR and the

Wald test, although the less commonly used of the tests presented in this paper, not only
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perform better than the other tests in term of power in large and small samples, but they are also

not worse or better in term of size distortions.

5. EMPIRICAL APPLICATION

As an empirical application I analyze whether there exists a stable relation between

money balances and the determinants of money demand.  There is a vast literature testing for

cointegration in the general money demand equation m p y it t t t− = + +α β γ  or its various

restricted forms.  The results are in general inconclusive; the rejection of the hypothesis of no

cointegration is very sensitive to the sample size and the particular data used.  Miller (1991), for

example, considers 5 alternatives for the monetary aggregates, two alternatives for the interest

rate and three different specifications for the money demand equation.  The data are quarterly

data for the period from 1959 to 1987.  The ADF test on the residuals of the 15 cointegration

regressions, finds cointegration only in few cases.  The results change with the choice of the

interest rate and the lag length used in the test.

A full system approach has also been used in various cases: Hoffman and Rasche (1991),

Friedman and Kuttner (1992), Hafer and Jansen (1991), among others, studied the money

demand relation in a Vector Error Correction Model (VECM) model and used the Johansen

tests to test for cointegration.  Some evidence of cointegration can be found in data up to the

beginning of 1990 although the results are again highly sensitive to the choice of the monetary

variable and the interest rate.

 Miyao (1996) argues that the evidence of cointegration found in previous studies is not

strong even though the data show sign of cointegration in samples up to 1990.  When the

sample is increased to include data up to 1993, the hypothesis of no cointegration cannot be
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rejected.  Only Johansen’s maximum eigenvalue test finds cointegration in few cases. Miyao

argues that this is due to size distortions in Johansen’s test and concludes that the rejections of

the maximum eigenvalue test are highly questionable.

Following our analysis above, in cases in which the right hand variables in the

cointegration vector and the errors in the cointegration equation are highly correlated, the power

of the ADF test is so low that a rejection is highly unlikely.  The money demand equation is a

clear example of a situation in which we would expect the correlation between the residuals to

be large and a full system approach to have better power.

I test for cointegration in the three version of the money demand equation: one with

unrestricted coefficients for both the income and the interest rate, one where the coefficient on

income is imposed equal to one and finally one in which the interest rate is not included.  The

data considered are from the Federal Reserve Economic Database (FRED).  I use quarterly

data from the first quarter of 1959 to the fourth quarter of 1997.  The variables considered are

the logarithm of GDP in 1992 dollars, the logarithm of M2 and real GDP deflator.  For the

interest rate I follow Miyao (1996) and use the three-month Treasury bill rate not in logarithm

transformation.  For M2 and the interest rate quarterly data are obtained by averaging monthly

observations over the months within the quarter.

Preliminary unit roots tests are conducted on all variables and are available upon request.

We then test for cointegration between m pt t−  and yt  and it , and between m p yt t t− −  and

it .  Since it is arguable that the interest rate does not contain a unit root, we also test for

cointegration only between m pt t−  and yt .  For all cases a constant is included in the

regressions and for both the ECR and the Wald test the constant is also jointly tested to be

equal to zero.  The lag length is chosen using BIC in the residual regression for the ADF test and

on a VAR on differences and levels for all other tests.
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Table 5 presents the results for all the tests considered where the regressions are

estimated with mean and trend to allow for a drift in the variables.  As we can see from the

table, the ADF test never rejects the null of no cointegration.  The maximum eigenvalue strongly

rejects in all three models while the Wald test rejects in most cases.  Since we can expect that

there is a lot of simultaneity in the money demand equation, table 5 also presents an estimate for

D .  The estimated value for the correlation at frequency zero are between 0.3 and 0.8.  In light

of my theoretical results it is not surprising that the ADF test is not able to reject the null of no

cointegration.  On the other hand, system based tests reject the null more frequently suggesting

the existence of cointegration in the money demand equation.  Obviously these results are only

preliminary and a more in deep analysis of the money demand problem is necessary.  At the

same time, Table 5 and the theoretical analysis of this paper can help in understanding the

puzzling empirical results that different tests for cointegration can lead to contradictory

conclusions.

6. CONCLUSIONS

Over the past years testing for cointegration has become a very important step in any

empirical analysis.  This paper illustrates how the analytical analysis of the local power of the

tests can help identifying what nuisance parameters are relevant.  A complete theoretical

understanding of current methods can help in designing the appropriate Monte Carlo experiment

to evaluate the relative performance of the tests.  In particular, this paper look at the class of set

of tests for the absence of cointegration and show that a very important role is played by the

correlation of the independent variable with the errors of the cointegration regression.  As the

intuition suggests, when this correlation is very high, system approaches like the Johansen

maximum eigenvalue or tests of the Error Correction model can exploit this correlation and

significantly outperform single equation tests.  An empirical application to the money demand
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equation explains why the Augmented Dickey Fuller test on the residuals of the cointegration

regression and other tests can give contradictory results.

Further research still needs to be done to fully understand how all the tests for

cointegration work.  The absence of asymptotic normality and the fact that under the null the

cointegration vector is not identified, destroy the usual optimality theory.  This new

understanding of the asymptotic power functions of tests for the absence of cointegration is a

good stepping-stone for future research.
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Figure 1: Large Sample Power
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Large Sample Power delta= 0.5
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Large Sample Power delta= 0.9
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Figure 2: Large Sample Power, Demeaned case.
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Large Sample Power delta=0.5 , demeaned
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Large Sample Power delta=0.9 , demeaned
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Large Sample Power delta=0.3 , detrended
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Figure 3: Large Sample Power, demeaned and detrended case
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Large Sample Power delta=0.5 , detrended
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Large Sample Power delta=0.7 , detrended
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Large Sample Power delta=0.9 , detrended
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Table 1: Size adjusted small sample power, no constant, no serial correlation

-c
δ \ ρ

0
1

5
0.95

10
0.90

15
0.85

20
0.80

0
ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.141
0.208
0.117
0.083

0.386
0.493
0.326
0.202

0.695
0.802
0.615
0.422

0.912
0.955
0.864
0.679

0.3 ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.141
0.231
0.138
0.090

0.373
0.542
0.385
0.239

0.687
0.841
0.701
0.492

0.913
0.971
0.908
0.761

0.5 ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.134
0.267
0.190
0.121

0.353
0.645
0.516
0.338

0.670
0.907
0.818
0.643

0.905
0.986
0.965
0.884

0.7 ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.129
0.358
0.330
0.215

0.324
0.645
0.757
0.586

0.646
0.907
0.951
0.896

0.893
0.986
0.995
0.990

0.9 ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.106
0.700
0.788
0.684

0.294
0.984
0.988
0.986

0.604
1.000
1.000
1.000

0.870
1.000
1.000
1.000

Note: The power is computed with T=100 and 5000 replications.
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Table 2: Size adjusted small sample power, demeaned, no serial correlation

-c
δ \ ρ

0
1

5
0.95

10
0.90

15
0.85

20
0.80

0
ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.098
0.113
0.102
0.063

0.227
0.268
0.227
0.118

0.454
0.514
0.452
0.250

0.702
0.758
0.695
0.451

0.3 ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.093
0.115
0.107
0.068

0.213
0.298
0.267
0.138

0.431
0.560
0.515
0.299

0.691
0.806
0.764
0.521

0.5 ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.084
0.123
0.132
0.075

0.191
0.349
0.348
0.193

0.387
0.655
0.652
0.411

0.650
0.883
0.868
0.683

0.7 ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.069
0.145
0.198
0.112

0.154
0.487
0.565
0.352

0.321
0.814
0.853
0.693

0.588
0.973
0.976
0.916

0.9 ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.041
0.309
0.550
0.382

0.086
0.848
0.944
0.908

0.217
0.993
0.998
0.998

0.462
1.000
1.000
1.000

Note: The power is computed with T=100 and 5000 replications.



37

Table 3: Size adjusted small sample power, demeaned and detrended , no serial correlation

-c
δ \ ρ

0
1

5
0.95

10
0.90

15
0.85

20
0.80

0

ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.072
0.075
0.075
0.059

0.155
0.162
0.153
0.100

0.317
0.327
0.300
0.180

0.535
0.538
0.508
0.319

0.3

ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.069
0.076
0.077
0.059

0.140
0.166
0.168
0.106

0.294
0.350
0.348
0.206

0.502
0.587
0.574
0.378

0.5

ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.065
0.074
0.085
0.062

0.124
0.185
0.218
0.131

0.253
0.407
0.453
0.286

0.438
0.681
0.709
0.512

0.7

ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.050
0.080
0.114
0.075

0.087
0.243
0.361
0.228

0.178
0.561
0.691
0.507

0.344
0.839
0.905
0.797

0.9

ADF
ECR
Wald
λmax

0.050
0.050
0.050
0.050

0.024
0.094
0.314
0.218

0.032
0.535
0.844
0.769

0.072
0.906
0.988
0.985

0.174
0.994
1.000
1.000

Note: The power is computed with T=100 and 5000 replications.
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Table 4: Size distortions

AR errors MA errors ADF ECR Wald λmax

11 22 0φ φ= = 11 22 0ϑ ϑ= =
0.059
(1.1)

0.057
(1.3)

0.102
(0.3)

0.058
(1.1)

11 22 0.2φ φ= = 11 22 0ϑ ϑ= =
0.060
(1.1)

0.059
(1.3)

0.102
(1.3)

0.063
(1.7)

11 22 0.8φ φ= = 11 22 0ϑ ϑ= =
0.061
(1.1)

0.084
(1.3)

0.151
(1.3)

0.112
(2.1)

11 22

12 21

0.2
0.5

φ φ
φ φ

= =
= = 11 22 0ϑ ϑ= =

0.036
(1.3)

0.045
(1.3)

0.116
(1.3)

0.075
(2.1)

11 22 0φ φ= = 11 22 0.2ϑ ϑ= =
0.068
(1.1)

0.064
(1.3)

0.098
(1.3)

0.061
(1.7)

11 22 0φ φ= = 11 22 0.8ϑ ϑ= =
0.069
(2.7)

0.065
(3.0)

0.122
(3.0)

0.073
(3.7)

11 22 0φ φ= =
  11 22 0.2ϑ ϑ= =

11 22 0.5ϑ ϑ= =
0.090
(1.1)

0.065
(1.8)

0.115
(1.8)

0.067
(3.0)

11 22 0φ φ= = 11 22 0.8ϑ ϑ= = −
0.673
(1.6)

0.592
(1.9)

0.194
(1.9)

0.629
(2.4)

11 22 0φ φ= =
11 22 0.8ϑ ϑ= = −

11 22 0.5ϑ ϑ= =
0.629
(1.5)

0.290
(1.5)

0.159
(1.5)

0.537
(2.2)

Note: The size distortions are computed with T=100 and 5000 replications.  Lags in each regression are
chosen using BIC with a maximum of 4 lags: the number in parenthesis represents the average number of
lags chosen by BIC.
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Table 5: Cointegration tests for the money demand equation.

Model ADF λ max ECR WALD $D

m p c y it t t t− = + +β γ -3.04 (1) 78.90 (3)** 0.506 (3) 14.58(3)** 0.39, -0.30

m p c yt t t− = + β -2.95(1) 61.97 (1)** -1.43 (1) 2.22 (1) 0.56

m p y c it t t t− − = + γ -3.08 (4) 55.98 (2)** -3.226 (2) 15.03 (2)** -0.76
Note: The number in parenthesis represent the number of lags selected by BIC. The maximum possible number of lags was set to 4.
Critical values are obtained by simulations, asterisk denotes rejection at 5%.



40

APPENDIX

LEMMA A1: When the model is generated according to (3.1) with T cρ − =1b g , then,
as T → ∞ 11:

(i)  T x x B Bt
d

t
d d d− ⇒ z2

1 1Σ
'

'

(ii)  T x u B Kt
d

t
d

c
− ⇒ z2

1 2Σ

(iii)  T u Kt c
− ⇒ z2 2

2
2Σ

(iv)  T u K dWt t c
−

− ⇒ z1
1

1 2
2Σ Σε /

(v)  T x B dWt
d

t
d−

− ⇒ z1
1

1 2
1Σ Σε /

where i = 1 2, ,  the summation goes from 1 to T and ⇒  denotes weak convergence,

ii
denotes the ii element of a matrix.  B B B' '= 1 2  is a n ×1vector Brownian

motion partitioned conformably to v t1 and v t2 ,  with covariance matrix Ω .  K c2  is a

scaled Ornstein Uhlenbeck process such that:  K B c e B s dsc
s c

2 2 20
λ λ λ

λb g b g b g= + −z ( )  and

(1)  if z t1 0=  and z t2 0= , x xt
d

t=  and B Bd = .

(2)  if z t1 0=  and z t2 1= , x x xt
d

t= −  and B B Bd = − z .

(3)  if z t1 1=   and z t2 1= , xt
d  is xt  detrended by OLS and

B B B sBd = − − − −z z( ) ( )4 6 12 6λ λ .

Proof of Lemma A1:

By the multivariate FCLT and Phillips(1987) we have that T Bss

t1 2
1

/ ε λ
=∑ ⇒ b g  and

T u Kt c
− ⇒1 2

2
/ λb g .  Results (i)-(iii) follows from the Continuos Mapping Theorem (CMT)

while (iv) and (v) follows directly from Chan and Wei(1988) or Phillips(1987).

Proof of Lemma 1:
$β  can be estimated by regressing yt

d  on xt
d .  If z t2 0=  then x xt

d
t=  and y yt

d
t= , for

case (ii) both variable are demeaned and for case (iii) both variables are demeaned and

                                                                
11 I follow the usual convention and suppress  the (λ) from the Brownian motion terms. Unless specified
otherwise, all the integrals are intended to be between 0 and 1.
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detrended.  In the general case then $β β− = −
−

−T x T x ut
d

t
d

t
d2 2 1

2Σ Σc he j c h .  From  LEMMA

A1 and the CMT we have that $β β− ⇒ z z−

B B Kd d
c

d
1

2 1

1 2e j e j  .

COROLLARY A1: When the model is generated according to (3.1) withT cρ − =1b g  ,
then, as T → ∞ :

(i)  T u At
d

c
d

c
d

c
d− ⇒2 2

Σ $ '
η η

(ii)  T u u c A d B dBt
d

t
d

c
d

c
d

c
d

c
d

c
d

c
d−

− ⇒ + z1
1 1Σ ∆$ $ ( ) '

' '
η η η η

(iii)  s d c
d

c
d

ξ η η2 21⇒ ( ) ' Ω

where  $ut  are the residuals from the cointegration regression (3.2) and s T tξ ξ2 1 2= − Σ $  is

the estimated variance of the residuals of the ADF regression.

η c
d d d

c
dB B K' = −LNM

O
QPz z−

1

2 1

1 2 1e j e j , A
B B K

B K K
c
d

d d
c

d

d
c

d
c

d
=
L
N
MM

O
Q
PP

z zz z
1

2

1 2

1 2 2

2 , B
B

Kc
d

d

c
d=

L
NM

O
QP

1

2

 and

B
B
B

=
L
NM

O
QP

1

2

.

Proof of Corollary A1:

(i) By OLS projections, we can write $ $ ' $ $ 'u u y x u xt t
d

t
d

t
d

t
d

t
d= = − = − −β β βe j

By Lemma A1 and CMT T u K B B K Bt c
d d d

c
d d1 2

2 1

2 1

1 2 1
/ $ '⇒ − z z−e j e j  so

T u K B B K At c
d d d

c
d

c
d

c
d

c
d−

−

⇒ − =z z z2 2
2

2

1

2 1

1 2

2
Σ $

'e j e j η η

(ii) Follows from the same exact argument of Phillips and Ouliaris (1990).
The only difference is that now there is the extra piece ( )ρ − −1 1ut .  In fact we can write

∆ ∆ ∆ ∆$ $ $u u u xt t
d

t
d

t
d= = − −β βe j .  u u tt

d
t= − −$ $γ γ0 1  and x x tt

d
t= − −$ $µ µ0 1  where $γ i

and $µi  are the OLS estimates from regressing ut  and xt  on a mean and trend (or mean

only for z t1 0= ).  Then ∆ ∆u ut
d

t= − $γ 1  with $γ 1  converging at rate T  and
∆ ∆x xt

d
t= − $µ1  if detrended.
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Substituting we have that

∆ ∆$ $ $ $ $ $ $u u u v vt
d

t t t t= = − + − − − + − − −−ρ β β γ β β µ β β µ1 1 2 1 1 1 1b g e j e j e j .

Also u u xt t t− − −= + −1 1 1$ $β βe j  so

∆ $ $ $ $ $ $ $u u v v xt
d

t t t t= − + − − − + − − + − −− −ρ β β γ β β µ µ β β ρ1 11 2 1 1 1 1 1b g e j e jb g e jb g
Write v v b vt t t2 1− − =$ 'β βe j .  $' 'b v vt c t t⇒ =η ζ  says.  Following the same exact argument

in Phillips and Ouliaris (1990) p 183, I can write w d Lt t= ( )ζ  that is an absolute summable
sequence.  The variance of the orthogonal sequence ξ t  can the be written as d c c( ) '1 2η ηΩ .
If the lag order in (3.3) is large enough to capture the correlation structure of the errors it can
be shown that, conditionally on ηc ,

∆ ∆$ ( ) $ ( ) $ $ ( ) $ $ ( ) ( ) $u d u d d d L x d L u wt
d

t t t t= − − + − − + − − + +− −1 1 1 1 11 1 1 1 1ρ γ β β µ µ β β ρb g e j b g e jb g
Note that:
T u ut t k

−
−

1Σ∆ ∆$ $  is op ( )1 , d T u d T u Tt t( ) $ $ ( ) $ ( $ )/ /1 1 01
1 1

3 2
1

1 2
1

−
−

−
−= ⇒Σ Σγ γ  since T1 2

1
/ $γ  is

Op ( )1 .

T u K B B K Bt c
d d d

c
d d−

−

−

⇒ − =z z z z3 2
1 2 1

2 1

1 2 1 0/ $ 'Σ e j e j  since K c
d
2 0z =  and Bd

1 0'z = .

Similarly d T ut( ) $ $ $1 01
1 1 1β β µ µ− − ⇒−

−e j b gΣ  since T $µ µ1 1−b g  is Op ( )1 .

Also T u x B K B B K Bt t
d

c
d d d

c
d d−

− −

−

⇒ − =z zz z2
1 1 1 2 1

2 1

1 2 1

2
0Σ $ e j e j  so

$ $ $ $β β ρ β β− − = − ⇒−
− −

−
− −e jb g e j1 01

1 1
2

1 1T u x cT u xt t t tΣ Σ

Using the above results it easy to see that :
T u u cT u b T z w o c A d B dBt

d
t
d

t t
d

t p c
d

c
d

c
d

c
d

c
d

c
d−

−
−

−
−

−= + + ⇒ + z1
1

2
1

2 1
1 1 1Σ ∆ Σ Σ$ $ $ $' ( ) ( ) '

' '
η η η η .

(iii) If the log order p in the autoregressive part of the ADF test is large enough to capture the
correlation structure of the errors (see Phillips and Ouliaris (1990) theorem 4.2), the
estimates of the ADF regression will be consistent. ( $α ρ→ − 1).
$ $ $ $ ( ) $ $ ( ) $ $ ( )ξ α γ β β µ µ β β ρt t t t tu u lags d d d L x w= − − = − + − − + − − +− −∆ 1 1 1 1 11 1 1e j b g e jb g
s T T w o dt t p c

d
c
d

ξ ξ η η2 1 2 1 2 21 1= = + ⇒− −Σ Σ Ω$ ( ) ( ) '

Proof of Theorem 1:

The ADF test statistic is the usual t ratio test for the regression (3.3):
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t
T u M u

s T u M u
u

v u

α =
−

−

−
− −

1
1

2
1 1

1 2

$ $

$ $

'

' /

∆

Under the condition for Lemma 1 and Lemma 2 ,

t
T u u o

s T u o

t t p

t p

α

ξ

=
+

+

−
−

−
−

1
1

2
1

2 1 2

1

1

Σ ∆

Σ

$ $ ( )

$ ( )
/

By Corollary A1,

t c
d A

d

d B dB

d A

c
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d

α

η η

η η

η η

η η η η
⇒ + z( ) '

( ) '

( ) ' '

( ) ' '

/

/ / /

1

1

1

1

1 2

1 2 2 1 2 1 2
Ω Ω

Define Γ
Ω

Ω
=
L
NM

O
QP

11
1 2

22
1 2

0

0

/

/ . Notice that B Wc c= Γ  and B W= Γ δ  and where W
W
Jc

c

=
L
NM

O
QP

1

12

and W
W
Wδ =
L
NM

O
QP

1

12

.

η η η η η η η ηc
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d

c
d d

c
d

c
d dA B B W W W W' ' ' ' ' '' '= = =z z zΓ Γ Ω22

with ηd d d
c

dW W J' = −LNM
O
QPz z−

1

2 1

1 12 1e j e j
Similarly η η η ηc

d
c
d

c
d d

c
d dB dB W dW' ' ' 'z z= Ω22 .

Finally η η η ηc
d

c
d

c
d

c
d' '

/ / / '
Ω Ω Ωc h e j1 2 1 2 1 2=

Since η c
d d d

c
dB B K' /

/

/
.
/Ω

Ω

Ω Ω Ω
1 2

1

2 1

1 2
11
1 2

21 11
1 2

2 1
1 21
0

= −LNM
O
QP
L
NM

O
QP =z z−

−e j e j
Ω22

1 2
1

2 1

1 12
2 1 2

1/ /
− + −L
NM

O
QPz z−

W W Jd d
c

de j e j c hδ δ

Substituting these expressions in the tests, all the terms involving the variances simplifies, and
only δ appears in the asymptotic power as stated in Theorem 1.

Note that when c = 0 , Bc  and Ac in our notation coincide with B and A  matrices in Phillips
and Ouliaris (1990) and the asymptotic distribution of the tests coincides with Theorem 4.2
in Phillips and Ouliaris.

Proof of Theorem 2:
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Following the same methodology of Sims, Stock and Watson (1990) rewrite equation (3.5)
as
∆y zt t t= +'γ ε2 where z u x x x y yt t t t t p t t p' = − − − − −1 1 1∆ ∆ ∆ ∆ ∆K K  and

γ α ϕ π π π π= 11 1 21 2L Lp p .

Let ϒ denotes the ( ) ( )2 2 2 2p p+ × + diagonal matrix

ϒ =

L

N

MMMM

O

Q

PPPP

T
T

T

0 0 0
0 0 0

0
0 0
M O M

L

With this notation it is easy to show the asymptotic distribution of the LS estimator of
equation (3.5) $γ .
We can write

(C.1) ϒ − = ϒ ϒ ϒ− − − −( $ ) 'γ γ ξ1 1 1 1
2Σ Σz z zt t t tc h c h  where

ϒ ϒ =− −

−
−

−
−

−
− −

−
− −

−
−

− −
−

−
−

−
− −

−
−

−
−

−
− −

−
− −

1 1

2
1

2 3 2
1

3 2
1 1

3 2
1

3 2
1

1 2 1
1

1

3 2
1 1

1
1

1
1

2 1
1

3 2
1

Σ

Σ Σ ∆ Σ ∆ Σ ∆
Σ ∆ Σ∆ Σ∆ ∆ Σ∆ ∆

Σ ∆ Σ∆ ∆ Σ∆ Σ∆ ∆

Σ ∆

z z

T u T u x T u x T u y
T u x T x T x x T x y

T u x T x x T x T x y

T u y T

t t

t t t t t t t p

t t t t t t t p

t t t t t t t p

t t p

'

/ / /

/

/

/

c h

L
L
L

M M M O M
−

−
−

− −
−

−

L

N

MMMMMM

O

Q

PPPPPP1 1
1

1 2Σ∆ ∆ Σ∆ ∆ Σ∆x y T x y T yt t p t t p t pL

The convergence of this matrix can be analyzed piece by piece.
T u Kt c

−
− ⇒ z2

1
2

2
2Σ by Lemma 1.

T u xt t
−

− →3 2
1 0/ Σ ∆  since T u x T u v K dBt t t t c i

−
−

−
−= ⇒ +z1

1
1

1 1 2 1 1Σ ∆ Σ ΣΓ , by Phillips(1988)

where Γ1 11 1,i iE= ε εb g .  Similarly we can show that T u yt t p
−

− − →3 2
1 0/ Σ ∆  so that we have

the usual block diagonality between stationary and non-stationary variables.
For the stationary block we have that T x T vt t

−
−

−
−= →1

1
2 1

2 1
2

11Σ∆ Σ Ω,

T x x T v vt t t t
−

−
−

−= →1
1

1
1 1 1 1 1Σ∆ ∆ Σ Γ ,

T x y T v vt t p t t p p
−

−
−

−= →1 1
1 2 12Σ∆ ∆ Σ Γ ,  where Γ12 11 2,i iE v v= b g

T yt p
−

− →1 2
22Σ∆ Ω

and T x yt t p p
−

− − −→1
1 12 1Σ∆ ∆ Γ , so that
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ϒ ϒ ⇒

L

N

MMMMMM

O

Q

PPPPPP

− −
−

−

z
1 1

2
2

11 1 1 12

1 1 11 12 1

12 12 1 22

0 0 0
0
0

0

Σ
Ω Γ Γ
Γ Ω Γ

Γ Γ Ω

z z

K

t t

c

p

p

p p

'
, ,

, ,

, ,

c h

L
L
L

M M M O M
L

Finally we have that

ϒ =

L

N

MMMMMM

O

Q

PPPPPP
⇒

L

N

MMMMMM

O

Q

PPPPPP

−

−
−

−

−
−

−
−

z
1

2

1
1 2

1
2

1
1 2

1
2

2 1
1 2

2 2

11

2

Σ

Σ
Σ∆

Σ∆

Σ∆

Ω

z

T u
T x

T x

T y

K dW
Z
Z

Z

t t

t t

t t

t t

t p t

c

i

p

ε

ξ
ξ
ξ

ξ

θ

c h
M M

.
/

The convergence of the first element comes directly from Lemma1, while the convergence of
the other elements of the vector to (multivariate) normal distributions comes form the
stationarity of ∆xt  and ∆yt .
Given the block diagonality the asymptotic distribution of the parameter of interest is

T K K dWc c
$

.
/α α θ− ⇒ z z−b g e j e jΩ2 1

1 2
2
2

1

2 2

If enough lags are included in the regression to get rid of the serial correlation (p is assumed

to be known) the standard error for $α  converges to θ Ω2 1
1 2

2
2

1 2

.
/

/
K cz −e j  and the local

asymptotic distribution of the t-stat for α is:

t
T

K

K K dW

Kc

c c

c

$

.
/

/

.
/

.
/

/α

ρ θ

θ

θ

θ
=

−
+z

z z
z−

−

−

1

2 1
1 2

2
2

1 2

2 1
1 2

2
2

1

2 2

2 1
1 2

2
2

1 2

b g
e j

e j e j
e jΩ

Ω

Ω

Since how shown in Lemma2, K Jc c2 22
1 2

12= Ω /  and B W1 11
1 2

1= Ω /  and Ω Ω2 1
1 2

22
1 2 2 1 2

1.
/ / /

= − δc h

the t-stat simplifies to t
c

J

J J dW

Jc

c c

c

$ / / /α

δ
=

−
+z
z z

z−

−

−
1 2 1 2

12
2

1 2

12
2

1

12 2

12
2

1 2c h e j
e j e j

e j

Proof of Theorem 3:
To compute the local asymptotic power of the ECR test we can follow the same approach
used to prove Theorem 1 and Theorem 2.  Equation  (3.6) can be written as

(C.2) ∆ ∆ ∆ ∆y u x x x yt t t t i t ii

p
i t ii

p
t= + + + + + +− − − −∑ ∑µ α ψ ϕ π π ξ*

1 1 1 2 2
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so that the model is again in the same framework of Sims, Stock and Watson(1990) with 2
non-stationary and 2p+1 stationary variables. α  is defined as in (3.5) such that  with
θ defined in note 1.  The coefficient ψ  on the redundant regressor is truly zero.  Since the
mean has been moved back in the error correction term, the true value for µ*  is also zero.

The model can be written in compact form as ∆y zt t t= + +µ γ ξ* ' 2 .  As for Theorem 1 $γ
can be estimated by first detrending both the right and the left side of the equation.
∆y zt

d
t
d

t
d= +'γ ξ 2  where

z u x x x x y yt
d

t
d

t
d

t
d

t
d

t
d

t
d

t
d' = − − − − − −1 1 1 1 1 1∆ ∆ ∆ ∆ ∆K K ,

γ α ψ π π π π' = 11 1 21 2L Lp p  and

ϒ  is now  a ( ) ( )2 4 2 4p p+ × + diagonal matrix

ϒ =

L

N

MMMMMM

O

Q

PPPPPP

T
T

T

T

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0
0 0 0

O M
L

ϒ ϒ =− −

−
−

−
− −

−
−

−
− −

−
− −

−
−

−
−

−
− −

−
−

−
−

− −
−

1 1

2
1

2
1 1

3 2
1

3 2
1

2
1 1

2
1

3 2
1

1
1

3 2
1

3 2
1

1 2 1

2

2

Σ

Σ Σ Σ ∆ Σ ∆

Σ Σ Σ ∆ Σ ∆

Σ ∆ Σ ∆ Σ∆ Σ∆ ∆z z

T u T u x T u x T u y

T u x T x T x x T x y

T u x T x x T x T x yt
d

t
d

t
d

t
d

t
d

t
d

t
d

t
d

t p
d

t
d

t
d

t
d

t
d

t
d

t
d

t p
d

t
d

t
d

t
d

t
d

t
d

t
d

t p
d'

/ /

/

/ /c h

L

L

L
M M M O M

LT u y T x y T x y T yt
d

t p
d

t
d

t p
d

t
d

t p
d

t p
−

− −
−

− −
−

−
−

−

L

N

MMMMMMM

O

Q

PPPPPPP3 2
1

1
1

1 1 2/ Σ ∆ Σ ∆ Σ∆ ∆ Σ∆

Following exactly the same idea of Theorem 2 we can look at the asymptotic distribution of
the LS estimates piece by piece.
The only extra pieces are now:
T u x B Kt

d
t
d d

c
d−

− − ⇒ z2
1 1 1 2Σ ,  T x Bt

d d−
− ⇒ z2

1 1
22

Σ .

Moreover, T x x T x v T x ot
d

t
d

t
d

t t
d

p
−

−
−

−
−

−= − =3 2
1

3 2
1 1

3 2
1 1 1/ / / $ ( )Σ ∆ Σ Σ µ  since

T x v B dBt
d

t
d

i
−

− ⇒ +z1
1 1 1 1 1Σ Σ Γ ,  and T y t i

−
−

1Σ∆  and T x t i
−

−
1Σ∆  (for i p= 0 1, , ,K ) are

op ( )1 since are all stationary variables.  All other pieces behave as in Theorem 1 with the

exception that now are all detrended BM.
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From model (3.1) we can write vt t= Ω1 2/ η  and ε ηt t= Σ1 2/  where ηt  is a vector of
uncorrelated martingale differences errors with unit variances. Given that
Ω Φ ΣΦ= − −( ) ( )1 11 1 , I can write Σ Φ Ω1 2 1 21/ /( )= .  Because of the way the errors are
orthogonalized in equation (3.5), it can be shown that ξ θ η2 2 1

1 2
2t t= Ω .

/ .  By Chan and Wei

(1988) and Phillips (1987) then follows that T x B dWt
d

t
d−

− ⇒ z1
1 2 2 1

1 2
1 2Σ Ωξ θ .

/ ,

T u K dWt
d

t c
d−

− ⇒ z1
1 2 2 1

1 2
2 2Σ Ωξ θ .

/ .

The matrix of cross product then weakly converges to:

ϒ ϒ ⇒

L

N

MMMMMMMM

O

Q

PPPPPPPP

− −

−

−

z zz z
1 1

2
2

1 2

1 2 1
2

11 1 1 12

1 1 11 12 1

12 12 1 22

0 0 0

0 0 0
0 0
0 0

0 0

Σ Ω Γ Γ
Γ Ω Γ

Γ Γ Ω

z z

K B K

B K B

t
d

t
d

c
d d

c
d

d
c

d d

p

p

p p

' , ,

, ,

, ,

c h

L

L
L
L

M M M M O M
L

Similarly

ϒ =

L

N

MMMMMMMM

O

Q

PPPPPPPP

⇒

L

N

MMMMMMMM

O

Q

PPPPPPPP

−

−
−

−
−

−

−
−

−
−

zz
1

2

1
1 2

1
1 2

1 2
2

1 2
1 2

1 2
2

2 1
1 2

2 2

2 1
1 2

1 2

11

2

Σ

Σ
Σ
Σ∆

Σ∆

Σ∆

Ω

Ω

z

T u
T x
T x

T x

T y

K dW

B dW
Z
Z

Z

t
d

t

t
d

t

t
d

t

t
d

t

t
d

t

t p
d

t

c
d

d

p

ξ

ξ
ξ
ξ

ξ

ε

θ

θ

c h
/

/

/

.
/

.
/

M M

The inverse of the ( )2 2× non-stationary block is (by the inverted partitioned formula)

1 1

2

2 1

2 1 2

2∆d

d
c

d d

c
d d

c
d

B K B

K B K
z zz z

−

−

L
N
MM

O
Q
PP   where ∆d

c
d d d

c
dK B B K= −z z z2

2
1

2
1 2

2e j

The asymptotic distribution of $α  is:

T
B K dW K B B dW

B K B K

d
c

d
c

d d d

d
c

d d
c

d
$

.
/

α α
θ

− ⇒
−

−

z zzz
z z zb g

e j
Ω2 1

1 2
1

2
2 2 2 1 1 2

1

2

2

2

1 2

2
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Now SE
B

B K B K

d

d
c

d d
c

d

( $ )
.
/

/

/α
θ

⇒
−L

NM
O
QP

z
z z z

Ω2 1
1 2

1

1 2

1
2

2
2

1 2

2 1 2

e j
Notice that t

T
SE

T
SE$ $

$
$α

α
α

α α
α

= +
−

b g
b g

b g  with T T
c
T

cα θ θ= FHG IKJ =

So

t c
B K B K

B

B K dW K B B dW

B K B K B

d
c

d d
c

d

d

d
c

d
c

d d d

d
c

d d
c

d d
$

/

.
/

/

.
/

.
/

/ /α

θ

θ

θ

θ
⇒

−L
NM

O
QP +

−

−L
NM

O
QP

z z z
z

z zzz
z z z z

1
2

2
2

1 2

2 1 2

2 1
1 2

1

1 2

2 1
1 2

1

2

2 2 2 1 1 2

2 1
1 2

1
2

2
2

1 2

2 1 2

1

1 2

e j
e jΩ

Ω

Ω

Since how shown in Lemma2, K Jc c2 22
1 2

12= Ω /  and B W1 11
1 2

1= Ω /  and Ω Ω2 1
1 2

22
1 2 2 1 2

1.
/ / /

= − δc h
the test simplifies to

t c
W J W J

W

W J dW J W W dW

W J W J W

d
c

d d
c

d

d

d
c

d
c

d d d

d
c

d
c

d d
$

/

/ / / /α
δ

⇒
−L

NM
O
QP

−
+

−

−L
NM

O
QP

z z z
z

z zzz
z z z z

1
2

12
2

1 12

2 1 2

2 1 2

1
2 1 2

1

2

12 2 12 1 1 2

1
2

12
2

1 12

2 1 2

1
2 1 2

1

e j
c h e j

Proof of Theorem 4:

Using the same parametrization of Theorem 3, the model can be written in compact form as
∆y zt

d
t
d

t
d= +'γ ξ 2  where zt

d  and γ are defined previously.
The Wald test for the joint significance of α  and φ  is equivalent to testing for the joint
significance of α  and ψ  in (C.2) and it can be written as

F R RV R R= ϒ
′

′ ϒ
−

$ $ $γ γb g b g1

where q is the number of restrictions, R  is 2 3 2× + pb g  matrix defines as

R =
L
NM

O
QP

1 0 0 0
0 1 0 0

L
L

, ϒ is the same as Theorem 3 and $ $ 'V z zt
d

t
d= ϒ ϒ− − −

σ ξ 2

2 1 1 1
Σc h  is

the standard error of the LS estimates.  For the purpose of this proof the F test can be
decomposed as:
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(C.3) R RV R R R RV R Rϒ
′

′ ϒ = ϒ −
′

′ ϒ − +
− −

$ $ $ $ $ $γ γ γ γ γ γb g b g b gc h b gc h1 1

+ ϒ
′

′ ϒ − + ϒ −
′

′ ϒ +
− −

R RV R R R RV R Rγ γ γ γ γ γb g b gc h b gc h b g$ $ $ $1 1

+ ϒ ′ ′ ϒ
−

R RV R Rγ γb g b g$ 1

Looking at the asymptotic behavior piece by piece (recall that $
.
/σ θξt

= Ω2 1
1 2 ):

RV R
B K B

K B K

K K B

K B B
d

d
c

d d

c
d d

c
d

c
d

c
d d

c
d d d

$
. .′ ⇒

−

−

L
N
MM

O
Q
PP =

L
N
MM

O
Q
PP

− − −

−

− −z zz z z zz z
1 2

2 1
1 1

2
2 1

2 1 2
2

1

2
2 1

1 2
2

2 1

2 1 1
2θ θΩ ∆ Ω

R
T
T

c
ϒ =

L
NM

O
QP =

L
NM

O
QPγ

α
ψ

θ
0

R
B K dW K B B dW

K B dW K B K dW
d

d
c

d
c

d d d

c
d d

c
d d

c
d

ϒ − ⇒
−

−

L
N
MM

O
Q
PP

z zzzz zzz$ .
/

γ γ
θb g Ω

∆
2 1
1 2

1

2

2 2 2 1 1 2

2

2

1 2 2 1 2 2

where, as defined earlier, ∆d
c

d d d
c

dK B B K= −z z z2
2

1
2

1 2

2e j is the determinant of the submatrix

corresponding to the non-stationary block.

For the first element of the (C.3) note that

RV R R
K B K dW K B K dW

K B B dW K B B dW
d

c
d d

c
d

c
d d

c
d

c
d d d

c
d d d

$ $ . .
/

′ ϒ − ⇒
−
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L

N
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O

Q
PPP

=
− − − z z z z z

z z z z z
1 2

2 1
1

2 1
1 2

2
2

1
2

2 2 2 1

2

2 2

2 1

2

1 2 2
2

1
2

1 2

γ γ
θ θb gc h e j

e j
Ω Ω

∆

=
L
N
MM

O
Q
PP

− − zzθ 1
2 1

1 2 2 2

1 2

Ω .
/

K dW

B dW
c

d

d

So

( )( ) ( )( )
1ˆˆ ˆR RV R Rγ γ γ γ

−′  ′ϒ − ϒ − ⇒ 
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1 /2 2 22 2 1 1/22.1
1 2 2 2 1 1 2 2 1 2 2 1 2 2 2.1

1 2

cd d d d d d d d d d
c c c c cd

K dW
B K dW K B B dW K B dW K B K dW

BdW

θ θ − −
 Ω    ⇒ − − Ω =   ∆
 

∫
∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∫

=
− +

−

z z z z z z z
z z z

B K dW B K B dW K dW K B dW

B K B K

d
c

d d
c

d d
c

d
c
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d
c
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c
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1
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2

1 2 1 2 2 2 2
2

1 2

2

1

2
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2

1 2

2
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R RV R R

c
K dW

B dW
c K dWc

d

d c
d

ϒ
′

′ ϒ − ⇒

⇒
L
N
MM

O
Q
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−

− − −zz z
γ γ γ

θ θ

b g b gc h$ $

.
/

.
/

1

1
2 1

1 2 2 2

1 2
2 1

1 2
2 20 Ω Ω

The third element is the transpose of the previous one and finally the fourth element on the
right hand side of (C.3) converges to c K c

2
2 1

1
2
2Ω .

− z .

Remember that K Jc c2 22
1 2

12= Ω / , B W1 11
1 2

1= Ω /  and B W2 22
1 2

12= Ω /  the local asymptotic power
of the Wald test simplifies to:

F c J c J dW

W J dW W J W dW J dW J W dW

W J W J

c
d

c
d

d
c

d d
c

d d
c

d
c

d d

d
c

d d
c

d

⇒ − + − +

+
− +

−

− −z z
z z z z z z z

z z z

2 2 1

12
2 2 1 2

12 2

1
2

12 2

2

1 12 1 2 12 2 12
2

1 2

2

1

2

12

2

1 12

2

1 2 1

2

δ δc h c h
e j e j

e j

/

Proof of Theorem 5:

The proof of Theorem 5, follows Johansen (1995). I give here a less formal proof than
Johansen’s.  The proof I present is only for the case in which there is a mean in the
cointegrating vector.  For a more general and formal proof for the asymptotic distribution
and local power of the trace statistics of which, the λ max  test is just a special case, see
Johansen (1995) or Saikonnen and Lutkepohl (1999, 2000).

As I showed in Section 3.3, the λ max test is defined as λ λmax ln( $ )= − −T 1 1 . Johansen

(1995) shows that − − = +T T oPln( $ ) $ ( )1 11 1λ λ . Since $λ1  is the maximum eigenvalue of the

matrix S S S S11
1

10 00
1

01
− −  the test can be written as λ max max ( )= +− −eig TS S S S oP11

1
10 00

1
01 1m r .

The asymptotic distribution of the tests can be computed by looking at the limit of each single
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matrix.  For the case in which z t1 0=  and z t2 1= , so that there is mean only in the
cointegrating vector, the Error Correction model is:

∆
∆

Φ Π
∆
∆

x
y

P M
x
y
z

L
x
y

Pt

t

t

t

t

t

t
t

L
NM

O
QP =

L

N
MMM

O

Q
PPP

+
L
NM

O
QP +

−

−

−

−

−

( ) ( )1
1

1

2 1

1

1

ε

For theoretical purposes I can re-parametrize the model as (see also Saikonnen and
Lutkepohl (1999)).

∆
∆

Φ Π
∆
∆

x
y

P M
x
y
T z

L
x
y

Pt

t

t

t

t

t

t
t

L
NM

O
QP =

L

N
MMM

O

Q
PPP

+
L
NM

O
QP +

−

−

−

−

−

( ) ( )*1
1

1

1

1

1

ε

where  M
T

* /=
− − − − −
L
NM

O
QP−

0 0 0
1 1 1 1 2β ρ ρ µ ρb g b g b g  and Y x y T zt t t t

* '=

Of course this is an unfeasible regression but it such that the eigenvalues of the tests can also
be obtained from this regression.
As Johansen (1995)

 shows S VAR Y Y past VAR P P P P P
p

t t00 1 1 1→ = = =−∆ Σ Φ ΩΦ| ' ( ) ( )' ', ε

T S T Y Y o B Bt t p c c
− −

− −⇒ + ⇒ z1
11

2
1 1 1Σ * *' '( ) ~ ~c h  where ~B

B
B K

c c= +
L
N
MM

O
Q
PP

1

1 2

1
β  .

Recall that K Jc c2 22
1 2

12= Ω / , B W1 11
1 2

1= Ω /  and define Γ
Ω

Ω=

L

N
MMM

O

Q
PPP

11
1 2

22
1 2

0 0
0 0
0 0 1

/

/  and

P =
L

N
MMM

O

Q
PPP

1 0 0
1 0

0 0 1
β  so 1

11T S−  can be written as T S P W W Pc c
− ⇒ z1

11 Γ Γ' ' ' .

Finally S S S oT p10 11 1 1= + +Π ' ( )ε  where S T Y ot t p1
1

1 1ε ε= +−
−Σ * ' ( )c h  where ε εt tP= .

From Lemma 1 we have that
S B dBc1ε ⇒ z ~ '  where 1 /2B P W= Σ  and , as before, ~B P Wc c= Γ .

S S M PT11 11 1Π Φ' *' '( )'= . Under the local alternative ( )ρ − =1 c T  so

' 1 ' *
11 11

0 0 0
(1) ' ' (1)

1
T c cS cT S P cP W W P M P

Tβ µ
−  

′ ′ ′ ′Π = Φ ⇒ Γ Γ Φ 
− − 

∫
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where M * =
−
L
NM

O
QP

0 0 0
1 0β

.  The limit of the tests can then be decomposed into the limit of 4

matrices:
1 1 1 ' 1 ' 1 ' 1 1 1 ' 1 1

11 10 00 01 11 11 00 1 11 11 00 11 11 1 00 1 11 1 00 11T T T TTS S S S TS S S S TS S S S TS S S S TS S S Sε ε ε ε
− − − − − − − − − −= Π + Π Π + + Π

For the first block:

( )
111 ' 1 ' ' 1 1

11 11 00 1

' * 1 1 1 1 1

' '

' ' (1) ' ' ' (1)' (1) ' ' '

T c c

c c c

TS S S S c P W W P P

W W P M P P P WdW P

ε

−−− − − −

− − − − −

 Π ⇒ Γ Γ Γ 
 Γ Φ Φ Ω Φ Γ 

∫
∫ ∫

Since Ω
Ω Ω Ω Ω

Ω
−

− −

−=
−L

NM
O
QP

1 2 11
1 2

2 1
1 2

12 11
1

2 1
1 20

/ '
/

.
/

.
/

it is easy to show that ( )' 1/2* 1/2 1/2 1/2 2
22 2.1

0 00 0
' ' 0 0 1

0 0 0 0

P M δ
−− −

     Γ Ω = Ω Ω = −         

 and that

c WW P M c

W J

J

J

Ac c

c

c

c

c
' *' / /

' '
'z zzz

− −
= −

L

N

MMMM

O

Q

PPPP
=Γ Ω 1 2 2 1 2

1 12

12
2

12

1

0

0

0

δc h

The first block the simplifies to

S S S S P W W A W dW PT c c c c11
1

11 00
1

1

1 1
− − − −

⇒ z zΠ Γ Γ' ' '' ' ' ' ' 'ε c h
 Similarly for the other blocks we obtain:

( )
111 ' 1 ' '

11 11 00 11 ' ' ' 'T T c c c cTS S S S P W W A A P
−−− −  Π Π ⇒ Γ Γ ∫

( )
111 1 ' '

11 1 00 11 ' ' ' ' 'T c c c cTS S S S P W W W dW A Pε

−−− −    Π ⇒ Γ Γ   ∫ ∫
( )

111 1 ' '
11 1 00 1 ' ' ' ' ' ' 'c c c cTS S S S P W W W dW W dW Pε ε

−−− −      ⇒ Γ Γ     ∫ ∫ ∫
Finally, since max max ' ' ' 'eig M eig P M Pl q c h c h{ }=

−
Γ Γ

1
 the theorem is proved.

The case with no mean can be proved similarly with

M =
− − −
L
NM

O
QP

0 0
1 1β ρ ρb g b g , Y x yt t t= ' , B

B
B Kc

c

=
+

L
NM

O
QP

1

1 2β
, Γ

Ω

Ω
=
L
NM

O
QP

11
1 2

22
1 2

0

0

/

/ , and

P =
L
NM

O
QP

1 0
1β

.
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The proof for the case with mean and trend follows exactly from Saikonnen and Lutkepohl
(1999).
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