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ABSTRACT OF THE DISSERTATION 

 

Neuromorphic hardware:  

the investigation of atomic switch networks  

as complex physical systems 

 

by 

 

Henry Outhwaite Sillin 

Doctor of Philosophy in Chemistry 
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Professor James Gimzewski, Chair 

 

The emergent dynamical behaviors of biological neuronal networks and other natural, 

complex systems point towards new computing paradigms which can overcome limitations of 

digital computers. This work catalogues the development and characterization of an electronic 

circuit purpose built to exhibit emergent behaviors intended for use in neuromorphic 

computation. These circuits, atomic switch networks (ASNs), are fabricated through a self-

assembly process that yields a highly interconnected network of silver nanowires with embedded 
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inorganic synapses known as atomic switches. When stimulated with external bias voltage, 

ASNs are shown to possess the synaptic and memory properties of individual atomic switches, as 

well as network-specific behavior consisting of distributed, system wide switching events. These 

emergent behaviors exhibit striking similarity to those observed in many natural systems, 

including biological neural networks. Experiment and numerical simulations have provided 

proof of principle that ASNs are complex systems whose emergent behaviors may be used in 

implementations of neuromorphic computing paradigms such as reservoir computing. 

Furthermore, they demonstrate the utility of ASNs as a uniquely scalable physical platform 

useful for exploring complexity, neuroscience, and engineering.  

 

 

 

 

 

 

 

 

 

 



iv 
 

The Dissertation of Henry Outhwaite Sillin is approved. 

Chi On Chui 

Xiangfeng Duan 

James Gimzewski, Committee Chair 

 

University of California, Los Angeles 

2015 

 

 

 

 

 

 

 

 

 

 



v 
 

Table of Contents 
 

1 Introduction ………………………………………………………………………………1 

2  Benchtop fabrication of atomic switch networks ………………………………………11

 2.1 Introduction …………………………………………………………………………11 

2.2 Experimental methods ………………………………………………………………16 

2.3 Results and discussion ………………………………………………………………17 

2.4 Conclusion and outlook …………………………………………………………..…24 

 

3 Morphological transitions from dendrites to nanowires in the electroless deposition of 

silver ………………………………………………………………………..……………27 

 3.1 Introduction ……………………………………………………….…………………27 

 3.2 Results and discussion ………………………………………………………………29 

 

4 Self-organized atomic switch networks …………………………………………………39 

 4.1 Introduction ………………………………………………………………….………39 

4.2 Self-organizing networks ……………………………………………………………41 

4.3 Integrating nonlinear functionality …………………………………………….……45 

4.4 Emergent criticality ………………………………………………………….………48 

4.5 Conclusions …………………………………………………………………………52 

 

5 Neuromorphic atomic switch networks …………………………………………………54 

 5.1 Introduction …………………………………………………………………………54 

 5.2 Results ………………………………………………………………………………57 

 5.3 Atomic switches, complex networks, and neuromorphic hardware …………..……57 

5.4 Device fabrication and characterization …………………………………….………59 

5.5 Network-specific properties …………………………………………………………63 

5.6 Discussion ………………………………………………………………...…………69 

5.7 Materials and methods ………………………………………………………………70 

 

6 Emergent criticality in complex Turing B-Type atomic switch networks ………………74 

 6.1 Introduction …………………………………………………………………….……73 

 6.2 Computational models ………………………………………………………………76 

 6.3 Complex device architectures ……………………………………………….………79 

 6.4 Synthetic Synapses ………………………………………………….…….…………83 

6.5 Critical atomic switch networks ……………………………………….…….………85 

 6.6 Outlook and perspectives …………………………………………….….……..……89 

 

7 A theoretical and experimental study of neuromorphic atomic switch networks for 

reservoir computing ………………………………………………………………….…91 

 7.1 Introduction …………………………………………………………………………91 

 7.2 Methods …………………………………………………………..…………………95 

 7.3 Results and discussion ………………………………………………..……………101 

 7.4 Reservoir computing ………………………………………….……………………110 

 7.5 Conclusions and outlook ……………………………………………………...……113 

 



vi 
 

8 Programmable short- and long-term memory in atomic switch networks using a 

reinforcement learning scheme…………………………………………..…………… 116 

 8.1 Introduction ……………………………………………………………...…………116 

 8.2 Experimental ……………………………………………………….………………120 

 8.3 Results ……………………………………………………………..….……………124 

 8.4 Conclusions ……………………………………………………………...…………131 

 

9 Outlook …………………………………………………………….…………..………133 

 

10 References ……………………………………………………………...………………138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

List of Tables 
  

Table 7-1 Parameter values used in atomic switch network simulation …………….……101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 

2-1 Operational schematic of a Ag|Ag2S|Ag atomic switch ………………………………...13 

2-2 Schematic for fabrication of fractal atomic switch networks by electroless deposition ...15 

2-3 Images depicting benchtop atomic switch network devices ……………………………19 

2-4 Atomic switch network device activation by applied bias voltage sweeps ……….……20 

2-5  Robust hysteresis switching under bipolar bias voltage ………………………...………21 

2-6 I-V behavior dependence on bipolar input bias frequency ……………………...………22 

2-7 Ratio of switching events to total number of voltage sweeps as a function of frequency 23 

2-8 Schematic of parallel and series atomic switch networks in benchtop devices …………24 

 

3-1 Experimental schematic of lithographically patterned copper nucleation sites …………29 

3-2  Increased branching of Ag structures with decreasing strength of anisotropic forces ….30 

3-3  SEM images of Ag nanowires formed by electroless deposition from lithographic Cu grids …..32 

3-4  Optical micrographs illustrating the transition from wire to dendrite growth …………………33 

3-5  X-ray diffractograms of silver structures grown from different sized Cu seeds ………..35 

3-6 Dendritic growth due to Mullins-Sekerka instabilities …………………………….……36 

 

4-1 Hierarchical network device concept of the fractal atomic switch network ……………42 

4-2 Fabrication schematic of the fractal atomic switch network devices ………………...…44 

4-3 Symmetric Ag|Ag2S|Ag atomic switch operation schematic ……………………………45 

4-4 Atomic switch network activation and I-V behavior ……………………………………48 

4-5 Persistent fluctuations in device conductivity sub-threshold DC bias voltage ……….…50 

4-6 Metastable resistance states as evidence supportive of criticality ………………………51 

 

5-1  Structure of nanowire atomic switch network devices …………………………….……61 

5-2 Atomic switch network activation sequence ……………………………………………62 

5-3 Frequency response and higher harmonic generation …………………………………..64 

5-4 Power spectral density and fluctuations of current under DC bias ……………...………66 

5-5  Distributed memory storage from network-scale switching ………………….…………68 

 

6-1 Comparison of structure and function of Turing automatic and unorganized machines ..75 

6-2 Fabrication scheme for atomic switch networks …………………………………….….82 

6-3  Electrical characteristics of complex nanoelectro-ionic networks ………………………86 

 

7-1 Atomic switch network and multi electrode array device architecture ……………….…96 

7-2 Model and variables included in atomic switch simulation ……………………….……98 

7-3 Network activation sequence in simulated atomic switch networks ………………..…103 

7-4 Power spectral density of simulated and experimental data under DC bias ………...…106 

7-5 Distributed memory storage reproduction in simulation ………………………………108 

7-6 Higher harmonic generation as a function of global network operating regime ………109 

7-7 Reservoir computing schematic and simulation performance …………………………111 

 

8-1 A schematic and example of the write and verify reinforcement training scheme ……122 

8-2 Network resistance evolution during training …………………………………………126 



ix 
 

8-3 Demonstration of long term memory during training …………………………………127 

8-4 Network adopts multiple solutions to targeted resistance state …………………….…128 

8-5 Statistical distributions of resistance state retention time versus target resistance ……129 

8-6 Resistance training occurring in a simulated network …………………………………131 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 



x 
 

Acknowledgements 

To my parents Liz and Will, and my brother Jeff for, well, everything. To Gamma, Gampa, 

Gram, and Grandad for…also everything, but especially their support of my education. To Dave 

and Jess, Faye and Breen, Em and Jane, Ryan, Larsson, and Trevor for reminding me of the 

outside world and how nice it is out of lab. 

To my chemistry cohort Jon, Mike, Angela, Ben, Jordan, Tristan, Liz, Ilya, Nanette, Stephan, 

Blanton, Matt, and honorary member Chun-Mei for getting me through classes and being such 

super pals. 

To James Gimzewski for providing the inspiration, resources, and encouragement to pursue my 

degree. To Adam Stieg for being an endlessly helpful mentor in all areas of science, writing, 

career development. To Delroy Baugh for inspiring me to come to LA and work on resistive 

switches. To the former GimGroup members, Brian, Greg, Cristina, Carlin, Haider, Paul, Paul, 

Paul, Nik, Jason, and current GimGroup members Shivani, Renato, Eric, Ellie, Kelsey, Dayan, 

Jung-Reem, and Huanqi for being wonderful, enriching influences on my career, I am so grateful 

and lucky to have had such terrific colleagues. To Audrius “Odo” Avizienis for being the brave 

soul to begin work on the ASN and welcoming me onto the project. Also for Honky, the Robot 

Restaurant, and delicious, delicious sausage. 

To Lindy for keeping the machine running, you’re the best! 

To our research collaborators Masakazu Aono, Dante Chialvo, Robert Kozma, Walter Freeman, 

and Juan Pablo Carbajal, for your invaluable perspectives on our work and for having conducted 

so much research that enabled us to find our way. 



xi 
 

To the Defense Advanced Research Projects Agency (DARPA) Physical Intelligence project 

(BAA-09-63), and the WPI International Center for Materials Nanoarchitectonics (MANA) for 

providing financial support necessary to conduct this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

Chapter 2 is a version of Sillin, H. O., Sandouk, E. J., Avizienis, A. V., Aono, M., Stieg, A. Z., 

& Gimzewski, J. K. (2013). Benchtop Fabrication of Memristive Atomic Switch 

Networks. Journal of nanoscience and nanotechnology, 14(4).2792-2798, and carries the 

following acknowledgements: This work was partially supported by the Ministry of Education, 

Culture, Sports, Science, and Technology (MEXT) World Premier International (WPI) Research 

Center for Materials Nanoarchitectonics (MANA), HRL Laboratories, and the Defense 

Advanced Research Projects Agency (DARPA) - Physical Intelligence Program (BAA-09-63), 

US Department of Defense. The authors acknowledge use of The Nanoelectronics Research 

Facility (NRF) and Nano and Pico Characterization Laboratory (NPC) at the University of 

California, Los Angeles. 

 

Chapter 3 is a version of Avizienis, A. V., Martin-Olmos, C., Sillin, H. O., Aono, M., 

Gimzewski, J. K., & Stieg, A. Z. (2013). Morphological Transitions from Dendrites to 

Nanowires in the Electroless Deposition of Silver. Crystal Growth & Design, 13(2), 465-469. 

and carries the following acknowledgements: The authors acknowledge Hsien Hang Shieh and 

Makoto Sakurai for their helpful assistance as well as the use of the Molecular Instrumentation 

Center in the Department of Chemistry and Biochemistry at the University of California, Los 

Angeles. This research was partially supported by the Defense Advanced Research Projects 

Agency (DARPA) Physical Intelligence project (BAA-09-63) and by the WPI International 

Center for Materials Nanoarchitectonics (MANA). 

 



xiii 
 

Chapter 4 is a version of Stieg, A. Z., Avizienis, A. V., Sillin, H.O., Martin-Olmos, C., Aono, 

M., Gimzewski, J. K. (2013) Self-Organized Atomic Switch Networks. Japanese Journal of 

Applied Physics. 53(1). and carries the following acknowledgements: This work was supported 

by the Defense Advanced Research Projects Agency (DARPA)—Physical Intelligence Program 

(BAA-09-63), US Department of Defense and the Ministry of Education, Culture, Sports, 

Science and Technology (MEXT) World Premier International (WPI) Research Center for 

Materials Nanoarchitectonics (MANA). 

 

Chapter 5 is a version of Sillin, H. O., Avizienis, A. V., Martin-Olmos, C., Shieh, H. H., Aono, 

M., Stieg, A. Z., & Gimzewski, J. K. (2012). Neuromorphic atomic switch networks. PloS 

one, 7(8), e42772. and carries the following acknowledgements: The authors acknowledge Dr. 

Igor Ovchinnikov for his helpful comments. 

 

Chapter 6 is a version of Stieg, A. Z., Avizienis, A. V., Sillin, H. O., Martin‐Olmos, C., Aono, 

M., & Gimzewski, J. K. (2012). Emergent Criticality in Complex Turing B‐Type Atomic Switch 

Networks. Advanced Materials, 24(2), 286-293. and carries the following acknowledgements: 

A.Z.S. and A.V.A. contributed equally to this work. The authors gratefully acknowledge Dante 

Chialvo, Kang Wang, Bob Schwartz, Igor Ovchinnikov and Brian Shieh for their input and 

assistance. This work was partially supported by the Ministry of Education, Culture, Sports, 

Science, and Technology (MEXT) World Premier International (WPI) Research Center for 

Materials Nanoarchitectonics (MANA) and the Defense Advanced Research Projects Agency 

(DARPA) - Physical Intelligence Program (BAA-09-63), US Department of Defense. 



xiv 
 

 

Chapter 7 is a version of Sillin, H. O., Aguilera, R., Shieh, H. H., Avizienis, A. V., Aono, M., 

Stieg, A. Z., & Gimzewski, J. K. (2013). A theoretical and experimental study of neuromorphic 

atomic switch networks for reservoir computing. Nanotechnology,24(38), 384004. and carries 

the following acknowledgements: The authors gratefully acknowledge Cristina Martin-Olmos, 

Walter Freeman, Robert Kozma and Narayan Srinivasa for their helpful assistance. Physical 

ASN chips were fabricated in the Integrated Systems Nanofabrication Cleanroom (ISNC) at the 

California Nanosystems Institute (CNSI) and simulations utilized resources at the Nano & Pico 

Characterization Lab (NPC) of CNSI. This work was partially supported by the Japanese 

Ministry of Education, Culture, Sports, Science, and Technology (MEXT) World Premier 

International (WPI) Research Center for Materials Nanoarchitectonics (MANA), HRL 

Laboratories, and the Defense Advanced Research Projects Agency (DARPA)— Physical 

Intelligence Program (BAA-09-63), US Department of Defense. 

 

Chapter 8 is a version of Sillin, H. O., Aguilera, R. A., Stieg, A. Z., Gimzewski, J. K. (2015) 

Programmable short- and long-term memory in atomic switch networks using a reinforcement 

learning scheme. IEEE Transactions on Nanotechnology. In Press.  

 

 

 

 



xv 
 

Vita 

2005-2009  B.S. (Chemistry), Cum Laude 

The Colorado College, Colorado Springs, CO 

 

2008  Research Experience for Undergraduates Fellowship 

  The University of Colorado, Boulder, CO 

 

2009-2011 M.S. (Chemistry) 

  University of California, Los Angeles, CA 

 

2010-2014 Research Assistant 

  Department of Chemistry and Biochemistry 

  University of California, Los Angeles 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 
 

Publications 

[1] Sillin, H. O., Avizienis, A. V., Martin-Olmos, C., Shieh, H. H., Aono, M., Stieg, A. Z., & 

Gimzewski, J. K. (2012). Neuromorphic atomic switch networks. PloS one, 7(8), e42772. 

 

[2] Sillin, H. O., Aguilera, R., Shieh, H. H., Avizienis, A. V., Aono, M., Stieg, A. Z., & 

Gimzewski, J. K. (2013). A theoretical and experimental study of neuromorphic atomic switch 

networks for reservoir computing. Nanotechnology,24(38), 384004. 

 

[3] Sillin, H. O., Sandouk, E. J., Avizienis, A. V., Aono, M., Stieg, A. Z., & Gimzewski, J. K. 

(2013). Benchtop Fabrication of Memristive Atomic Switch Networks. Journal of nanoscience 

and nanotechnology, 14(4).2792-2798 

 

[4] Stieg, A. Z., Avizienis, A. V., Sillin, H. O., Martin‐Olmos, C., Aono, M., & Gimzewski, J. K. 

(2012). Emergent Criticality in Complex Turing B‐Type Atomic Switch Networks. Advanced 

Materials, 24(2), 286-293. 

 

[5] Avizienis, A. V., Martin-Olmos, C., Sillin, H. O., Aono, M., Gimzewski, J. K., & Stieg, A. Z. 

(2013). Morphological Transitions from Dendrites to Nanowires in the Electroless Deposition of 

Silver. Crystal Growth & Design, 13(2), 465-469. 

 

[6] Stieg, A. Z., Avizienis, A. V., Sillin, H.O., Martin-Olmos, C., Aono, M., Gimzewski, J. K. 

(2013) Self-Organized Atomic Switch Networks. Japanese Journal of Applied Physics. 53(1).  

 

[7] Sillin, H. O., Aguilera, R. A., Stieg, A. Z., Gimzewski, J. K. (2015) Programmable short- and 

long-term memory in atomic switch networks using a reinforcement learning scheme. IEEE 

Transactions on Nanotechnology. In Press



1 
 

Chapter 1. Introduction. 

It is a beautiful and powerful fact that so many diverse phenomena in the universe emerge out of 

simple interactions between atoms. Fundamentally new behaviors emerging out of a system of interacting 

components is a counterpoint to the notion that some set of laws that underlie the universe can predict or 

explain everything else [1, 2]. The work described herein resulted from the desire to replicate this process 

of emergence in an electronic circuit designed to elicit such behaviors. But what constitutes emergence? 

What features of a physical system permit such behavior? And how could such an electronic circuit 

contribute to human knowledge? This introduction attempts to answer these questions and provide 

context for more detailed discussions of the system itself in later chapters. 

To better understand the phenomenon of emergence, an instructive example of a physical system 

which displays emergent behaviors is a container of air at uniform temperature and pressure. At standard 

temperature and pressure, the gaseous particles in air can be reasonably approximated as a collection of 

hard spheres which repel each other when brought very close together, but exert negligible forces on each 

other once any separation exists between two particles. At the nanometer scale, this container of air would 

appear as particles moving and colliding at random, but as system size is increased, these two interactions 

lead to progressively more extraordinary effects. To begin, the distribution of speeds at which the 

particles move can be described by a single measurable quantity called temperature.  The rate at which 

collisions occur directly results in another measurable quantity called pressure. These quantities are 

simple emergent properties – they exist when large numbers of particles are considered, but are 

meaningless or even nonexistent in the context of few particles. Now, consider gentle heating applied to 

the bottom of the container. Gradients are induced in the simple emergent behaviors of temperature and 

pressure, resulting in non-trivial patterns of turbulent flow comprised of warm regions rising, and cool, 

dense regions falling under the influence of gravity. Under the right conditions, turbulent flow can 

spontaneously organize into discrete convection cells, which can pack together to form periodic patterns 
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such as hexagonal honeycomb arrays [3, 4]. Easily identifiable, measurable behaviors emerge out of the 

system’s dynamics - behaviors which simply do not exist in small system sizes. Taken to global scales, 

the interactions of gaseous particles result in an enormous range of emergent weather patterns: cold 

fronts, hurricanes, tornadoes, and dozens of cloud formations. Many examples throughout nature can be 

found interacting systems in which emergent behaviors become essential aspects of the system, where 

larger system sizes result in progressively larger hierarchies of emergent behaviors [5, 6]. 

Complex, emergent behaviors arise in a wide range natural systems such as weather, social 

networks, and animal metabolisms, but the essential qualities of such systems are non-equilibrium 

dynamics and complex architecture [6, 7]. Non-equilibrium dynamics means simply that when supplied 

with an external energy source, the system is able to evolve in time. The descriptor ‘complex’ requires a 

more detailed explanation, and it will take on a couple different definitions in this work – one to describe 

system architecture, and the other which is used to describe system dynamics.  Structurally, a complex 

system is comprised of many individual units that are often structurally and functionally identical, and 

readily interact with each other in a non-trivial manner [6]. A notable quality of complex systems is that 

its operational characteristics are consistent even if individual units are removed. This is not always the 

case in systems which many interacting parts such as a Swiss watch. This is an admittedly complicated 

system, but the interaction of its parts are fixed – imposed by the physical design, where removal of any 

one part will compromise or catastrophically ruin the system’s behavior. Returning to the example of a 

container of air, it is dynamical in that gas particles are continually moving, it is non-equilibrium when 

gentle heating is applied asymmetrically, and it is complex in that it is comprised of many functionally 

identical gas particles that freely interact, and removing particles will not change the nature of emergent 

behaviors [8].  

While some emergent behaviors can be predicted easily from first principles, while others are far 

more difficult to characterize rigorously. A conceptually essential description of what qualifies as 

emergent behavior is based on the minimum effort required to completely describe the behavior. Simple 
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emergence such as temperature and pressure may be fully described by reducing the system to state 

equations such as the ideal gas law or Maxwell’s relations. Minute details of system state are not required 

for accurate predictions and calculations. By contrast, complex emergence, or complexity (here ‘complex’ 

takes on its second meaning) is by definition most efficiently reproduced and predicted by simulating the 

system. In other words, the simplest descriptor of the system is the system itself [9-11]. This presents a 

significant challenge for those wishing to study or utilize complex emergent behaviors from complex, 

non-equilibrium dynamical systems. Despite any state equations which may prove useful, thorough 

analysis is not possible without simulations or direct observation of the physical system. 

While complexity generally refers to the generation of complex emergent patterns, complexity 

observed at second order phase transitions draws particular attention because of the prevalence of critical 

dynamics, or criticality. What makes criticality unique is that it cannot be described as existing in either 

an ordered or disordered regime, but rather poised somewhere in the middle [5, 12-15]. A common 

example of a critical dynamics at a phase transition is that of a ferromagnetic material becoming 

paramagnetic at the Curie temperature. Below the Curie temperature, individual magnetic domains are 

strongly coupled with neighboring cells, such that macroscopic portions of the material are aligned, and 

reconfigurations are infrequent. Above the Curie temperature, thermal energy causes magnetc domains to 

rapidly change orientation with little or no coupling with neighboring domains. At the critical point, 

however, ordered magnetic domains of all sizes exist in concert with stochastic reconfigurations. The 

combination of ordered coupling between adjacent units and dynamical rearrangements reaches an 

optimum combination such that the correlation length reaches a maximum. At the critical point, the action 

of a single unit of may influence the entire system, part of it, or none of it, meaning that the system has a 

maximum possible dynamic range in response to external perturbations [16]. As both criticality contains 

aspects of both order and disorder, an accurate description of the degree of complexity exhibited by a 

system is the length of a concise description of a set of the systems regularities [17]. A perfectly ordered 

crystal lattice requires a very short description, while the aforementioned container of unheated gas is 
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purely stochastic and therefore contains no regularities. The reason, then, that criticality is particularly 

interesting is that complex emergent dynamics reach their maximum possible diversity: emergent, ordered 

patterns exist on all possible size scales extending from ordered clusters of a few individual units to 

ordered patterns that encompass significant portions of the entire system. Systems exhibiting criticality 

both fascinate and confound researchers due to their richness and diversity of behaviors that cannot be 

easily summarized. 

In addition to complexity and criticality, a third descriptor often associated with these systems is 

self-organization. Self-organization describes the tendency of some non-equilibrium, dissipative systems 

to spontaneously generate order on macroscopic scales as a result of interactions between a multitude of 

microscopic units [9, 18]. As seen in the example of the asymmetrically heated gas container, the 

stochastic interactions of gas particles at microscopic scales gives way to macroscopic order in the form 

of regular arrays of convection cells. An important distinction is that self-organization of a non-

equilibrium system is not associated with a gradual tendency towards equilibrium. In other words, ordered 

states are not achieved because they are the most thermodynamically stable state, rather steady energy 

input enables the system to maintain order.  

At this point the structure and operation of the proposed electronic circuit should be clear: it must 

be comprised of a collection of functionally identical units whose autonomous, non-trivial interactions 

result in complex emergent behaviors when an external energy source is applied to the system in such a 

way as to perturb it from equilibrium, ideally pushing system dynamics towards a critical state. Aside 

from serving as a microcosm or toy complex system, what could such a device contribute to human 

knowledge?  

The answer should be clearer when we consider in the context of one of, if not the single most 

complex system known to modern science: the workings of the human brain. The human brain comprises 

an extraordinarily intricate network of neurons, whose autonomous electrical activity enables an animal to 
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act and react to environmental stimuli, experience emotions, and even possess consciousness – behaviors 

which epitomize the very definition of emergence [19, 20]. The essence of brain activity is action 

potentials – voltage pulses with duration and magnitude on the order of 10
-3

 s and 10
-1

 V, respectively. 

Neurons intermittently emit action potentials, while simultaneously detecting action potentials emitted by 

neurons to which they are connected. When an action potential is detected from a neighbor, a neuron may 

or may not emit an action potential in response – an all or nothing reaction that forms the basis of non-

linear interaction between neurons. Action potential transmission is mediated by the connecting interfaces 

between neurons known as synapses, which are able to adjust the probability that an action potential from 

one neuron will trigger an action potential in the other, based on past behaviors of action potentials [21, 

22] . The end result is that while the physical structure of the neuronal network remains fairly constant, 

chain reactions of action potentials known as ‘avalanches’ traverse the neuronal network resulting in 

complex dynamics [19, 23]. The brain’s ability to process information is in no small way due to the 

abundant evidence that these neuronal avalanches exist in a critical state with complex emergent patterns. 

At the critical state, the increased correlation length allows distant neurons to communicate most 

effectively, while the maximal dynamic range inherent of critical systems means that a tiny subset of 

neurons firing, as when a small sound is heard, can trigger a system-wide event such as a fight or flight 

response [8, 16]. 

Information processing occurs when input signals flow through the brain as avalanches of 

activity, while changes in synaptic transmission result in long-term changes in the patterns of brain 

activity, forming the basis of memory. The existence of parallel pathways in the neuronal network allows 

the brain to receive countless simultaneous, multisensory inputs while feedforward and recurrent 

structures allow it to handle noisy, imperfect input data with ease. Many details of how the brain actually 

processes information are unknown, but the astounding information processing abilities of the brain are a 

direct result of emergent behaviors in a complex dynamical system. It is from this observation that 

researchers have been striving to fabricate physical electronic circuitry which incorporates both complex 
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structure and intrinsic complex emergent behaviors with the hypothesis that similar information 

processing capabilities may be realized [24-28].  

The value in creating a complex physical system can be further appreciated by understanding how 

traditional computers operate, and why there are fundamental physical limitations that prohibit them from 

achieving the information processing capabilities of the brain with similar size and energy efficiency.  

Modern computers are overwhelmingly based on the operation of a Universal Turing Machine 

using von Neumann architecture [29, 30]. Data is input serially into memory banks where it is then 

shuttled to a central processing unit (CPU). The CPU performs computations on the data as prescribed by 

software, which has also been input from memory. The processed data is once again sent back to memory, 

forming an endless cycle occurs in which data is manipulated one bit at a time, billions of times per 

second. When compared to the brain, operations are nearly flawless in terms of precision and 

reproducibility - computers excel at manipulating clearly defined data with strict rules of how it must be 

interpreted, while brains specialize in dealing with noisy, multisensory data. 

Although computers are physically comprised of many interacting units (complementary metal-

oxide semiconductor transistors), their architecture does not qualify as ‘complex’. Firstly, they lack the 

fault tolerance of complex architectures – a single faulty transistor can render an entire CPU useless. 

Secondly, they are assembled in such a way that autonomous interactions between units are strictly 

eliminated. Interactions can be simulated as when software dictates, but the difference between simulated 

interactions between units on a digital computer and intrinsic, autonomous interactions in a complex 

system are profound. This is best illustrated when computers are used to simulate emergent activity in the 

brain: In 2013, the K supercomputer in Japan simulated 1 second of 1% of typical human brain activity, 

requiring 82,944 multi-core processors, 1.4 petabytes of RAM (requiring the space of a large warehouse), 

9 MW of power, and 40 minutes of processing time [31]. Meanwhile, a human brain possessing actual 

complex architecture is roughly 1 dm
3
 and consumes only 20 W. As previously discussed, the emergent 
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properties of the brain are the essence of its operation, and as with all complex emergent behaviors, the 

simplest descriptor is the system itself. Therefore, if a von Neumann computer cannot perform the same 

tasks as a brain, and simulations are prohibitively inefficient, the only solution is to build an electronic 

circuit which physically resembles the brain in structure and function.  

Even during the surge in traditional digital computing, a great deal of research has been 

conducted with the goal of creating brain-inspired hardware. The project detailed in this work utilizes 

recent developments in materials engineering of nano-scale, synaptic electronics – devices commonly 

known as ‘memristors’ [32-37]. Considered to be the fourth fundamental circuit element (next to resistors, 

capacitors, and inductors), memristors are devices which maintain a linear relationship between electronic 

flux and charge. Applying a sinusoidal bias results in non-linear I-V behavior caused by the memristor 

reversibly switching between resistive and conductive states. Both the frequency and magnitude of input 

bias affect the ratio of the two resistance states, with high frequency low magnitude bias resulting in 

nearly linear, ohmic I-V behavior, and low frequency high magnitude bias yielding the greatest contrast 

between resistive and conductive states. The physical composition of a memristor consists of a metal-

insulator-metal interface, where the insulator is typically on the order of 10
-9

 m thick. Bias applied across 

the interface results in a physical or chemical change in the insulating layer, forming a conductive 

pathway between the two metal layers which can be destroyed by reversing the bias. Chemical 

composition and physical dimensions of this interface can influence device operational properties such as 

volatility of the different resistance states, number of possible resistance states, and the voltages required 

for regular operation. The ability for the circuit element to modify conductance based on previous I-V 

history is strikingly similar to the characteristics of a synapse, creating opportunities for memristors to be 

incorporated into brain-inspired hardware. 

A memristor with particularly suitable characteristics for use as a synthetic synapse is the silver 

sulfide atomic switch. An MIM interface comprised of Ag|Ag2S|X (where X is a metal such as Pt, W, or 

Ag) forms the basis of the switch [38, 39]. When bias is applied across the junction, the ionically and 
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electrically insulating Ag2S layer undergoes a phase transition from monoclinic acanthite to body 

centered cubic argentite. Argentite is electrically semiconducting, resulting in a slight increase in 

conductance. Additionally, it is ionically conducting, such that Ag
+
 cations dissolved in the insulator are 

able to migrate to the cathode where they are reduced to Ag
0
. Eventually, a continuous Ag

0
 filament 

extends across the insulator, significantly decreasing resistance of the interface. If bias is discontinued, 

the recently formed cation vacancies in the insulator serve as a thermodynamic driving force for the Ag
0
 

filament to redissolve, returning the interface to the high resistance state [40]. This process enables the 

interface to serve as a short term memory resistance switch, with a decay time on the order of 

milliseconds. Continued application of bias across a formed filament causes more cations to reduce, 

thickening the filament. Thicker filaments are more robust against thermodynamically driven dissolution, 

resulting in a long term memory characteristic with decay times on the order of hours or days. The high 

resistance state may be accessed again by reversing polarity of the bias, forcing Ag
0
 to reduce once more. 

Since the atomic switch has intrinsic long and short term memory resistance switching based on applied 

bias, it is an ideal synaptic electronic element to serve as the basis of brain-inspired hardware systems 

[41-43]. 

Typically, atomic switches and memristors in general are fabricated using ‘crossbar’ architecture, 

in which a series of parallel metal nanowires are lithographically patterned with an insulator coating, 

followed by a second series of parallel nanowires that are orthogonal to the first layer, creating an MIM 

interface at each nanowire crosspoint [36, 44-47]. Electrodes positioned outside the array allow voltage to 

be applied to each nanowire individually, such that each combination of nanowires has a unique 

memristor junction which controls the resistance between the two nanowires. This architecture offers 

precise control over memristors, and a high density of units with promising applications to logic and 

memory storage. But from a brain-inspired computing standpoint, the architecture does not provide a 

complex structure or allow intrinsic system interactions to form complex emergent behaviors. 

Furthermore, crossbar architecture is subject to scaling limitations – a principle known as Rent’s Rule 
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stipulates a power law relationship between the number of functional elements on a chip and the number 

of input and output wires [48, 49]. Biological neuronal networks obey this relationship and optimize 

structure through modular, self similar design while the implications for von Neumann architecture are 

prohibitively expensive wiring costs [50]. 

Fortunately, because complex systems have inherent fault tolerance, memristor networks serving 

as complex systems can be fabricated used less precise methods. Self-assembly offers a divergent 

approach to the fabrication of complex device architecture through the use of thermodynamically driven 

chemical processes. In particular, the galvanic displacement reaction: 

2Ag(aq)
- 
+ Cu(s)

0
 → 2Ag(s)

0
+Cu(aq)

2+
 

is known to create a wide variety micro- and nano-scale silver morphologies [51, 52]. The work detailed 

in this thesis is based on the idea that this reaction can be used to create a brain-inspired electronic device 

with a simple 3 step process. First, copper particles on an insulating substrate are used as nucleation sites 

for the galvanic displacement reaction. Second, aqueous silver nitrate is deposited on the substrate, 

allowing the reaction to proceed, producing a densely interconnected network of micro- and nano- scale 

silver structures. In the last fabrication step, the network is rinsed, dried, and exposed to gaseous sulfur 

[53]. This coats the silver structures with sulfur, reacting to form silver sulfide, such that locations where 

silver structures intersect or overlap create Ag|Ag2S|Ag interfaces at a density of up to 10
8
 cm

-2
, forming 

the basis of atomic switches embedded in an interconnected network. In theory, the end result is a 

structure referred as an Atomic Switch Network (ASN), an electrical device which bears resemblance to 

the complex network architecture found in the brain, and is capable of producing complex emergent 

behaviors. 

Characterizations of ASNs revealed that the self-assembly fabrication process was successful, 

yielding fully functional atomic switches which display both long- and short-term memory properties. 

Furthermore, under steady DC bias and square wave pulse bias, fluctuations in current and resistance are 
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observed caused by spatially distributed avalanches of switching events in subsets of atomic switches. 

These fluctuations have not been reported as occurring in single switches, and confirm that the network 

architecture allows for complex emergent behaviors. These findings are shown to be relevant in the 

implementation of brain-inspired computing paradigms. 

The chapters that follow catalogue the findings of this project, each one a self-contained article 

with introductions and conclusions to frame the different experimental results. Chapter 2 outlines the 

experimental procedure in the most simple and straightforward device architecture, produced using 

simple benchtop chemistry, and focusing on individual atomic switch and memristor behaviors 

manifested in the network architecture. Chapter 3 details the silver network fabrication step: the physical 

dimensions of copper nucleation sites affect the resulting silver morphology, adding a control parameter 

to the self-assembly process. Large (> 10 μm) copper seeds result in self-similar fractal structures, while 

small (<10 μm) seeds result in nanowires. Chapter 4 is a survey of different ASN behaviors observed in 

fractal device architectures, while chapter 5 surveys ASN behaviors in nanowire network architectures. 

Chapter 6 explores the evidence that the emergent resistance fluctuations in the device occur in a critical 

state, and what implications that has in the device towards brain-inspired computing paradigms. Chapter 7 

further explores the ASN in the context of brain-inspired computing, using a simulated network as a 

model to check hypotheses made about how individual atomic switches behave in the network setting – 

measurements that cannot be made in a physical ASNs. Chapter 8 explores interactive control over the 

network’s resistance state, and the potential uses this has in the framework of brain-inspired hardware 

applications. Finally, chapter 9 provides outlook on the future directions the project can take. 
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2. Benchtop fabrication of atomic switch networks 

Abstract 

 Recent advances in nanoscale science and technology provide possibilities to directly 

self-assemble and integrate functional circuit elements within the wiring scheme of devices with 

potentially unique architectures. Electroionic resistive switching circuits comprising highly 

interconnected fractal electrodes and metal-insulator-metal interfaces, known as atomic switch 

networks, have been fabricated using simple benchtop techniques including solution-phase 

electroless deposition. These devices are shown to activate through a bias-induced forming step 

that produces the frequency dependent, nonlinear hysteretic switching expected for gapless-type 

atomic switches and memristors. By eliminating the need for complex lithographic methods, 

such an approach toward device fabrication provides a more accessible platform for the study of 

ionic resistive switches and memristive systems.  

2.1 Introduction 

As ongoing trends in device technology continue on a path toward operation at 

increasingly reduced spatiotemporal and energetic scales, the perpetual demand for increased 

density in solid-state electronics and integrated circuits requires new approaches in device 

fabrication. Modern approaches to advanced computation commonly involve solid-state very-

large-scale integration (VLSI) circuits which increase the density of functional elements at 

reduced dimensionality through a merger of complementary metal–oxide–semiconductor 

(CMOS) technologies with nanoscale architectures known as CMOS-Molecular (CMOL) [54]. 

As a result, the fabrication of nanoelectronic devices has typically been consigned to advanced 

techniques and sophisticated equipment.  
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Realization of the nanoscale memristor [34, 36], an exciting class of two-terminal circuit 

elements whose behavior can be defined as a relationship between charge and flux [33, 34, 55], 

has shown great promise in circumventing the challenges of CMOS-based electronics. The 

memristor is in theory as fundamental to electronic circuit design as are the resistor, capacitor, 

and inductor [56]. Functional memristive devices show both volatile and non-volatile memory 

capacity, while current fabrication methods allow for nanoscale memristive elements to be 

integrated in ultra-high dense topographies [44, 47, 57]. In practice, nanoscale memristive 

devices generally exist as a metal-insulator-metal (MIM) junction consisting of two conductive 

electrodes separated by an insulating gap of width D. Application of an external bias voltage 

alters the conductance of the insulator by various mechanisms including but not limited to charge 

carrier migration, phase changes and magnetic domain rearrangements [36, 37, 39, 58-60]. In the 

case of a charge carrier based device, devices operate in an ionic drift model whose state 

equation modifies the constant parameter of resistance, R, in Ohm’s law V(t) = R I(t), with the 

charge (q) dependent memristance, M(q) 

      
     

 

               
     

                             (1) 

where    is the charge carrier mobility, RON and ROFF are the resistance states for the maximal 

and minimally doped states, respectively, and D is the gap width [36]. Through variation of the 

gap width, memristive systems act similarly to leaky transistors that can be controllably set to 

different resistance states in a continuum between high and low resistance states (ROFF and RON, 

respectively) as a function of applied voltage.   

Atomic switches are a class of nanoscale electroionic circuit elements that exhibit 

memristive switching under applied AC bias [39, 41, 43]. In the specific case of a silver sulfide 

atomic switch, the MIM junction is composed of conductors (Pt, W, or Ag) and an insulator 
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(Ag2S). The resistance switching arises from two distinct mechanisms – a phase transition of 

Ag2S, and the creation and dissolution of a Ag filament. Silver sulfide and has two distinct 

phases – insulating α-phase acanthite (2.5 × 10
-3

 Ωcm
-1

) at room temperature and conductive β-

phase argentite (1.6 × 10
3
 Ωcm

-1
) above 178° C. External bias voltage causes the α-Ag2S 

insulator to transition into the electronically and ionically conducting high temperature β-phase 

[53]. Silver cations are more mobile in the β-phase, so this phase transition facilitates a migration 

of Ag
+
 ions towards the cathode where they are reduced, forming a highly conductive Ag 

filament [40, 61, 62]. When negative bias is applied, the Ag filament oxidizes, β-Ag2S reverts to 

α-Ag2S and Ag
+
 ions re-dissolve into the insulator. Thus the conducting channel is broken and 

the junction returns to the high resistance state. Under repeated bipolar voltage, the filaments 

continually reform and re-dissolve, resulting in repeatable resistive switching. 

 

Figure 2-1. Operational schematic of a Ag|Ag2S|Ag atomic switch. Changes in device resistance result from the 

formation of a conductive Ag filament across the insulator. In the OFF state the Ag channel is incomplete as it is 

separated by the insulating Ag2S layer. Applied voltage stimulates the migration of Ag
+
 cations to the end of the 

filament, extending it and completing the channel, which characterizes the ON state. 

 

Due to their small size, low power consumption, and nonlinear characteristics memristive 

circuit elements are rapidly emerging as a complementary technology to CMOS-based 
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computation and memory storage. The development of commercial devices based on memristive 

elements, however, remains limited due to the factor of 1/D
2
 in eqn. (1) which causes the 

nonlinear memristive behavior to be dramatically stronger at small values of D. Devices which 

display nonlinear resistance at the voltage, current, and time scales of conventional CMOS 

transistors typically require an insulator gap size at the nanometer scale. As a result, precision 

nanofabrication techniques [36, 47], scanning probe microscopes [39], pulsed laser [63] and 

atomic layer deposition [64] are employed to achieve such gap widths.  

In contrast to complex lithographic methods, solution-phase approaches have been shown 

to produce functional memristive devices using spin-coated solgel films alongside anodic 

electrochemical deposition [65-72]. Electrochemistry in particular offers a divergent approach 

for the fabrication of metallic structures. Specifically, electroless deposition of various metals 

through the spontaneous reduction of soluble metal cations is a mature technology that has been 

employed extensively in macroscopic plating applications and the manufacture of printed circuit 

boards. Under diffusion-limited conditions [73], the reaction has been shown to generate a 

diversity of self-assembled structures including nanowires, dendrites, and fractals at the micro- 

and nanometer scales [52, 74-76]. Such assemblies present an opportunity to readily achieve 

MIM interfaces with sufficiently small gap sizes to enable memristive operation. 

 



15 
 

 

Figure 2-2. Schematic for fabrication of fractal ASN by electroless deposition. Copper microsphere seeds serve as 

nucleation sites for the spontaneous reduction of soluble silver ions and formation of dendritic silver structures 

which are subsequently converted to Ag2S through gas phase sulfurization. The Ag2S layer creates the MIM 

interfaces required for resistive switching. 

 

Here we present the fabrication of functional memristive devices based on a self-

assembled network of highly-interconnected Ag|Ag2S|Ag atomic switches using entirely 

inexpensive materials and techniques following the scheme shown in Figure 2-2. These atomic 

switch networks (ASN) rely on the electroless deposition of silver from copper seeds to form an 

intricate fractal wiring architecture suitable for creating a network of nanoscale MIM junctions. 

Applied bias converts these junctions into atomic switches and the entire network demonstrates 

the frequency-dependent, nonlinear hysteretic switching requisite for applications in data storage 

and computation. Our approach drastically reduces the need for precision fabrication or 

placement of the switching junctions as compared to typical lithographic methods. This 

demonstrates the utility of alternative fabrication techniques, and provides a unique approach 

toward the production of functional memristive devices. The process described here has further 

implications for the fabrication of large memristive devices and networks, opens future 

development to a wider field of investigation, and facilitates the study of memristive devices in 

educational environments. 
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2.2 Experimental methods 

Atomic switch network devices were fabricated using inexpensive and commonly 

available materials, and followed by self assembly processes to create an interconnected network 

of nanoscale MIM junctions. Two silver coated copper wires were fixed to a glass microscope 

slide with kapton tape with a 2-4 mm separation between wires (Figure 2-3a). Next, a solution of 

copper microspheres (d = 10 µm, 99.995% purity, Alfa-Aesar) was prepared in isopropyl alcohol 

(5 mg/mL). A small droplet (20 µL) of this solution was transferred via pipette between the 

wires, allowing the Cu spheres to disperse uniformly across the region (Figure 2-3b). Following 

solvent evaporation, a droplet of 50 mM aqueous AgNO3 was dropcast onto the Cu treated areas. 

With the Cu spheres serving as seed sites for the galvanic displacement of Ag
+
, the reaction (2):  

2 Ag
+

(aq)  + Cu(s) ↔ 2 Ag(s) + Cu
2+

(aq)  ε0  = 1.2573V       (2) 

occurred gradually over 5-8 minutes. The choice of concentration of soluble cations (50 mM)  

caused reaction (2) to occur under diffusion-limited conditions, producing complex networks of 

silver fractals [76].   

Upon completion, the silver fractal networks were rinsed of any remaining reagents by 

dilution with a droplet (20 µL) of deionized water (18 MΩ). One half (20 µL) of the diluted 

solution was removed by pipette, and the process was repeated an additional five times. The 

solution remaining on the device was carefully removed with an absorbent wipe and then 

evaporated by placing the device on a hot plate at 70° C for 10 minutes. The entire rinsing 

process was completed with minimal destruction of the network. As the networks dried, three-

dimensional silver fractal structures flattened to a quasi-2D shape in which overlapping 

structures came into contact with each other, forming an interconnected network [75]. Electrical 

resistance of the silver fractal network ranged from 40-60 Ω. 
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To convert interconnections among Ag fractal structures into the MIM junction requisite 

for atomic switch operation, the networks were functionalized by exposure to sulfur gas. This 

sulfurization step was conducted by heating a crucible of sulfur (Sigma, 99.98%) to 140° C on a 

hot plate. The device was mounted onto a wire stand (10 cm) placed on the hot plate to ensure 

that the device remained close to room temperature during sulfurization. The sample, sulfur and 

wire stand were then covered with a large beaker for 10 minutes. The confined evaporated sulfur 

gas then deposited onto the cooler fractal network. The resulting thin film of sulfur reacted with 

the Ag fractal structures to form an insulating Ag2S surface layer while leaving the bulk internal 

structures as metallic Ag, creating an assemblage of Ag|Ag2S|Ag MIM junctions. Electrical 

resistance of the across the ASN device was measured periodically to assess the degree of 

sulfurization. Devices with negligible resistance change from the initial state (40-60 Ω) were re-

sulfurized to achieve appropriate values for memristive operation (0.5 - 1.5 MΩ).  

 Structural characterization was carried out using the optical (Nikon Eclipse TE2000-U) 

and scanning electron (FEI Nova600 NanoLab) microscopes. Electrical characterization 

employed current-voltage (I-V) spectroscopy using a precision source measure unit (National 

Instruments 4132) for resistance measurements, while timeseries IV data was collected using an 

analog voltage input/output module (National Instruments 6368) in conjunction with a current-

to-voltage preamplifier (Stanford Research Systems SR570). Resistance measurements were 

conducted using a 2-electrode configuration with a 100 ms, 200 mV pulse. Timeseries data was 

collected at 10 kHz. Subsequent data analyses were carried out using MATLAB 2010b 

(MathWorks) and Origin 8.1 (OriginLab Corporation). 

2.3 Results and discussion 



18 
 

In order to maximize both the number and proximity of MIM switching junctions, 

substrate coverage of dispersed copper microspheres was optimized in order to achieve a dense 

2-D silver fractal network. Modelling and simulation of the resultant network topology was 

carried out using a tesselation method based on Voronoi diagrams in combination with a 

diffusion-limited model of electroless deposition. By partitioning a plane of n points into convex 

polygons (called Voronoi Cells) such that each polygon contains exactly one nucleation site and 

every point in a given polygon is closer to its generating point than to any other, the resulting 

simulations provided direct insight into the design of fractal-based networks with respect to 

optimal surface coverage of microsphere seeds. As seen in Figure 2-3, metallic silver fractals 

generated by electroless deposition resulted in self-similar structures with fractal dimensions 

1.72. 
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Figure 2-3. Device Fabrication – Illustrative representation of a device. (a) Initial state of devices with both wires 

fastened to the glass slide. The possible sites of contact on the wires are insulated. (b) Copper spheres applied to the 

area between electrodes react with AgNO3, (c) resulting in electroless deposition of complex silver nanofilament and 

fractal networks (scale bar = 1mm). (d) SEM image of silver fractals (scale bar = 30 µm). 

 

As-fabricated ASNs are initially collections of interconnected ohmic resistors. In 

common with many memristive devices, ASNs require an initial forming step to create a high 

conductivity ‘ON’ state through application of a sufficiently large bias voltage [73, 77]. Upon 

application of an appropriate activation bias voltage, subsequent sweeps produced an increased 

current output caused by the bias-induced phase transition (α/β-Ag2S), alongside concurrent 

formation of conductive metal (Ag) filaments. This formed a distributed assembly of weakly 

memristive junctions in which electronic conduction occurred through the β-AgsS across a gap of 

decreased width due to the forming metallic filaments. Continued application of bias voltage 
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induced filament growth across the gap, reducing the gap widths and increasing the measured 

current. The network then comprised resistive junctions with a growing number of completed 

memristive elements (atomic switches) and increasingly non-linear I-V behavior. The formation 

of a complete percolative path of memristive junctions from one electrode to the other resulted in 

a sharp increase in network conductivity and defined the completion of this activation process. 

                                

Figure 2-4. ASN device activation by applied bias voltage sweeps. With each successive sweep (0-500 mV, 1 Hz) 

the resistance appeared to decrease quickly while voltage increased linearly and increase slowly while voltage 

decreased linearly. Continual increases in conductance (3.86 µS, 10.94 µS, 50.2 µS, 1.248 mS at peak voltage) are 

typical in initial forming steps for memristive devices as conducting channels through the ASNs lengthen and 

increase in number.  

 

The entire forming step of an ASN device is shown in Figure 2-4 as a series of 

consecutive 0-500 mV sweeps, where an initially gradual increase in conductance was followed 

by an abrupt transition to the activated ‘ON’ state. Here, successive positive bias voltage sweeps 

of increasing amplitude were applied to initiate the forming step until measureable current began 

to flow through the ASN device. The minimum voltage required for activation ranged from 0.3 

to 2 V. Following activation, ASN devices were stimulated with symmetric (±300 mV, 1-50 Hz) 
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triangle wave voltage inputs. As Figure 2-5 shows, ASNs displayed repeatable switching 

between distinct resistance states, resulting in the pinched hysteresis I-V behavior typical of 

memristive systems. During consecutive sweeps, the threshold voltage for the low resistance 

state steadily decreased. Observed in individual switches, this behavior is due to a steady 

decrease in gap width where the theoretical minimum threshold is due to the oxidation and 

reduction of a single Ag atom which breaks and completes the filament [78]. In the network 

setting, reduction in threshold voltage is more likely due to a decrease in the ensemble average of 

gap widths in the ASN.  

         

Figure 2-5. Robust hysteretic switching. Five consecutive hysteresis curves show that each sweep is associated with 

a lower threshold voltage, due to decreasing insulator gap sizes. This data was produced directly after the network 

activation step. Voltage stimulus was a symmetric triangle wave (10 Hz, 300mV).  

 

A known fundamental property of memristive systems is that stimulation at increased 
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frequency diminishes the degree of resistance change, resulting in more linear, ohmic I-V 

behavior [36, 56, 79]. As shown in Figure 2-6, this behavior was observed in ASN devices over 

an input bias frequency range of 1-20 Hz, where conductance decreased from 1.01 mS at 1 Hz to 

0.57 mS at 20 Hz. Given constant input bias amplitude, a higher input frequency permits less net 

flux to pass through the junction during each half-sweep (i.e. 0 to +300 mV to 0). Charge carriers 

therefore have less time to migrate and are forced to reverse direction more often, causing them 

to instead fluctuate about their equilibrium point, resulting in larger gap widths and higher 

resistance. In contrast, slower sweeps allow enough cations to migrate not only to complete a 

conductive filament but to thicken it, which further increases conductance. 

                 

Figure 2-6. Frequency dependent hysteresis. Representative average output of 10 sweeps with a given threshold 

voltage of 300 ±10 mV at 1 Hz, 5 Hz, 10 Hz and 20 Hz. Greater I-V hysteresis is associated with lower frequency 

sweeps. The amplitude of the current near the threshold value is typically greater for lower frequency sweeps. 

Conductances in increasing order of frequency were 1.01 mS, 0.94 mS, 0.72 mS and 0.57 mS. 
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Additional evidence of frequency dependent behavior was observed alongside changes in 

the RON/ROFF ratio. Devices would occasionally fail to switch ON during application of AC bias 

voltage, remaining in the OFF state for the duration of a complete triangle wave voltage sweep. 

A minimum current output threshold (It = 20 µA) was defined such that a complete sweep which 

failed to produce a current above It, and thus displayed no memristive properties, was deemed as 

lacking a switching event. Sweeps that displayed clear hysteresis and current output above It 

were labeled as having a switching event. The device was then stimulated repeatedly for 60 

second trials at 1, 5, 10, 20, or 50 Hz. The frequency for each trial was randomly selected in 

order to minimize the potential effects that a trial at a particular frequency would have on 

subsequent trials at different frequencies. As shown in Figure 2-7, the percentage of sweeps 

containing switching events was seen to decrease with increasing frequency of applied bias. This 

is qualitatively in agreement with the expected trend of I-V nonlinearity versus input frequency. 

                       

Figure 2-7. Ratio of switching events to total voltage sweeps as a function of frequencies. Networks were stimulated 

with a symmetric triangle wave bias voltage (300 mV) at 1, 5, 10, 20, and 50 Hz. During a sweep, the device may 

display a switching event (pinched hysteresis) or it may remain in the high resistance state. The percentage of 

sweeps which contained a switching event was measured from an aggregate of over 10
3
 sweeps.  
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As compared to isolated atomic switches, ASNs require that gap widths be considered in 

the context of a network setting where filament creation and annihilation can result in complex 

interactions of many individual MIM junctions [73, 77]. At relatively low frequencies, repeatable 

switching between two primary distinguishable states shown in Figures 2-5 and 2-6 was 

dominated by the rapid transition to and from a low resistance state occurring immediately upon 

the completion or breakage of a completed percolative pathway across the network.  

Based on prior studies of frequency dependence in memristive systems and the results 

presented in Figures 2-6 and 2-7, we infer that at higher frequencies the amount of flux per cycle 

becomes progressively insufficient to allow for the completion of Ag filament formation [32, 36, 

56, 79]. From these results, we attribute the observed frequency dependent behavior in a network 

of Ag-Ag2S atomic switches not only to variations in filament thickness in individual switches, 

but also whether or not a percolative pathway of completed filaments is able to extend 

continuously across the entire network.  

2.4 Conclusion and outlook 

Using accessible materials and benchtop synthetic techniques we have prepared 

memristive atomic switch networks which display fundamental properties of memristive systems 

such as frequency-dependent, pinched hysteretic switching. The behavior of these devices is 

comparable to both theoretical predictions and previously reported properties of ASNs and 

memristive networks. The method of fabrication demonstrated here veers away from the top-

down approach of complex lithographic techniques and instead utilizes a simplified, cost-

effective method for the creation and study of memristive devices through bottom-up self-

assembly. Memristors will undoubtedly find many uses as memory or logic elements in both 



25 
 

conventional and neuro-inspired computing and new fabrication approaches such as this will aid 

in realizing their potential. 

                               

Figure 2-8. Schematic of parallel and series ASNs in benchtop devices. The bottom-up fabrication approach allows 

for very flexible arrangements of networks. Additional networks may be connected in parallel (a) on an existing 

device by joining corresponding wires to the input and output nodes. Similarly, additional networks may be 

connected in series (b) by affixing wires to an existing device in the manner shown. 

 

The simplicity of this benchtop approach to ASN fabrication also provides an accessible 

platform for further investigations of complex systems and an educational tool to introduce 

memristive systems. Because this method can produce easily reconfigurable networks, it 

provides an opportunity to investigate the properties of ASNs in various arrangements without 

requiring the development of unique designs or complex fabrication protocols. Recently it has 

been suggested that memristors or ASNs connected in parallel or series be studied [77]. A few 

proposed configurations for benchtop ASN devices which connect multiple networks in either 

series or parallel are provided in Figure 2-8. Redistribution of current in parallel configurations 

could allow for memristive elements with increased current output and power dissipation. Series 

configurations would produce larger functional networks, which may reveal advantages not seen 

in single ASNs including tunable threshold voltages and recurrent feedback [73]. This work 

represents a step forward in facilitation of such explorations by reducing the technical demands 
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and monetary expense of current research in memristive systems, making it more readily 

accessible to a broader population of investigators. 
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3. Morphological transitions from dendrites to nanowires in the 

electroless deposition of silver 

Abstract  

A morphological transition from dendrites to nanowires in the electroless deposition of 

silver by galvanic displacement of copper seeds is investigated as a function of seed size. The 

transition to dendritic growth is interpreted as arising from local reaction anisotropies interacting 

with the global solute concentration distribution. Reactions were performed on substrates bearing 

lithographically patterned grids of copper posts with sizes ranging from 1 to 50  m. When 

copper seed size exceeds 10  m, the deposition reaction consumes silver cations at a sufficient 

rate to create ripple-like Mullins-Sekerka instabilities in their distribution. The resulting concave 

growth fronts produce branched, dendritic structures. For copper posts smaller than 3.5  m, 

cation consumption is balanced by diffusion and the growth front’s advance toward the bulk, 

leading to networks of nanowires formed as the local reaction anisotropy favors growth by 

stacking along Ag(111) planes. 

3.1 Introduction 

Morphological transitions in nonequilibrium growth processes arise from interactions 

between microscopic interfacial dynamics and macroscopic driving forces [80, 81]. Such 

transitions occur when variation of a process parameter alters the expression of local anisotropy 

in the global growth mechanism [82]. Determining which parameters are responsible presents a 

challenge, as intuition derived from classical thermodynamics may become misleading far from 
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equilibrium [83]. Reliable selection of morphology requires parameters that control the interplay 

of temporal and spatial scales, functioning as nonequilibrium analogues to thermodynamic state 

variables [84]. Experimental investigations can identify these control parameters for specific 

growth processes and enable their use in directing the morphology of self-assembling structures. 

Electroless deposition (ELD), a general term encompassing processes also referred to as 

galvanic displacement or cementation, involves the reduction of metal ions in solution without 

the application of an external bias voltage. The technique is primarily used for depositing metal 

coatings and differs from simple homogeneous redox reactions in that deposition occurs at a 

specific interface and not in the bulk of the solution [85]. The utility of ELD as a fabrication 

strategy arises from its capacity to combine surface patterning with chemical self-assembly, 

gaining the flexibility of solution-phase synthesis while retaining the control of top-down design 

processes. This work focuses on the ELD of silver from copper seeds in silver nitrate solution, 

according to the reaction:  

Controlled synthesis of silver nanostructures is of particular interest, as bulk silver has the 

highest electrical and thermal conductivity of all metals [86]. Extensive studies of silver 

nanostructures have also demonstrated strong antimicrobial characteristics [87] as well as size-

/shape-dependent surface plasmonic effects, with particular implications for sensing and optical 

spectroscopies [75, 88, 89]. The wiring of interconnects has become the most important factor in 

electronic chip design and performance [90], motivating the development of biologically 

inspired, self-assembled complex nanowire network architectures [91], and devices [77]. Higher 

dimensional, dendritic silver nanostructures have additional advantages in surface enhancement 

for catalysis [86], detection [75], and as electrodes for electrochemical devices such as batteries, 

which harness the efficiency of branching geometries to optimize transport processes [92].  
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3.2 Results and discussion 

We present a study on the morphology of ELD silver structures where the size of the 

copper seeds used to grow them under nonequilibrium conditions serves as a control parameter. 

Lithographically patterned Cu posts with edge lengths ranging from 1 to 50  m and heights of 

200–790 nm were reacted with 50 mM silver nitrate solutions. This concentration was selected to 

investigate diffusion-limited deposition mechanisms [52, 93]. ELD occurred simultaneously at 

all Cu-solution interfaces upon immersing the substrate in AgNO3, keeping all reaction 

parameters (temperature, concentration, reaction time) identical except for the dimensions of the 

Cu seeds (Figure 3-1). 

                             

Figure 3-1. Experimental schematic. (a) Representation of the lithographic mask used for patterning Cu seeds of 

various size and pitch. Two distinct patterns, square and chessboard, are deposited onto SiO2 substrates for each 

seed size with pitch equal to and double that of the respective seed edge length (1−50  m). (b) Schematic of a SiO2 
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substrate with Cu seeds immersed in a 50 mM AgNO3 solution, where individual blocks represent a grid of given 

size. ELD reactions occur simultaneously under identical reaction conditions (temperature, concentration, time) with 

the exception of Cu seed size. Post heights ranging from 200 to 790 nm were used. 

 

Deposit morphology was observed to depend on seed size, with edge dimensions on the 

order of 1  m producing extended wires (Figure 3-2a), while above 10  m the deposits have a 

branched, dendritic structure (Figure 3-2b). This emergent length scale can be used to bridge the 

gap between top-down and bottom-up fabrication techniques in directing the self-assembly of 

functional nanostructured devices [73].  

                                   

Figure 3-2. Branching of Ag structures increasing with the decreasing strength of anisotropic forces. Preferential 

orientations for crystal growth lead to the formation of nanowires (a) until the growth front is sufficiently large to 

interact with the concentration field and produce branched dendrites (b). Scale bars = 1  m. 

 

Morphological transitions in nonequilibrium growth processes such as diffusion-limited 

ELD result from changes in the nature of the solid–solution interface at the growth front 

[94]. The pure diffusion-limited aggregation (DLA) model of Witten and Sander has proven a 

powerful tool for understanding a range of fractal growth phenomena [51]. In the DLA model, 
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solid growth occurs as random walkers (in our case, Ag
+
 cations) diffuse into contact with the 

solid and attach (e.g., are reduced to Ag metal), becoming part of the growing aggregate 

[95]. Good agreement has been seen between DLA model predictions and Ag structures grown 

using diffusion-limited ELD from Cu at seed sizes larger than a millimeter [52, 96]. However, 

there is no size scale inherent in the DLA model, which approximates an idealized case of a 

solution approaching zero density [97], and it is therefore unable to predict a morphological 

transition based on the size of the aggregate interacting with the solute distribution as a whole. 

Size scales can be introduced by turning to mean-field models of diffusion-limited 

growth [98]. They begin by defining a field controlling the growth process, in our case, the 

concentration distribution of diffusing Ag
+
 cations, which has a maximum value of the bulk 

concentration and is zero at the solid–solution interface. Growth is most likely to occur at 

protruding tips, as they extend furthest toward the bulk concentration. However, the interaction 

between the consumption of ions and the restoring forces resulting from concentration gradients 

at the interface is known to lead to instabilities in the distribution of ions around the growth 

front. The formation of such instabilities was analyzed by Mullins and Sekerka, who determined 

conditions for the propagation of perturbations at growth fronts [99], which have been used to 

explain the nonequilibrium formation of dendritic patterns [100]. We investigate these conditions 

experimentally, by simultaneously performing silver ELD reactions identical except for the size 

of the copper seeds. 

Experiments were performed using microscale copper posts lithographically patterned on 

thermally oxidized (500 nm SiO2) silicon. Electron beam lithography was used to prepare 1 

 m
2
Cu seeds, while UV lithography was used to deposit Cu grids with edges dimensions ranging 
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from 2 to 50  m and thicknesses of 200–790 nm. Microfluidic wells were fabricated around the 

Cu to facilitate the ELD reaction with aqueous AgNO3. A thick layer of SU-8 (approximately 

500  m) was deposited by spin coating, then UV exposed and baked at 95 °C before developing 

in propylene glycol methyl ether acetate and a final hard baking at 130 °C under nitrogen. Silver 

nitrate (99.98%, Fischer) was dissolved in 18.2 MΩ deionized water to prepare 50 mM solutions. 

Samples were characterized using optical and scanning electron microscopy. 

Small Cu posts (<3.5  m, Figure 3-4) were observed to exclusively grow nanowires when 

reacted with 50 mM AgNO3. At larger seed dimensions, branched structures were produced. The 

transition from wires to dendrites occurred for edge lengths near 10  m (see typical images 

shown in Figure 3-4). Extended wires were not observed at edge lengths greater than 15  m. No 

morphological dependence on the height of the posts was noted over the range examined. 

               

Figure 3-3. SEM images of Ag nanowires formed by ELD from lithographic Cu grids (1 × 1  m, 300 nm thickness, 

5  m pitch). The interpenetration of simultaneously grown wires highlights the predominance of local forces in the 

reaction at this seed size. Structures do not branch but may thicken. Scale bars: (a) 10  m, (b) 1  m. 



33 
 

In order to investigate the possible influence of the substrate on the morphological 

transition, we reacted Cu microspheres (99.995%, Alfa-Aesar, average diameters of 1 and 10 

 m) in stirred 50 mM AgNO3 solutions. These solution-grown Ag deposits were compared to 

structures produced from identical Cu seeds initially drop cast onto a supporting substrate. 

Optical images of each preparation showed no appreciable variation in structural morphology for 

a given seed size. However, comparison of XRD spectra for the deposits evoked distinctions, as 

collected using a Panalytical X’Pert Pro X-ray powder diffractometer using Cu Kα radiation 

(Figure 3-5). 

 

Figure 3-4. Optical micrographs illustrating the transition from wire to dendrite growth as a function of Cu seed 

size. At 7  m (a) wires predominate, with branched structures appearing as (b) seed size is increased to 9  m. (c) 

Wires were not observed for deposits from 15  m seeds. Scale bars = 10  m. 

 

Diffraction peaks near 38° and 44° were assigned to the (111) and (200) planes of fcc 

silver, respectively, according to standard values (Joint Committee on Powder Diffraction 

Standards file 04-0783). The shoulders on the (111) peaks are attributed to an Ag–Cu solid 

solution. Ag and Cu do not typically form alloys, despite both metals having fcc structures with a 

size mismatch satisfying the Hume–Rothery criterion for the formation of solid solutions 

(<15%), but they have been observed in nonequilibrium deposition processes such as sputtering 
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[101]. While the ELD mechanism is driven by simultaneous reduction and oxidation half-

reactions at the metal–solution interfaces, the potential is transferred from the dissolving Cu seed 

to the Ag plating growth front through the metal–metal interface inside the deposit. The resultant 

local electric field is of sufficient strength to form an Ag–Cu solid solution at this interface. 

The influence of size and substrate was taken from the XRD spectra by comparing the 

ratios of (111) and (200) peak intensities. This ratio gives a metric for the relative strength of 

anisotropic forces in the crystal growth process, where higher ratios are correlated to the 

preferential stacking of (111) planes associated with wire growth [102]. In aqueous solution, the 

(111) and (100) facets of fcc Ag are the most stable, with water molecules interacting more 

strongly with the (100) surface, making (111) the preferred growth orientation [103]. The 

observed trend in Figure 3-5 indicates that both smaller size and restricted volume (surface-

based) growth serve to increase the anisotropy, with (111):(200) ratios increasing above the 10:4 

standard for fcc silver crystals. This indicates that slower [Ag
+
] depletion rates are associated 

with increased expression of oriented growth. 

Given these observations, we find the transition between growth modes to be a feature of 

the nonequilibrium nature of the ELD process. Recent investigation into the effect of the size of 

Cu microspheres in a similar Cu/Ag
+
 ELD reaction attributed the observed morphological 

transitions from plates to belts and branched structures to changes in the electrochemical 

potential as a function of the concentration of reactants, calculated using the Nernst equation 

[104]. However, the Nernst equation is derived to estimate the reactivity of an electrode–solution 

interface at equilibrium and is not applicable to the ELD process that occurs far from it. We 

propose that the formation of dendrites does not occur due to the reaction potential increasing 

http://pubs.acs.org/doi/full/10.1021/cg301692n#fig5
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with seed size, but rather because of Mullins-Sekerka (MS) instabilities appearing when the rate 

of depletion of reactants in the vicinity of the growth front critically outpaces restoring forces. 

Past this critical point, the growth mode changes because of nonequilibrium patterns in the solute 

concentration distribution caused by MS instabilities. 

              

Figure 3-5. Comparing X-ray diffractograms of Ag structures grown from 1 and 10  m Cu microspheres in solution 

and on a glass surface shows that both seed size and surface proximity influence the preference for the (111) 

orientation associated with crystal growth anisotropy. 

 

At a growing solid–liquid interface, the presence of a perturbation in the concentration 

field that is not stabilized by damping influences will propagate to form ripples in the 

distribution of solution-phase components. This tendency for an initially infinitesimal 

perturbation in a concentration distribution to increase and spread is the essence of the MS 

instability analysis. Above the emergent size scale (∼10  m Cu seeds for the reaction conditions 

used in this experiment), the consumption of Ag
+
 at the growth front is sufficiently rapid to form 

MS instabilities, which create variations in the concentration distribution (Figure 3-6). Local 

regions of high [Ag
+
] reach sufficient chemical potential to nucleate branches, which can in turn 

form new MS instabilities. As the principal growth front advances at a constant velocity v, the 
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instability-related branches grow at a rate proportional to v
1/2

, creating a dendritic structure with 

a preferred axis of orientation through otherwise self-similar branches [96].  

                                   

Figure 3-6. Dendritic growth due to Mullins-Sekerka instabilities. (a) For growth fronts of sufficient size, the 

consumption of Ag+ outpaces the rate of replenishment, creating an instability in the concentration distribution. 

Diffusion gradients (represented as green arrows) are largest between the bulk and depleted regions, but the MS 

instability perturbs the flux of incoming cations to create a concave growth front. (b) The concave growth front leads 

to regions of increased Ag+ concentration near the surface of the growing deposit with sufficient electrochemical 

potential to nucleate new growth sites. (c) As the branches grow, additional MS instabilities form, repeating the 

process and leading to the self-similar dendritic morphology 

 

Below the transitional Cu seed edge length, local forces sufficiently dampen the 

perturbations caused by the consumption of Ag
+
 at the growth front, and no large-scale 
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disruptions of the concentration field occur. The tip of the growing deposit moves smoothly 

toward higher concentration areas, such that local crystal growth anisotropy dominates the 

process and produces wires preferentially oriented along the (111) surface. The advancing 

growth front functions similarly to a directed drift term in diffusion-driven aggregation models, 

which predict needle-like growth when the flow of reactants toward the interface is sufficient to 

dampen instability [105].  

The localized nature of the wire growth mechanism is illustrated by the formation of 

interpenetrating wire networks (Figure 3-3). Since there is no disruption of the concentration 

field, each growth process is effectively independent, so the wires can grow past each other. 

Conversely, during dendritic growth, MS instabilities alter the distribution of available Ag
+
 at a 

more global scale. As dendritic growth fronts approach, the depletion effects compound, and 

growth halts before deposits come into contact (Figure 3-4c). These observations support the 

notion that the transition in deposition morphology is associated with a change in the scope of 

the growth front’s interaction with the solute concentration distribution. The specific magnitude 

of the critical parameters for inducing the transition are sensitive to many factors, from the bulk 

concentration of silver cations to the presence of hydroxide and nitrate anions, which have been 

found to promote nanowire formation in other Ag reduction processes [106, 107]. While the 

observed ∼10  m transition length is particular to our choice of reaction parameters, this 

investigation is of general interest because of the mechanistic insight gained by experimentally 

isolating a single parameter—the seed size—and observing its influence on the emergence of 

global nonequilibrium patterns from local anisotropy. 
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In conclusion, we have developed a flexible ELD technique using lithographically 

patterned copper seeds reacted with silver nitrate solutions to controllably produce either wires 

or dendrites by utilizing an emergent length scale in the nonequilibrium deposition process. We 

propose that at seed sizes on the order of 1  m, the process is controlled by local crystal growth 

anisotropy and produces wires, while above 10  m the growth front depletes reactive solute 

species at a rate sufficient to create MS instabilities in the concentration field and forms dendritic 

deposits. This combination of patterning and self-assembly is an effective means for constructing 

biomorphic electroionic devices and is a useful blueprint for connecting bottom-up and top-down 

methodologies to efficiently produce complex nanotechnology [77]. 
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Chapter 4. Self-organized atomic switch networks 

Abstract 

The spontaneous emergence of complex behavior in dynamical systems occurs through the 

collective interaction of nonlinear elements toward a highly correlated, non-equilibrium critical 

state. Criticality has been proposed as a model for understanding complexity in systems whose 

behavior can be approximated as a state lying somewhere between order and chaos. Here we 

present unique, purpose-built devices, known as atomic switch networks (ASN), specifically 

designed to generate the class of emergent properties which underlie critical dynamics in 

complex systems. The network is an open, dissipative system comprised of highly interconnected 

(~10
9
/cm

2
) atomic switch interfaces wired through the spontaneous electroless deposition of 

metallic silver fractal architectures. The functional topology of ASN architectures self-organizes 

to produce persistent critical dynamics without fine-tuning, indicating a capacity for memory and 

learning via persistent critical states toward potential utility in real-time, neuromorphic 

computation. 

4.1 Introduction 

Complex systems are ubiquitous in the natural world. Studies of their structure and 

functional connectivity have revealed underlying network topologies that are both adaptive and 

evolutionary as a consequence of self-organization [108-110]. Biological neural networks are 

intrinsically complex and utilize self-configuring, hardware-based architectures capable of 

dynamic topological alteration. These intrinsically nonlinear, complex systems demonstrate 

extraordinarily efficient transmission of information, function without the need for pre-
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programming or an underlying software algorithm [111], and exhibit emergent behaviors 

commonly associated with intelligence such as associative memory, learning and predictive 

capacity in non-deterministic environments [112].  

Despite substantial effort to date, there remain relatively few theoretical constructs 

capable of providing fundamental insight into the occurrence of complex phenomena. One such 

construct, known as criticality, attributes spontaneous emergence of complex behaviors to the 

collective interactions of simple, nonlinear elements [14]. It is associated with the critical point 

of second-order phase transitions, whereby the system correlation length diverges in both space 

and time. Consideration of non-equilibrium critical states in the underlying dynamics of complex 

systems has provided substantial insight into possible mechanisms for the emergence of 

collective behavior in a wide variety of phenomena ranging from earthquakes, forest fires, 

avalanches, traffic patterns to economic trends [5, 113].  

Recent findings have shown biological neural networks operate in a critical regime, 

where "avalanches" drive internal system dynamics independent of initial system conditions and 

without the need for fine-tuning [23]. Their collective properties have led researchers in the field 

of complexity and neuroscience to further examine the fundamental nature of intelligence in 

terms of criticality [19]. Concomitantly, interest in correlations between neural activity, 

cognition, associative memory and intelligence has also promulgated proposals for bio-mimetic 

neural network-based computing devices [25]. Practical implementation of such concepts has 

been limited by their complicated fabrication requirements, reliance on sequential operations of 

logical processing and memory, or dependence on innovative software algorithms. 

In contrast, criticality presents a framework for computation that leverages system-wide 

spatiotemporal correlations to provide maximal information capacity and signal propagation. 
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Despite the discernible advantages offered by criticality as the basis for an optimal 

computational paradigm, this construct has received limited attention as a operational mode for 

the design and operation of purpose-built devices capable of doing useful work such as signal 

processing. Here, we discuss the design, fabrication and operation of a self-organized fractal 

version of the previously reported atomic switch network (ASN) [73, 77, 114-116] and 

demonstrate its capacity to function in a persistent critical state. This system is shown to emulate 

many relevant features of biological neural networks and provides a novel way to explore the 

utility of criticality as a basic framework for hardware implementations of a new paradigm in 

neuromorphic computation. 

4.2 Self-organizing networks 

Complex systems are commonly described as networks with hierarchical topologies 

composed of highly interconnected functional units. In many cases, these networks are scale-free 

and involve sparsely connected "small world" regions [108, 117, 118]. Fabrication of such 

complex architectures in synthetic systems and devices, especially those including random 

structural topology, cannot be readily achieved through traditional methods due to formidable 

challenges in forming robust intra- and inter-device connections in a cost-efficient manner 

[49]. Whereas biological networks realize a compromised balance of cost and complexity 

through self-organization, structural self-similarity, and hierarchical modularity [119], artificial 

network architectures remain at the mercy of the so-called "cost of wiring" limit [90, 91].  

To overcome these limitations, we set out to design and fabricate complex, hierarchical 

device architectures by exploiting self-organization of nanoscale building blocks as functional 

device components. In contrast to complex lithographic methods, solution phase 
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electrochemistry offers an alternative approach for the unconventional fabrication of complex 

metallic structures. In particular, the electroless deposition of various metals through the 

spontaneous reduction of soluble metal cations has been shown to form structures that exhibit 

scale-invariant fractal-like geometry and dimensionality via diffusion limited aggregation (DLA) 

[52]. This process can be exploited to present a new method for fabricating self-similar, small-

world networks optimized for maximum interconnect density. As shown schematically in 

Figure 4-1(a) , this concept involves the growth of sparsely interconnected fractal nodes 

randomly positioned in quasi-two dimensional space to form an extended network on top of an 

underlying conventional electrode array enabling direct electrical characterization and excitation 

of the network. 

 

Figure 4-1. Hierarchical network device concept of the fractal atomic switch network composed of "small world" 

regions of densely interconnected nodes and integrated with a macroscopic electrical I/O platform (a). Voronoi 

diagram-based simulation of metallic fractal growth by electroless deposition of a randomly distributed network of 

self-similar nodes from randomly distributed copper microsphere seeds (b–d). 
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Starting from a random, substrate-supported dispersion of nucleation sites for the 

electroless deposition of metallic fractals, simulation of the resultant network topology was 

carried out using a tesselation method based on Voronoi diagrams [120] in combination with the 

DLA model of electroless deposition as seen in Figure 4-1(b-d). By partitioning a plane of n 

points into convex polygons (called Voronoi cells) such that each polygon contains exactly one 

nucleation site and every point in a given polygon is closer to its generating point than to any 

other, the resulting simulations validated the design concept for generating fractal networks. 

Building upon these simulation results, physical implementation of the concept began 

with fabrication of a device platfrom for subsequent electrical input/output (I/O) measurements 

using standard microfabrication techniques as summarized in Figure 4-2(a) . A macroscale 

electrode pattern was first fabricated on the surface of a Si wafer (525 µm thickness; p-type; 100 

mm diameter) using conventional photolithography. Metal electrode pads were then patterned on 

the front side of the wafer via a lift off process of a Cr/Pt (15/150 nm) bilayer deposited using e-

beam evaporation. Subsequently, SU-8 reaction wells for holding liquids were defined using SU-

8 [121] by a sequence of spin coating, soft baking, UV exposure, post-exposure bake, 

development, rinsing, and hard baking [122].  
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Figure 4-2. Sequential processing of the device platform employed in the preparation and characterization of fractal 

ASNs entailed photolithographic patterning of Au electrodes and SU-8 polymer provided four independent reaction 

wells per device (a). Silver fractal nodes were grown by spontaneous electroless deposition from drop-cast copper 

microspheres within the macroscopic electrical I/O platform (b). Characterization by optical (c) and scanning 

electron (d) microscopy revealed individual fractal nodes to be sparsely interconnected within a random micro- and 

nanoscale architecture. 

 

Electroless growth of densely interconnected, metallic fractal nodes was carried out using 

of copper microspheres (99.995% purity, average diameter of ~10 µm) suspended in isopropanol 

(1 mg/ml) as reaction nucleation sites for the spontaneous galvanic displacement reaction with 

silver [114]. The size of the initial copper nucleation site was selected to preferentially result in 

fractal growth [123]. A small volume of this suspension was deposited into the reaction well of a 

pristine device and allowed to dry in ambient conditions overnight as seen in Figure 4-2(b). 

Dilute aqueous silver nitrate (50 mM) was then added and allowed to react to completion: 

 

The resultant fractal networks were characterized by optical and scanning electron microscopy, 

revealing a macroscopic topology similar to that shown in Figure 4-1(a) as well as a self-similar 
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microscopic architecture indicative of fractal growth with the fractal dimensionality determined 

to be ~1.7. 

4.3 Integrating nonlinear functionality 

The emergence of dynamical structures in complex networks is the consequence of 

interactions amongst the constituent nonlinear elements. Given the highly interconnected 

topology of the metallic fractal networks, integration of nonlinear components required the 

production of functional interfaces distributed throughout the network architecture. The 

nonlinear operational requirements were met by the electronic properties of the class of solid-

state devices generally known as resistive switches [37, 124]. In their simplified form, resistive 

switches behave as two-terminal devices controlled using solid-state redox coupled ion-

migration reaction to form/annihilate filamentary structures across a metal–insulator–metal 

(MIM) interface shown in Figure 4-3. Typically fabricated as cross-bar arrays through standard 

lithographic techniques, resistive switches exhibit hysteretic resistance switching, multistate 

switching in increments of the quantized resistance, and have been integrated with massively 

parallel CMOS technology [125].  

 

Figure 4-3. Structure of the symmetric atomic switch (a), comprised of an Ag|Ag2S|Ag interface. Operational 

schematic (b) showing device activation to the ON state resulting from the formation of a conductive Ag filament 

across the insulator. A return to the OFF state, either by removal or reversal of the applied bias, occurs due to 

filament dissolution. Applied voltage across the interface stimulates the migration of and reduction/oxidation of 

Ag
+
 cations during the switching process. 
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One member of this family, the atomic switch [39], has shown fascinating electrical 

properties analogous to sensory-, short-, and long-term memory (SM, STM, and LTM) at 

synthetic synaptic junctions [41-43]. Individual atomic switches exhibit time-dependent 

nonlinear conductivity behaviors due to several related mechanisms: (1) bias induced 

Ag
+
 migration, (2) electrochemical redox reactions involving Ag

+
/Ag

0
 to produce metallic 

filaments, and (3) an associated non-equilibrium α/β-Ag2S phase transition, which all compete 

with thermodynamically driven stochastic renormalization to the equilibrium OFF 

state[126]. Though atomic switches can be configured to operate in an essentially nonvolatile 

manner similar to memristors [33, 38] — two-terminal circuit elements whose resistance 

depends on the history of charge passed through them — their volatility indicates that they can 

be considered to be "memristive systems". 

Spontaneous, system-wide functionalization of the fractal network entailed conversion of 

as-grown metallic interfaces into MIM) junctions (Ag|Ag2S|Ag through gas phase sulfurization 

[53] within a Pyrex reaction tube from a crucible containing sulfur (99.5% purity, Sigma-

Aldrich) heated to 120 °C under nitrogen flow by the following reaction: 

 

Diffusion of sulfide through the wire junctions lead to the formation of high interconnect density 

(~10
9
/cm

2
) of nanoscale interfacial atomic switches as estimated from SEM analysis. 

Confirmation of successful network functionalization was interrogated through standard 

methods for operation of resistive switches. In common with the current understanding of 
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switching mechanisms in standard devices based on various materials such as Ag2S, TiO2, 

Ta2O5 as well as prior reports of ASN operation [73, 77, 114-116], device activation required an 

initial forming step. Application of either a DC bias across the device electrodes (0–10 V), 

sequential bias sweeps (±10 V), or a combination thereof created a short-lived (minutes) high 

conductivity "ON" state as shown in Figure 4-4(a) as a sequential series of representative I–

V curves. Devices were characterized in this fashion before and after functionalization in order to 

illuminate any underlying electrical characteristics resulting from the individual device 

components themselves. The observed nonlinear I–V curves exhibit the expected decrease in 

network resistance with consecutive bias sweeps [73], a behavior attributed to the operational 

phase transition between weak and soft memristive switching [79, 115]. In contrast, un-

sulphurized control devices comprised of a purely metallic network have substantially lower 

resistance and exhibit linear, ohmic I–V characteristics at intermediate voltages (±3 V) followed 

by irreversible breakdown at high bias. 
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Figure 4-4. ASN activation by repeated application of unipolar bias voltage sweeps demonstrating the formation of 

a high conductivity "ON" state (a). Nonlinear hysteretic switching observed after network activation (b) was highly 

robust, operating reliable over extended cycling (c). 

 

Following network activation, ASNs operated consistently as nonlinear switching 

devices, switching between two distinct resistance states as shown in Figure 4-4(b). Device-to-

device variability in the operational parameters was observed and is attributed to variations in the 

initial fractal configuration due to the nature of the fabrication process. Nevertheless, the devices 

generated consistent dynamical responses and operated reliably with stable RON/ROFF ratios 

[116].  

4.4 Emergent Criticality 

The resultant correlations, patterns, and dynamical properties generated as a consequence 

of nonlinear interactions between individual elements comprising a complex network can be 

considered emergent in that they belong to the system collectively rather than to any constituent 
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element [7]. In the context of critical dynamics, those elements are required to be governed by 

threshold dynamics capable of fast relaxation compared to an relatively slow external driving 

force, thereby allowing the system to settle into a range of correlated metastable states 

[113]. Observations of nonlinear network dynamics and emergent criticality have been recently 

reported in ASNs comprising highly interconnected nanowire networks prepared through a blend 

of top-down lithography and bottom-up self-organization [77, 116].  

To confirm the functional connectivity of fractal ASNs, devices were investigated with 

the aim to find persistent fluctuations in network conductance under relatively "un-tuned" 

energetic stimulation [73]. Fluctuations in network conductance have been attributed to a 

competition between bias-driven ion migration in opposition to a stochastic, thermodynamically 

driven return to equilibrium stoichiometry of the silver suphide junctions. Both factors lead to 

fluctuations in local resistance within the network that cause cascading resistance changes 

throughout the system [115]. Application of a DC bias voltage across the ASN resulted in 

fluctuations in conductivity for up to 60 h as shown in Figure 4-5. This emergent property, in 

contrast to the known behavior of an isolated atomic switch under DC bias, represents a primary 

indication of distributed electroionic coupling throughout the interconnected network. 
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Figure 4-5. Persistent fluctuations in device conductivity under un-tuned, sub-threshold DC bias voltage following 

device activation indicate distributed functional connectivity. 

 

Indicators of criticality include power-law (log–log) scaling of 1/f fluctuations and 

spatiotemporal correlations. Analysis of the power spectral density of network conductivity in 

the activated state revealed linear 1/f power law scaling over five orders of magnitude with α = 

1.6 indicating cooperativity during the integration of signals originating at different points in 

time which is ascribed to spatially correlated structures in local network activity. Temporal 

correlations were further explored by stimulation and device interrogation using sub-activation 

threshold, square-wave voltage pulses as shown in Figure 4-6(a) . This stimulation protocol was 

chosen for two primary reasons. First, to allow for the manifestation of threshold dynamics 

requires a separation of timescales (slow driving) between energetic stimulation and system 

relaxation. Second, voltage pulses are the common method of stimulation for single point atom 

switches that exhibit SM, STM, and LTM. A wide range of stimulation parameters including 
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interval, duration and magnitude, were examined to ensure sufficient separation between the 

timescales on which stimulation and relaxation dynamics occur.  

 

Figure 4-6. Temporally metastable conductance states were observed in the device response to intermittent voltage 

stimulation (a). Temporal correlation of metastable states observed during pulsed stimulation demonstrated power 

law scaling (α ≈ 1.7) for residence time both within a single 10 ms pulse and over 2.5 s during extended periods of 

pulsed stimulation (b). 

 

Correlated internal dynamics enabled observation of temporal correlations in residence 

times across a series of metastable states and indicates system memory. In terms of the 
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interfaces, information of previous events is stored in terms of the ionic distribution of soluble 

cations and accompanying crystalline phase within the ionic conductor. Metastable state times 

were determined by searching the pulse response time series for regions with point-to-point 

current fluctuations less than the noise floor. For the longer term, pulse-to-pulse correlations, the 

time series was smoothed by a moving average over 1 ms (10 timesteps), which was the interval 

of analysis for determining residence times greater than 100 ms. Scale-invariance of these 

temporal correlations was found to extend from short timescales (ms) within individual pulses to 

extended timescales (s) including multiple cycles of stimulation and relaxation as seen in 

Figure 4-6(b). Analysis of temporal self-similarity revealed power law distributions (α ≈ 1.7) 

within the residence time probability observed in these metastable states. These temporally 

metastable states are postulated to represent basins in the attractor landscape of the critical phase 

space produced by the ASN [127]. In the brain, periodic oscillations in the magnitude of neural 

activity push the network back and forth across the critical-subcritical boundary, moving through 

and modifying an attractor landscape, a process which may form the basis of associative memory 

and action-generating mechanisms [128, 129].  

4.5 Conclusions 

The collective behavior of coupled atomic switches within a self-organized network 

exhibits emergent device characteristics not observed in single atomic switches. These properties 

are attributed to a collective interaction of switching junctions across a shared ionic conductor. 

Here the activity of individual switches serves to influence the local environment of nearby 

switches as a result of variations in the surrounding electric field and distribution of Ag+ in the 

ionic conductor. The fractal network provides an additional layer of interconnect complexity, 

enabling system-wide conductance switching behavior. If local interactions were the sole 
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dynamic feature, one would expect to observe a continuum of conductance states. In contrast, 

switching between discrete states indicates correlated activity, where the class of emergent 

dynamical behavior satisfies numerous crucial criteria of criticality. 

A multitude of research has demonstrated the potential utility of criticality to describe 

and characterize complex systems and natural phenomena. However, only limited experiments 

have been reported in functional, non-biological system, a fact that inhibits probing their 

underlying dynamics. We demonstrate that combining fractal networks of self-assembled 

metallic wiring with the fascinating physiochemical properties of solid-state atomic switches, 

enables the operation of dissipative, scale-invariant systems with interactive degrees of freedom. 

ASNs exhibit rapidly emergent (<1 min) self-organization to persistent critical states over time 

periods of days which are comprised of multiple temporally correlated metastable states. These 

findings strongly suggest an important link between the requirements for predictive forms of 

real-time computation and ongoing advances in neuroscience through a readily addressable 

complex physical system with collective behaviors analogous to those currently observed in 

biological neural networks. 
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5. Neuromorphic atomic switch networks 

Abstract 

Efforts to emulate the formidable information processing capabilities of the brain through 

neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, 

nanoscale circuit elements that exhibit synapse-like operational characteristics. However, 

conventional fabrication techniques are unable to efficiently generate structures with the highly 

complex interconnectivity found in biological neuronal networks. Here we demonstrate the 

physical realization of a self-assembled neuromorphic device which implements basic concepts 

of systems neuroscience through a hardware-based platform comprised of over a billion 

interconnected atomic-switch inorganic synapses embedded in a complex network of silver 

nanowires. Observations of network activation and passive harmonic generation demonstrate a 

collective response to input stimulus in agreement with recent theoretical predictions. Further, 

emergent behaviors unique to the complex network of atomic switches and akin to brain function 

are observed, namely spatially distributed memory, recurrent dynamics and the activation of 

feedforward subnetworks. These devices display the functional characteristics required for 

implementing unconventional, biologically and neurally inspired computational methodologies 

in a synthetic experimental system. 

5.1 Introduction 

The human brain is the most powerful information processor known to man. Although 

the activity of individual neurons occurs orders of magnitude slower (ms) than the clock speeds 

of modern microprocessors (ns), the human brain can greatly outperform CMOS computers in a 
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variety of tasks such as image recognition, especially in extracting semantic content from limited 

or distorted information, when images are presented at drastically reduced resolutions [130-133]. 

These capabilities are thought to be the result of both serial and parallel interactions across a 

hierarchy of brain regions in a complex, recurrent network, where connections between neurons 

often lead to feedback loops [134-136]. Recent research in systems neuroscience has developed 

models to explain this combination of rapid and complex processing which view the brain as a 

large network containing many recurrent loops with both excitatory and inhibitory connections, 

within which feedforward sub-networks are embedded for fast signal propagation [134, 137, 

138]. 

In the brain, these excitatory/inhibitory connections between neurons, known as 

synapses, are nonlinear electroionic junctions whose conductivity changes in response to 

electrical and chemical signals. The relative timing of signals arriving from either side of the 

synaptic terminals, as well as larger-scale spatiotemporal patterns of network activity during 

these events, strongly influence the resultant change in synaptic strength, or plasticity [21, 139], 

a property postulated as the mechanistic basis for memory and learning [140]. Recently, 

nanoscale electroionic circuit elements known as atomic switches [39] have been shown to 

exhibit input-dependent memory behaviors similar to short-term plasticity and long-term 

potentiation in neuronal synapses, where the time constant for conductance decay to the high 

resistance OFF state depends on the strength and timing of applied voltage pulses [41]. This 

tendency to equilibrate produces short- and long-term memory behaviors that enable atomic 

switches to function as “inorganic synapses” [43].  

We present a detailed analysis regarding the consequences of coupling many atomic 

switches together in a highly interconnected, recurrent structure to create an operational 
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neuromorphic device that self-assembles into a functional state. The motivation for building 

complex network-based computing devices extends beyond an interest in understanding and 

emulating brain function. Alongside efforts to reduce the dimensions of circuit elements while 

increasing their integration, the wiring of interconnects has become the limiting factor in both 

design and performance of electronic devices [141]. Wire delays are significantly slower than 

transistor switching speeds, producing a situation where more logic gates can be fabricated on a 

chip than are able to communicate in one processor cycle [90]. This communication bottleneck 

can be addressed theoretically through the use of different network topologies, varying the 

number and type of interconnections. Complex nanowire networks are relatively simple to 

fabricate using self-assembly and would therefore be ideal wiring architectures, provided that 

they are useful. 

Previously we reported an operational regime near the “edge of chaos” in similar network 

devices, as characterized by power law scaling of temporal metastability, avalanche dynamics 

and criticality [77] reminiscent of electrical activity in biological neural systems [19, 23]. In such 

a state, the system is highly correlated and theoretically achieves maximum efficiency of 

information transfer while retaining a fading memory of prior states. These results indicate a 

potential capacity for efficient information processing, thereby surmounting problems associated 

with wire delays and interconnect structures. The distributed nature of the atomic switch array's 

dynamics makes it a candidate platform for efficient kernel design in the emerging field of 

“Reservoir Computation” (RC) [142]. The fact that RC does not require subtle control of internal 

network dynamics and is therefore simpler to execute, makes it an appealing route to begin using 

neuromorphic devices to perform computational tasks. Complex network architectures generated 

through self-assembly of functional nanoscale elements, like those described here, offer the 
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benefits of scalability and ease of fabrication combined with control of distributed nonlinear 

dynamics that may represent the architectural basis of a new computational paradigm. 

5.2 Results 

Atomic switch network devices were characterized using a range of potentiostatic inputs, 

including constant and ramped DC as well as sinusoidal AC signals. These complex atomic 

switch networks are shown to exhibit various nonlinear behaviors, depending on the magnitude 

and timing of both present and prior input signals. Behaviors include both weak (continuous I–V 

loop hysteresis) and strong (discrete threshold switching) memristance as well as nonlinear 

frequency response (higher harmonic generation) and persistent fluctuations in conductivity 

under constant bias (recurrent connectivity); results which were found to agree with a recent 

theoretical study of current flow in memristor networks [79]. Operation of the device using 

pulsed voltage stimulation produced network-specific emergent behaviors, as spatially localized 

conductive channels akin to feedforward subnetworks were formed within the embedding 

recurrent network. While there are significant differences between these atomic switch networks 

and biological neural networks (NNs), we demonstrate the physical implementation of high-level 

NN features in an inorganic structure, including bottom-up self-assembly that is reminiscent of 

neuronal growth in the brain [143], nonlinear input-dependent conductance response which 

strongly resembles the function of biological synapses [139, 140], and emergent properties 

considered fundamental to brain function - recurrent dynamics which gives rise to large 

persistent, correlated network responses and the activation of feedforward subnetworks [137, 

138, 144-147]. 

5.3 Atomic switches, complex networks, and neuromorphic hardware 
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Previous reports on the synapse-like properties of single atomic switches have 

demonstrated features similar to short-term plasticity and long-term potentiation, where applied 

bias voltage produced a junction conductance dependent on the history of stimulation (pulse 

frequency, length) [41]. Individual atomic switches exhibit time-dependent nonlinear 

conductance due to several related mechanisms: (1) bias induced Ag
+
 migration, (2) 

electrochemical redox reactions involving Ag
+
/Ag

0
 to produce metallic filaments, and (3) an 

associated non-equilibrium α/β-Ag2S phase transition [40], which all compete with 

thermodynamically driven stochastic renormalization to the equilibrium OFF state. Though 

atomic switches can be configured to operate in an essentially nonvolatile manner similar to 

memristors—two-terminal circuit elements whose resistance depends on the history of charge 

passed through them [36]—their volatility indicates that they are more properly classified as 

“memristive systems” [33, 34]. 

These mechanisms collectively produce the memristive switching and synaptic memory 

functions exhibited by a single atomic switch. Specifically, ‘weak’ memristance resulting from 

redistribution of Ag
+
 dopant cations across the insulator leads to ‘strong’ memristance 

characterized by abrupt switching through metallic filaments formed once the Ag
+
 cations reach 

the cathode and are reduced to metallic silver [39]. TEM studies have shown that the metallic 

silver filaments formed during switching are surrounded by a sheath of β-Ag2S, a conductive 

phase of silver sulfide normally unstable below 170°C [40], possessing a body-centered cubic 

structure with sulfide anions forming channels in which silver cations are delocalized, highly 

mobile and dynamically correlated [61, 62]. This non-equilibrium phase transition is attributed to 

a relaxation of strain induced by lattice mismatch between Ag
0
 and α-Ag2S, the electrically 

insulating room temperature phase [148]. In the absence of applied bias, thermodynamic 
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pressures return the Ag2S to its room-T α-phase, which drives the dissolution of the Ag
o
filaments 

and turns the atomic switch OFF at a rate dependent on the history of applied bias, producing the 

observed memory effects. 

A great deal of effort has been put towards building biologically inspired computational 

hardware [24-27, 57, 149-151], though matching the complexity of the brain in a usable 

electronic device presents an exceedingly difficult engineering challenge. Fabrication 

requirements force design concessions, such as approximating the complex, recurrent 

connectivity between neurons by a simpler network geometry. The amenability of crossbar 

structures to conventional fabrication techniques has led to their use in neuromorphic hardware, 

with pre- and post-synaptic CMOS neurons connected by memristive elements at the 

crosspoints [46]. This is an ideal hardware implementation of a 3-layer neural network 

model [152], where input and output neurons are connected by a synaptic “hidden layer” of 

variable strength, and is also a promising platform for building dense, fast solid-state memory 

devices [35]. However, the structural simplicity of the crossbar architecture is both a strength, 

enabling independent control of each synaptic element, and a weakness, since the well-defined 

grid lacks complex structures with the recurrent connections believed to be essential to brain 

function [134, 146]. While it is possible to program these features into a software model 

implemented on neuromorphic hardware, the physical existence of these complex structures may 

be essential to successfully generate the requisite spatiotemporal interactions between multiple 

signals simultaneously traveling through the network [139, 153]. 

5.4 Device fabrication and characterization 
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Based on the view that recurrent connectivity is essential to brain-like function, we have 

built, characterized and operated devices using massively interconnected 

(10
9
 junctions/cm

2
according to analysis of SEM images), silver nanowire networks 

functionalized with interfacial Ag|Ag2S|Ag atomic switches. These nanowire networks were 

prepared through self-assembly without pre-patterning of the network topology using the 

electroless deposition of Ag from Cu inside the SU-8 reaction well of an I/O device platform [77, 

121]. Specifically, spontaneous oxidization of metallic copper through reaction with dilute 

aqueous solutions of AgNO3produces a metallic silver structures with variable morphologies 

depending on the concentration of Ag
+
 and distribution of Cu [52, 74, 75]. Dendritic silver 

nanowires with minimum feature sizes <100 nm seen in Figure 5-1b were produced by using 

lithographically patterned Cu posts shown in the inset of Figure 5-1a. Control over the size and 

distribution of Cu seeds increased device yield by ensuring the formation of conductive 

pathways between the Pt device I/O electrodes as seen in Figure 5-1b. Ag|Ag2S|Ag interfaces 

were formed spontaneously within the network during gas phase sulfurization [53]. Following 

optimization of fabrication protocols, a total of 96 networks were used for the device 

characterization described below. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g001
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Figure 5-1. Device fabrication. (a) SEM image of complex Ag networks (scale bar = 10 µm) produced by reaction 

of aqueous AgNO3 (50 mM) with (inset) lithographically patterned Cu seed posts (scale bar = 1 µm). (b) High 

resolution image of the functionalized Ag network at the device electrode interface (Pt) showing wire widths 

ranging from 100 nm to 3 µm (average <1 µm) and lengths extending from a few microns to almost a millimeter 

(scale bar = 700 nm). 

 

Theoretical analysis of current flow in memristor networks during bias voltage sweeps 

indicated the possibility of a phase transition in device behavior from ‘weak’ to ‘strong’ 

memristive regimes [79]. Initial voltage sweeps of these network devices (Figure 5-2a) typically 

demonstrated smooth, pinched hysteresis loops characteristic of weakly memristive systems 

followed by an abrupt, nearly discontinuous jump to a distinct, high conductance ON state occurs 

at an activation bias voltage (Va). This behavior represents activation of the network and is 

shown as an illustrative example of a network device undergoing a behavioral phase transition 

similar to the bias-driven forming step required to activate single resistive switches. Following 

network activation, devices subjected to repeated bias sweeping generally exhibit robust, strong 

memristive behavior, typified by hard switching (inset). Robust switching over 10,000 cycles 

was demonstrated at an operational threshold voltage (Vt) of reduced magnitude as compared to 

the formation bias voltage, a general phenomenon in resistive switches [124]. While the specific 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g002
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magnitude of Va and Vt differ significantly between devices due to inherent variability in the 

solution-phase methods used to fabricate them, the qualitative transition from weak to strong 

memristive behavior was observed regularly, consistent with theoretical predictions [79]. 

 

Figure 5-2. Network Activation - memristive behavior. (a) Representative example of initial bias sweeps (0–5 V 

sweep at 1 V/s) applied to a pristine device which steadily activate higher percentages of atomic switches, resulting 

in increased current. After 11 sweeps, the device resistance decreases from ~10 MΩ to ~500 Ω. Subsequent ±1.5 V 

bipolar sweeps result in repeatable pinched hysteresis behavior (inset: ROFF = 25 kΩ, RON = 800 Ω), and bistable 

switching. (b–d) Schematic representation of the mechanism producing the I–V characteristics shown in (a). The 

network initially consists of weakly memristive junctions and ohmic contacts (b). Continued application of unipolar 

bias voltage (c) drives the dissolution of silver into silver sulfide, increasing the number of memristive elements, 

while cation migration across extant memristive junctions leads to filament formation and the onset of hard 

switching behavior. (d) After the proportion of strong memristors exceeds the percolation threshold (ρ>0.5), the 

network functions reliably in the hard switching regime. 

 

Similar to the electroforming step usually required to activate single atomic switches and 

memristors [124], the observed transition from weak to strong memristive behavior is assigned to 

two related mechanisms. In poorly conducting regions comprised mainly of Ag2S, anodic silver 

dissolves into and travels across the electrically insulating sulfide as Ag
+
, decreasing resistance 
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and producing a weakly memristive effect. In regions of higher Ag
+
 dopant concentrations, 

mobile cations reach the cathode and are reduced to Ag
0
, creating metallic filaments across the 

insulator that cause an abrupt change to an ON state with a sharp increase in conductance at 

Vt associated with the electrochemical process of filament formation. At the network level, the 

bias-induced creation of additional memristive junctions and filament formation across existing 

ones combine to produce the theoretically predicted transition of network I–V behavior to a 

strongly memristive phase (schematically illustrated in Figure 5-2 b–d) as the proportion of 

switching elements in the network exceeds the percolation threshold (50%) [79]. Having 

undergone this transition, the continuously swept network operates as a hard switching 

memristor shown in Figure 5-2a (inset). All further data presented was acquired from devices 

following activation. 

5.5 Network-specific properties 

While weak and strong memristive behavior can be exhibited by single resistive switches, 

the most interesting features of this complex atomic switch device are its network-specific 

properties. In order to confirm that the entire network was involved in processing the input 

signals, devices were imaged using an IR camera with 20 mK sensitivity to track Joule heating 

from current flow during slow bias sweeps. The IR images revealed power dissipation occurring 

across the network, indicating that the phase change in network I–V behavior was not 

attributable to the formation of a single maximum conductivity pathway of switches arranged in 

series between the active electrodes [77]. The distribution of activity indicates that the observed 

I–V characteristics are due to the sum of parallel current flow, meaning that network structure 

and connectivity are actively influencing device function. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g002
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As recent theoretical models predict passive generation of second harmonics in both 

singular memristors and in random networks, the distribution of switch function throughout the 

network was examined through analysis of the device's frequency response [79, 154]. Simulation 

of current flow in memristor networks indicate that 2
nd

 harmonic generation will occur under an 

applied sinusoidal voltage in networks whose percentage of hard switching junctions exceeds the 

percolation threshold [79]. Further, the relative magnitude of higher harmonics is predicted to 

increase with the relative number of hard switching junctions. Following activation, device 

response to a 10 Hz sinusoidal voltage signal varying in strength from 250 mV to 4 V shows a 

large increase in higher frequency components after functionalization (Figure 5-3b). The 

proportion of higher harmonics generated increases with signal amplitude (Figure 5-3c), with the 

largest increase occurring between 250 and 500 mV. A larger degree of higher harmonic 

generation is consistent with an increased number of memristive junctions operating in the hard 

switching regime above Vt (~0.5 V). Both the distributed power dissipation [77] and harmonic 

generation are characteristic of activity distributed throughout the network. 

 

Figure 5-3. Frequency Response – distributed conductance. (a) Amplitude spectrum from a Fourier transform of a 

control device's response to a 2 V, 10 Hz sinusoidal input signal compared to (b) that of a functionalized device 

which shows enhanced overtones of the input signal with respect to (a). (c) Plot of 2
nd

 and 3
rd

harmonic generation in 

current response as a function of bias voltage in both functional (black) and control (gray) networks. Harmonic 

magnitudes are represented as percentage of the fundamental for a 10 Hz sinusoidal input signal. 
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Having characterized atomic switch operation in an interconnected complex network, we 

examined the device for emergent behaviors specific to its brain-like recurrent structure. 

Structurally, the atomic switch network is recurrent in the sense that there exist pathways such 

that electrical signals produced at one junction may lead to (delayed) feedback at the same 

junction. Here we present experimental evidence of spatially distributed and correlated network 

dynamics, which are attributed to such recurrent connectivity. These recurrent dynamics are 

presented as an emergent property of the atomic switch network. 

Applying a constant 1 V DC bias (Figure 5-4a) produced persistent, bidirectional 

fluctuations—both increases and decreases—in network conductivity of large magnitudes (~20–

150%) over a range of time scales (seconds-hours). In the absence of recurrent structures within 

the network, the filamentary mechanism of an atomic switch implies that conductivity would 

increase monotonically under constant DC bias. The applied voltage leads to the thickening of 

filaments until the potential drop across the junctions is insufficient to reduce more silver 

cations [39]. However, large bidirectional fluctuations (ΔI greater than 100% on the scale of 

hours) in the current response persisted for several days under constant applied voltage, 

demonstrating that the complex network connectivity inherently resists localized positive 

feedback that would lead to the serial formation of a single, dominant high conductivity pathway 

between electrodes. Rather, recurrent loops in the network create complex couplings between 

switches, resulting in network dynamics that do not converge to a steady state even under 

constant bias. A single switch turning ON does not simply lead to an increased potential drop 

across the next junction in a serial chain, but redistributes voltage across many recurrent 

connections that can ultimately produce a net decrease in network conductivity. This behavior 

represents a network-scale analog of defect-defect interactions that have been observed to 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g004
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produce current fluctuations in metal nanobridges [155]. The nanoscale switch filaments couple 

these interactions with electrochemical redox processes, leading to significant changes in the 

conductivity state of the entire network. 

 

Figure 5-4. DC Response – recurrent dynamics. (a) Time traces of current response to 1 V DC bias show large 

current increases and decreases at all time scales around a mean of 5.81 µA (172 kΩ); shorter time traces (ii–iii) are 

subsets of (i). Representative device parameters: ROFF>10 MΩ, RON<20 kΩ, VT= 3 V during activation (b) Fourier 

transforms of DC bias response for Ag control (grey) and functionalized Ag-Ag2S (black) networks. The power 

spectrum of the functionalized network displays 1/f
β
 power law scaling (β = 1.34). 
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These fluctuations are of a magnitude significantly greater than what can be considered 

noise. An internal control experiment compared Fourier transformed current responses (Figure 5-

4b) of the devices to constant voltage before and after functionalization. The formation of atomic 

switch junctions expands the degree of correlation in current fluctuations, producing 1/f-like 

behavior across the entire sampled range, far exceeding that of control devices (unsulfurized 

silver network, grey line in Figure 5-4b), which flattens to white noise and some high energy, 

high frequency fluctuations attributed to arcing between neighboring wires. Functionalization 

with atomic switch elements increases the influence of past events on the present state of the 

network, in accordance with their memristive characteristics [41, 43, 156]. This results in an 

expanded degree of correlation in the measured frequency response. Similar 1/f spectra have 

been observed along with current fluctuations in other resistive switching systems, exhibiting 

relative resistance changes ΔR/R ranging from <0.002 for metallic filaments to an experimental 

and theoretical maximum of 0.5 in the semiconducting high resistance OFF state [157]. The 

network device of Figure 5-4 is operating in an intermediate state with an average resistance of 

172 kΩ (compared to ROFF>10 MΩ) and fluctuations of ΔR/R~1. In order to produce relative 

resistance changes of such high magnitude, switching events within the network must be 

correlated. While stochastic processes may be involved in the correlation of these fluctuations 

[156, 158] their magnitude and persistence is an emergent feature of recurrent connectivity in the 

device architecture that has not been observed in simpler atomic switch geometries. 

Inside the generally recurrent structure of the brain's neural network, there is evidence for 

the existence of feedforward subnetworks utilized for the fast propagation of certain 

signals [147]. In this device, persistent fluctuations in current under constant DC bias are 

produced by the recurrent network architecture, creating operational dynamics that resist the 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g004
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feedfoward activation of serial chains of switches. However, by altering the form of the input 

signal, we were able to independently operate conductance channels between different pairs of 

electrodes within the same device. The application of a single, large voltage pulse (±3 V, 1 s) 

selectively switched connections between electrode pairs ON and OFF (Figure 5-5a) with a 

RON/ROFF ratio greater than 30. In the example shown, the conductive paths between the two 

channels overlap spatially, yet are switched independently, indicating that local sub-regions of 

the network can transition to distinct operational modes despite being embedded within a highly 

interconnected, largely metallic structure. This is analogous to the presence of feedforward 

subnetworks within the recurrent architecture of the cortex. Single pulses of sufficient magnitude 

overwhelm the recurrent dynamics and induce feedforward activation of local sub-regions along 

a path connecting the involved pair of electrodes without significantly altering the conductivity 

of other spatially intertwined channels within the same nanowire network. 

 

Figure 5-5. Distributed Memory Storage from Network-scale Switching. (a) The device operates as a 2-bit non-

volatile memory device. The resistance states across two channels (i–iii and ii–iv) are monitored. ON/OFF switching 

of each channel is induced using super-threshold pulses (3 V, 1 s in duration); the threshold voltages for each 

channel are ,1.5 V. The resistances are measured every 5 s with a sub-threshold 200 mV, 100 ms pulses. (b) 

Although the device operates with a four state output (both channels ON, 1 ON/1 OFF, etc), the network’s internal 

configurations show diverse correlated patterns, from no correlation (blue) to total correlation (yellow). The figure 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g005
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shows correlation coefficients of channel resistances for all 6 pairwise electrode combinations. The correlation 

coefficients are calculated during each of the 4 network switching configurations; the black and red bars (insets) 

show the channels that are ON in the switching state. 

The degree to which pulse-mode channel creation influences overall network 

connectivity can be visualized in electrode resistance cross-correlation matrices (Figure 5-5b). In 

this case, net electrode resistance is calculated from the pair-wise resistances to be a 

representative measure of the overall connectivity of a given electrode to the network. The 

correlation strength (denoted by color) represents the degree to which a pair of net electrode 

resistances fluctuate in unison, interpreted as a measure of the number of shared network sub-

regions connected to both electrodes. Correlation strength increases strongly between electrodes 

connected by an ON channel, and decreases again when the channel is switched OFF, with a 

varying degree of influence on electrodes not directly involved in the switching. This implies 

that spatially central regions of the network can be selectively associated with particular pairs of 

electrodes without globally increasing the network connectivity. However, when conductive 

channels exist between all four electrodes, the overall magnitude of correlation in the network is 

correspondingly large, as fluctuations are spread evenly throughout the increasingly metallic 

network. This simple example of the interaction between local and global operational 

characteristics is a promising indicator of the possibility for the creation of a brain-like hierarchy 

of distinct functional regions within a single network where the functional connectivity of the 

network itself is both dynamic and self-organized [159]. 

5.6 Discussion 

Using a simple, two-step fabrication procedure combining top-down and bottom-up 

fabrication techniques, we have created functional neuromorphic devices based on a self-

assembled, complex network architecture. We describe these atomic switch networks as 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042772#pone-0042772-g005
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neuromorphic not only in that the massively interconnected, dendritic features observed in 

biological neural networks inspired the device architecture, but also due to several important 

network scale properties reported here. The devices demonstrate weak and strong memristive 

behaviors, as well as higher harmonic generation, confirming theoretical predictions on current 

flow through memristor networks. Previously unreported emergent behaviors specific to the 

complex architecture were observed as persistent bidirectional fluctuations of the current in 

response to constant applied voltage and the pulse-based feedforward switching ON and OFF of 

localized conductance channels within the highly interconnected network. Despite lacking the 

brain's rich assortment of neurotransmitter systems, with distinct excitatory and inhibitory 

neurons, the complex network of atomic switches produces multiple behaviors from a single 

basic unit through a capacity for localizing function in subnetworks inside a structure correlated 

by the nonlinear memory response of individual atomic switches. This diversity of function 

indicates the device's potential as a universal approximator of dynamical systems [160], with 

possible applications in physically implementing unconventional computational 

strategies [142] and as an inorganic experimental platform for the investigation of systems 

neuroscientific theories of biological brain function. 

5.7 Materials and methods 

Electrodes were patterned on the surface of a Si wafer (525 µm thickness; p-type; 100 

mm diameter; 500 nm thermal oxide) by photolithography. A Cr/Pt (15/150 nm) bilayer was 

deposited using e-beam evaporation. Subsequently, microfluidic reaction wells were patterned 

from a thick layer of SU-8 (approx. 500 µm) deposited by spin coating. The resist was UV 

exposed with a dose of 1200 mJ/cm
2
 followed by a post-exposure bake beginning at 65°C and 
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ramping up to 95°C before cooling to room temperature at 1°C/min. The SU-8 was developed by 

immersion in PGMEA (Propylene Glycol Methyl Ether Acetate). Fully developed wafers were 

rinsed with isopropanol and hard baked at 130°C on a hotplate in N2 atmosphere to increase SU-

8 resistance to high temperatures. 

Electroless deposition of Ag from Cu was performed by pipetting aqueous 

AgNO3 (Fischer, 99.98%) at concentrations ranging from 0.1–100 mM into microfluidic cells 

containing Cu seed posts, leading to a spontaneous reaction between Ag
+
 and Cu. Optimal 

conditions were achieved with Cu posts ranging from 0.25–4 µm in diameter at pitches of 0.5–4 

µm reacted with 50 mM AgNO3, sulfurized at 130°C for 10 minutes under N2 flow at 

atmospheric pressure. The silver networks self-assembled during this processes, and were then 

functionalized by reaction with sulfur (Sigma-Aldrich, 99.5%) in a Pyrex tube. The sulfur was 

melted in an evaporation boat at 130°C and delivered to the substrate by N2 flow. 

Electrical characterization of the devices was conducted using four Pt electrodes 

positioned around the edges of the Ag network. Current-voltage spectroscopy was conducted 

using a bipotentiostat (Pine Instruments model AFCBP1) in conjunction with a DAQ module 

(National Instruments USB 6259) at a sample rate of 10 kHz. Measurements were performed in a 

two-electrode configuration. Multi-channel resistance measurements were obtained using a 

multiplexed (National Instruments PXI 1073) SMU (National Instruments PXI 4130). The entire 

I/O system was housed in a Faraday cage and mounted on a vibration isolation table (TMC). 

Devices were characterized after each stage of the fabrication cycle. Subsequent data analyses 

were carried out using MATLAB 2010b (MathWorks) and Origin 8.1 (OriginLab Corporation). 
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The full dataset used in Figure 5-5b contained resistance data from all 6 combinations of 

the 4 electrodes in a device (for clarity, only 2 combinations are shown in Figure 5-5a). The 

network resistance of each electrode was calculated as the parallel resistances to the other 3 

electrodes. The dataset was parsed into the appropriate subsets (A on and B off, etc.) and the 

MATLAB function corrcoef() was used to calculate the correlation coefficients for the different 

configurations. 
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6. Emergent criticality in complex Turing b-type atomic switch 

networks 

Abstract. 

Recent advances in the neuromorphic operation of atomic switches as individual synapse-like 

devices demonstrate the ability to process information with both short-term and long-term 

memorization in a single two terminal junction. Here it is shown that atomic switches can be 

self-assembled within a highly interconnected network of silver nanowires similar in structure to 

Turing's “B-Type unorganized machine”, originally proposed as a randomly connected network 

of NAND logic gates. In these experimental embodiments, complex networks of coupled atomic 

switches exhibit emergent criticality similar in nature to previously reported electrical activity of 

biological brains and neuron assemblies. Rapid fluctuations in electrical conductance display 

metastability and power law scaling of temporal correlation lengths that are attributed to 

dynamic reorganization of the interconnected electro-ionic network resulting from induced non-

equilibrium thermodynamic instabilities. These collective properties indicate a potential utility 

for real-time, multi-input processing of distributed sensory data through reservoir computation. 

We propose these highly coupled, nonlinear electronic networks as an implementable hardware-

based platform toward the creation of physically intelligent machines. 

6.1 Introduction 

Modern state-of-the-art computers are the product of over half a century spent refining 

implementations of Turing's automatic machine (TAM) [29] using Von Neumann's 

computational architecture [30]. The TAM is the principal theoretical framework for 
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computation using sequential logical operations on single- purpose hardware consisting of an 

infinite tape of symbols, a read/write head, and a control mechanism that acts based on a 

transition table or instruction sheet. Von Neumann's introduction of the concept of memory into 

the computer architecture provided a blueprint for the physical realization of multifunctional 

TAM machines that utilize multiple stored programs via two main functional units – processors 

and memory. This flexible control mechanism made the TAM truly universal in its capacity to 

complete any algorithmically defined task. 

The von Neumann architecture has the principle advantage of clarity from the 

engineering perspective. Reduction in the physical size and increased areal density of electronic 

components directly scales up performance in terms of increased bytes of storage and processor 

cycles per second. The extension of this trend toward biologically inspired or artificially 

intelligent computation has resulted in attempts to simulate every neuron in the mammalian 

cortex and to outperform human experts in games of strategy [161, 162]. These achievements, 

while impressive, are not readily scalable due to the basic constraints of the CMOS architecture, 

its associated methods of fabrication, and the limits of its operational mechanism [163]. Further, 

the requisite passage of program instructions and data between processor and memory has 

evolved as a speed-limiting step known as the “von Neumann bottleneck” (vNB) [164] (Figure 

6-1a), which results in idle processor cycles and power dissipation as information is simply being 

transferred, not processed. In combination, these factors generate a computational architecture 

that consumes orders of magnitude more space and energy than intelligent biological systems. 
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Figure 6-1. Comparison of computation using Turing automatic machines (TAM) and Turing B-Type unorganized 

machines (TBTu)/Complex Network Reservoirs (CNR). (a): Conventional TAM computation suffers from the 

intrinsic von Neumann bottleneck (vNB), as instructions and data must be shuttled back and forth between memory 

and processor cores. (b): TBTu/CNR computation transforms simultaneous input streams into a higher dimensional 

forms/patters that are converted to intelligible outputs by a linear classifier, which can be readily trained to detect 

various categories of CNR behavior. (c) As calculations proceed sequentially in TAM (yellow figures), new input is 

delivered to memory (blue and green figures, respectively). Earlier processes are unable to produce desired output 

due to outdated instructions and must idle in the vNB (red figures). Upon the arrival of new instructions from 

memory, calculations can resume and proceed towards the output (green figure on third floor). (d) In TBTu/CNR 

computation, inputs combine simultaneously to fill the waiting elevator. This process is more time consuming (it is a 

slow elevator!), but upon arriving at the third floor (output), they have undergone a complex transformation, having 

spent time interacting to create a new state of the system. 

 

While current state of the art approaches to computation represent tremendous progress in 

performance and efficiency versus their historical counterparts, computer scientists have drawn 

inspiration from biology in an effort to develop computational strategies that are able to match 

the capabilities of biological neural networks (BNN). Remarkably, such concepts were proposed 
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over sixty years ago as Turing's “B-Type unorganized machine (TBTu)” [165], and have been 

subsequently popularized by Rosenblatt's perceptron, recurrent neural networks, and reservoir 

computing [112, 142, 152, 166-170]. These bio-inspired designs are generally associated with 

the notion of “connectionism”. Connectionist theories are based on complex networks composed 

of simple units, which, as a whole, produce emergent behavior not found or associated with any 

particular unit [13]. What constitutes a “complex system” is difficult to define precisely. 

However, extensive studies of complex, real-world networks have revealed the importance of 

both structural topology and internal dynamics. Various models of connectivity and interaction 

have been shown to accurately describe phenomena ranging from relationships between 

corporate directors to the backbone of the Internet [108].  

To date, artificial realization of connectionist architectures has been limited by the 

capacity to fabricate robust interconnects between electronic components in a cost-efficient 

manner, especially in designs utilizing unconventional topologies. Recent advances in nanoscale 

science and technology have enabled the direct self-assembly and integration of functional 

circuit elements within the wiring scheme of nanoscale devices with the unique architectures [27, 

73, 149, 164, 171]. Here, we utilize these concepts to construct a densely interconnected network 

of synapse-like memristive atomic switches using bottom up self-assembly. We find that this 

system demonstrates some of the emergent behaviors commonly observed in biological neural 

networks [23, 129, 172-174]. These complex atomic switch networks provide as a promising 

new direction for the development of functional TBTu-inspired neuromorphic computing 

devices, with specific implications toward physically implementable reservoir computation. 

6.2 Computational models 
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Building upon decades of inspired research based in the TAM/von Neumann 

computational paradigm, modern processors routinely include multiple cores and large memory 

caches to maximize efficiency by parallelizing computations and reducing memory access times. 

In addition to physical limitations on component size and the vNB, leakage currents through gate 

dielectrics, programming challenges in parallel processing, and intolerance to faulty elements 

have begun to impact performance. These obstacles provide strong motivation to develop and 

implement alternative computational strategies. To this end, numerous theories and proposals 

have been put forth toward biologically inspired, neuromorphic computing devices [25].  

Biological neural networks utilize self-configuring, hardware-based architectures capable 

of dynamic topological alteration and function without the need for pre- programming or an 

underlying software algorithm. These intrinsically nonlinear, complex systems demonstrate 

extraordinarily efficient transmission of information and emergent behaviors commonly 

associated with intelligence such as associative memory, learning, and predictive capacity in 

non-deterministic environments. One related theoretical construct, the TBTu, was conceived of 

as a randomly interconnected network of nothing more than modifiable NAND logic gates. Since 

NAND gates may be combined to perform any other logic function, Turing hypothesized that a 

sufficiently large network could serve as a usable computer, capable of any TAM operation 

[29]. Moreover, he showed that its connections and operations could be trained over time to alter 

its behavior, in a similar fashion to that of a biological brain. 

This concept has been applied in the fields of systems neuroscience and artificial 

intelligence to form the basis of contemporary research into artificial neural networks (ANN). 

These ANNs are typically implemented as software running on conventional TAM systems, 

mimicking information processing in natural systems. The earliest ANNs, commonly known as 
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the “perceptron”, utilized a feed-forward design in which artificial neurons are connected by 

modifiable synaptic weights and can ‘learn' to map input-output relationships according to any 

(mathematical) function [152]. The development of recurrent neural networks (RNN) enabled the 

inclusion of adaptive capacities through feedback strategies [112]. The existence of cyclical 

connections makes the RNN a dynamical system, capable of sustaining internal activity in the 

absence of additional signals, not merely mapping input to output. However, basic RNN training 

strategies still involve the direct modification of internal synaptic weights implemented 

abstractly using algorithms inspired by biological neural networks. In addition, ANNs are 

generally designed and optimized to perform specific computational tasks, occasionally utilizing 

purpose-built hardware for increased functionality [175]. This enhanced performance comes at 

the expense of flexibility, adaptability, and the capacity to synthesize multiple time- varying 

input signals or to operate in a non-deterministic fashion–all hallmarks of biological neural 

systems. 

Reservoir computation (RC) is a promising extension of RNNs towards more accurately 

modeling biological neural networks that has been successfully implemented in various 

engineering applications [142, 166-168]. Instead of tracking and modifying individual synaptic 

weights, the complex network of artificial neurons is treated as a kind of “black box” which is 

dynamically modified by the input and retains some (fading) memory of previous input signals. 

The complex network reservoir (CNR) acts to map these lower-dimensional input signals into a 

higher-dimensional space, represented by patterns in the state of the system and contains 

temporal information through integration of the input history. Poised between simply periodic 

and wildly unpredictable oscillations, the CNR operates at the edge of chaos [176].  
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This approach overcomes the challenge of training individual synaptic weights inside 

RNNs by not explicitly modifying them at all. Instead, a separate readout/output function is 

trained to examine the response of the reservoir, interpreting the spatiotemporal patterns formed 

by the collective effect of the input signals and transforming this higher-dimensional information 

into the desired output. Through appropriate training, RC methods are capable of simulating any 

Turing-type computational machine. Since the reservoir functions autonomously, multiple linear 

readout functions can be used simultaneously, thereby allowing the system to carry out multiple 

computational tasks on the same input stream in real time [167, 168].  

While simulation and modeling efforts implemented on traditional computational 

architectures remain the general, near-term focus of reservoir approaches, calls for the 

development of hardware-based CNR systems continue to form the basis for inquiry into a new 

paradigm of computational methods. Achieving these goals requires the development of physical 

systems whose properties mimic those of artificial, simulated reservoirs as well as a means to 

harness the power of information-rich output patterns they generate. We propose that the former 

can be achieved by applying the concept of Turing's connectionist networks to the fabrication of 

complex device architectures consisting of highly interconnected, nonlinear electronic elements. 

A near-infinite set of internal system states capable of receiving/storing information from parallel 

input streams is necessary to combine complex, dynamic signals into a single, higher-

dimensional output. This property is characteristic of systems operating in a critical state, a 

hallmark of complex networks of nonlinear elements, where the divergence of the system 

correlation length in both space and time provides all these requisite characteristics [5, 13]. 

6.3 Complex device architectures 
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The structure and activity of the biological brain is intrinsically complex, comprised of 

billions of neurons interacting recurrently through trillions of synaptic interfaces by utilizing a 

range of signaling chemicals to produce excitatory and inhibitory changes in electro-ionic 

conductivity. This dynamic, evolving system produces emergent phenomena with which we are 

intimately familiar such as consciousness, intelligence, learning, and prediction. The realization 

of hardware-based neuromorphic networks requires the ability to fabricate highly interconnected, 

complex wiring architectures with integrated circuit elements whose nonlinear properties 

emulate those of biological neurons and synapses. 

Fabrication of micro- and nanoscale devices with complex architectures, especially those 

with some degree of random structural topology, is difficult using solely lithographic methods 

due to challenges in forming robust intra- and interdevice connections in a cost-efficient manner. 

However, combining directed and self-assembly of nanoscale building blocks into functional 

device components offers a promising route to creating intricate patterns of nanoscale 

components. To create operable devices based on nanoscale architectures, two basic issues must 

be addressed: which materials to use and how to pattern them into networks that have some 

degree of randomness without negatively affecting their functional characteristics. 

Simple metals continue to be the material of choice for wires and interconnects in the 

fabrication of electronic devices. The power-law relationship known as Rent's Rule formalized 

the trend between the number of connections in integrated circuit designs and the number of 

internal components, such as logic gates, and how these are strongly related to both logical 

capacity and complexity of the interconnect architecture. This relationship infers that the limits 

on synthetic complex architectures lies in the cost of fabrication, with specific focus on 

interconnect and wiring strategies [48, 49]. Research has shown that biological neural systems 
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also obey this relationship [50]. Whereas biological networks realize a balance of cost and 

complexity through structural self-similarity and hierarchical modularity, ANN implementations 

based on TAM/von Neumann architectures remain at the mercy of this “cost of wiring”. While 

motivating the creation of bio-inspired devices, Rent's Rule further underscores the fact that new 

methods, differing not only in scale but also in kind, must be developed to meet these challenges. 

Solution phase electrochemistry offers an intriguing approach to the unconventional fabrication 

of complex metallic structures. In particular, the electroless deposition of various metals through 

the spontaneous reduction of soluble metal cations is a mature technology that has been 

employed extensively in macroscopic plating applications and the manufacture of printed circuit 

boards (PCBs). In contrast to plating applications, dendritic (fractal) growth processes have been 

studied extensively for various reasons [51, 52, 97]. Unwanted, spontaneous growth of dendritic 

metal protrusions through insulating layers has posed an engineering challenge as the resulting 

electrical shorts lead to device failures. In a more positive light, interest in these intricate 

structures generated insightful mechanistic models, such as diffusion-limited aggregation (DLA), 

that were tested and confirmed through comparison of simulated structures to physically 

produced metallic silver fractals by reducing controlled concentrations of Ag
+
 using seed metals 

such as copper and zinc. 
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Figure 6-2. Fabrication scheme for complex, electronic networks. (a) Schematic of the substrate/device 

microfabrication through various lithographic techniques. (b) Cu seed posts (1  m
2
, 1  m pitch, 300 nm height) 

deposited onto the substrate by electron beam lithography react with AgNO3 within a reaction well formed from SU-

8 epoxy photoresist, (c) resulting in electroless deposition of complex Ag nanowire networks. (d) The network 

extends throughout the device well and is electrically probed via macroscopic Pt electrodes. 

 

Here, the electroless deposition process has been extended to produce devices with 

complex architectures possessing both regular and random features by combining top-down 

directed patterning of seed materials at the microscale with bottom-up self-assembly of 

functional nanomaterials. Lithographic patterns of metallic copper were reacted with dilute 

solutions of silver cations to create complex networks of metallic silver nanostructures (Figure 6-

2). Optimization of this process enabled the controlled production of structures ranging from 

extended nanowires to dense fractals, similar to biological neural assemblies such as axons and 

dendrites [123]. Spontaneous generation of nanogaps between these as-prepared metallic 

nanostructures has been attributed to ionic depletion in the interfacial regions, due to the DLA 

growth mechanism. In addition, the formation of nanowire crossbar-like junctions resulted from 

the three-dimensional nature of the solution deposition process. By combining this wiring 
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approach with compatible materials that demonstrate synaptic properties, we have generated a 

complex network of randomly distributed, highly interconnected inorganic synapses. 

6.4 Synthetic Synapses 

Performing distributed, real-time computation of complex information requires suitable 

electronic device elements capable of mimicking salient aspects of biological synapse function at 

the relevant physical scales. Recent research has developed a vast catalogue of nonlinear, solid-

state electronic elements for use in integrated circuits and solid-state memory. A class of these, 

known as hysteretic resistive (memristive) switches, has received substantial attention as a 

synapse-like element for use in next generation neuromorphic computers. Resistive switches 

(RS) are two-terminal circuit elements that are distinguished from simple resistors by 

nonlinearities in the relationship between current and voltage across their terminals [124]. These 

nonlinearities, generically referred to as memristance, can take various functional forms, from a 

smooth dependence on the time integral of current passed through the device, to discontinuous 

jumps at some threshold value, or combinations thereof [33]. The resultant nonlinear dynamics 

can produce behaviors typically associated with biological neural networks, including long-term 

potentiation, long-term depression, spike timing dependent plasticity, and associativity [41, 43, 

177, 178]. The basic RS is a nanoscale device composed of a metal-insulator-metal (MIM) 

junction that can be fabricated using a variety of materials. 

An exciting subset of electro-ionic RS known as atomic switches exhibit common RS 

characteristics including pinched I–V hysteresis and large ON/OFF switching ratios as well as 

more exotic behaviors such as multistate switching in quantized increments of conductance 

[39]. The distinguishing feature of the atomic switch as compared to other memristive systems is 

its operational mechanism: atomic switches utilize metal filament formation/annihilation and a 
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concurrent bias-catalyzed phase transition within a solid-state electrolyte metal-insulator-metal 

(MIM) interface. One prevalent atomic switch configuration employs MIM interfaces of silver 

and silver sulfide (Ag2S). This chalcogenide undergoes a temperature-dependent and bias-

catalyzed transition from the monoclinic, semiconducting α-Ag2S phase (acanthite, 2.5 × 

10
−3
Ω

−1
cm

−1
) to a body-centered cubic, metallic β-Ag2S phase (argentite, 1.6 × 10

3
 Ω

−1
cm

−1
) 

[40]. The argentite phase has a remarkably high diffusion coefficient for silver, approximately 

equal to that of gaseous silver atoms at an equivalent temperature and density. Under applied 

external bias, this formulation operates via redox coupled ion migration of silver ions within the 

metallic argentite phase. While some RS are strictly non-volatile, the Ag-Ag2S atomic switch 

exhibits nonlinear, time-dependent conductance that has lead to the observation of a number of 

fascinating synapse-like properties including short- (volatile) and long- (non-volatile) term 

memory [41, 43]. Robust operation of these devices at rates up to 1 MHz over 10
5
 cycles further 

enhances their potential applicability as a synthetic synaptic element. 

To date, atomic switches have been primarily fabricated through advanced lithographic 

methods in regular, crossbar-type architectures that are promising candidates for nanoscale 

memory applications when operated in isolated, single device configurations. However, their 

operational characteristics are less well understood when connected in series, parallel, or directly 

coupled through their ionically conductive active layer, as would be required to implement 

computation in the TBTu/CNR paradigm. Inspired by the exciting synaptic properties of the 

Ag|Ag2S|Ag atomic switch configuration and its and material compatibility with our scheme for 

fabricating complex nanowire networks, we have characterized the properties of interconnected 

atomic switches as a means to examine their potential applicability as physical implementations 

of TBTu/CNR-based computation. 
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6.5 Critical atomic switch networks 

Complex networks of coupled nonlinear elements commonly manifest non-trivial 

evolution through dynamic system reconfigurations [40, 179] which enable enhanced 

maintenance of spatiotemporal correlations and maximally efficient signal propagation 

[108]. These features are associated with systems in critical states, and are crucial to the 

proposed implementation of hardware-based TBTu/CNR-inspired machines. We have fabricated 

and examined the operational characteristics of an electroionic device composed of a highly 

interconnected network of interfacial atomic switches wired through electroless self-assembly. 

Formation of the complex atomic switch network entailed conversion of as-prepared metallic 

nanogap and crossbar-like interfaces into metal-insulator-metal (MIM) junctions (Ag|Ag2S|Ag) 

through gas phase sulfurization [53]. Due to the nature of the electroless deposition process and 

resulting random network topology, a thorough survey of sulfurization conditions was carried 

out to optimize the fabrication protocol. 

Progressing from isolated, individual synthetic synapses to an assemblage of electro-

ionically coupled units introduces an extensive set of collective interactions capable of producing 

emergent behaviors. Spatially distributed atomic switch junctions interact through local 

variations in ionic concentration and electrochemical potential that depend on the combined 

electrical resistance of the entire network and the memory-dependent state of all other electro-

ionically interconnected switches. Dynamical complexity is expected given that atomic switch 

synapses are volatile memrsitive systems that exhibit a conductance decay time constant 

dependent on their operational history [34, 43].  

To examine these properties, atomic switch networks were investigated by I–

V spectroscopy. In common with isolated crossbar-type devices, as-fabricated atomic switch 
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networks required an initial forming step during which a sustained, high (∼6 V) bias would bring 

about a large but temporary drop in resistance. While parameters of the forming step varied from 

device to device, this requisite step indicates the successful preparation of MIM interfaces within 

the network. After forming, slow voltage sweeps (1 V·s
−1

) resulted in pinched hysteresis curves 

(Figure 6-3a) with an ON/OFF ratio of 10
3
, further validating the formation of a functional 

atomic switch network with behavior analogous to that of a two-terminal RS device. Repeatable 

switching was observed over 10
4
 cycles, and was successfully operated up to a 1 kHz switching 

rate. Conditions of no applied bias resulted in a return to the OFF state, as expected from the 

operational mechanism of this particular Ag|Ag2S|Ag configuration. Un-sulfurized control 

devices comprised of a purely metallic network demonstrated ohmic I–V characteristics at 

intermediate voltages (±3 V) followed by irreversible breakdown at high bias. 

 

Figure 6-3. Electrical characteristics of complex nanoelectro-ionic networks. (a) Experimental I–V curve 

demonstrating pinched hysteresis; RON = 8 KΩ, ROFF> 10 MΩ. (b) Ultrasensitive IR image of a distributed device 

conductance under external bias at 300 K; electrodes are outlined in white. (c,e) Representative experimental 
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network current response to a 2 V pulse showing switching between discrete, metastable conductance states. (d,f) 

Temporal correlation of metastable states observed during pulsed stimulation demonstrated power law scaling for 

probability, P(D), of metastable state duration. Power law scaling existed for residence time both (d) within a single 

10 ms pulse and (f) over 2.5 s during extended periods of pulsed stimulation. 

 

To rule out the possibility that network activity was simply the result of conductance 

localization along a dominant pathway, creating in essence a single large, serial atomic switch, 

the device was characterized using ultrasensitive IR imaging at room temperature (Figure 6-3b). 

These results revealed thermal emission from Joule heating throughout the network, indicating 

distributed and dynamic power dissipation during operation. Further, the application of spatially-

defined voltage stimulation enabled controlled activation/deactivation of local regions within the 

network while enhanced overtones in the device frequency response were also observed [73] as 

predicted by recently reported modeling of current flows in random memristor networks 

stimulated with a sinusoidal voltage [79]. These results collectively indicate the successful 

formation of an interconnected network of nonlinear elements, in this case atomic switches. 

Emergent behavior was observed during pulsed voltage stimulation, in analogy to methods 

employed in neuroscience to probe cortical cultures. Under typical conditions (2 V, 10 ms 

pulses, 10% duty cycle), the current response fluctuated through a wide range of metastable 

conductance states associated with discrete network configurations (Figure 6-3 c–f), as classified 

by residence times in a given state ranging from milliseconds (within a single stimulation pulse) 

to several seconds (across hundreds of pulses). Specifically, all conductance states whose 

persistence time exceeded that of the measurement bandwidth (10 kHz) were designated as 

temporally metastable. Observation of both increased and decreased conductivity during 

stimulation can be attributed to internal network dynamics, as conductance of isolated atomic 

switches only increases in response to sequences of identical stimulation pulses [39, 41, 43]. 
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Previously unreported current fluctuations of this kind are ascribed to dynamic redistribution of 

network connectivity caused by actions of both individual switches as well as electro-ionic 

coupling throughout the shared active layer. Specifically, formation of a conducting filament 

results in localized depletion of silver cations within the solid electrolyte and thereby inhibits the 

formation of filaments at nearby MIM interfaces. Due to the high diffusion constant of Ag
+
 in 

the β-Ag2S, this non-stoichiometric region may extend relatively large distances and induce 

weak electro-ionic coupling even between distant switches. Furthermore, concurrent formation 

and annihilation of conductive filaments will redistribute current flow, thereby modifying local 

electrical potentials across the network. These local variations sum to produce the observed 

fluctuations in global network conductance. While direct mechanistic confirmation of the 

observed conductance fluctuations would be useful, the inferred mechanism proposed here 

provides a rationale for future optimization of the network architecture. 

Critical dynamics are of ultimate importance for applications of TBTu/CNR-based 

computation. Indicators of criticality typically include power-law scaling of 1/f fluctuations and 

temporal metastability. Analysis of the power spectral density of network conductivity in the 

activated state revealed 1/f power law scaling over five orders of magnitude [73]. Electro-ionic 

coupling within the atomic switch network generated metastable conductance states, which were 

analyzed for temporal correlations. Comparing the probability of state duration with its 

likelihood indicated a power law distribution (Figure 6-3 c–f), indicating a diverging temporal 

correlation length. Observations of both spatially distributed electro-ionic activity within the 

network and the long-term persistence of metastable state residence times alongside short-term, 

rapid fluctuations between many available conductance states are strong indicators of critical 

system dynamics during intermittent pulse operation. These metastable conductance states 
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represent unique configurations of the network and infer behavior similar to those of 

spatiotemporal states associated with neural dynamics and those required by reservoir 

computation models. 

6.6 Outlook and perspectives 

The value of exploring new paradigms in computation cannot be overstated, as the 

challenges of moving “beyond CMOS” undoubtedly provide inspiration and motivation for the 

next generation of scientists and engineers. Likewise, elucidating the fundamental nature of 

intelligence remains a question for the ages in fields spanning all of human endeavor. Drawing 

on a historical perspective of seminal developments in computer science, complex systems 

theory and neuroscience, we have set out to propose a hardware-based approach to neuromorphic 

computation that aims to harness the power of highly coupled, nonlinear systems. We feel that 

the perspectives and results described herein represent a potentially important link between the 

requirements for real-time, multi-sensory computation and ongoing advances in neuroscience 

through a readily addressable physical system with collective behaviors analogous to those 

currently observed in biological neural networks. 

Research into applications of artificial neural networks toward biologically inspired 

computation has been greatly facilitated by modern developments in neuroscience. Recent 

findings have shown biological neural networks to operate in a persistent critical state, a feature 

commonly associated with the critical point of a second-order phase transition and power law 

scaling of internal system dynamics [19, 180]. Under such circumstances, the system correlation 

length diverges in both space and time, indicating that the influence of past events decays slowly 

and physically distinct points within the system are coupled regardless of the magnitude of 

separation. Spatiotemporal correlations of this type have been shown to maximize memory, 
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transmission of information, and adaptability within complex networks, such that each part of the 

system is communicating with every other part of the brain, for every time of its history. A class 

of critical systems emerge from coupled networks of nonlinear elements governed by threshold 

dynamics that relax quickly compared to a slower external driving force, an arrangement that 

allows these systems to settle into a range of correlated metastable states. This model is more 

than superficially reminiscent of our current understanding of neural dynamics, and has been 

employed in recent forms of advanced neural network research including, but not limited, to 

reservoir methods such as liquid state machines and echo state networks. 

To our knowledge, the self-assembled atomic switch network described here represents a 

unique implementation of a purpose-built electronic device composed of coupled nonlinear 

elements that clearly demonstrates critical dynamics. We propose that such a system provides a 

robust, flexible, and scalable experimental platform for controlled examinations of criticality and 

its potential applicability in the fields of neuroscience and neuromorphic computation. Further, 

the inherent properties of single atomic switches and emergent behaviors observed in these 

complex atomic switch networks indicate a capacity for memory and learning via temporally 

correlated, metastable critical states [181]. Such an approach has potential utility for real-time, 

reservoir computation of multi-domain data systems such as those used in autonomous 

locomotion, proximity sensing and global positioning as well as a wide variety of sensing 

applications. Technological trends toward the growth of multi-domain and distributed sensing 

systems represent the seminal challenge for new forms of emerging computation in the centenary 

of Turing's birth. 
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7. A theoretical and experimental study of neuromorphic atomic 

switch networks for reservoir computing 

Abstract 

Atomic switch networks (ASNs) have been shown to generate network level dynamics 

that resemble those observed in biological neural networks. To facilitate understanding and 

control of these behaviors, we developed a numerical model based on the synapse-like properties 

of individual atomic switches and the random nature of the network wiring. We validated the 

model against various experimental results highlighting the possibility to functionalize the 

network plasticity and the differences between an atomic switch in isolation and its behaviors in 

a network. The effects of changing connectivity density on the nonlinear dynamics were 

examined as characterized by higher harmonic generation in response to AC inputs. To 

demonstrate their utility for computation, we subjected the simulated network to training within 

the framework of reservoir computing and showed initial evidence of the ASN acting as a 

reservoir which may be optimized for specific tasks by adjusting the input gain. The work 

presented represents steps in a unified approach to experimentation and theory of complex 

systems to make ASNs a uniquely scalable platform for neuromorphic computing. 

7.1 Introduction 

Synapses play an essential role in cognitive function. Brain activity is characterized by 

spatio-temporal varying electrical signals travelling through a vast interconnected recurrent 

network of neurons, where the synapses mediate signaling. Until recently, research has tended to 

focus on an approach that promulgates that advances beyond complementary metal–oxide 
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semiconductors (beyond-CMOS) computation [182] may be achieved by fabricating electronic 

elements that recreate the fundamental behaviors of neurons and synapses [25, 183]. 

Accordingly, new generations of synthetic synapses have been demonstrated or modeled which 

display short- and long-term potentiation/depression (STP, LTP and LTD respectively), spike 

timing dependent plasticity, and other neuroscientific phenomena [150, 184]. These devices have 

been incorporated into hybrid-CMOS/molecular-CMOS [28, 184] circuitry with the aim of 

recreating synaptic spiking patterns typically realized with crossbar array geometries for 

optimized memory storage [44, 45, 47, 57, 185-189]. The architecture of the arrays is designed to 

address each functional element individually and sequentially in a programmed fashion, 

essentially precluding the elements from interacting within a network. However, actual complex 

systems exploit the non-trivial effects of interconnectivity [6, 108] that allow individual units to 

function in synchrony over multiple spatial and temporal scales resulting in self-organized 

patterns of activity [19, 23, 145, 174, 190]. Consequently, emergent phenomena are distributed 

throughout the entire system and cannot be associated with any particular node or local 

group [13, 20, 139]. In the brain, modification of these intricate networks is believed to form the 

basis of memory, motor pathways, and cognition [140, 191-193]. 

Through a combination of top-down and bottom-up fabrication techniques, highly 

interconnected wire networks containing synaptic functional units have been fabricated and 

studied  [73, 77]. These atomic switch networks (ASNs), composed of more than 10
9
individual 

inorganic synapses cm
−2

 [41, 43, 194], i.e. atomic switches [39], represent a unique class of 

physical devices capable of exhibiting synapse-like properties in neurally inspired architectures. 

Interfacing functionalized networks with multielectrode arrays offers the ability to harness 

intrinsic system dynamics through input and read out of real-time electrical signals at various 
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spatio-temporal scales toward practical implementation of neuromorphic computation [73, 77]. 

ASNs retain the adaptive plasticity and memory of their component atomic switches while 

exhibiting emergent properties such as criticality and spontaneous switching between discrete 

metastable resistance states. 

Most attempts to mimic the brain's function use simulated neural networks. Recurrent 

neural networks consist of nodes, each with an adjustable connective weight, and allow signals to 

propagate forwards and backwards through the network [195]. Such structure allows information 

to be integrated at different time points, enabling online training. The main drawback of 

recurrent networks remains the difficulty of adjusting individual connective weights, which 

results in an inability to efficiently differentiate inputs or adapt to increasing noise levels in the 

environment [196]. The computational degrees of freedom are also too vast to permit 

convergence in a reasonable time. 

Recently, reservoir computing (RC) was developed to overcome these issues, while 

retaining biologically relevant features such as feedforward and recurrent structures [142, 166, 

168, 197-199]. RC is achieved through a two-step process. First, time varying input data are 

introduced to a fixed weight recurrent network or 'reservoir', in which the nonlinear action of 

nodes produces higher dimensional representations of the input data. This transformation permits 

the second step, where the new representations are read out through a feedforward network or 

'linear readout'. Information that was not initially linearly separable can then be processed 

through simple linear regression techniques in the feedforward layer. Consequently, RC can 

perform complicated classifications in real time, and enables generalization of learned tasks. 

Currently, RC is the most effective technique available for certain tasks and has been realized in 

a variety of physical implementations as proof of concept [200-202]. 
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ASNs were proposed as well suited to RC, because they contain a physically recurrent 

network of nonlinear elements which are amenable to serve as a reservoir while also exhibiting 

feedforward properties useful for the output layer [77]. ASNs also possess a readily scalable 

architecture, multiple spatio-temporal outputs, and synaptic nonlinear elements displaying 

critical dynamics. Consequently, ASNs are potential embodiments for enabling neuromorphic 

computational theories and represent physical neuromorphic devices that have a direct 

connection with neuroscience. 

Understanding and harnessing the rich dynamics found in complex networks comprised 

of coupled nonlinear elements is challenging. In particular, practical engineering goals are based 

on stimulus–response relationships governed by internal system reorganization with minimal fine 

tuning at the microscopic level. Here we present a numerical model of ASNs which illustrates 

key aspects of the spatial and temporal dynamics of the system, and investigates their utility in 

the context of RC. Our simulation was built from the physical ASN devices: the design and 

implementation was based on the well-documented physics of single synaptic switches, and the 

connectivity was modeled on the known network architectures determined from SEM images. 

The goal of the simulation was to deepen our understanding of network function, optimize 

network design and explore the applicability of device architectures for neuromorphic 

computational tasks. 

First, we validate the accuracy of the simulation by reproducing data from the devices 

such as controlled interconnect plasticity and emergent behavior, despite the simulation's much 

smaller network size. Second, we show that fluctuations in a simulated isolated single link are 

distinctly different from those of an identical link within the network. This highlights the role of 

the network where synaptic elements behave differently as a result of interconnectivity. The 
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simulation is also found to show emergent properties that are impossible to measure in a single 

device. Third, we show that higher harmonic generation reported experimentally [73] and 

theoretically predicted [79, 154] can be modeled and utilized for reservoir computing. We finally 

discuss the potential impact of ASNs as a unique physical embodiment that is capable of 

integrating neuromorphic architecture, dynamics, and computation. 

7.2 Methods 

The ASNs were grown using self-assembly of a rhizomic–dendritic network of highly 

interconnected silver (Ag) nanowires which were sulfurized to provide distributed nanojunctions 

comprised of inorganic synthetic synapses. The ASNs were interfaced to input–output electrodes 

fabricated using conventional micro-lithographic processing to create a functional device [73, 

77] (Figure 7-1(a)). Electrodes were fabricated by electron beam evaporation following 

photolithography on the surface of a p-type Si wafer (boron doped, 0–100 Ω cm
−1

) insulated by a 

500 nm thick thermal oxide layer. Deposition of 4–16 Cr/Pt (15/150 nm) electrodes with 

diameters of 10–50  m at pitches between 50 and 500  m was followed by spin-coating and 

patterning of an insulating layer of SU-8 deep UV resist, which served to expose only point 

contact regions of the electrodes. Micron diameter cylindrical copper seeds were then deposited 

at areal densities between 1 × 10
6
 and 2.5 × 10

7
 seed sites cm

−2
 for the electroless deposition 

(also referred to as galvanic displacement or cementation) of Ag from Cu on the SU-8 layer. 

Electroless deposition was performed under diffusion-limited conditions using 50 mM aqueous 

solutions of AgNO3 [96]. This spontaneous electrochemical reaction produced the complex 

networks of metallic silver nanowires shown in Figure 7-1(b). Previous studies have shown that 

the geometry and spacing of pre-patterned Cu posts provides control over the global qualities of 

the network, generating structures ranging from extended nanowires to dendrites and 

http://iopscience.iop.org/0957-4484/24/38/384004/article#nano461325fig1
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fractals [100, 123]. The pitch of the Cu posts was found to determine the relative density of the 

network (Figures 7-1(c), (d)) while seed size was used to control the presence of long-range 

connections. Typically, smaller Cu seeds (<3.5  m) produce many long wires and larger seeds 

(>3.5  m) produce spatially confined dendritic or fractal structures. 

 

Figure 7-1. (a) Atomic switch network devices are fabricated on a SiO2 substrate with 16 Pt electrodes and an 

insulating SU-8 layer. The devices are approximately 4 cm
2
. (b) The resultant Ag wires vary in size (<100 nm to 

>1 mm) and create self-assembled networks with complex interconnections (10
9
 cm

−2
). The electrodes shown have 

10  m diameter and 50  m pitch, and range up to 50  m diameter with 500  m pitch. (c), (d) The density of 

interconnections can be changed by altering the size/pitch of the Cu posts shown: (c) 1  m/5  m; (d) 1  m/1  m. 

Scale bars = 10  m. 

 

http://iopscience.iop.org/0957-4484/24/38/384004/article#nano461325fig1


97 
 

The self-assembled silver networks intrinsically contain crossbar-like junctions resulting 

from the three-dimensional nature of the solution deposition process. Upon exposure to sulfur 

gas [53] (10
−1

 Torr at 130 ° C for 3 min), the Ag nanowire junctions are functionalized to form 

thin Ag|Ag2S|Ag metal–insulator–metal interfaces which, in the presence of post-processing 

activation with external bias potential, are transformed into 'atomic switches'. Electrical 

characterization of the devices was conducted through current–voltage (I–V) spectroscopy using 

a bipotentiostat (Pine Instruments model AFCBP1) in conjunction with either a data acquisition 

module (National Instruments USB 6259) or a multiplexed (National Instruments PXI 1073) 

source-measurement unit (National Instruments PXI 4130). The maximum bandwidth of the 

measurement systems was 1 MHz and 10 kHz enabling 2 Ms and 20 ks s
−1

 with 16-bit 

resolution. Subsequent data analyses were carried out using MATLAB 2010b (MathWorks) and 

Origin 8.1 (OriginLab Corporation). 

Simulation efforts employed previously have reported physical properties of atomic 

switches composed of a Ag|Ag2S|Ag interface, shown schematically in Figure 7-2, that exhibit 

both volatile and non-volatile memory properties as well as multi-state switching [39, 41, 43]. 

Atomic switches are known to operate through two mechanisms: (i) formation/dissolution of 

conductive filaments, and (ii) a phase transition between monoclinic acanthite (α) and body 

centered cubic argentite (β) Ag2S. Application of a bias voltage across the junction induces the 

formation of nanoscale conducting channels across the Ag2S interface through a bias-catalyzed 

phase transition, converting the surrounding α-Ag2S matrix to a conductive and β-Ag2S phase 

which exhibits high ionic mobility as illustrated by TEM-electron diffraction studies [40]. In the 

absence of continued applied bias, the conductive channels eventually return to their 

stoichiometric, thermodynamically favored equilibrium state, which reverts the atomic switch to 
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its initial high resistance. This transition gives rise to a weakly memristive behavior prior to the 

formation of Ag filaments across the interface. 

 

Figure 7-2. Atomic switches are comprised of a Ag|Ag2S|Ag junction. Applied electrical bias causes Ag cation 

migration to the cathode where it is reduced, forming a stable metallic filament, resulting in resistance change. This 

migration is modeled by the filament length w(t), Ag cation mobility  v, and additional stochastic terms. 

 

Continued application of bias voltage results in a concurrent increase in current through 

the device, which then further drives migration of silver cations toward the cathode. At the 

cathode, mobile silver cations are subsequently reduced to Ag
0
, forming a highly conductive Ag 

nanofilamentary wire. The completion of this filament results in a strong transition to an ON 

state with a dramatic increase in conductivity [40]. Removal of the applied bias results in 

filament dissolution as the device again returns its thermodynamic equilibrium state. The 

completion and dissolution of this filament characterizes strongly memristive behavior. 

Continuous application of a bias voltage serves to increase filament thickness as additional silver 

cations are reduced, causing thickening of the metallic filament. This dynamic process has been 

shown to alter the dissolution time constant, and can be externally controlled by changing the 
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input bias pattern (e.g. pulse frequency). Such changes in volatility can be interpreted as long-

term or short-term potentiation (LTP and STP) [41, 43]. 

Using a similar construction, a recent report simulated a nearest neighbor grid of resistors 

and memristors [79]. Here, the memristive equations were augmented with new terms that reflect 

the known properties intrinsic to Ag|Ag2S|Ag atomic switches as well as network effects. The 

state variable of the memristive elements was chosen to be the length of the Ag filament, 

represented asw(t)∈[0,w0], where the junctions' gap sizes, w0, were randomized with a mean of 

5 nm according to known values [39, 41, 43]. The voltage across each atomic switch junction 

was given by 

 

where Ron and Roff represent the resistance values for the ON/OFF states of, and I(t) the current 

across, the atomic switch junction. The rate of change in filament length was modeled according 

to 

        

where  v signifies the ionic mobility [33, 36]. The window function, given by 

                           

was included in (2) to incorporate the behavior of elements with state variables at the extreme 

limits due to ionic drift [36, 79]. The term  provided the dependence of the 

filament growth rate on the electronic flux, while τ(w(t) − w0) operated as a dissolution term that 
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served to return the filament length to its original value w0 due to the thermodynamic stability of 

the high resistance state. Although the dissolution rate constant (τ) has not been extensively 

investigated in the network setting, a numerical survey over three orders of magnitude (1–

1000 s
−1

) determined the value that best reproduced the prior experimental results for the size of 

the simulated network. Lastly, a stochastic term η(t) accounted for fluctuations in the density of 

available silver ions and the stochastic nature of the filament formation/dissolution process in 

physical ASNs. This term, defined by 

      

governed the growth rate of filament sizes, where Δw(t) represented the change in filament 

length at time t reflecting the amount of electric flux through the switch junction. Here, the 

random variable α(t) introduced a noise factor to the term η(t) that was distributed across the 

network following a random distribution centered at zero with a standard deviation σα. The 

probability distributions for bothw0 and α were examined using simulated network sizes ranging 

from 3 × 3 to 10 × 10 arrays with varying degrees of connectivity density. 

Finally, the connectivity in the simulation was modeled after the known interconnectivity 

of ASNs [77]. Physical networks are grown from copper seeds spatially distributed on the 

substrate, which serve as nucleation sites for the electroless deposition of silver metal under 

diffusion-limited conditions [123]. This directed self-assembly process generates networks with 

a large distribution of wire lengths, characterized by SEM in the range of 100 nm to over 1 mm. 

The networks contain elements of a nearest neighbor network, since the wires are likely to 

connect to those grown from nearby copper seeds (Figures 7-1(c)–(d)). They also exhibit 
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characteristics of a random network as long wires extend across the entire network, connecting 

distant nodes, and also connecting many nodes at once (Figure 7-1 (b)). 

Connectivity in the simulation was created by starting with a square lattice of nodes, 

mimicking the copper posts in the hardware design. Links connecting nearest neighbors as well 

as distant nodes were then assigned randomly, with the total number of connections ranging 

from N = 50 to 400. The simulation results reported here represent the typical network response 

observed with connections reassigned for each run. Finally, the values of the physical parameters 

such as ionic mobility, RON/ROFF ratio, and average gap size were chosen according to 

experimental literature values as schematically illustrated in Figure 7-2 [39, 41, 43], leaving only 

the network size and wiring density as free parameters. Table 7-1 summarizes the range of the 

values of the parameters explored to produce the results in this report. 

 

Table 7-1.  Parameters used in the simulation were tested over ranges that are physically relevant to the atomic 

switch network system: total gap width (w0); ionic mobility ( v) of Ag
+
 in Ag2S; ratio of resistances (Ron/Roff) 

at w = 0 and w = w0; filament dissolution rate constant (τ); modulation (α) level of noise in the w(t) term with each 

time step; and total number of connections (N). 

 

Network simulations were executed in MATLAB through a graphical user interface 

(GUI) that provides control over these parameters in addition to the locations and numbers of 

sources/drains, structure of input waveforms, and magnitude of input signals. The GUI also 

provides direct monitoring of simulated I–V statistics as well as the current, power dissipation 

and conductivity of each link within the simulated network. 

7.3 Results and discussion 
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Various studies were carried out under conditions similar to the physical implementations 

in order to compare the numerical model's results with prior ASN device experiments [77]. 

Results from these simulations were examined in the context of network complexity on the basis 

of the underlying device physics and their associated emergent properties. The simulation was 

then used to explore the parameter space of ASNs, establishing a systematic approach to 

optimize network performance in the context of given training schemes and computational tasks. 

Robust, hysteretic switching in ASN devices requires device activation by a symmetric 

triangle wave ramp applied across the network. As net flux through the network increases, 

connections become increasingly polarized and conductive, resulting in different behavioral 

regimes (insets of Figures 7-3(a)–(c)). A lack of completed metal filaments characterizes the 

initial state in Figure 7-3(a) (inset) as the 'soft switching' regime. Continued sweeping causes the 

formation of a continuously conductive path across the network, with intermediate connections 

operating in a higher conductance state. This transition is observed as a dramatic change in 

conductance, shown in the inset of Figure 7-3(b), where network response changes from 'soft' to 

'hard switching' as the fraction of strongly memristive elements increases past the percolation 

threshold [77]. Continuous sweeping of the applied bias is known to encourage thickening and 

stabilization of as-formed nanofilaments [39, 41, 43], producing behavior that is robust to 

fluctuations in silver ion deposition/dissolution (Figure 7-3(c) inset). As a result, there is an 

increased likelihood for an element in the network to operate in the strongly memristive regime. 
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Figure 7-3. Simulation of device activation using a 10 × 10 network with N = 126, average Ron/Roff = 10
−2

 and 

τ = 10 s
−1

 under a triangle wave input bias of ±2 V at 10 Hz, demonstrating (a) an initial soft switching (σα = 10%) 

repeated indefinitely, until (b) a transition in behavior from soft (blue, σα = 10%) to hard (red, σα = 0%) switching. 

(c) Hard switching persists indefinitely with σα = 0%. This behavior was ubiquitous across all configurations with 

discrepancies in the bias amplitude/frequency. Experimental device activation curves are shown as insets for 

comparison. 

 

To reproduce this activation process, the simulation included the effects of filament 

stability on network response by tuning the distribution of noise factor α(t) while holding input 

bias amplitude and frequency constant. A high noise level (σα > 7%) was found to inhibit stable 

transitions, or w(t) from crossing the interfacial barrier in the window function, which enforced 

the soft switching state (Figure 7-3(a)). Lowering σα enables w(t) to increase past the barrier 

without interruption, inducing the transition from soft to hard switching at the network level 

(Figures 7-3(b)–(c)). Consequently, the noise level serves as a control parameter for the number 

of strongly memristive elements and the soft/hard switching behavior, supporting the conjecture 

on the mechanism behind the different switching behaviors. 

Selecting the appropriate strength of the stochastic term enabled the ASN simulation to 

agree qualitatively with the experimental memristive behavior. While simulation and experiment 

show a quantitative difference in the hard switching regime (Figure 7-3(c) and inset), specifically 

in the rate of change between the high and low resistance states, stronger agreement with respect 

to the Ron/Roffratio and the rate of resistance state change (Figure 7-6(b'')) was observed in a more 
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densely connected simulated network. To elucidate the underlying dynamics of the activation 

process, internal conductance maps of a sparse network reveal the conductive pathways 

responsible for maximum current flow when operating in the soft switching, transitional, and 

hard switching states. A single, dominant pathway emerged at the transitional state and was 

destroyed in the subsequent input bias sweeps that drove the network into the hard switching 

state. Further examination of functional connectivity over the entire activation process enabled 

identification of equivalent regions of network conductance for the transitional and hard 

switching states. In particular, the network followed different trajectories to achieve values of 

maximum conductance, whereby network conductance was increasingly distributed in nature for 

the hard switching case. 

In the results described below, both w0 and α(t) were sampled from Gaussian 

distributions. Parameters of the distribution of w0 were selected to reproduce the experimental I–

V curves by matching the bias voltage used in the simulation to our experiment. 

Physically implemented ASNs are observed to exhibit non-equilibrium dynamics under 

applied DC bias [77]. These network fluctuations are attributed to two primary mechanisms: (i) 

external bias causes silver ion migration toward the cathode where the ions are reduced to form 

metallic filaments, in opposition to the stochastic, thermodynamically driven return to 

equilibrium, and (ii) fluctuations in local resistance within the highly recurrent network can 

trigger cascading resistance changes elsewhere in the system. The behavior can be likened to 

neuronal avalanches observed in multielectrode array studies of neuronal cultures [23, 77]. In a 

single isolated link (Figure 7-4(a)), the stochastic term η(t) results in the generation of white 

noise in the current output. In contrast, when embedded within a recurrent network, single links 

display 1/f 
γ
 power law scaling. This clear difference in characteristics shows the role of 
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connectivity in a network. Each link in the network receives voltage inputs from many locations 

in the system and integrates, which in turn modifies the link's instantaneous resistance. This 

behavior facilitates the emergence of spatially correlated structures in local network activity. The 

recurrent structure also enables the integration of signals originating at different points in time, 

giving rise to non-trivial correlations in the temporal domain as indicated by 1/f 
γ
 power law 

scaling with 0 < γ < 2 in the power spectral density (Figure 7-4). The current passing across the 

ASN in both simulation and physical measurements also displays 1/f
γ
 in the power spectrum 

(Figure 7-4(b)) [156]. Although challenging to characterize in physical devices, the simulation 

data provide insight to both spatial correlation and phase synchrony for experiment. 
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Figure 7-4. Comparisons of the power spectrum of a simulated 10 × 10 network N = 332, average Ron/Roff = 10
−2

, 

τ = 10 s
−1
,σα = 2.5% (blue) with (a) a simulation of a single isolated atomic switch with identical parameters. The 

isolated atomic switch (red) shows a power spectrum dominated by white noise in contrast with a single element in 

the network (blue) show 1/f
γ
 power law scaling, and (b) that of a network device (black) that shows 1/f

γ
 power law 

scaling with γ = 1.87 (simulation) and 1.78 (device). 

 

Network plasticity was investigated as a mechanism for the formation of feedforward 

pathways within ASNs, although they have an inherently recurrent architecture. Previous studies 

on physical ASNs have demonstrated their functionality as a two-bit memory storage device with 

spatially controlled, independent switching channels using pulsed electrical stimulation [77]. 
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This experimental result, which used macroscopic electrodes in contact with a large area of the 

network to apply bias voltage stimulation, was also successfully simulated as illustrated in 

Figure 7-5. To comply with the experimental setup, a 10 × 10 network simulation was 

partitioned such that in each corner, a 4 × 4 block of nodes served the same purpose as a physical 

device electrode. A channel was defined by selection of one block as the source and another as 

the drain for application of an input bias voltage, with four blocks allowing for six possible 

channels. As shown in Figure 7-5, suprathreshold training pulses applied across two channels 

altered their respective conductances independently, even though the pathways were physically 

overlapping. By monitoring simulated connectivity maps of the other four conductance channels 

during this process, dynamical reconfigurations of the network connectivity were observed. 

Thus, non-volatile memory write/rewrite steps occur concurrently with non-trivial changes 

elsewhere in the network. Different write/rewrite pulse combinations can store information while 

simultaneously allowing the network to evolve through new configurations. Investigations of 

structures and stability of feedforward subassemblies may be conducted by carrying out random 

or targeted deletion of links belonging to a given channel in relation to the strength and duration 

of the external pulses that induced its formation. Scaling the network size increases the number 

of distinguishable network states, allowing for increased memory storage and diversity of 

nonlinear interactions. 
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Figure 7-5. Spatially overlapping channels A and B can be modified independently by write/rewrite pulses, 

emulating the 2-bit switching functionality of actual device behavior (inset). This simulated 10 × 10 network 

(N = 219, average Ron/Roff = 10
−3
,σα = 2.5%) was partitioned with four separate 4 × 4 blocks to serve as electrodes. 

Spatially defined ON/OFF switching was induced by applying write/rewrite voltage pulses (15 V, 10 ms duration) 

across the channels specified in the figure. Measurements of conductance across all six possible channels were 

conducted with 1 V read pulses of negligible period. 

 

Resistive switches have recently attracted attention for higher harmonic generation 

(HHG), presented in both single switches and networks [79, 154]. Experimental atomic switch 

networks show HHG to be a function of applied input bias amplitude [77]. Here, numerical 

simulation was employed to explore HHG by stimulating a network with a sinusoidal input 

(10 Hz) while varying the input amplitude and network connection density (connectivity). For 

each simulated network of a given connectivity, the HHG analysis was performed on data 

collected over 10 cycles of the input signal. The network was then reset to the same initial state 

for the next level of input amplitude. A sharp rise in the ratio of higher harmonic amplitudes to 
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the fundamental at a threshold voltage was found in both experiment and simulation (Figure 7-

6(a)). 

 

Figure 7-6. Higher harmonic generation can be influenced by network connectivity and input amplitude. Harmonic 

overtones of several simulated 10 × 10 networks with average Ron/Roff = 10
−2
,σα = 2.5%, and τ = 10 s

−1
. (a) The first 

three harmonic overtones of a network with N = 332 showed a threshold voltage for higher harmonic generation. 

Experimental device curves are shown as an inset for comparison. (b) Harmonic generation as a function of input 

bias amplitude for a network of intermediate connectivity (N = 229). (b',b'',b
‴
) The network I–V characteristics tend 

toward hard switching behavior and increased higher harmonic generation as a function of input bias amplitude. (c) 

The sum of the first three harmonic overtones of several simulated networks with N = (126, 229, 332) indicated a 

shift toward lower threshold voltages with increasing connectivity ascribed to an increasingly complex network. 

 

The network I–V response curves at increasing levels of input bias amplitude (Figures 7-

6(b')–(b
‴
)) illustrate the onset of nonlinearity as characterized by HHG in Figures 7-6(a)–(c). As 

the voltage increased past the threshold magnitude, the switching behavior moved progressively 

toward the hard switching regime. The threshold voltage decreased with increased density of 

connections as shown in Figure 7-6(c). An increase in connectivity provides more recurrent 

substructures in the network and can be related to the nonlinearity in the integration of electrical 
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responses within the system. The decrease in the magnitude of the threshold voltage can be 

attributed to an enhanced nonlinearity in the network dynamics where, even at lower bias voltage 

levels, the system tends to reside outside of a linear regime. These changes in the behavior of 

HHG suggest a way toward quantitative characterization of functional connectivity within ASNs 

based on their dynamics. As illustrated in Figure 7-1 and described elsewhere [123], the 

fabrication conditions for ASNs allow substantial control over the size, morphology and density 

of interconnects. Simulations may therefore be used to optimize physical networks for specific 

applications. 

7.4 Reservoir computing 

Higher harmonic generation is potentially of great usefulness in a modern computational 

paradigm utilizing recurrent complex networks, called reservoir computing (RC). The amplitude 

and frequency characteristics of the produced higher harmonics may be used to quantitatively 

evaluate the efficiency of a reservoir in different dynamical regimes by accounting for the 

accessible degrees of freedom in higher dimensional representation space. Using voltage time 

traces as outputs, it is shown here that the ASN can effectively serve as a nonlinear reservoir 

capable of performing the waveform generation task (Figure 7-7) considered as a prerequisite to 

perform reservoir computing [196]. 
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Figure 7-7. (a) Schematic of the network simulation used in the waveform generation RC task, with specific 

electrodes chosen as inputs/outputs (16 output electrodes). RC was implemented using a 10 × 10 network 

(N = 126,σα = 2.5%) with a 5 V, 10 Hz sinusoidal input signal and tasked to produce 10 Hz triangle/square and 

20 Hz sinusoidal waveforms. (b) Mean-squared error (MSE) for each task with respect to driving amplitude showed 

minimal error in triangle/square waveform generation task at 10 V, corresponding to the onset of higher harmonic 

generation (see red curve of Figure 7-6(b)). Performance in the 20 Hz sinusoidal waveform generation task 

decreased when (c) the relative amplitude of the average second harmonic intensities of the readouts became 

increasingly diminutive. These results correspond to a strong dependence on the second harmonic for 20 Hz sine 

generation and the need for HHG in triangle/square generation as expected by Fourier analysis. 

 

Maximizing the number of output signals is advantageous in the context of RC training. 

Each network node was therefore chosen to serve as an output electrode. By subjecting the 

network to a sinusoidal input at one corner electrode in the form of an input bias voltage, 
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multiple waveforms including triangle, square and frequency doubling sinusoidal waveforms 

were constructed through superposition of voltage outputs at each electrode in the simulation. 

The generated waveform rq (q = 1, 2, 3) was then a weighted sum of the voltage outputs from the 

electrodes with the weights  calculated by linear regression, 

 

where Vi are the output electrode voltages. Reservoir performance was assessed by the quality of 

waveform generation and compared across networks with different parameters by calculating the 

mean square error (MSE), which quantifies the differences between the target and the generated 

waveforms, 

 

where ytarget is the target waveform. The W
i
 represent the weight coefficients to be trained with 

maximum number of outputs (m = 16) at discrete time indices (tn) over a total length (P) 

from n = 1 to 9000. To see whether the diverse dynamical regimes of ASNs may affect the 

efficiency of RC training, the input gain was varied to access the different characteristics 

generated of the higher harmonics. The weights were calculated independently using the output 

responses from the network at each input voltage amplitude. As the magnitude of the applied 

input voltage was increased, an abrupt onset of HHG was observed to influence the associated 

error for the waveform generation tasks. Specifically, the ratio of the second to higher harmonics 

(calculated with unweighted average of network outputs) dropped rapidly with increasing 

voltage (≈8 V) as seen in Figure 7-7(c). This bias dependent reduction in second harmonic 
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amplitude was found to correlate directly with the critical voltage where MSE increased 

dramatically in the task of generating a sine wave exhibiting frequency doubling of the input 

signal. As the second harmonic became less pronounced compared to the higher harmonics it 

became more difficult to isolate in a linear combination of the output signals through linear 

regression. An increased ratio of higher harmonics to the second harmonics resulted in better 

performance for the generation of waveforms containing higher harmonic components such as 

square and triangular waveforms. While HHG is not a universal parameter designed to indicate 

increased computational performance, it does faithfully explain computational performance on 

specific RC tasks. 

The results clearly demonstrate that an ASN can be used as a pattern generating kernel in 

RC where it can be optimized by adjusting input gain and network connectivity. Training ASNs 

to carry out more complex tasks requiring multiple, simultaneous inputs/outputs as well as real-

time feedback is currently under investigation [198]. 

7.5 Conclusions and outlook 

Numerical modeling of atomic switch networks is essential for understanding the experimentally 

observed emergent phenomena, and the microscopic degrees of freedom for synaptic elements. A 

valid numerical simulation offers a controllable, convenient platform from which to study 

specific aspects of the device functionality, and permits identification of control parameters for 

network level behaviors as well as system optimization. By extracting the relevant dynamical 

components of the network, our model can be expanded to understand the functionalities of 

ASNs with respect to a larger theoretical framework. 
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The simulation, incorporating network stochasticity and filament dissolution into its state 

equation, shows ASNs as devices capable of forming feedforward subassemblies that utilize 

network plasticity. Simulation results also reveal the networks' nonlinear integration of local 

electrical responses. Specifically, individual atomic switch elements show changes in their power 

spectral density when embedded in a network, while HHG emerges in the ASN with external 

bias and connectivity as control parameters. 

Our simulation results support the feasibility of utilizing nonlinear dynamics without needing to 

control or 'train' the connections in the reservoir, and have indicated how to best optimize 

physical device parameters to maximize RC efficiency for a given task. Future efforts will focus 

on implementing benchmark tasks in RC in both simulation and hardware to quantitatively 

assess the kernel quality and generalization rank [198] in relation to the changing parameters as 

compared to other software and hardware reservoirs. Note that the plasticity intrinsic to the ASN 

makes it a dynamical reservoir, which shows improved function for some RC tasks [203]. The 

dynamics of these devices during the training period may be further characterized by calculating 

the Lyapunov exponent and used to elicit the connections to increased computational power at 

the edge of chaos [176]. 

The results presented here also demonstrate the value of using synaptic elements within a 

biologically inspired connective architecture. Substantial efforts have been undertaken to 

characterize and comprehend the dynamical hierarchy of a functioning complex system such as 

the brain [193, 204-206]. The existence of a readily scalable, physical device exhibiting many of 

the same dynamics as biological neural assemblies underscores its potential as a tool to study 

complexity. The greatest potential of ASNs lies not only in the versatility of hardware design but 

also in their scalability. A strategy that scales up the hierarchical dimension, combined with 
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insights obtained by actual learning and task performance through RC could generate valuable 

new computational devices. 
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8. Programmable short- and long-term memory in atomic switch 

networks using a reinforcement learning scheme 

Abstract 

Training biological neural networks to perform a desired task is achieved through the 

modification of the synaptic strength between neurons, where modification is determined by 

inherent biochemical phenomena in response to global stimuli. Training in neuromorphic 

hardware should be accomplished through similar mechanisms, however hardware and software 

implementations use architectures which prevent local interactions from affecting plasticity, or 

artificially impose plasticity rules instead of relying on properties inherent to the system. In this 

work a training regimen is applied to a neuromorphic hardware device comprised of a densely 

interconnected network of resistive switches. Global stimuli in the form of voltage pulses are 

used to tune the network to predetermined resistance values by relying on the inherent 

interactions of switches in the network. This experiment demonstrates the feasibility of training 

neuromorphic hardware by allowing autonomous interactions within the system instead of 

micromanaging system behavior, with applications to hardware implementations of neural 

networks. 

8.1 Introduction  

Learning from experience is a central characteristic of biological neural networks (BNNs) 

and their simulated counterparts, artificial neural networks (ANNs),  that is facilitated by their 

unique structure and function. Neurons, discrete information processing elements, are connected 

to each other via synapses to form an interconnected network. The transmission of action 
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potentials between any two neurons is mediated by synapses, which continually alter 

transmission probabilities as new behaviors are learned. This feature, known as synaptic 

plasticity, is affected by a wide range of neurological processes such as spike-timing dependent 

plasticity, Hebbian plasticity, and synaptic redistribution [21, 22]. When input into a subset of 

neurons, action potentials rapidly propagate through the network, resulting in intricate patterns of 

electrical activity that forms the essence of brain activity. Changes in synaptic transmission 

affect the flow of action potentials, brain activity, and ultimately, behavior. The conductivity of 

synapses thus encodes learned behavior and memories in BNNs and serves as a central descriptor 

of the state of the network at any given time. 

While many variations of ANNs exist to emphasize different features of BNNS, the 

salient features are present in some fashion. Generally, neurons are replaced with ‘nodes’, 

synapses are replaces as links, and action potentials exist as discrete or continuous waveforms. 

Synaptic plasticity is replaced by any number of learning rules through which the connective 

strength of links is adjusted [21, 112, 140, 152, 168]. As with BNNs, learned behavior and 

memories are encoded in the connective strengths of links.  

In BNNs learning is autonomous – inputs and feedback from previous outputs are all 

global signals which affect the entire system. Conductance modifications to individual synapses 

are strictly the result of its local interactions with neighboring units in accordance with the 

biochemical processes affecting plasticity. This contrasts with most ANN frameworks in which 

plasticity is determined by artificially introduced rule sets, and link conductivities are digitally 

adjusted one by one until a desired behavior is produced. . 
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Physical devices which operate similarly to BNNs are of great interest because they 

promise computing abilities associated with BNNs without the immense size, energy, and price 

of simulated ANNs using digital computers. A popular hardware approach incorporates a 

crossbar array of resistive switching elements that serve a similar purpose as synapses, connected 

to transistor-based artificial neurons [47, 57, 72, 207]. The crossbar array allows for precise 

control of connectivity between artificial neurons since the resistive switches can be addressable 

individually. This precise control limits or eliminates the local interaction between neurons, and 

establishes a fundamental difference between the hardware and the system it is intended to 

emulate.  

Atomic Switch Networks (ASNs) were recently developed as a physical analogue to 

ANNs and BNNs in both structure and function. ASNs are comprised of millions of synaptic 

elements assembled into a complex, interconnected network [73, 77, 208]. The synaptic 

elements, known as atomic switches, are formed from a nanoscale Ag|Ag2S|Ag junction [39-41, 

43]. Externally applied bias causes a phase change of the Ag2S layer, facilitating 

electromigration of silver cations to the cathode. There they are reduced to form a conductive 

metal filament which bridges the insulating Ag2S layer, resulting in a lower resistance. These 

filaments are thickened by additional bias, or can be destroyed by reversing the bias. The 

formation and destruction of conductive silver filaments enable individual atomic switches to 

have a multitude of resistance states of varying volatility. The minimum bias required to 

complete a filament yields a volatile resistance state akin to short term potentiation in synapses, 

while long term memory is accessed by allowing thicker filaments to form after additional bias is 

applied [38, 41]. Additionally, cessation of external bias causes the filament to dissolve to the 

more thermodynamically stable high resistance state. Since a recently completed filament will 
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experience a sudden drop in electric field, there exists an inherent instability as competing forces 

determine the lifespan of a filament. In the network setting, complex interactions between 

switches as a result of their connectivity produce emergent patterns of electrical activity such as 

metastability in network resistance, harmonic generation, and 1/f noise , even while the memory 

capabilities of individual switches are retained [73, 77, 115]. Both memory and emergent 

behaviors are dependent on the resistance states of atomic switches, so a central descriptor for 

the state of the network is a set of the resistance state of each atomic switch, defined as the global 

resistance. Training the global resistance of an ASN to a desired operational regime is thus 

analogous to adjustment of synaptic conductivities in BNNs to achieve a desired behavior. 

In complex physical systems such as ASNs, training through the micromanagement of 

individual elements is neither feasible, as the number of links is prohibitively large, nor desirable 

since BNNs do not operate through micromanagement. We demonstrate a method of training the 

global resistance of the network state to specified target values ranging from 2x10
2
 Ω to 2x10

7
 Ω 

with less than 1% error by applying global network stimulation in the form of voltage pulses. 

Similar resistance training techniques known as  ‘write and verify’ have been described and 

applied to individual synaptic devices that exhibit continuously adjustable or multistable 

resistance states [209-212]. Here we report resistance training in a network setting, in which 

voltage stimuli are applied to the entire network in order to train the global resistance state. Any 

modification of global resistance to the system is a result of properties inherent in any individual 

switch and propagation of interactions between switches and their nearest neighbors, as opposed 

to training individual elements. This experiment highlights the ability of using exclusively global 

training methods combined with complete autonomy of the system itself to reach a targeted state. 
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Resistance training can make ASNs useful for multilevel ReRAM applications, or as synaptic 

elements in neuromorphic hardware implementations of neural networks [213]. 

8.2 Experimental 

 Atomic Switch Network devices were fabricated on a SiO2 substrate using standard 

photolithography techniques. A 150 nm layer of platinum was patterned onto the substrate to 

create electrical contact pads around the perimeter leading to a 4x4 grid of electrodes in the 

center. Next, a 500 nm layer of SU-8 polymer was patterned on top of the electrodes, such that 

the leads to these electrodes were insulated, leaving only the circular electrodes in direct 

electrical contact with the ASN. Electrode diameter varied from 30-50 um, and electrode pitch 

varied from 100-500 um. The ASN was fabricated on top of this electrode grid as described 

previously to yield a dense, randomly interconnected network of silver nanowires [208]. 

Exposing the nanowire network to sulfur gas results in Ag|Ag2S|Ag junctions in the regions 

where nanowires overlap, forming the basis of atomic switches. In analogy to ANNs, the 

platinum electrodes serve as input or output nodes of voltage signals, while atomic switches act 

as synaptic links, though due to the small number of electrodes relative to the network size a link 

between any two electrodes will be comprised of many atomic switches. The resulting devices 

have been shown to exhibit a wide variety of complex electrical behaviors including temporal 

metastability, fluctuations in resistance, pinched I-V hysteresis, and long term memory [73, 77].  

 The resistance training experiments were performed using a precision source measure 

unit (National Instruments 4132) and a high-speed switch matrix (National Instruments 2532) 

within a PXIe unit (National Instruments 8108), enabling rapid resistance measurements between 

any combination of the 16 electrodes. Resistance training was implemented through repetition of 
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a two-step process as shown in Figure 8-1. In the first step, an electrode A was selected randomly 

and the resistance between this reference and every other electrode was measured using a small 

(200 mV, 10 ms) bipolar pulse in order to minimize influence on network resistances, as shown 

in Figure 8-1a. The individual resistances of electrode A with each of the other 15 electrodes, RAj, 

defined the network state by calculating the total resistance between electrode A and the rest of 

the network as though the paths from electrode A to every other electrode were resistors in 

parallel: 

        
 

   

  
   
   

 

  

                                                                             (1) 

 This quantity is hereafter referred to as the ‘parallel resistance’. In the second step, a second 

electrode B was selected randomly, and a large unipolar training pulse (100 ms, > ±200 mV) was 

applied to influence the parallel resistance of electrode A, as shown in Figure 8-1b. Using the 

same electrode I/O scheme, the measure/training cycle was repeated until the parallel resistance 

of A reached the target resistance. For all trials the target resistance was predetermined, 

irrespective of the initial network resistance.  
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Figure 8-1. A schematic of the write and verify training scheme, and typical results for an individual training trial. 

a) Sub-threshold measurement pulses establish the parallel resistance of A, followed by b) a larger training/write 

pulse between A and B. c) The parallel resistance of a is recorded and compared to the target after each training 

pulse , when error is minimized the training ceases and the duration of the achieved target state is recorded as the 

dwell time.  

 

 In order to achieve training, an error function and rule set was devised. This system was 

designed to create sensible and consistent voltage adjustments even when both target resistance 

and parallel resistance error could vary by several orders of magnitude. The error function and 
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rule set also correctly accounted for events in which the parallel resistance overshot the target. 

Convergence of the parallel resistance to the target resistance was evaluated using an error 

function: 

     
 

 
 
    

  
 

  

    
                                                                     (2) 

Where Rg was the target resistance, and R(i) was the parallel resistance. The error E(i) was 

calculated after each pulse/measure cycle, and adjustments to the training pulse bias were made 

by evaluating the relative change in error      
    

      
  from one cycle to the next  using 

equations (3) and (4), which are described below.  

Equation (3) concerned changes in the absolute magnitude of, C(i), to evaluate changes in 

the absolute magnitude of the training pulse, V(i). If the previous training pulse resulted in a 

large decrease in error |C(i)| would be less than 1. If significantly less than 1, as determined by an 

empirically determined threshold, Cm=0.6, then the training pulse V(i) was considered productive 

and no changes were made. If the previous pulse produced a significant increase in error, 

|C(i)|would be greater than 1. If |C(i)|was greater than  
 

  
  , the pulse was considered 

counterproductive and the training pulse magnitude was reset to a minimum value, Vmin. If |C(i)| 

was between Cm and 
 

  
 (i.e. approximately equal to 1) then the error had not significantly 

changed as a result of the previous pulse, indicating little influence on the parallel resistance. The 

pulse magnitude was then increased by Vinc.  
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                                                                        (3) 

Next, equation (4) was used to determine the need for changes to the polarity of the 

training pulse. If R(i) and R(i-1) were both greater or both less than Rg then there was no 

overshoot and no need to reverse the bias, which is reflected by positive value for C(i). However 

if R(i) changed enough with respect to R(i-1) that it overshot Rg, C(i)  would be negative. In this 

case the training pulse voltage V(i) was reversed in sign, and its magnitude was automatically 

reset to the minimum pulse bias Vmin. 

             
                        

                    
                                                                            (4) 

 A single pulse/measurement cycle lasted 1.5 s, and the time required to reach the target 

resistance state was defined as the ‘convergence time’. Upon reaching the target resistance, 

training pulses ceased and network resistances were measured every 0.5 s until the parallel 

resistance decayed away from the target and the error exceeded 0.5 (roughly equivalent to 50% 

error). This duration was defined as the ‘dwell time.’ The entire convergence/dwell time 

sequence constituted a single resistance training trial, an example of which is presented in Figure 

8-1c. When a trial completed, new electrodes would be randomly selected and the training 

process was repeated after a 30 second delay. 

8.3 Results 
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 Thousands of trials of resistance training performed across many devices demonstrated 

that the parallel resistance can be tuned with less than 1% error, over a range of values from 200 

Ω to 20 MΩ. Resistance training was successful when using training pulses of uniform bias (i.e. 

± 500 mV), without the need for fine-tuning with smaller training pulses. As training pulses were 

applied to the network, the resistances RAj of different network pathways change (Figure 8-2) 

until the target resistance is achieved. The affects of a training pulse range from insignificant to 

profound, and identical pulses can produce dramatically different results. For example, the target 

resistance can be achieved either steadily or after several near misses and overshoots; it can be 

achieved either gradually after many pulses or immediately in response to a single pulse. This 

variability reflects the fact that a steady or linear approach to the target is not guaranteed when 

the possibility exists that even a single switch of too high or too low resistance could dictates the 

parallel resistance, obscuring the possibility that the rest of the network is very close to a 

configuration which yields the target resistance. Variability of convergence times and responses 

to training pulses indicates that network dynamics cannot be considered simply as a linear 

combination of elements. Rather, some interplay between the elements does not allow the 

network to be considered as additive elements 
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Figure 8-2. Training pulses caused resistance changes throughout the network. In this example 6 training pulses 

result in 6 unique network resistance configurations. The 4x4 grid of electrodes is represented by colored pixels for 

each of 6 (i-vi) consecutive training pulses between electrodes A and B. The resistance between A and each other 

electrode is measured and represented by a pixel placed where each electrode is physically located on the chip.  

 

The success of the resistance training experiment contrasts the hypothetical case in which 

each training pulse causes a random parallel resistance value, allowing the target resistance to 

inevitably be achieved simply by random chance. In experiment, the statistical distribution of 

convergence times followed a power law. In contrast, a simple simulation of Bernoulli trials in 

which each pulse caused a random parallel resistance value resulted in a geometric distribution 

of convergence times. A variant simulation in which each training pulse resulted in individual 

resistances between electrode A and each other electrode resulted in training times that were 

effectively infinite. These simulation results contrast the experimental results and support the 

hypothesis that the training scheme harnesses memory in the ASN, allowing it to take a more 

direct path to the target resistance than would be possible by random chance. 
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Figure 8-3. Changes in global resistance are presented in detail by showing each combinations’ individual 

resistance. In a), repeatedly training a single electrode pair to 20 kΩ resulted in progressively shorter training times, 

but the stability of the final state was not affected. Long term memory is exemplified in b), in which a previously 

trained electrode pair reaches the target resistance (20 kΩ) in a single pulse. The resistances between electrode A 

and each other electrode is presented from two consecutive pulses (i-ii). While only A and B are directly pulsed, 

every single combination changes resistance, owing to the interdependencies of subregions of the network.  

 

 The resistance training scheme’s leveraging of long term memory inherent in ASNs was 

most apparent when electrodes A and B were held constant and repeatedly trained to the same 

target. Figure 8-3a shows that the total training time decreases, suggesting that solutions to the 

target resistance become more established and easily accessed over time. In Figure 8-3b, 

individual resistances are plotted for two consecutive pulses: the initial state before the first 

training pulse and the final state after the first training pulse. This is one example of many trials 

in which only one pulse was needed to achieve the target resistance. Although the pulse was only 

between the two electrodes, every single value changed in concert, which shows that localized 

pulses on subregions of the network influence the global state of the system as well. Such rapid 

convergence also reveals that a large degree of error for the target resistance does not equate to a 

large degree of error in the phase space of the device – a few small changes to the state of the 
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network can result in a large change in resistance. Prior trainings establish pathways of fully 

formed conductive silver filaments among individual atomic switches, resulting in the correct 

parallel resistance, while divergence from the target resistance can theoretically result from just a 

few filaments dissolving in crucial locations, causing a large increase in error. Upon repeated 

trainings, these formed but incomplete pathways are undetected by resistance measurements until 

a sufficient training pulse reestablishes the conductive filaments, and the network appears to 

suddenly arrive at the target resistance. 

 

Figure 8-4. Electrodes A and B were held constant for several resistance training trials, and the final configurations 

of three consecutive trials (i-iii) are presented. The target resistance of 20 kΩ is precisely met three distinct ways, 

owing to the network’s complex, plastic structure. Regardless of target resistance, the presence of multiple solutions 

meant a wide range in stability of the final configuration. 

 

It is interesting that this memory effect coexists with the tendency of the device to 

achieve multiple degenerate solutions. Figure 8-4 presents the final configuration of the device 

after reaching the target resistance on three consecutive trainings.  In the first trial, the target is 

reached when 10 different pathways reach resistances around 200 kΩ. In the next trial, the target 

is achieved by a different configuration such that one pathway is very close to 20 kΩ, and the 

rest are of very high resistance. In the third trial, a distinct third solution is found that bears 

resemblance to the first. These data show that there exists sufficient long term memory to easily 

recreate past solutions, yet the phase space of the network is rich enough that new solutions are 
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achieved even as previous ones are reinforced. Resistance training was also successful when the 

target resistance is defined as the resistance between only electrodes A and B, as opposed to the 

parallel resistance of A with every other electrode. Based on results of network training, it is 

likely that these achieving the same individual resistance multiple times are in fact different 

degenerate states that incorporate larger portions of the network than just one single pathway of 

completed filaments [115]. 

 

Figure 8-5. Dwell times vary widely, but depend on the target resistance. a) Networks are repeatedly trained to 200 

kΩ and their dwell times are recorded. By repeating the training program many times on different networks, 

statistical distributions suggest that the probability P(D) of a dwell time lasting for duration D follows a power law 

relationship. Dwell times are generally 10 s or less, with occasional states lasting 100 s or more. b) At low target 

resistances, the final configurations are stable, with over 50% of trials resulting in a final state lifetime of 100 s or 

more. As target resistance increases, the final states are proportionately less stable.  

 

 Individual resistance states are the result of conductive silver filaments which bridge the 

Ag|Ag2S|Ag gaps, and each filament is vulnerable to thermodynamically driven dissolution. Not 

surprisingly, a deterministic model of interacting thermodynamic variables is not available, and 

stability of target resistance is hard to predict. Figure 8-5a shows the distribution of dwell times 

for networks at the target resistance (Rg=200 kΩ). The distribution suggests a power law 
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dependency, with dwell times of less than 10 s being most common and occasional times lasting 

10 times longer. This distribution was found to depend heavily on the target resistance value, as 

shown in Figure 8-3b. When Rg=200 kΩ, <10 s dwell times account for 72% of trials, but at 2 

kΩ, dwell times of 100 s occur in more than 50% of trials. This is the expected result given the 

underlying operational mechanism of individual atomic switches. Lower resistances are achieved 

when an individual switch has a thicker conductive filament across the insulating layer, making 

them more resistant to thermodynamically driven dissolution. In the ASN, lower network 

resistances are more likely to have an abundance of parallel filamentary pathways, making the 

target state more resilient against changes from an individual filament. These factors of solved 

state stability outweigh any effects from repeatedly training the network, as Figure 8-2a shows 

no trend in the dwell time versus number of repeated trainings. 

 Resistance training was successfully conducted on a simulated ASN as well [114]. Due to 

computational demands the simulated network consisted only of a 5x5 array of nodes, with 

simulated atomic switches serving as links. Network connectivity was created by randomly 

distributing 105 connections, with 40 links in a nearest neighbor configuration.. Training pulses 

were administered between two nodes using the scheme described in equations 1-3. Resistance 

training in the simulated network proceeded as observed in the device, and could involve a direct 

approach to the target, or through a series of overshoots. The simulation allowed a complete 

analysis of every change in resistance in each link, and Figure 8-5b shows the net change that 

occurred in each link during the training process. The changes are widespread rather than 

localized along a single conductive pathway, which supports the hypothesis that network training 

is achieved by global interactions. 
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Figure 8-6. A simulated ASN is shows similar behavior in resistance training, and network-wide changes in 

resistance. A parallel resistance training program identical to the experimental one was used to successfully train 

parallel resistance. a) Target resistance was 1000 Ω, error target was 0.1, training pulses were 100 ms in 250 mV 

increments, measurement pulses are not necessary in simulation. The effects of resistance training are presented in 

b), which shows the net resistance change in each link from start to finish. The simulation shows network-wide 

changes in resistance even though training pulses were applied exclusively from A to B. 

 

8.4 Conclusions 

Using a simple training algorithm, the network resistance state was accurately trained to different 

resistance states. This was achieved not through fine tuning or addressing individual memory 

elements, but by applying global signals which affect the entire system and permitting 

autonomous interactions between said elements. The resistance training experiment demonstrates 

that in a hardware setting that exhibits complex or unpredictable interactions, training is still 

possible. The intrinsic short and long term memory behaviors of individual switches are 

manifested in the form of long dwell times and progressively shorter training times, while the 

complex interactions allow a multitude of solutions or network resistance states to be explored. 

The ability to train a dynamic, complex system using global signals will undoubtedly be a 
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requirement for training physical systems where precise control is not possible, and the inherent 

adaptability of the system must be relied upon instead. 
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9. Outlook 

 In the preceding chapters, the conceptualization, fabrication, and characterization of 

neuromorphic hardware devices were presented.  This research was motivated by the desire to 

explore whether or not the salient features of neuronal networks could be reproduced in a 

physical device which was intentionally fabricated to resemble such networks in structure.  

Satisfactory device structures were realized through an inexpensive, scalable self-

assembly process that produced complex, interconnected silver nanowire networks with large 

numbers of embedded atomic switches. Microscopic copper seeds lithographically patterned on 

top of pre-patterned electrode arrays served as nucleation sites for the electroless deposition of 

silver nitrate. The resultant silver network morphology could be qualitatively controlled through 

adjustments in the copper seed dimensions, allowing different types of networks to be fabricated. 

Characterizations of these devices confirmed that the nanowire interfaces formed atomic 

switches, whose essential operating characteristics were found to exist in the devices, including 

bistable resistance switching, and short and long term memory. Additional characterizations 

revealed unique electronic behavior unreported in single atomic switches caused by complex, 

non-linear interactions between coupled switches in the device. A combination of I-V 

spectroscopy and IR imaging supported the hypothesis that electric current is distributed 

throughout the entire network, where the actions of atomic switches cause redistributions of 

electric potential and current flow, resulting in full, network-scale switching events cascading 

through the device. The emergent behaviors of ASNs constitute proof of principle, and support 

the continued development of physically complex device architectures which seek to produce 

neuromorphic behavior through the autonomous interactions of individual elements. These 
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successes warrant continued investigation of Atomic Switch Networks not only for the goal of 

computation, but as physical systems – microcosms – of the many complex interacting networks 

found throughout nature. 

 Future research regarding ASNs ought to focus primarily on two aspects: 

characterizations and applications. Characterization should focus on the nature of the emergent 

resistance fluctuations as there is incomplete understanding both in terms of their dynamics, and 

their fundamental origin. Worthwhile applications include attempting to perform computational 

tasks with the device, and establishing connections between ASN behaviors with those of other 

complex systems such that it may serve as an informative model. Both paths may serve each 

other if they are investigated concurrently: insights from behavioral analysis inform what 

conditions are optimal for computational tasks and modeling other systems, while successful 

applications will provide justification for continued study of ASNs. 

 Given that the large, complex network architecture displays the anticipated emergent 

behaviors, it is prudent to examine their origins. This could be accomplished by characterizing 

devices consisting of small numbers of atomic switches – beginning at two and scaling up to 

several hundred – the practical limits of computer simulated models which could be used to 

corroborate experimental data. Reports of the behaviors of two resistive switches in series and 

parallel have just begun to appear [214], and even in these cases device operation is non-trivial, 

and deviates significantly from computer simulations [215, 216]. While crossbar architectures 

were avoided in this study, the precise fabrication techniques would best serve the interest of 

understanding the relationship of mechanical properties in atomic switches such as gap width, 

metal composition, and stoichiometry with the emergent network behavior. The natural 

progression of these studies would lead to investigations of network-specific behavior in 
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crossbar-like architectures – it is well known that complex behaviors can exist in networks 

possessing only nearest neighbor connectivity, so these systems would provide commentary 

about whether or not highly interconnected, self-assembled networks are preferable. 

 More detailed studies into distributed resistance switching in ASNs are made possible by 

newly improved chip designs with up to 128 electrodes, as well as measurement I/O which can 

simultaneously sample electrical potential at each electrode’s location [217]. Two notable 

analyses can be made owing to these improvements: functional connectivity, and avalanche 

dynamics.  

Functional connectivity describes what level of correlation exists between different 

regions of a network regardless of the physical structure. In a complex system where an order 

parameter is measured at many locations, correlation coefficients are computed for every 

possible combination of said measurements. The resultant cross-correlation matrix is an accurate 

description of how the system is structured during operation. From this, basic quantities used in 

graph theory such as distance, clustering coefficients, and average degree may be calculated to 

infer fundamental characteristics of the system, such as whether it is a nearest neighbor or small 

world network, or even whether or not the system is critical. For example, functional 

connectivity of a human brain as measured through FMRI was compared with an Ising lattice 

model at different temperatures, revealing that networks reconstructed from brain activity were 

most similar to reconstructed networks from an Ising lattice at its critical temperature, supporting 

the theory that the brain operates in a critical regime [218].  A similar analysis could easily be 

performed on ASNs to scrutinize whether and when they operate at a critical state. Moreover, the 

resulting fundamental state descriptors could be used to identify and discriminate between 

different operational regimes such as the degree of soft/hard switches present in a network. 
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Analyses of avalanche dynamics clarify the manner in which switching events propagate 

through the network in time and space. In other words, detailed descriptions of the most striking 

yet least understood aspect of ASNs. In multielectrode array recordings of intrinsic activity in 

neuronal cultures and cortical slices, action potentials occur in synchronized bursts. Extracting 

statistics such the number of neurons involved in each burst and burst lifetimes resulted in a 

description of neuronal activity as occurring in a critical state, where a single action potential 

could be an isolated event, trigger a cascade of action potentials spanning the entire system, or 

result in semi-stable limit cycles [19, 23, 219]. In ASNs, the spatio-temporal fluctuations in 

voltage as recorded by the electrodes could determine where the statistical distribution of 

switching events is falls on the scale of order-criticality-disorder, and whether they are localized 

to a few distinct locations or distributed. While action potentials are known to travel on the order 

of 10
0
 – 10

2
 m/s, analysis of avalanche dynamics in ASNs could reveal how fast switching 

events propagate, which in turn could establish optimal system size with respect to sampling 

frequency.  

Applications of the ASN towards computation must finally bridge the gap between 

indications that ASNs can compute, and actually performing a task. Experiments thus far have 

shown essential behaviors such as short and long term memory, higher harmonic generation, and 

nonlinear interactions between switches. But harnessing these behaviors to perform a task 

requires knowledge of how to implement them together and produce reliable results in the face 

of a constantly changing network. For example, from the perspective of reservoir computing, 

ASNs have demonstrated higher harmonic generation in the voltage time traces recorded at the 

electrodes. Linear combinations of these voltage readouts can be used to produce new 

waveforms. However, reservoir computing tasks are typically performed on static reservoirs – 
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systems that produce higher dimensional outputs that are consistent or at least similar from one 

trial to the next. Atomic switch networks, on the other hand, appear to be continually evolving. A 

linear combination of readouts used to fit a target function may require a completely combination 

on subsequent trials. This barrier can be overcome through the previously mentioned analysis 

techniques, where causal relationships between input signals and operational regimes become 

more obvious. 

For all the experiments and analogies attempting to connect atomic switch networks with 

neuronal networks and reservoir computing, ASNs are ultimately a unique dynamical system that 

may not fit into any existing mold. It is the author’s hope that future investigations of ASNs 

uncover new facets of dynamical systems’ behavior, and pave the way for computational 

frameworks which lie outside the realm of digital or neural information processing.  
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