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Abstract

Intelligent Power Assist Algorithms for Electric Bicycles

by

Xuan Fan

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

This dissertation considers intelligent power-assist algorithm designs for electric bi-

cycles. Traditional electric power-assist bicycles (EPBs) employ proportional power-

assist strategy. The ratio is usually set to 1:1, which means that the motor will provide

the same amount of assistive torque as the amount of the human’s pedaling torque.

This strategy is too rigid and does not consider the interaction between the bicy-

cle, the human and the environment. Intelligent power-assist algorithms are needed

to address such issues. In this dissertation, we focus on the uphill riding scenario,

since it is the situation where the cyclist faces the most difficulties. The dynamic

properties of electric bicycles will be studied and an appropriate model will be devel-

oped for intelligent power-assist algorithm design purposes. Two types of intelligent

power-assist algorithms will be introduced to help the human ride uphill more easily.

One is the robust disturbance observer (DOB) based power-assist algorithm, which

can observe and compensate for the environmental disturbance that the bicycle sys-

tem is subjected to during uphill riding. The robust DOB provides flexibility to the

power assistance and within the motor’s capability, it can make riding uphill feel like

riding on the level ground. The other intelligent power-assist algorithm is based on

repetitive control technique. The human’s pedaling torque is repetitive by nature of

the crankset’s mechanical design. The pedaling torque reaches it local minimum and

maximum twice during one complete pedal cycle. During uphill riding, the difference

between the maximum torque and minimum torque is so large as to cause severe fluc-

tuation in the torque profile, and, in turn, result in fluctuations in the velocity and
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acceleration profiles. We call the fluctuant human torque input ”nonuniform human

input” and compensate for the fluctuation with a repetitive control based power-assist

algorithm. Repetitive control designs in both the time domain and the pedal-angle

domain are considered. An experimental EPB system was built to verify the effec-

tiveness of these two types of algorithms. Details of the experimental setup will be

introduced. Simulation and experimental results will be shown in this dissertation.
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Chapter 1

Introduction

The history of motorized bicycles can be traced back to the latter part of the 19th

century, according to the entry ”motorized bicycle” in Wikipedia [4]. While early

attempts had been made with steam engines to motorize tricycles and quadracycles,

modern designs use electric motors on bicycles as a source of power supply. The

emergence of electric bicycles has greatly enhanced human mobility. The added bat-

tery and motor can extend the moving range of a bicycle without exhausting the

cyclist. Given the fact that electric bicycles can substitute motor vehicles for mid-

range transportation needs with zero emission, they can be a viable solution to the

world’s energy crisis. The term ”electric power-assisted bicycle (EPB)” refers to the

kind of electric bicycles which have both the cyclist and the electric motor as the

propelling torque supply, as opposed to the ones that have the motor as the only

source of energy supply. EPBs are intended to assist the rider in pedaling, rather

than to completely free him/her from pedaling. EPBs are the subject of this research

in which different novel power-assist algorithms will be designed and implemented to

help the human in uphill riding situations. The terms ”electric power-assisted bicycle

(EPB)” and ”electric bicycle” will be used interchangeably in this dissertation.

Typical EPBs are equipped with a torque sensor to detect the rider’s pedaling force,

a speed sensor to detect the bicycle speed, an electric motor as the assistive power

source, a battery as the power supply, a control unit, and other necessary devices and

mechanisms for mixing the rider’s torque and the motor torque. The control unit

determines the amount of assist torque based on the rider’s torque and the bicycle

speed. Basic algorithms used in commercial EPBs set the motor’s assistive torque
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proportional to the rider’s torque. However, these algorithms can not always achieve

the desired comfort level of the cyclists. For example, proportional assistance may

not suffice when a rider bikes up a steep slope.

This dissertation is dedicated to developing intelligent power-assist algorithms for

EPBs in uphill riding condition. Intelligent power-assist algorithms are different from

traditional EPB power-assist algorithms in that they can adaptively handle interac-

tions between human, machine, and the environment. Two main foci of our research

are environmental disturbance rejection, and non-uniform human input compensa-

tion. The rest of this dissertation is organized as follows: Section 1.1 introduces

commercial EPBs, their development over the years and the state of the art. Sections

1.2 and 1.3 are background introduction on environmental disturbance rejection and

non-uniform human input compensation, respectively. More detailed discussion on

these two topics, including algorithms, designs, simulations and experiments, will be

provided in Chapters 4 and 5. Chapter 2 introduces the hardware setup used for

the experiments. Chapter 3 discusses about the EPB system dynamics used for the

intelligent power-assist algorithms designs. Chapter 6 provides conclusions of the

dissertation.

1.1 Introduction of commercial EPBs

The first prototype of electric power-assisted bicycles (EPBs) was developed by the

Yamaha Corporation in 1989 [5]. The product was released in July of 1993 and

publically sold in April 1994. This was the first commercialized electric bicycle in

the world. The Yamaha Corporation called this kind of electric bicycles PAS (Power

Assist System). The next year, several other companies also released their own electric

bicycle products, including those from Honda, Sanyo, Panasonic, Bridgestone, etc.

Over the years, the original lead-acid batteries used on electric bicycles have been

replaced by nickel-cadmium (NiCd or NiCad) cells, and later by nickel-metal hydride

(NiMH) cells. Safety, reliability, comfort, simplicity, and light weight have always

been the main driving factors in the development of electric bicycle industry.

According to the entry ”hybrid vehicle” in Wikipedia [6], there are two types of hybrid

bicycles. One is called series hybrid bicycles, where the power transfer from the cyclist

to the battery and that from the battery to the motor happen in series. The cyclist’s
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pedaling power is converted into battery energy through a generator and the battery

then powers the motor to drive the whole bicycle system. Such a design constitutes a

chainless bicycle. However, this is not the desirable type of design for EPBs. Nearly

all the EPBs use a parallel hybrid bicycle type of design, where the human and

the motor propel the bicycle through different channels parallely. The torques from

the two sources are combined through either a mechanical drivetrain torque mixing

mechanism, or a front wheel hub motor, in which case the torque mixing mechanism

is not necessary. There are quite a few models of EPBs available in the market.

Typically, the motor can be placed in three places on an electric bicycle: on the

frame, in the rear wheel hub, and in the front wheel hub. Figure 1.1 shows an electric

bicycle (Optibike 850XLi [7]) which has its motor and battery encapsulated inside

the frame enclosure. Some kind of gear and one-way clutch system is used to deliver

Figure 1.1: Optibike 850XLi

the motor torque onto the chain-sprocket system, while avoiding the possibility of

the motor driving the pedals. The benefit of using a design like this is that the

motor’s torque input can also take advantage of the bicycle gearing system, which

consequently increases the battery and motor efficiency. Electric bicycles that have

the motor in the front wheel hub avoid the necessity of using torque mixing apparatus.

However, the torque coming from the motor can not take advantage of any bicycle

gearing, which can be quite useful for hill climbing. Figure 1.2 shows one of these

commercially available models that use front wheel hub motors. Electric bicycles can

also have the motor on the rear wheel hub, as shown in Fig. 1.3 [8]. Mechanical
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Figure 1.2: Giant Suede-E electric bicycle

torque mixing mechanism is also required in this configuration. At the same time,

the motor torque can not take advantage of the bicycle gearing either. There are also

many electric bicycle do-it-yourself conversion kits available on the market, where

consumers can convert their own traditional bicycle into a fully equipped electric

bicycle.

Figure 1.3: Golden Motor electric bicycle model MT-2009
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1.2 Environmental disturbance rejection

Most of the EPBs that are commercially available use the proportional power-assist

scheme. Usually, the ratio of human power and motor assistive power is set to 1:1,

which means that the power provided by the motor would be the same as the amount

of the human power. One problem with the current power-assist scheme is its lack of

flexibility with respect to the environmental condition. For example, when the cyclist

is going up a steep hill, the 1:1 power-assistance may not suffice in terms of providing

a smooth ride for the cyclist. Low speeds will invite difficulties in bicycle maneuvering

[9]. Also, changes in cyclists from ride to ride will cause, sometimes, huge changes in

body weight and thus require quite different amount of assistive power from the motor

to compensate for the gravitational drag force. Another intuition is that the adequate

assistive power is related to the slope of the hill, which will be changing in the process

of riding a bicycle. Based on all these observations, the improved intelligent power-

assist systems should be able to deal with the changing environmental drag force

(which contains gravitational drag force and road friction force) during uphill riding.

With the environmental drag force being considered as a disturbance to the bicycle

system, a disturbance observer (DOB) based power-assist scheme can be utilized to

estimate and compensate for the environmental disturbance. DOB is a technique that

utilizes the control input and plant output to estimate the disturbance input to the

system. It has been successfully applied to various motion control problems [10] [11].

Most of these applications focused on the performance improvement in terms of tra-

jectory tracking precision. Yabushita et al [12] applied a DOB-structured power-assist

controller to a tricycle under both uphill running and downhill running conditions,

which means that the motor provides not only uphill-running assistive power, but also

downhill-running resistive power to the tricycle. However, they did not consider the

robust stability issues related to DOB. Komada et al [13] investigated the stability

issues and found that by adding the performance improving DOB, stability margins

were decreased. This is a typical performance-robustness trade-off existing in nearly

every control system. One solution to this problem is the robust DOB design. Ryoo

et al [14] proposed a robust DOB design for optical disk drive system. For the EPB

system, robustness of the whole system under parameter uncertainties is the most im-

portant concern. Disastrous results can happen with a poorly designed power-assist

scheme that has little robustness. In Chapter 4, we present a robust DOB design to

address the environmental disturbance rejection issue with guaranteed robustness.
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Like many other control application problems, actuator saturation exists in the EPB

systems. A serious consequence of actuator saturation is the windup of the integral

controller. In practice, there are different and usually ad-hoc ways to deal with

actuator saturation and integrator windup. These methods are commonly referred to

as anti-windup schemes. Guo et al [15] placed a fictitious saturation block inside the

controller structure to deal with secondary-stage actuator saturation in dual-stage

control of a hard disk drive. In Chapter 4, we take a similar approach and address

the motor input saturation with two add-on saturation elements in the robust DOB

design as an anti-windup scheme. Experimental results will be shown to verify the

effectiveness of the proposed scheme.

1.3 Non-uniform human input compensation

Another issue with uphill riding is the discomfort caused by the non-smooth velocity

and acceleration profiles. Due to the design of the crankset on a bicycle, the torque

input from human is not constant over a pedal cycle; the pedal torque reaches a

local maximum twice over one pedal cycle. The non-smoothness in velocity and

acceleration caused by the non-uniform human input becomes more noticeable during

uphill riding, and thus, causes discomfort. We note that the non-uniform pattern is

almost repetitive from one cycle to another. Thus, we propose two repetitive control

based power-assist schemes to compensate for the non-uniform torque generation by

the rider.

Repetitive control is often used for periodic disturbance rejection and/or periodic

reference signal tracking. It has been successfully applied in many motion control

problems involving rotary motions, such as hard disk drives [16] and Compact Disc

players [17]. It has also been applied to noncircular machining [18]. A more general

review about the methods to deal with periodic disturbances and recent applications

of repetitive control can be found in Tomizuka [1]. Repetitive controllers are designed

based on the internal model principle (IMP). Through incorporating the internal

model of the disturbance signal in the controller denominator, repetitive controllers

pose an infinitely high gain at the disturbance frequency in the open loop frequency

response, and, thus, reject the repetitive disturbance with the closed loop.

In Chapter 5 of this dissertation, we consider two ways of modeling the sinusoidal-
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like signal in the human input, i.e., one as a sinusoidal signal, and the other as a

nonsinusoidal periodic signal. These two modeling methods give different internal

models for the oscillatory component of the human’s torque input. To be specific,

when modeled as a sinusoidal signal, the oscillation source has an internal model of

1− 2cosωhq
−1 + q−2, where q−1 is a backward shift operation and ωh is the frequency

of the sinusoid. The internal model for a non-sinusoidal periodic signal is 1 − q−N ,

where N is the period of the periodic signal.

Since the human input’s frequency is changing from time to time while the bicycle is

in motion, the above-mentioned models are both time-varying. We deal with the two

time-varying internal models in two respective ways. For the sinusoidal model, the

changing frequency is considered as a changing parameter, and an adaptive handling

manner is adopted. For the nonsinusoidal periodic model, each pedal revolution is

sliced into Ns sectors so that the period of the signal in the discrete time domain is

Ns and fixed. This way, the sampling period for the repetitive control depends on the

pedaling speed and the bicycle dynamics become time-varying. Repetitive controllers

based on the two different internal models will be considered in Chapter 5 and their

performance will be compared with simulation results. Experimental results for the

nonsinusoidal periodic model based design will be shown for validation purposes.
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Chapter 2

Hardware Setup

2.1 Experimental EPB system

A Giant Suede-E electric bicycle was acquired for the research. Figure 2.1 shows

the locations of the major parts used to control and motorize the EPB. It has a

Figure 2.1: EPB anatomy
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36-volt nickel-metal hydride (NiMH) battery attached to the bicycle frame and a

9A/36V electric hub motor in the front wheel. The central processing unit (CPU)

located underneath the crankset controls the motor torque based on the sensing signal

from the torque sensor inside the sprocket case. The CPU on the Giant EPB is

an integrated circuit chip which contains the circuitries for the motor driver, the

torque sensor signal collection and the actual controller which controls the amount

of assistive torque provided through the motor. The controller employs traditional

proportional assistance algorithm, as introduced in Chapter 1. For experimental tests

of the intelligent power-assist algorithms, we disengage the original CPU and use

a laptop computer as the new CPU, which calculates real-time power-assist control

input signal based on all measurements. Data acquisition and communication between

the laptop computer and the bicycle are done using a National Instruments (NI) USB-

6211 data acquisition (DAQ) board (shown in Fig. 2.2). The board contains 16 analog

Figure 2.2: NI USB-6211 DAQ board

inputs (16-bit, 250kS/s), 2 analog outputs (16-bit, 250kS/s), 4 digital inputs, 4 digital

outputs and 32-bit counters. The versatility of input and output channels makes it

suitable for the application. Two bicycle trainers were used to hold the bicycle and

provide resistance to each of the two wheels. They make it possible to acquire sensor

measurements in the laboratory. The experimental system is shown in Fig. 2.3. The
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Figure 2.3: Experimental EPB system
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laptop computer is placed inside the metal mesh basket on the bicycle’s back seat.

Cord strings are used to fasten the laptop in real road experiments.

2.2 Front wheel electric hub motor

The motor used on the Giant EPB is an electric hub motor, which is located in the

front wheel hub (Figure 2.4). It is a brushless DC motor with 36V voltage rating and

Figure 2.4: Electric hub motor in the front wheel

9A current rating. A brushless motor does not have issues with mechanical wear of

the brushes as the brushed motors do, but it requires electrical commutation schemes

to drive the motor. We call circuits performing such tasks motor drives. The original

motor drive was integrated in the EPB’s CPU chip. Since we have to disengage the

CPU and apply new control algorithms through a laptop computer, a new motor

drive circuit needs to be built to replace the original one [19]. Multiple testings and

measurements were done to understand the working scheme of the original motor

drive. Figure 2.5 shows the commutation scheme of the original motor drive. The

first two graphs showed the motor voltage and current associated with each of the

three phases. The third graph showed how the three parallel signals from the motor’s

internal Hall sensors changed for the three phases. A new motor drive was built on a
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Figure 2.5: Commutation scheme of the original motor drive
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stripboard, as shown in Fig. 2.6, to imitate the behavior of the original motor drive

utilizing motor current control. With the rebuilt motor drive, we can control the

torque output with a voltage input control.

Figure 2.6: Rebuilt motor drive

2.3 Giant Magnetostrictive Materials (GMM) torque

sensor

2.3.1 Magnetostriction, Villari Effect and the Principle of

GMM Force Sensor

Magnetostriction (refer to Wikipedia [20]) is a property of ferromagnetic materials

that causes them to change their shape or dimension when subjected to a magnetic

field. The effect was first identified in 1842 by James Joule when observing a sample

of nickel. Reversely, if an external force deforms a piece of magnetostrictive material,

the magnetic field surrounding the piece will change. This effect is the inverse of

magnetostriction called the Villari effect.

Magnetostriction can be found in many ferromagnetic materials. From a physical

or scientific point of view, most of these materials are not useful because of the
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fairly small changes in dimension or shape. However, a small number of magne-

tostrictive materials have large changes. These are called ”giant magnetostrictive

materials”(GMM).

One of the applications of magnetostriction is the GMM force sensor. The principle of

a GMM force sensor is depicted in Fig. 2.7. A cylindrical GMM element is placed in

Figure 2.7: GMM force sensor working scheme

a coil as its core. An external force acts on the GMM element. The inductance of the

coil will change due to Villari effect when the external force exists. The inductance

of the coil and the magnitude of the external force have a fixed relation. Therefore,

if the inductance is measured in real time, the external force can be estimated using

the known relationship between the two.

2.3.2 GMM torque sensor for EPBs

The torque sensor is a critical component of an EPB, and it detects the human’s

intention and/or condition. Since the Giant Suede-E EPB that we purchases already

has a torque sensor on board, it makes practical and economical sense to utilize the

original torque sensor. Efforts were made to understand the type of the torque sensor

as well as its underlying working scheme.
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Through various experimental testings and observations, as well as literature survey,

we identified that the torque sensor installed on the Giant EPB is a GMM force

sensor. It is placed inside the sprocket case. The sprocket case contains an inner

sprocket connected to the crank and an outer sprocket connected to the gear teeth.

The GMM force sensor and three springs are used to transfer forces from the crank

and the inner sprocket to the outer sprocket, which drives the chain. The GMM unit

senses forces and transduces it into an electric signal, which is measured and analyzed

by the laptop through data acquisition devices. Figure 2.8 shows a schematic drawing

of the sprocket case that contains the GMM sensor. Since the distance from the GMM

force sensor to the axle is known, the torque can be calculated easily based on the

force measurement. Thus, the GMM force sensor works as the torque sensor in the

EPB.

Figure 2.8: Schematic drawing of the sprocket and the GMM sensor

2.3.3 GMM sensor measurement scheme

A constantly excited voltage is supplied to the sensor and a resistor is put in series

with the coil. By measuring the changes in the voltage across the resistor, the changes

in the inductance can be known. The measuring circuit is shown in Fig. 2.9.
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Figure 2.9: GMM force sensor measurement scheme

2.3.4 GMM sensor calibration

The GMM torque sensor was calibrated by using a torque wrench to apply a known

torque on the bottom bracket axle. Corresponding voltage measurements were then

taken from the GMM torque sensor. The magnitude of the measurement signal will

increase if the sensor is under external compression force. For each set of measure-

ment, we hold the torque wrench at a constant torque level (e.g. 50N·m±2%) for 3

seconds and record the maximum torque applied during this period. Correspondingly,

the maximum value of each sensor measurement signal is used to indicate the sensing

signal level. The experimental calibration results are shown in Fig. 2.10. The GMM

sensor is linear within the measured range. Saturation tendency is shown above 85

N·m. Least squares line fitting technique was used to build a linear model for the

GMM sensor measurements. The resulting model can be expressed as shown in Eq.

(2.1), where VGMM is the output voltage of the GMM sensor, Tin is the input torque

from human measured in N·m.

VGMM = 1.78 + 0.002724 × Tin (2.1)
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Figure 2.10: GMM force sensor working scheme
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2.4 Bicycle velocity sensor

Bicycle velocity is an important feedback signal in the power-assist control loop. In

the Giant EPB, the bicycle velocity signal is obtained from the hub motor’s internal

encoder. The encoder signal generates 243 pulses per front wheel rotation cycle.

Pure differentiation of the encoder signal is used as the instantaneous bicycle velocity

measurement. In the repetitive controller experiment, measurement noise caused by

quantization error and differentiation technique was so prominent that it deteriorated

the overall performance of the controller. A fourth order Butterworth filter was

used in this case to suppress measurement noise and smooth out the bicycle velocity

measurement. The effect of the filter on the velocity measurement will be discussed

in Section 2.5.

2.5 Hardware limitations

Physical systems usually have hardware limitations and we should exercise caution on

these limitations in both controller design and implementation. The block diagram

in Fig. 2.11 shows the configuration of our bicycle experimental system. Crucial

limitations in our case can be classified into three categories: 1) sensor limitations,

2) DAQ system I/O interface limitations and 3) motor limitations.

The system has three sensors, an encoder for pedal angle measurement, another

encoder for motor rotational angle measurement, and a torque sensor for human

generated torque measurement. Encoders have quantization errors by the nature of

their design. Velocity measurements obtained through differentiation of an encoder

signal become even more noisy. The encoder for motor angle measurement generates

243 pulses per revolution. To acquire the velocity measurement in our EB system, we

utilize a 4th-order butterworth filter to suppress the quantization error. Figure 2.12

shows the effect of the filter on the noisy velocity measurements. We can see that

the butterworth filter can successfully smoothen the signal while maintaining good

fidelity to the underlying velocity information.

As indicated in Fig. 2.10, the torque sensor tends to saturate when the input torque

is above 85 N·m. Figure 2.13 shows a profile of torque sensor measurement for human

generated torque when riding uphill without motor assistance. We can see that the
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Figure 2.11: Experimental system configuration and limitations

torque sensor saturates above about 90 N·m. In this dissertation, we suppose the

human torque measurement is not saturated when motor assistance is applied. Future

research is needed to verify this assumption.

The National Instruments data acquisition (DAQ) board (Figure 2.2) have two coun-

ters that run fast enough to count pulses from encoders. They don’t pose any limi-

tations to our application. The analog I/O ports take input voltages that are within

[-10V, 10V]. In our experimental setup, electrical connections have been designed to

avoid these constraints. Thus, the DAQ board is not a limiting factor.

The front wheel hub motor for generating assistive torque has two crucial limitations,

i.e., input saturation and rate saturation. The input to the motor is limited from 0 to

5 volts. This implies that the motor can only provide assistive torque to the bicycle

and the maximum input voltage limits the motor’s assistive capability. Figure 2.14

shows that the motor has rate saturation and the angular velocity only goes up to

about 23 rad/s. Of course there are sophisticated controllers taking those limitations

into account from the nonlinear or switching control viewpoints, but our scope in

this research is focused mainly on designing novel intelligent power-assist control

algorithms. We will only check whether or not the resultant controller violates these

limitations and causes performance deterioration.
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Figure 2.12: 4-th order Butterworth filter for measurement noise rejection

2.6 Intelligent Power Assist Bicycle System

The ultimate goal of our research is to design intelligent power-assist algorithms to

help the cyclist ride uphill more easily. The structure of an intelligent power assist

bicycle system is shown in Fig. 2.15. The intelligent power-assist unit takes in the

information from the bicycle velocity sensor and the GMM human input torque sensor,

as well as other sensor information, and makes a decision on the amount of assistive

torque to supply through the motor. Our task is to design the suitable power-assist

algorithm and realize it on the experimental EPB setup.
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Figure 2.15: Schematic diagram of intelligent power assist bicycle system
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Chapter 3

System Dynamics and Parameters

We need to study the dynamics of an EPB to understand its key properties and

operating conditions. We also need a model that captures all the relevant dynamic

properties of an EPB for intelligent power-assist algorithm design and simulation pur-

poses. Electric power-assist bicycles (EPBs) are essentially just traditional bicycles

with an additional power supply (input) in the longitudinal direction, i.e., the motor.

A bicycle has three degrees of freedom, which are the roll angle, the steering angle,

and the longitudinal velocity. EPBs and traditional bikes have similar maneuver-

ing and stability characteristics. The only difference might be the change in weight

distribution caused by the mounting of the battery and the added motor. However,

this difference is trivial and the dynamic properties of the two in the roll angle and

steering angle degrees of freedom can be considered as the same. Thus, it makes sense

for us to study the dynamic properties of a traditional bicycle in order to understand

those of an EPB.

Bicycle dynamics were first studied in the late nineteenth century. There is, however,

still no complete analytical model that captures the whole dynamics of bicycles. The

design of bicycles contains many fine details that are crucial to the stabilization of the

system including pneumatic tires, spokes, and the trail (which refers to the horizontal

distance between the ground contact points of the front wheel and of the extension of

the fork). Approximate models have widely been used for control applications because

they are easier to analyze and give necessary fidelity to the complete dynamics. The

Point-Mass Model (PMM) [9] is one of the approximation models that are used to

study basic bicycle dynamic properties. However, there are certain key phenomenons
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that can not be explained by the Point-Mass-Model because the model is overly

simplified. Such phenomenons include, for example, the self-balancing behavior and

the interaction between steering and roll dynamics. In this chapter, we will first

study the roll dynamics and the steering dynamics of a bicycle. We will present

the Basic Bicycle Model (BBM), which is more sophisticated and regards the bicycle

as a combination of four rigid bodies. It can explain the above mentioned unique

phenomenons and will be used as the basis for the EPB dynamics analysis. The

BBM will also be used to analyze some stability properties of the bicycle, which

will help us understand the purpose of our research focus on uphill riding condition.

Simulation results will be shown to verify the analysis.

Section 3.2 will introduce the system dynamic model of an EPB for the design of

intelligent power-assist controllers. We will see that in this case, only the bicycle’s

longitudinal degree of freedom is relevant and the model is a combination of the bi-

cycle’s longitudinal dynamics and the motor dynamics. This EPB system dynamic

model will be used for intelligent power-assist controller design and simulation pur-

poses later on.

Section 3.3 discusses about the system identification work that we did to identify the

values of some of the parameters in the EPB system dynamics, which can not be

measured directly. Other parameter values that are measured directly or indirectly

will be also provided.

3.1 Basic Bicycle Model

The dynamics of a bicycle are nonlinear by nature. However, a linearized model

is valid for small perturbations from the equilibrium position, which is the upright

and straight-ahead running condition. The Basic Bicycle Model (BBM) is such a

linearized model. In BBM, the bicycle consists of four rigid bodies, which are the

front wheel, the rear wheel, the handlebar assembly and the rear frame. The body of

the rider is considered to be attached to the rear frame rigidly. Figure 3.1 (picture

from [2]) illustrates the four rigid bodies in BBM. As shown in Fig. 3.1, the wheelbase

w is the distance between the contact points of the ground with the two wheels. The

trail c refers to the horizontal distance between the ground contact points of the

front wheel and of the extension of the fork. The head angle λ is the acute angle
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Figure 3.1: The BBM divided into four rigid bodies [2]

that the fork makes with the vertical direction. The bicycle model has three degrees

of freedom, which include the steering angle δ, the roll angle ϕ and the rear wheel

rotation angle θ.

As derived and explained in [2] and [3], the linearized governing equations for the

roll angle and the steering angle are two coupled second-order differential equations

expressed in two degrees of freedom q = [ϕ, δ]T , as shown in Eq. (3.1).

Mq̈ + vCq̇ + (v2K2 + K0)q = Text. (3.1)

M,C,K0 and K2 are two by two constant matrices, whose entries are known func-

tions of the bicycle parameters (refer to [2] and [3] for detailed expressions of these

matrices). The right hand side of Eq. (3.1) represents the external torque inputs to

the system. Text = [Tϕ, Tδ]
T , where Tϕ and Tδ are the externally applied torques in

the roll dynamics and in the steering dynamics, respectively. The above equations

form the BBM introduced in [2] and [3].

The stability of the motion in the upright position with different constant forward

velocities was studied in [3]. Figure 3.2 (picture from [3]) shows the changes of the

real and imaginary parts of the eigenvalues of the system as a function of the constant
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Figure 3.2: Eigenvalues of the system as functions of the constant forward velocity
[3]



27

forward velocity. The system has four eigenvalues. Solid lines in Fig. 3.2 represent

real parts of the eigenvalues and the dashed line represents the positive imaginary

parts of complex eigenvalue pairs. We can see that within the speed range [4.30 m/s,

6.06m/s], all the eigenvalues of the system have negative real parts, which means

that the system is stable around the equilibrium point - the upright position. Self-

balancing against small perturbations around the upright position can be expected,

which explains the phenomenon shown in [21].

We confirmed the stability characteristics of the BBM shown in Fig. 3.2 through

simulations. The pedaling torque input from the rider is simulated by a sinusoidal

signal Th = (10 × sin 2πt + 15)N · m. When the velocity of the bicycle reaches the

desired level, the pedaling torque stops and the bike remains at a constant velocity

level. By changing different constant forward velocity values, we verified that within

the range [4.30m/s, 6.06m/s], the bicycle could balance itself against small perturba-

tions around the upright position. Figure 3.3 shows the response of the system to a

small disturbance in the roll dynamics with a forward constant velocity of v = 5m/s.

We can see that the roll angle converges to zero after a transient period. Thus, the

bicycle can balance itself without rider control. Figures 3.4 and 3.5 are the cases

with a velocity of 4m/s and 7.5m/s, respectively. In both cases, the forward running

velocity falls outside the self-balancing range and the bicycle tips over with small

perturbations in the rolling torque. As we can see in Fig. 3.2, as the bicycle speed

increases from zero, the two unstable real eigenvalues become a pair of unstable com-

plex conjugate eigenvalues after around 0.6m/s. Out of the complex conjugate pair,

the real and imaginary parts of the complex eigenvalue with a positive imaginary part

are shown in Fig. 3.2. This complex pair introduces an oscillatory mode called the

weave mode. When this mode has a positive real part, meaning that the weave mode

is unstable, a high frequency steering torque will be needed to stabilize the bicycle

system, as shown in [9]. Such a maneuvering technique is difficult for the rider and

such a phenomenon exists only in the low speed range. To help the rider in uphill

riding condition, we should try to bring the bicycle velocity into the self-stabilizing

range with the assistive power from the motor. This explains our purpose of focusing

our research on the uphill riding situation, which usually involves operating in the

low speed range.
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3.2 EPB system dynamics

The EPB system dynamics are a combination of the bicycle’s longitudinal dynamics

and the motor dynamics. The two parts are coupled through the bicycle’s front wheel

velocity. In Subsection 3.2.1, we will introduce the bicycle’s longitudinal dynamics.

Subsection 3.2.2 is about the front wheel motor dynamics. Subsection 3.2.3 combines

the previous two subsections and suggests the EPB system dynamics that we will use

for intelligent power-assist controller design.

3.2.1 Bicycle longitudinal dynamics

The bicycle longitudinal dynamics can be derived from Newton’s second law of motion

(

mT + IR/r2
R + IF /r2

F

) dv

dt
= −Daero − Dstatic−roll

−Ddynamic−roll − mT g sin α + Fh + Fm, (3.2)

where Dstatic−roll = Csr · mT · g · cos α and Ddynamic−roll = Cdr · v are the static and

dynamic rolling resistances, respectively; Daero = 1/2 ·Cw · ρair ·A · (v + vwind)
2 is the

aerodynamic drag force caused by the wind. Physical meanings for all the variables

and coefficients in (3.2) are summarized in Table 3.1.

We notice that the aerodynamic drag force is nonlinear and is usually negligible in

low speed riding and mild head wind condition. We employ the following notations

M = mT + IR/r2
R + IF /r2

F ; D = Cdr, (3.3)

and denote the environmental disturbance as

d = −Dstatic−roll − mT g sin α. (3.4)

Equation (3.4) is the environmental disturbance that we will estimate and reject using

a robust DOB. Notice that the gravity drag accounts for a major part of the envi-

ronmental disturbance. With Eqs. (3.3) and (3.4), the bicycle longitudinal dynamics

can be expressed as

M
dv

dt
= −D · v + d + Fh + Fm. (3.5)
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Table 3.1: Variable Meanings in Bicycle Longitudinal Dynamics

Variable Physical meaning

mT Total mass of the bicycle system (including the cyclist)
IR Mass moment of inertia of the rear wheel
IF Mass moment of inertia of the front wheel
rR Radius of the rear wheel
rF Radius of the front wheel
v Velocity of the bicycle
g Gravitational constant
α Slope of the road
Fh Thrust (propelling force) input from human
Fm Thrust (propelling force) input from motor
Csr Static rolling resistance coefficient
Cdr Dynamic rolling resistance coefficient
Cw Aerodynamic drag coefficient
ρair Air density
A Reference area of the bicycle-cyclist system

vwind Head wind velocity (opposite bicycle velocity direction)

If we express (3.5) in terms of the angular velocity ω of the front wheel (where the

hub motor is located), it becomes

M · rF

dω

dt
= −D · rF · ω + d + Fh + Fm. (3.6)

The motor dynamics and the bicycle longitudinal dynamics will later be correlated

through the front wheel angular velocity.

3.2.2 Motor dynamics

The equations governing the dynamics of a motor are as follows

Uamp = i · R + Ub = i · R + Kb · ω, (3.7)

T = Kt · i = J
dω

dt
+ B · ω + Tm. (3.8)

Equation (3.7) describes the electrical behavior of a motor1, where Uamp is the am-

plified drive voltage applied to the motor, i and R are the armature current and

1Here we ignored the inductance in the circuit.
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the motor resistance, respectively. Ub is the back-emf and Kb is the back-emf con-

stant. Equation (3.8) represents the mechanical behavior of a motor, where T is

the mechanical torque on the shaft converted from the armature current. These two

quantities are connected through the torque constant Kt. J and B are the inertia

and the friction coefficient of the motor. Tm is the torque that is applied to the load.

In our system, it is the torque applied through the front-wheel hub motor to propel

the bicycle. Tm is related to the propelling force Fm in (3.6) through the relation

Tm = Fm · rF . (3.9)

3.2.3 EPB system dynamics – the combined system dynam-

ics

Using (3.6) and (3.9), we get

Tm = Fm · rF = rF ·

(

M · rF

dω

dt
+ D · rF · ω − d − Fh

)

. (3.10)

Equation (3.10) is the load torque in the motor dynamics (3.8). Substitute (3.10)

into (3.8), we have

T = J
dω

dt
+ B · ω + rF ·

(

M · rF

dω

dt
+ D · rF · ω − d − Fh

)

. (3.11)

On the other hand,

T = Kt · i = Kt · (Uamp − Kb · ω) /R. (3.12)

Notice that the amplified voltage Uamp applied to the motor is related to the voltage

U applied to the motor driver through the following equation

Uamp = K · U, (3.13)

where K is the amplification coefficient of the motor driver.

Combining (3.11), (3.12) and (3.13), we have the following dynamic model of the

bicycle’s front wheel angular velocity:

K · Kt

R · rF

U + d + Fh =

(

J

rF

+ M · rF

)

dω

dt

+

(

B

rF

+
Kb · Kt

R · rF

+ D · rF

)

ω. (3.14)
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To simplify the expression, we use the following notations

Jeq =
J

rF

+ M · rF , Beq =
B

rF

+
Kb · Kt

R · rF

+ D · rF , N =
K · Kt

R · rF

,

and (3.14) becomes

N · U + d + Fh = Jeq

dω

dt
+ Beqω. (3.15)

Equation (3.15) is the combined dynamic model of the whole system including the

bicycle and the motor. It is a first order system with three inputs: Fh from the

human; N · U from the motor; and d from the environment. Figure 3.6 shows the

block diagram of the system.

U �

N
�

�
�

d hF

eqeq BsJ +
1 ω

Figure 3.6: Block diagram of combined system (bicycle and motor)

3.3 Motor system identification and bicycle pa-

rameters

Values of the parameters in the combined system dynamics model have to be known

for further intelligent power-assist controller design and simulation. Parameter values

in this dissertation are for the experimental EPB, a Giant Suede E model, that we

have acquired for the project. Frequency domain least squares fitting is used for

identifying the motor parameters in Eqs. (3.7) and (3.8), while direct measurements

of the experimental bicycle provide the bicycle parameters in (3.2).

3.3.1 Motor system identification

If the load Tm = 0, the transfer function of the motor can be derived from Eqs. (3.7)

and (3.8)

Gm =
Ω(s)

U(s)
=

K · Kt

RJs + RB + KbKt

, (3.16)
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where Ω(s) and U(s) are the Laplace transforms of the angular velocity ω and the

motor input voltage U , respectively. Random input u = 0.3+0.1z was used as stimuli,

where z ∼ N(0, 1). The measured frequency response is drawn as the solid line in

Fig. 3.7. We fit the measured frequency response with a first order system and get

the least-square fitted model as the dotted line in Fig. 3.7. The identified model is

Gm =
18.36

s + 0.5
. (3.17)

In (3.16), K = 10 is known. R = 0.4Ω is measured from the motor. Kt = 0.257962N ·

m/A is calculated through a group of tests on different motor input voltages and

the corresponding static output torques. We assume that Kb = Kt. Then the two

unknown parameters J and B can be calculated using the identified parameters in

(3.17). The values of motor model parameters are listed in Table 3.2.
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Figure 3.7: Motor dynamics frequency identification

3.3.2 Bicycle parameters

The related bicycle parameters that we will use in analysis are listed in Table 3.3.
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Table 3.2: Nominal values for motor parameters

Motor parameter Value

R 0.4Ω
K 10
Kt 2.58 × 10−1N · m/A
Kb 2.58 × 10−1V · s/rad
J 3.51 × 10−1N · m · s2/rad
B 9.27 × 10−3N · m · s/rad

Table 3.3: Bicycle parameter values

Bicycle parameter Value

IR 0.12kgm2

IF 0.28kgm2

rR 0.3m
rF 0.35m
g 9.81N/kg

Csr 0.0029
Cdr 0.1004N · s/m
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Chapter 4

Environmental Disturbance

Rejection

In the uphill riding situation, the gravity’s component force that acts against the

bike’s forward motion along the slope direction becomes the major drag force for the

bicycle. As we have seen in Chapter 3, operating in the low speed range requires high

frequency stabilizing steering torque and thus is more difficult for the rider. To help

the cyclist ride easier in this situation, we want to remove the effect of the gravity drag

on the bicycle system with the assistance from the motor. The gravity drag force along

with other friction force can be considered as a disturbance input to the EPB system.

The disturbance observer (DOB) technique is an effective method to remove such

kind of disturbance input. In this chapter, a robust DOB design will be introduced to

reject the disturbance input and make uphill riding feel the same as level ground riding

to the cyclist. Robust designs can guarantee system stability and performance in the

presence of uncertainties, which naturally exist in an EPB system (or almost every

practical system). Hardware saturation is another big concern for every practical

system. In the EPB experimental system, the front wheel hub motor poses input

voltage saturation which limits the DOB’s compensation capability. Modifications

to the robust DOB design are needed to address the motor saturation issue. In

Section 4.1, we will give a basic introduction to the DOB design technique. Section

4.2 introduces the DOB structure that we use for the environmental disturbance

rejection. Section 4.3 describes the robust H-infinity design that we used in choosing

the Q-filter for the DOB. Section 4.4 shows the experimental results which confirmed
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the effectiveness of the robust DOB design for environmental disturbance rejection. In

Section 4.5, an anti-windup robust DOB design will be introduced which can provide

robust environmental disturbance rejection within the motor limit. Experimental

results of the anti-windup design will also be shown.

4.1 Background introduction on disturbance ob-

server

The disturbance observer (DOB) technique was first introduced in 1987 by Ohnishi

[22] [23] and later refined in 1991 by Umeno and Hori [24]. It has become one of the

most popular techniques used in high accuracy motion control applications [25] [26],

especially for disturbance rejection in motion control systems [27]. It can also be used

for robust control problems where uncertainties and model mismatches are considered

as an equivalent disturbance input. In motion control applications, the disturbance

observer can be applied to both the velocity feedback loop and the position feed-

back loop, although implementation in the velocity feedback loop is considered to be

simpler than that in the position feedback loop. Usually, if major uncertainties and

disturbances are removed by DOB in the velocity feedback loop, the position feed-

back loop can be easily stabilized with satisfactory performance using linear feedback

control theory. In practice, DOB is sometimes used as an add-on controller to re-

move unwanted disturbances within certain frequency range, in addition to the basic

stabilizing controller.

In this dissertation, we will consider disturbance observer design for the type of sys-

tems where the disturbance input and the system input have the same transfer func-

tion to the system output. The mismatch between the actual plant and the plant

model can also be deemed as an equivalent disturbance input to the system. Such

a system with an input disturbance can be expressed as in Eq. (4.1), where G(s)

represents the actual transfer function (i.e., the plant) from the input (disturbance)

to the output. U(s) and D(s) are the system input and disturbance input in the

Laplace domain, respectively. V (s) is the system output. The system block diagram

is shown in Fig. 4.1.

V (s) = G(s)[U(s) + D(s)]. (4.1)



39

Figure 4.1: System block diagram

In practice, the model that we use to describe the actual plant can not ever fully

embody all the dynamic properties of the plant, no matter how we obtained the model.

The mismatch between the two can be considered as an equivalent disturbance input

and DOB can be used to compensate for its effect. We sometimes call the model used

for robust controller design the nominal model. Once DOB effectively removes the

disturbance input (the mismatch between the actual plant and the plant model), the

relationship between the overall system output and the input can resemble that of the

nominal plant model. This way, we can force the actual plant to mimic the dynamic

properties of the nominal plant model with reasonable DOB design. Nagata and

Tomizuka [28] used a DOB design and realized desired plant behavior in an engine

torque control application through taking the desired plant model as the nominal

plant model.

For the system described in Eq. (4.1), we denote the nominal plant model as Gn(s).

The general DOB structure is shown in Fig. 4.2. The part above the dashed line

Figure 4.2: General DOB structure

represents the actual plant with an external input U(s) and a disturbance input
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D(s). The part below the dashed line represents the DOB structure. E(s) is the

measurement noise and D̂(s) is the disturbance estimation. Intuitively, if we process

the plant output by the exact plant inverse, we should get back the original plant

input. The plant input consists of the external input and the disturbance input.

If the exact amount of the external input is known, an estimate of the disturbance

amount can be obtained. By subtracting the estimated disturbance estimate from the

plant’s external input, we can cancel the disturbance and eliminate the disturbance’s

impact on the plant. In reality, however, the plant model is always different from the

actual plant and we can only pass the plant output through the inverse of the nominal

plant model, as shown in Fig. 4.2. Notice that 1/Gn(s) is usually unrealizable and

we need to add the filter Q(s) to make Q(s)/Gn(s) realizable, i.e., the order of the

denominator greater than or equal to the order of the numerator. The design of the

Q-filter usually is the most important part in DOB design. As we will see later on, it

is related to a lot of contradicting criteria and requires trade-off considerations.

To understand how DOB works, let us first suppose that Q(s) = 1 for all frequencies

in Fig. 4.2. Then we have the following expression.

U(s) = U∗(s) −

[

G(s)

Gn(s)
[U(s) + D(s)] +

1

Gn(s)
E(s) − U(s)

]

. (4.2)

Solving Eq. (4.2) for U(s), we get

U(s) =
Gn(s)

G(s)
U∗(s) − D(s) −

1

G(s)
E(s). (4.3)

Therefore, the plant output V (s) can be expressed as

V (s) = Gn(s)U∗(s) − E(s). (4.4)

Notice that now the input-output relationship between U∗(s) and V (s) are charac-

terized by the nominal plant model Gn(s). Furthermore, if the output measurement

is noise free, E(s) disappears from Eq. (4.4) and the system performs exactly as the

nominal plant model.

Given the above expressions, we can obtain the disturbance estimation D̂(s) as follows

D̂(s) =

(

Gn(s)

G(s)
− 1

)

U(s) +
1

G(s)
E(s) +

G(s)

Gn(s)
D(s). (4.5)

If the nominal plant model Gn(s) is the same as the actual plant G(s), and the

output measurement is noise free (E(s)=0), we have D̂(s) = D(s), meaning that the
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disturbance estimation is the same as the disturbance itself. This is the reason that

the structure in Fig. 4.2 is called the disturbance observer. In the presence of model

mismatch, the difference between the two is included in the disturbance estimation

as shown in Eq. (4.5).

However, the Q-filter can not be equal to one for all frequencies, since 1/Gn(s) is

unrealizable and we have to make Q(s)/Gn(s) proper by letting the relative order of

Q(s) greater than or equal to that of Gn(s). If we drop the assumption of Q(s) = 1,

the output of the system shown in Fig. 4.2 can be expressed as follows.

V (s) = GuvU
∗(s) + Gdv(s)D(s) + Gev(s)E(s), (4.6)

where

Guv(s) =
G(s)Gn(s)

Gn(s) + (G(s) − Gn(s))Q(s)
,

Gdv(s) =
G(s)Gn(s)(1 − Q(s))

Gn(s) + (G(s) − Gn(s))Q(s)
, (4.7)

Gev(s) = −
G(s)Q(s)

Gn(s) + (G(s) − Gn(s))Q(s)
.

As we can see from Eqs. (4.6) and (4.7), if Q(s) ≈ 1, the three transfer functions

from the input U(s), the disturbance D(s) and the measurement noise E(s) to the

output V (s) become

Guv(s) ≈ Gn(s), Gdv(s) ≈ 0, Gev(s) ≈ −1. (4.8)

This is exactly the relationship shown in Eq. (4.4). On the other hand, if Q(s) ≈ 0,

the three transfer functions become

Guv(s) ≈ G(s), Gdv(s) ≈ G(s), Gev(s) ≈ 0, (4.9)

which make Eq. (4.6) the open loop dynamics.

From the above observations, we can see that for the frequencies where the distur-

bance is prominent, the Q-filter’s magnitude should be close to 1 to make Gdv(s) close

to zero. For the frequencies where the measurement noise is large, the Q-filter’s mag-

nitude should be close to zero to make Gev(s) close to zero. Usually, the disturbances

exist in the low frequency range and the measurement noise exists in the high fre-

quency range. Notice that the Q-filter need to be close to zero in the high frequency
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range also because of the fact that the relative order of Q(s) should be greater than

or equal to that of Gn(s). Such situation makes a low-pass type of Q-filter a sen-

sible choice. In fact, most of the DOB applications adopt low-pass Q-filter designs.

However, there are also applications where a band-pass type of Q-filter is selected to

filter out the narrow-band disturbance which exists in the mid-high frequency range

[10]. Such a band-pass Q-filter design can strengthen the signal-to-noise ratio when

the dominant disturbance is blended in a broad band disturbance spectrum. The

resulting DOB can remove the dominant disturbance component more effectively. In

our EPB application, a low-pass type Q-filter is chosen and the selection of its cut-off

frequency is related to both stability and performance criteria, such as, response time,

noise rejection, robust stability, etc.

4.2 DOB structure

Figure 4.3: A DOB design for the system in Fig. 3.6

A DOB for the estimation and rejection of the environmental disturbance can be

constructed as in Fig. 4.3, where P (s) = 1/(Jeqs + Beq). Notice that in the original

plant (Fig. 3.6), the rider’s input force comes into the system at the same location

as the environmental disturbance does. If we were to use a traditional DOB design

without any modifications, the human input Fh would also be canceled out by the

DOB. To avoid the cancellation of Fh by DOB, we add the measured human input F ∗

h
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in the DOB structure, as shown in Fig. 4.3. If P (s) = Pn(s), z = Fh + d + N · u. If,

in addition, the measured human input is exactly the same as the real human input,

i.e. F ∗

h = Fh, then the added signal F ∗

h will cancel out Fh contained in signal z and

the detected disturbance signal d̂ does not contain Fh. Even though F ∗

h 6= Fh in the

actual system because of the existence of measurement noise, the difference between

the two is usually small and the proposed structure assures that the human’s pedaling

input is not canceled by DOB.

The transfer function from the disturbance d to the angular velocity ω can be calcu-

lated with the aid of a series of block diagram transformations as shown in Fig. 4.4.

From Fig 4(c), we get

Td→ω(s) =
(1 − Q(s))P (s)NnPn(s)

NnPn(s) + Q(s)(NP (s) − NnPn(s))
. (4.10)

If Q(s) is close to 1, then the value of (1 − Q(s)) is close to 0. The influence of the

disturbance can be almost completely canceled. Thus, we have to design Q-filter such

that its value is close to 1 at the frequencies where the disturbance is nonzero. For

our system, the disturbance d is at low frequencies. Therefore, the Q-filter should be

of the form of a low-pass filter.

4.3 H-infinity design

4.3.1 Uncertain variables in the system

Because of limitations in measurement precision, there exist uncertainties in the motor

torque constant Kt, the motor inertia J , the friction constant B and the back-emf

constant Kb. The coefficient D = Cdr is the dynamic rolling resistance. Its value

depends on the road condition and the tire inflation condition. It will vary a lot

from hard ground to soft ground and from fully inflated tires to deflated tires, which

constitutes a source of uncertainty. The most uncertain parameter in the sense of

pure value changes in our model is the weight of the rider, which can have a great

influence to the system’s stability. In the following section, we will combine these

uncertainties into one multiplicative uncertainty of the system and use it for the

robust DOB design.
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Figure 4.4: Sequential block diagram transformation
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4.3.2 Calculate the multiplicative uncertainty bound

In designing robust controllers, we usually combine different sources of uncertainties

into a multiplicative or additive uncertainty and find a lumped uncertainty upper

bound as the worst case scenario. Here we choose the multiplicative uncertainty of

the form

G(s) = Gn(s) (1 + wI(s)∆I(s)) ; |∆I(jω)| ≤ 1, ∀ω, (4.11)

where Gn(s) is the nominal plant model and G(s) represents a group of possible plants

that deviate no more than the uncertainty bound wI(s) around the nominal model.

∆I(s) represents all stable transfer functions with |∆I(jω)| ≤ 1 at all frequencies.

For our plant, G(s) = NP (s), Gn(s) = NnPn(s).

We use the following values as the nominal values of the uncertain parameters:

Ktn = 2.58 × 10−1N · m/A;

Jn = 3.51 × 10−1N · m · s2/rad;

Bn = 9.27 × 10−3N · m · s/rad; (4.12)

mTn = 110kg; Dn = 1.00 × 10−1N · s/m,

where Ktn, Jn and Bn are the motor parameters identified through the motor system

identification; mTn is the total nominal mass of the bicycle and the rider, and it is

assumed to be 110kg. Since the bicycle used in our experiment weighs around 30kg,

the nominal weight of the rider is assumed to be 80kg. Notice that Dn is the nominal

value for the dynamic rolling resistance Cdr of the bicycle and it is suggested by [29]

that the nominal value can be taken as Dn = 1.00× 10−1N · s/m. We consider ±20%

changes in Ktn, Jn, Bn and Dn. According to [30], the average mass for a large man

is 141 kilograms, while the average mass for a skinny man is 47.18 kilograms. The

corresponding average masses for women are 88.45 kilograms and 43.09 kilograms.

We choose the range of human mass to be considered as [40kg, 140kg], which makes

the range of mT to be [70kg, 170kg]. The ranges for all the uncertain parameters are
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listed below:

Kt ∈ [2.06 × 10−1, 3.10 × 10−1]N · m/A;

J ∈ [2.81−1, 4.21 × 10−1]N · m · s2/rad;

B ∈ [7.42 × 10−3, 1.11 × 10−2]N · m · s/rad; (4.13)

mT ∈ [70, 170]kg;

D ∈ [8.00 × 10−2, 1.20 × 10−1]N · s/m.

Through sampling a large amount of possible plants within the above ranges using

MATLAB Robust Control Toolbox’s ”usample” command, we propose the uncer-

tainty bound as

wI(s) =
50s + 0.25

55.56s + 1
, (4.14)

which is drawn in Fig. 4.5. The solid lines represent 30 possible bode plots for
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[G(s)−Gn(s)]/Gn(s) corresponding to 30 possible plants. The dash-dot line represents

the proposed uncertainty bound wI(s), which has wI(s) ≥ [G(s) − Gn(s)]/Gn(s),∀s.

4.3.3 Robust stability criterion for the uncertain plant

For a system with multiplicative uncertainty as shown in Fig. 4.6, the loop transfer

Figure 4.6: Plant with multiplicative uncertainty

function is

L = GC = GnC(1 + wI∆I) = Ln + wILn∆I , (4.15)

where |∆I(jω)| ≤ 1,∀ω; Ln = GnC is the nominal loop transfer function. If we

assume that the nominal closed-loop system is stable, the Nyquist stability condition

tells us that the robust stability of the perturbed system can be guaranteed if L does

not encircle the point (-1,0). From Fig. 4.7, we can see that this condition can be

satisfied if

|wI(jω)Ln(jω)| < |1 + Ln(jω)| ,∀ω. (4.16)

The above condition is the same as

‖wI(s)Tn(s)‖
∞

< 1, (4.17)

where Tn(s) = Ln(s)/[1 + Ln(s)] is the nominal complimentary sensitivity function.

From the transformed block diagram in Fig. 4.4, we can see that the controller and

the nominal plant for our system can be expressed as

C(s) =
Q(s)

[1 − Q(s)]NnPn(s)
;

Gn(s) = NnPn(s). (4.18)
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Figure 4.7: Pictorial interpretation of the robust stability condition
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The nominal loop transfer function is

Ln(s) = C(s)Gn(s) =
Q(s)NnPn(s)

[1 − Q(s)]NnPn(s)
=

Q(s)

1 − Q(s)
. (4.19)

The nominal complimentary sensitivity function can then be calculated as

Tn(s) =
Ln(s)

1 + Ln(s)
= Q(s). (4.20)

From (4.17), we know that the robust stability criterion for our system is

‖wI(s)Q(s)‖
∞

< 1, (4.21)

which is equivalent to

|Q(jω)| < 1/ |wI(jω)| ,∀ω. (4.22)

4.3.4 Q-filter design

The essence of disturbance observer design is selecting an appropriate Q-filter. Besides

the robust stability criterion stated above, Q-filter design also involves other factors,

such as response time and noise rejection. For the EPB system, it is important to

consider the following items in the DOB design.

1. Robust stability: |Q(jω)| < 1/ |wI(jω)| ,∀ω.

2. Properness: Q(s)/[NnPn(s)] is realizable, i.e. proper.

3. Disturbance rejection: Q(s) = 1 around the frequencies where the disturbance

d 6= 0 (i.e. low frequencies).

4. Fast response: The response time of the disturbance observer depends on the

bandwidth of the Q-filter. Fast response means large Q-filter bandwidth.

5. Good noise rejection: High frequency measurement noise1exists in the velocity

measurement. The transfer function from the measurement noise to the control

input is Tnoise→u(s) = −Q(s)/[NnPn(s)]. Good noise rejection means low Q-

filter bandwidth and fast roll-off at high frequencies.

1Measurement noise is not shown in Fig. 4.3 or any other transformed figures. However, mea-
surement noise does exist and it enters the system through the angular velocity measurement right
before the block 1/Pn(s) in Fig. 4.3.
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6. Robustness to unmodeled dynamics: Unmodeled dynamics exist in high fre-

quencies and robustness requires low-gain at high frequencies, which means low

bandwidth of the Q-filter.

7. Easy implementation: Although higher order Q-filters have faster roll-off at

high frequencies providing better noise rejection and robustness, an excessively

high order Q-filter can be too complicated to implement in real-time.

Based on the above design criteria, we chose the Q-filter to be a second order low-pass

filter

Q(s) =
1

(s + 1)2
, (4.23)

which achieves an acceptable trade-off among all the factors mentioned above. Figure

4.8 shows that the robust stability criterion in (4.22) was satisfied with the chosen

Q-filter in (4.23).
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4.4 Experimental results

The efficiency of the proposed robust disturbance observer was tested through real

road tests on an EPB. Note that we did not introduce any proportional power assis-

tance into the system, i.e., no other assistance was provided to the rider except the

environmental disturbance compensation from the DOB. The experimental bicycle

was modified from a commercially available EPB. The torque sensor was mounted

inside the crankset system and it measures the instantaneous human pedaling torque.

The velocity measurements came from the encoder inside the front wheel hub motor.

The encoder has a resolution of 243 pulses per revolution. Differentiation was used

to get the angular velocity measurement from the encoder signal. As one can expect,

the differentiation induced high frequency noise in the velocity measurement as shown

in the first plot in Fig. 4.9. As stated in the previous section, lowering the Q-filter

bandwidth can solve this problem. The DOB was implemented with LabVIEW on

a laptop, which was carried with the bicycle during the experiment. The sampling

frequency of the controller was set to 10Hz .

The road test was done on a slope of about 3 degrees. The weight of the cyclist was

65 kilograms. Based on nominal values of the uncertain parameters, we calculated

the nominal environmental disturbance as d = −51.47N . Using the nominal value of

N , we get the nominal steady state motor input ussn = |d| /Nn = 2.79volt. As shown

in the experimental results in Fig. 4.9, the steady state motor input is around 2 volt.

This shows a good agreement with the expected nominal value. The small mismatch

was caused by the inaccuracy of the nominal parameter values.

The experimental results showed that the robust DOB was able to catch up with the

slope changes and compensate for the environmental disturbance. With the DOB

power-assistance, riding uphill feels like riding on level ground to the cyclist. The hu-

man torque input in the second plot of Fig. 4.9 shows that the human input becomes

close to zero after 10 seconds, which corresponds to the behavior of coasting on level

ground at a certain speed level. We should mention that since the lumped uncertainty

bound was used in the Q-filter design, the resulting closed-loop performance might

be conservative.
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4.5 Robust DOB anti-windup design and experi-

mental results

The front-wheel hub motor has an input saturation at 5 volts due to the motor drive’s

design and the motor’s capability. Actuator windup will occur if the DOB structure

shown in Fig. 4.3 is used and the motor control input exceeds 5 volts. To avoid the

unwanted phenomenon, we employ the modified DOB structure shown in Fig. 4.10.

The ”actual saturation” block in the figure represents the actual motor saturation

Figure 4.10: Modified DOB structure with motor input saturation

existed in the experimental EB system. Note that although this block physically

exists in the experimental system, we still include a saturation block from 0 to 5

volts in the controller structure (after the calculated DOB signal Udob) to protect the

motor and motor drive. The ”saturation model” block is introduced so that the DOB

takes the real motor input into the calculation of the environmental disturbance. The

modified DOB structure can estimate the level of environmental disturbance in the EB

system in the presence of motor input saturation, and apply corresponding assistance

through the hub motor within the motor’s capability, i.e., avoiding the motor’s input

saturation. Figure 4.11 shows the real road experimental results with the modified

DOB power-assistance scheme when motor saturation exists. We can see that the

DOB picked up the disturbance level quickly and the motor input saturated after

around 4 seconds. Although the estimated disturbance level should require motor

input at around 10 volts, as shown in the third plot of Fig. 4.11, the motor can only
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help with the maximum input of 5 volt. The experimental results showed that the

modified DOB worked in the presence of motor input saturation.

Figure 4.11: Experimental results with modified DOB
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Chapter 5

Non-Uniform Human Input

Compensation

As we have discussed in Chapter 4, the traditional proportional power-assist scheme

(usually 1:1 power-assistance) may not be sufficient in providing a smooth and com-

fortable ride during uphill riding. The robust DOB approach that we introduced in

Chapter 4 can detect and compensate for the environmental drag force (which con-

tains gravity as a major part) experienced in uphill riding. This scheme provided

extra flexibility compared with the proportional power-assistance scheme in the up-

hill riding situation. However, neither of the two schemes addressed the issue of

uncomfortable uphill riding caused by the non-smooth velocity and acceleration pro-

files. Due to the design of the crankset on a bicycle, the torque input from human

traces a sinusoidal-like pattern by nature. The human input torque reaches its local

maximum (minimum) twice during a complete pedal cycle. As shown in Fig. 5.1,

the maximum torque is achieved at or around the horizontal positions, and the local

minimum torque is achieved at or around the vertical positions. Figure 5.2 shows

a real-time measurement profile of the human input torque during uphill riding.

Note that the bicycle started on level ground and continued with uphill riding af-

ter around 50 seconds. We can see that during uphill riding, the peak torque value

is at least 5 or more times the minimum torque value. This huge fluctuation will

in turn cause big fluctuation in the bicycle’s longitudinal acceleration and velocity,

as shown in Eq. (3.2). The non-smoothness in velocity and acceleration becomes

more noticeable during uphill riding, and thus, causes discomfort. We propose that
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Figure 5.1: Human torque input changes during a complete pedal cycle

Figure 5.2: Real-time measurement profile of the human input torque during uphill
riding
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through applying repetitive control based power-assist schemes, we can compensate

for the sinusoidal-like oscillation in the velocity and acceleration profiles and ease the

discomfort.

Repetitive control is often used for periodic disturbance rejection and/or periodic

reference signal tracking. It has been successfully applied in many motion control

problems involving rotary motions, such as hard disk drives [16] [31] [32] and Com-

pact Disc players [17] [33]. It has also been applied to noncircular motion control

applications [18] [34]. A more general review of the methods to deal with periodic

disturbances and recent applications of repetitive control can be found in Tomizuka

[1]. Repetitive controllers are designed based on the internal model principle (IMP)

[35]. Through incorporating the internal model of the disturbance signal in the con-

troller denominator, repetitive controllers pose an infinitely high gain at the distur-

bance frequency in the open loop frequency response, and, thus, reject the repetitive

disturbance.

In this chapter, we model the human input as a signal with non-zero DC component

and use repetitive control to reject the oscillatory sinusoidal-like part of the signal,

while augmenting the DC part of the human input. We consider two ways of modeling

the sinusoidal-like signal in the human input, i.e., one as a sinusoidal signal, and

the other as a nonsinusoidal but periodic signal. These two modeling methods give

different internal models for the oscillatory component of the human’s torque input.

To be specific, when modeled as a sinusoidal signal, the oscillation source has an

internal model of 1 − 2cosωhq
−1 + q−2, where q−1 is a backward shift operation and

ωh is the frequency of the sinusoid. The internal model for a non-sinusoidal periodic

signal is 1 − q−N , where N is the period of the periodic signal.

The fundamental assumption in the design of repetitive control is that the period

of the repetitive signals is known and fixed. In the EPB application, the period is

known but not fixed. Since the human input’s frequency is changing from time to time

while the bicycle is in motion, the above-mentioned models are both time-varying.

We deal with the two time-varying internal models in two respective ways. For

the sinusoidal model, the changing frequency is considered as a changing parameter,

and an adaptive handling manner is adopted. For the nonsinusoidal periodic model,

each pedal revolution is sliced into Ns sectors so that the period of the signal in

the discrete time domain is Ns and fixed. This way, the sampling period for the

repetitive control depends on the pedaling speed and the bicycle dynamics become
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time-varying. Repetitive controllers based on the two different internal models will

be considered in this chapter and their performance will be compared with simulation

results. Furthermore, experimental results for the second method will be shown to

verify the effectiveness of the controller design.

5.1 Internal model principle

The principle of including known disturbance modes into the feedback controller

structure in order to reject the very disturbance input of concern is called the internal

model principle (IMP). It was first introduced by Francis and Wonham in 1975 [35].

The analysis of IMP below follows that in [36].

The internal model principle in continuous time domain can be explained using the

feedback control system shown in Fig. 5.3. The system has a disturbance input

D(s) = Bd(s)/Ad(s) with known modes Ad(s). In order to achieve asymptotic reg-

ulation in this system, i.e., limt→∞ e(t) = 0, we have to include the modes of D(s)

in the denominator of the controller Gc(s). Note that the plant zeros can not cancel

any of the disturbance modes in the controller. If we write Gp(s) = Bp(s)/Ap(s), and

Figure 5.3: Continuous time feedback system with disturbance input D(s)

Gc(s) = Bc(s)/Ac(s), the regulation error E(s) can be expressed as

E(s) = −
Gp(s)

1 + Gc(s)Gp(s)
D(s)

= −
Bp(s)Ac(s)

Ap(s)Ac(s) + Bp(s)Bc(s)

Bd(s)

Ad(s)
. (5.1)
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Since we have included the disturbance modes in the controller Gc(s)’s denominator,

Ac(s) can be written as Ac(s) = A′

c(s)Ad(s). Therefore, the error response becomes

E(s) = −
Bp(s)A

′

c(s)Bd(s)

Ap(s)Ac(s) + Bp(s)Bc(s)
(5.2)

If the controller is well designed and can make the closed loop system asymptoti-

cally stable, E(s) contains all the asymptotically stable modes and the error e(t) can

converge to zero.

Since our controller design is carried out in the discrete time domain, we also need to

consider the internal model principle in the discrete time domain. Let us consider the

regulation of a controlled plant with a disturbance input d(k) of the following type.

Ad(z
−1)d(k) = 0 (5.3)

Examples of such disturbances include:

1. (1 − z−1)d(k) = 0 for constant disturbances (d(k)=constant).

2. (1−2 cos ωz−1+z−2)d(k) = 0 for sinusoidal disturbances (d(k) = sin(ωk), cos(ωk)).

3. (1−z−N)d(k) = 0 for periodic disturbances with a period of N (d(k) = d(k−N)).

Notice that the disturbance is regarded as the output of a system with a characteristic

polynomial of Ad(z
−1). That is, D(z−1) = Bd(z

−1)/Ad(z
−1). Let us expressed the

plant as

Gp(z
−1) =

z−dBp(z
−1)

Ap(z−1)
, (5.4)

where z−d represents a d-step delay. With the controller Gc(z
−1) expressed as

Gc(z
−1) =

S(z−1

Ad(z−1)R(z−1)
, (5.5)

the closed loop transfer function from the disturbance D(z−1) to the error E(z−1) is

Gde(z
−1) = −

Gp(z
−1)

1 + Gp(z−1)Gc(z−1)

= −
z−dBp(z

−1)/Ap(z
−1)

1 + (S(z−1)/Ad(z−1)R(z−1)) · (z−dBp(z−1)/Ap(z−1))

= −
z−dAd(z

−1)R(z−1)Bp(z
−1)

Ad(z−1)R(z−1)Ap(z−1) + z−dS(z−1)Bp(z−1)
. (5.6)
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Therefore, the error

E(z−1) = Gde(z
−1)D(z−1) = −

z−dR(z−1)Bp(z
−1)Bd(z

−1)

Ad(z−1)R(z−1)Ap(z−1) + z−dS(z−1)Bp(z−1)
. (5.7)

Notice that the denominator in Eq. (5.1) is the characteristic polynomial. If we

properly place the closed loop poles so that all of them are inside the unit circle,

then the closed loop system is asymptotically stable and the error e(k) converges

to zero over time. This means that asymptotic regulation of the plant is achieved

under the presence of the disturbance satisfying Ad(z
−1)d(k) = 0. The disturbance is

asymptotically rejected. Notice that the internal model of the disturbance is included

in the controller structure. This is the internal model principle in discrete time

domain.

5.2 Repetitive control introduction[1]

Consider a discrete time system described by

A(q−1)y(k) = q−dB(q−1)[u(k) + w(k)],

A(q−1) = 1 + a1q
−1 + · · · + anq

−n,

B(q−1) = b0 + b1q
−1 + · · · + bmq−m,

(5.8)

where u and y are the input and output, respectively. q−1 is a one-step delay operator,

and d is the total number of pure delays in the system. w is a period disturbance

signal, which we want to reject using a repetitive controller.

For our EPB system, w is the fluctuating component in the human torque input. We

decompose the human input into two parts, i.e.

Fh(t) = Fave(t) + Ffluct(t), (5.9)

where Fave(t) is the local average of the varying torque and Ffluct(t) represents the

torque variations around the average. Note that Fave(t) and Ffluct(t) are both func-

tions of time. In the frequency domain, Fave(t) contains the low frequency components

while Ffluct(t) consists of the high frequency components of the human input. Fave(t)

may be extracted by processing Fh(t) by a low pass filter, and Ffluct(t) by a band

pass filter to filter out measurement noise and obtain dominant fluctuation frequency
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components. For low pass filtering, Fh(t) may be processed by a standard low pass

filter or by a box car filter as shown in Eq. (5.10).

Fave(t) =
1

Tb

t
∫

t−Tb

Fh(τ) dτ (5.10)

Alternatively, if either Fave(t) or Ffluct(t) is obtained, the other component may be

acquired by subtracting the known part from Fh(t). For example,

Ffluct(t) = Fh(t) − Fave(t), (5.11)

if Fave(t) has been obtained by filtering. Note that the discretized Ffluct(k) corre-

sponds to w(k) in Eq. (5.8).

If w(k) has a period of Ns, then

(1 − q−Ns)w(k) = 0. (5.12)

Assume that the system in Eq. (5.8) is asymptotically stable and B(q−1) can be

decomposed into

B(q−1) = Bc(q−1)Bu(q−1)

Bc(q−1) = b0 + bc
1q

−1 + · · · + bc
mcq

−mc

Bu(q−1) = 1 + bu
1q

−1 + · · · + bu
muq

−mu

(5.13)

where Bc(q−1) and Bu(q−1) contain, respectively, cancellable zeros and uncancellable

zeros. Bu(q−1) is monic and its order is mu. The control objective is to achieve

asymptotic regulation of the output, i.e., limk→∞ e(k) = 0, where e(k) = yd(k)− y(k)

and yd(k) is the constant or periodic desired output with period Ns. A repetitive

controller may be constructed with (1 − q−Ns) in its denominator based on the IMP.

However, this might cause instability due to unmodeled dynamics. Therefore, in

practice, a low-pass filter q(q, q−1) is introduced into the internal model to enhance

robustness. The robust repetitive controller[18] with a modified internal model isled

dynamics. Therefore, in practice, a low-pass filter q(q, q−1) is introduced into the

internal model to enhance robustness. The robust repetitive controller[18] with a

modified internal model is

CR(q) =
krq(q, q−1)z−Ns+d+muA(q−1)

(1 − q(q, q−1)q−Ns)Bc(q−1)b
, q(q, q−1) =

h(q−1)h(q)

h

b > max
ω∈[0,π]

∣

∣Bu(ejω)
∣

∣

2
, h = max

ω∈[0,π]

∣

∣h(ejω)
∣

∣

2
(5.14)



62

under the constraint that q(q, q−1)q−Ns+d+mu is causal. If the system modeling un-

certainty is defined by

r(e−jω) =
P0(e

−jω) − P (e−jω)

P0(e−jω)
(5.15)

where P0(e
−jω) represents the nominal dynamics of the system and P (e−jω) the ac-

tual dynamics, q-filter must be selected to satisfy the following condition for robust

stability,
∣

∣

∣

∣

1

r(e−jω)

∣

∣

∣

∣

≥
∣

∣q(ejω, e−jω)
∣

∣ . (5.16)

Another approach to design a repetitive control based intelligent power-assist algo-

rithm for the EPB is to approximate the human torque fluctuation by a sum of

sinusoidal signals

Ffluct(t) = Σm
i=1[ai sin(ωit) + bi cos(ωit)], (5.17)

where ωi = i · ωp and ωp is the pedaling frequency. Since sinusoidal signals satisfy

(1 − 2 cos(ωsTs)q
−1 + q−2) sin(ωsTs · k) = 0, (5.18)

where ωs is the frequency in rad/s and Ts is the sampling period, an internal model

of the form 1/(1 − 2 cos(ωsTs)q
−1 + q−2) can be constructed for repetitive control by

utilizing this relation. If m in Eq.(5.17) is chosen to be large and all the frequency

components’ internal models are included in the repetitive controller, then the result-

ing controller will have similar disturbance rejection performance as the repetitive

controller based on the internal model 1/(1 − q−Ns).

5.3 Repetitive controller in time domain
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ω
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�

d

�

�
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�
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assistk
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Figure 5.4: Overall repetitive control system structure
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In the time domain design, we adopt the sinusoidal approximation idea in Eq.(5.17)

and use only the frequency component with ωh = 2 ·ωp to describe the human torque

fluctuation. The overall control system structure is shown in Fig. 5.4, where P (q−1)

is the discretization of P (s) = 1/(Jeqs + Beq). C(q−1) represents a band-pass filter

Cbpf(q
−1), which is a discretized version of the band-pass filter

Cbpf(s) =
0.0025(20s + 1)

(0.1s + 1)(0.05s + 1)
. (5.19)

Clpf (q
−1) is a discretization of the feedforward low-pass filter

Clpf (s) =
1

10s + 1
. (5.20)

The assistive torque is made proportional to the output of Clpf(q
−1). kassist is set to

one, so that the EPB system has approximately two times the original open-loop DC

gain of the bicycle, realizing 1:1 assistance at DC.

CR(q−1) =
Krr(1 − aq−1)(1 − poq

−1)

1 − 2 cos ωhq−1 + q−2
(5.21)

is the repetitive controller that is used to reject the sinusoidal disturbance contained in

the human input with a frequency of ωh rad/sample. In this expression, po is the pole

for the discrete open loop bicycle transfer function, i.e. P (q−1) = boq
−1/(1 − poq

−1).

Krr and a vary with changing ωh and have the forms Krr = (2 cos ωh − 1)/bo and

a = 0.75/(2 cos ωh − 1) . The changes in the closed loop poles of the overall system

with respect to the changing human input frequency ωh from π/40 rad/sample to

0.2π rad/sample (the sampling time is 0.1 second) are shown in Fig. 5.5. The closed

loop system has five poles. One is located at 0.9987, which coincide with the bicycle’s

open loop pole. The pair of complex conjugate poles inside the two boxes in Fig. 5.5

does not change very much with respect to changes in ωh. The other pair shifts away

from the real axis while ωh increases. All the closed loop poles remain stable.

The controller implementation structure is shown in Fig. 5.6, where the feedback and

feedforward controller inputs are combine together into one control input u, which is

the input to the motor.
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Figure 5.5: Closed loop poles with respect to changing ωh. The cross marks represent
closed loop poles and the circle marks represent closed loop zeros. The blue, red,
green, and black colors correspond to the cases where ωh = π/40 rad/sample, ωh =
π/20 rad/sample, ωh = π/10 rad/sample, and ωh = π/5 rad/sample, respectively.
Note that the sampling time is Ts = 0.1s.
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5.4 Repetitive controller in pedal-angle domain

When a rider is biking, it is reasonable to assume that the torque generated by the

rider is a function of the angle of the pedal’s crank. Roughly speaking, we might

suppose that the rider’s torque is periodic with respect to the pedal angle. Therefore

a repetitive controller is better to run in synchronization with the pedal angle. We call

a controller synchronized with the pedal angle a controller in the pedal-angle domain.

5.4.1 Problems on controller design in pedal-angle domain

Let us consider a digital controller in the pedal-angle domain. Normal digital con-

trollers run with a constant time interval ∆t, while controllers in the pedal-angle

domain run whenever the increment of the pedal angle reaches a constant angle in-

terval ∆θ. Therefore, if we consider a digital controller in the pedal-angle domain,

the angle interval ∆θ is constant, rather than the time interval ∆t. The time interval

during which the pedal angle passes through ∆θ is changing as the angular speed

is changing. When the rotational speed is faster (or slower) and the time interval

becomes shorter (or longer).

This observation implies that the system dynamics discretized in the pedal-angle

domain varies with respect to the pedal-angle even if the systems are time-invariant

in the time domain. Thus controllers in the pedal-angle domain should be designed

for time-varying systems. There are several ways to deal with time-varying systems

and this paper selected a robust control approach.

5.4.2 Uncertainty estimation

It is important for robust controller designs to estimate the uncertainty bound tightly

to avoid overly conservative controllers. From (3.15), the bicycle dynamics can be

represented by a stable first-order system.

ẋ = −αx + βu (5.22)

where x is a scalar state variable, u is a scalar input, and α and β are system param-

eters and positive. We use ∆t as the nominal time interval and δ as the deviation of
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the time interval from ∆t. Human biking speed is limited when riding uphill. It is

thus reasonable to assume that there is a minimum time interval associated with the

given ∆θ. Now, we set the nominal time interval ∆t as the minimum time interval

under the assumption, and then δ is always greater than or equal to 0. Note that the

overall time interval is represented by ∆t + δ.

The input value of u during each time interval is considered as a constant, and the

discretized system of (5.22) with the time interval ∆t + δ is given by

xk+1 = e−α(∆t+δ)xk +
β

α

(

1 − e−α(∆t+δ)
)

uk. (5.23)

The transfer function of (5.23), P (q−1, δ), and the nominal transfer function Pn(q−1)

with δ = 0 are, respectively, defined by

P (q, δ) =
β/α(1 − e−α(∆T+δ))

(q − e−α(∆t+δ))
, P (q) =

β/α(1 − e−α∆T )

(q − e−α∆t)
. (5.24)

The difference between P (ejω, δ) and Pn(ejω) in the frequency domain ω ∈ [0, 2π) is

defined as

|Pe(e
jω)| =

∣

∣

∣

∣

Pn(ejω) − P (ejω, δ)

Pn(ejω)

∣

∣

∣

∣

= |r̄(ejω)|γ̄(δ)

r̄(ejω, δ) =

∣

∣

∣

∣

ejω − 1

ejω − e−α(∆t+δ)

∣

∣

∣

∣

, γ̄(δ) =
e−α∆t(1 − e−αδ)

1 − e−α∆t
.

(5.25)

Note that |Pe(e
jω)| → 0 as δ → 0, and

lim
δ→∞

|Pe(e
jω)| =

∣

∣

∣

∣

ejω − 1

ejω

∣

∣

∣

∣

e−α∆t

1 − e−α∆t
(5.26)

provides the multiplicative uncertainty bound. The part of |(ejω − 1)/ejω| is not very

large in magnitude. However, the total uncertainty bound of (5.26) becomes very large

if ∆t is small because e−α∆t is close to 1. For example, e−α∆t/(1 − e−α∆t) becomes

about 10000 with α = 0.01 and ∆t = 0.01. If the overall uncertainty in (5.25) is

taken into account, the resultant controller might be too conservative. Therefore we

need to divide the uncertainty bound of (5.25) into two parts: r̄(ejω, δ) and γ̄(δ), and

treat each bound separately.

Fortunately, each time interval ∆t + δ can be estimated from the angular velocity ωk

of the crank shaft as ∆t + δ = ∆θ/ωk. Therefore δ is a function of ωk as δ(ωk). This

implies that we can also estimate γ̄(δ) from ωk. Hence a gain-scheduling technique
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is utilized to compensate this large gain-fluctuation as shown in the block diagram,

Fig. 5.7. The gain scheduled by ωk, γ(ωk), is given by

γ(ωk) =
1 − e−α∆t

1 − e−α(∆t+δ(ωk))
. (5.27)

Figure 5.7: Block diagram of the robust repetitive controller in pedal-angle domain

The uncertainty part associated with the dynamics in (5.25) can be dealt with by the

robust repetitive controller as summarized in one of the previous sections. Note that

lim
∆t+δ→0

max
ω∈[0,π]

r̄(ejω, δ) = 1 (5.28)

as shown in Fig. 5.8. Therefore we chose

r(q) =
1.6(q − 0.5)

q − 0.2
(5.29)

to cover all the uncertainty variations associated with the sampling fluctuation.

The q-filter should be designed to satisfy (5.16). We fixed the order of the q-filter

with h(q−1) = h0 + h1q
−1 + h2q

−2, and searched the parameters hi, i = 0, . . . , 2 to
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Figure 5.8: Frequency response of the uncertainty associated with the sampling in-
terval fluctuation, r̄(ejω, δ). The blue line shows |r̄(ejω, δ)| with ∆t + δ = 1000, and
the green line with ∆t+δ = 0.01. The red line shows the uncertainty bound, |r(ejω)|.

Figure 5.9: The uncertainty bound, 1/|r(ejω)| and the frequency response of the
Q-filter.
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minimize the square norm of
∑n

i=0(−20 log10 |r(e
jω)| − 20 log10 |q(ejω, e−jω)|)2 under

the constraint (5.16). This nonlinear optimization was performed by MATLAB, and

the result is shown in Fig. 5.9. Finally we got a q-filter satisfying the condition,

q(q, q−1) =
q2 + 0.6968q1 + 2.181 + 0.6968q−1 + q−2

5.574
. (5.30)

Note that this q-filter may be conservative in some regions. If the order of the q-filter

increases, a less conservative filter might be obtained.

5.5 Simulations

5.5.1 Human input generation

To imitate the human’s pedaling behavior in simulation, we employ a human torque

generator designed based on the following observations:

1. The human pedaling angular velocity is related to the bicycle angular velocity.

2. The human input power is limited. As the frequency increases, the human input

torque decreases.

3. The human’s input power level is dependent on the road condition.

According to [37], human can maintain prolonged pedaling power of about 0.05 horse-

power (37.3 watts) with 20-60 rpm pedaling rate. We assume that the human’s power

level is 37.3 watts for flat surface and 37.3 × 2 watts for uphill riding. For the sim-

ulations conducted in this paper, we assume that the cyclist rides on a flat surface

for the first 10 seconds and then goes up a hill of 3 degrees. Fig. 5.10 shows the

simulated human input for traditional proportional power-assist controller. Notice

that the generated human torque profile has a half-sinusoidal pattern for each pedal

stroke. Fig. 5.11 shows the corresponding motor input.

5.5.2 Time domain repetitive controller

The designed time domain repetitive controller is simulated with the half-sinusoidal

human input generator. The simulation results for the bicycle velocity are shown
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Figure 5.10: Human input for traditional proportional control
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Figure 5.11: Motor input for traditional proportional control
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in Fig. 5.12. Since the simulated human torque input is not a single sinusoid, the

oscillation in the bicycle velocity can not be completely removed. Since we use the

pedal-crank angular velocity measurement as the human pedaling frequency in the

repetitive controller, measurement noise also causes inaccuracy. The second plot in

Fig. 5.12 shows the magnified velocity profile for the time duration from 50 second

to 100 second. We can see that the oscillation in the velocity profile has been greatly

reduced with the proposed repetitive controller. The corresponding human torque

input and motor input are shown in Figs.5.13 and 5.14. Note that for all the sim-

ulation results presented in this paper, a limit of [0v, 5v] has been imposed on the

motor input to avoid motor input saturation. The remaining oscillation in the veloc-

ity profile is minimal and can barely be noticed by human. The simulation results

show that the time domain repetitive controller have good performance in terms of

rejecting the oscillation in the velocity profile.
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Figure 5.12: Velocity simulation results for the time domain repetitive controller
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Figure 5.13: Human input for the time domain repetitive controller
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Figure 5.14: Motor input for the time domain repetitive controller
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5.5.3 Pedal-angle domain repetitive controller

The effectiveness of the pedal-angle domain robust repetitive controller is also verified

through simulation with the half-sinusoidal human input generator. The controller

realization structure is very similar to that used in the time domain method shown

in Fig. 5.6, except that in the pedal-angle domain case, we use a high-pass filter

instead of a band-pass filter to reject the DC gain of the velocity profile and provide

the information to be compensated by the repetitive controller. The high-pass filter

has the form

Cbpf =

(

s

s + 0.35

)4

. (5.31)

The simulation results for the pedal-angle domain robust repetitive controller are

shown in Fig. 5.15 and Fig. 5.17. The second plot in Fig. 5.15 is a magnified version

of bicycle angular velocity between 50 second and 100 second. We can see that

the pedal-angle domain repetitive control also greatly reduced the oscillation in the

bicycle’s velocity compared with the case without repetitive control. However, we can

also see a slow transient response in the robust-repetitive controller. This unexpected

slow transient might be caused by the high-pass filter to eliminate the DC-gain of

the velocity profile. The robust repetitive controller is sensitive to the phase-lag of

the signals to be compensated, therefore the high-pass filter should have zero phase

shift over the range in which the signal is compensated by the controller. This means

that we cannot shift the poles of the high-pass filter into the high frequency-domain.

Thus, the slow transient is inevitable under this configuration. The improvement of

the slow transient will be a future research topic.

5.6 Experimental results

Experiments on the EPB were done to verify the effectiveness of the robust repetitive

control based power-assist algorithm. The experiments were carried out on a slope

with an inclination of about 9 degrees. For comparison purposes, we considered the

case with DC amplification power-assistance based on low pass filtering, as well as the

case with DC amplification and robust repetitive control compensation. Note that the

structure shown in Fig. 5.7 calculates the amount of assistive motor torque needed

to flatten the combined torque profile. In practice, this torque amount may exceed
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Figure 5.15: Simulation results for the pedal-angle domain repetitive controller

Figure 5.16: Human input for the pedal-angle domain repetitive controller
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Figure 5.17: Motor input for the pedal-angle domain repetitive controller

the upper limit of the motor’s output torque, i.e., the motor input recommended by

the robust repetitive controller shown in Fig. 5.7 may exceed the motor input range

of [0V , 5V ]. In the experiments, we apply only 20% of the calculated motor input to

avoid motor input saturation. As we can expect, this reduction in the actual applied

torque will result in a corresponding reduction in the controller’s capability of torque

variation compensation. Figure 5.18 shows the comparison of EPB’s front wheel

angular velocity profiles for the cases with and without robust repeptitive control.

The red line shows the case with only the box-car filter DC torque amplification,

while the blue line shows the case with both DC torque amplification and robust

repetitive control compensation. Note that the horizontal axis in the figure is the

pedal angle degrees. The backward red line starting at around 200 degrees means

that the cyclist took a backward stroke in the pedal. As we can see from the figure,

the amplitude of the variation in the velocity profile is reduced with the repetitive

control compensation. Figure 5.19 shows the magnified comparison in the steady

state velocity profiles for the two cases in Fig. 5.18. To quantify the effect of the

robust repetitive compensation, we calculated the mean and standard deviation of

the steady state velocity profiles. Table 5.1 shows these values. We can see that

the standard deviation reduced from 0.466 to 0.385, which is a 20% reduction. This

number is consistent with the 20% control effort that we supplied through the motor.



76

Figure 5.18: Experimental results for the EPB’s front wheel angular velocity profiles
with and without robust repetitive control

Figure 5.19: Magnified steady state front wheel angular velocity profile for the EPB
with and without robust repetitive control
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Table 5.1: Mean and standard deviation of steady state EPB velocity profiles

Mean Standard deviation

Without repetitive control 3.84 0.466
With repetitive control 4.90 0.385

Figure 5.20 shows the human input thrust forces for the experimental cases with and

without repetitive control compensation. Figure 5.21 shows the corresponding motor

inputs for the two cases. We can see from the figures that the human input thrust

forces are comparable in magnitude in the two cases. However, the motor input for the

case with no repetitive compensation but only DC compensation appears to be much

flatter and smoother compared to the case with repetitive compensation. As we can

expect, the repetitive controller generates an oscillatory input of the same frequency

as that of the fluctuant component Ffluct(t) in the human input. Figure 5.22 further

verified that the generated periodic fluctuation in the motor input does have an inverse

phase compared to the human thrust force input. Note that we have normalized the

human’s input thrust, i.e., divided the thrust force by 140, to make it comparable to

the motor input. Figure 5.23 shows the human thrust force and the total combined

thrust force (with the human force and motor force added together) for the cases

with and without repetitive compensation. The blue lines in the two plots are the

human’s input thrust force. The red lines represent the combined total force from

the human and the motor. We can see that with the repetitive control compensation,

the minimum combined force has been effectively increased. It means that for the

positions where the human can not provide input force/torque, the motor’s torque

can fill in and significantly increase the minimum combined torque.

The experimental results shown above verified that the robust repetitive power-assist

design in the pedal-angle domain can effectively reduce the fluctuation in the EPB’s

velocity profile, which is consistent with the simulation results shown in Section 5.5.

Therefore, the repetitive control based power-assist algorithm can enhance rider’s

uphill riding comfort with its inverse phase torque compensation.

Efforts have been made to implement the time-domain adaptive repetitive control

based power-assist controller design on the experimental EPB system. However,

we did not succeed after several trials. The adaptitive repetitive controller requires
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Figure 5.20: Human input thrust force for the EPB with and without robust repetitive
control
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Figure 5.21: Motor input for the EPB with and without robust repetitive control
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Figure 5.22: Normalized human thrust force and motor input
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Figure 5.23: Human thrust force and combined thrust force
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real-time estimation of the human input frequency ωh. In our experimental trials,

the human input frequency estimate was acquired through differentiating the pedal

angle measurement, which comes from an encoder signal. Pure diffentiation invokes

high numerical sensitivity, which is not good for experiments. Although filtering

techniques can be used to remove the differentiation noise, the response time of the

filter makes the frequency estimate not ”real-time” anymore. Although the simulation

results shown in Subsection 5.5.2 verified that the time-domain adaptitive repetitive

controller is effective in removing the oscillation in the velocity and accelleration

profiles under half-sinusoidal human input, the real human torque input is hardly

sinusoidal and experimental results may not be so satifying as shown by simulation.

The pedal-angle domain robust repetitive control based design may be more suitable

in this situation, considering implementation feasibility and real human input pattern.



83

Chapter 6

Conclusions

This dissertation investigates the design and implementation of intelligent power-

assist algorithms for electric power-assist bicycles (EPBs). EPBs have extended mo-

bility compared with traditional bicycles because of the extra power (torque) supply

from the electric motor. The potential possibility for EPBs to take the place of fuel

powered vehicles for mid-range transportations makes them an interesting research

subject. How to make EPB rides more comfortable is one of the major concerns in the

EPB industry. This dissertation focuses on the uphill riding condition and provides

two types of intelligent power-assist algorithms. Intelligent power-assist algorithms

are different from traditional proportional power-assist algorithms in that they are

more flexible and considers the interaction between the bicycle, the human and the

environment.

The first type of intelligent power-assist algorithm is based on robust disturbance

observer (DOB) technique. The gravity drag force along with other friction forces

constitutes the environmental disturbance input in the EPB system. Most of the

times, the proportional power-assistance scheme used in traditional EPBs can not

provide sufficient assistive torque to the cyclist when he/she is riding up a steep slope.

The disturbance observer based scheme can add flexibility in the power-assist system

by estimating and compensating for the environmental disturbance that is present

in the EPB system. Robust stability is crucial in this case since it is related to the

cyclist safety. By satisfying the robust stability criterion when designing the Q-filter

for the DOB, we can guarantee the robust stability of the overall EPB power-assist

system in the presence of multiple parametric uncertainties. Hardware limitations
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are also a big concern in the EPB system. The major issue in this experimental setup

is the motor input saturation. An anti-windup modification was made to the robust

DOB design to accommodate this hardware limitation. Experimental results for the

cases with and without motor saturation were shown to verify the effectiveness of the

power-assist designs.

The second type of intelligent power-assist algorithm is based on repetitive control

techniques. Although the robust DOB scheme can provide flexibility to the EPB

power-assist system, it does not consider the nonuniform velocity and acceleration

profiles that can cause severe discomfort during uphill riding. Due to the mechanical

design of the crankset, the human’s pedaling torque is periodic and has two local max-

imum/minimum torque positions in each pedal cycle. The variations in the human’s

pedaling torque make the human input torque profile nonuniform and the fluctuation

becomes more prominent during uphill riding. To address this issue, we considered

two different repetitive control based power-assist algorithms. Repetitive control tech-

nique is widely used in periodic disturbance rejection and/or periodic reference input

regulation. Time domain repetitive control design can be applied when we model

the human input as a combination of sinusoids with different frequencies. Since the

frequency of the human input will be time-varying, the frequencies in the model will

also change over time. An adaptive handling manner is developed in this dissertation.

Pedal-angle domain repetitive control design is applicable when we model the human

input as a periodic signal with a fixed period of N and a time-varying sampling period

Ts. This configuration calls for pedal-angle domain sampling, that is, we take a sam-

ple every 2π/N rad. This way, the system becomes time-varying in the time domain.

A robust repetitive design is chosen to compensate for the nonuniform human input

in this case. The two repetitive controllers are simulated to verify their effectiveness.

Experimental results further confirms the plausibility of the robust repetitive design

in the pedal-angle domain.

A great amount of effort was also used in reverse engineering and building the exper-

imental EPB setup. System identification was also done for the EPB’s front wheel

motor to obtain the values of specific motor parameters. Bicycle’s roll and steer an-

gle dynamics were also studied to understand some of the key observations in EPB

control. EPB’s dynamic model was provided for intelligent power-assist algorithms

design purposes.
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