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Abstract

Spatial Models of Morning Commute Consistent

with

Realistic Traffic Behavior

by

Alejandro Lago

Doctor of Philosophy in Engineering — Civil and Environmental Engineering

University of California, Berkeley

Carlos F. Daganzo, Chair

Urban planners are increasingly concerned about the sprawling suburban devel-

opment in metropolitan areas around the world, which they often blame for growing

traffic congestion and excessive highway investment needs. This dissertation seeks

to shed light on this issue by studying the relationship between morning commute

congestion and urban form.

The causes and consequences of traffic congestion have been extensively studied

in the economics and engineering literatures. Unfortunately, most conclusions have

been drawn from very idealized models, which either fail to consider adequately the

spatial nature of congestion, by neglecting the effects of physical queues and merg-

ing interactions, or overlook dynamic aspects, such as commuters’ departure time

adaptation during the rush-hour.

To better capture the spatial-dynamic nature of morning commute traffic, this

dissertation proposes a new analytical framework that explicitly incorporates spa-

tially distributed commuter origins, realistic traffic behavior and commuter timing
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decisions. The work combines the departure-time equilibrium theory (as first pro-

posed by Vickrey [1969]) with the spatial model of traffic dynamics of Newell [1993]

and the model of merge traffic interactions of Daganzo [1994, 1995a].

Focus is placed on idealized urban configurations, where traffic behavior can be

studied analytically and general insights can be gained. We first study the equilib-

rium problem in a stylized two-origin network. This enables us to understand the

fundamental role of merging bottlenecks and queue spillovers when commuters have

different origins. The analysis is then extended to model congestion behavior in long

freeway corridors and monocentric cities. We develop an exact procedure to solve

the dynamic departure-time equilibrium for single-destination freeway tree networks.

Solutions are characterized for cases with and without an alternative street network.

The results show that the location-based congestion cost is very dependent on the

spatial behavior of queues and that congestion can be reduced by altering the freeway

access priorities given to different origins. At the same time, urban sprawl is shown to

contribute not only to larger travelled distances but also to increased overall delays.

Sprawl effects, however, are not as severe as often assumed.

We finally propose some closed-form continuous approximations for the location-

based congestion cost. These formulae provide an improved and simple representation

of the dependence of congestion on the spatial distribution of population that can be

easily incorporated to study policy issues. The design of more effective measures to

reduce congestion and control urban development is an immediate example.

Carlos F. Daganzo
Dissertation Committee Chair
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Chapter 1

Introduction

THIS DISSERTATION seeks to shed light on the relationship between morning

commute congestion, commuter trip timing and urban form. Understanding how

congestion is generated is a necessary first step towards the design of effective and

equitable measures to reduce congestion.

Traffic congestion ranks among the top problems in metropolitan areas [UNDP,

1997].1 The traditional approach to mitigate congestion has been the construction or

expansion of road infrastructure, but this approach seems no longer viable given the

growing scarcity of land and public funds. As a result, the interest of urban planners

and politicians has gradually gravitated towards devising solutions that will manage

the existing demand more efficiently. These solutions range from short-term policies

aimed at controlling day-to-day traffic flows (i.e., mainly through road pricing or some

other strategy to control access to the road network) to more long-term strategies

aimed at redirecting land-use patterns. Transportation practitioners, however, seldom

1Although congestion estimates should be regarded with caution, statistics on urban travel sug-
gest that morning commute has worsened substantially on the last decades. For instance, traffic
delays per person resulting from traffic congestion increased by more than 200 percent from 1982 to
2000; see TTI [2002].
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agree on the plausible outcomes of many of these policies. Not surprisingly, few go

beyond the drawing board since politicians prefer to avoid the substantial risk that

their implementation (even if done on an experimental basis) entails. This lack of

consensus is best exemplified by the current debate on urban sprawl and the long-

term policies necessary to achieve a sustainable urbanization of our cities. Urban

areas continuously expand as people prefer the affordable suburbs to the dense, and

often more expensive, central urban locations. Some point to this unstoppable urban

sprawl as the main cause of congestion and call for measures to control it (e.g., mixed-

use land development, land-use taxation and other accessibility enhancing measures);

opponents, on the other hand, content that this smart growth approach can only

lead to denser cities with more congestion and pollution (see Cox [2000]). A better

understanding of the mechanisms that link congestion and urban form is hence needed

to guide this policy debate.

Unfortunately, although researchers have devoted substantial effort in finding ad-

equate ways to describe and analyze congestion for more than 75 years, not many

clear and reliable insights have arisen. The analysis of the mechanisms that generate

congestion is indeed a complex task. Traffic congestion is not just the result of the

total volume of trips done on a given metropolitan area, as the traditional economic

representation often assumes, but of the way the trips take place in space and time.

Commute trips are spatially distributed and, as such, congestion levels change with

location. Some locations concentrate a major number of trips and arise as natu-

ral bottlenecks in the network. Queues at these locations spread over the network

thereby affecting locations (and commuters) differently. Traffic is also a dynamic

phenomenon. Congestion levels change substantially during rush-hour and people,

particularly during the morning commute, tend to adapt the routing and scheduling
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of their departure times to respond to the varying congestion. A robust character-

ization of traffic behavior, even at the macroscopic level needed for policy analysis,

must recognize all these interactions explicitly.

This mixed spatial-dynamic nature of the traffic phenomena poses important chal-

lenges in terms of both the mathematical representation of the problem and its analy-

sis. To cope with these difficulties, research has been pulled to two different extremes,

as evidenced by the two main literatures on the field. Engineering-style analysis has

largely drawn from very complicated simulation/optimization models that require

assumptions not always fully realistic and whose results are often too particular to

the model assumed or too cumbersome to draw general insights for policy analysis.

On the other hand, economic/planning-style analysis has been largely based on very

stylized models that overlook many of the relevant margins of analysis (e.g., dynamic

issues like trip timing are neglected and/or traffic models are often assumed that treat

incorrectly the interaction of trips in space).

The research on this dissertation sits on the middle-point of these two approaches.

We propose a new framework to analyze the temporal and spatial interactions by

considering models of morning commute that jointly incorporate spatially distributed

commuter origins, realistic traffic behavior and commuter timing decisions. Crucial

questions that are answered include: (1) how does congestion develop in cities as a

function of the spatial distribution of population? (2) how do congestion costs suffered

by commuters differ by location? and (3) how do these costs may affect commute

travel decisions? Because we seek to obtain concrete qualitative results that will guide

policy more effectively, focus is placed on models that can be solved analytically and

from which general insights can be drawn. Idealized urban configurations are used

for that purpose. More importantly, we seek to provide a versatile (i.e., analytical)
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tool to assess how costs and commuter decisions may be affected by different policies.

The remainder of this chapter frames the work in this dissertation within the

existing research. In section 1.1 we review the state-of-the-art congestion analysis.

Section 1.2 motivates the scope of this research, summarizes the main contributions

and outlines the organization on the thesis.

1.1 Traffic congestion analysis: state-of-the-art

Research on traffic congestion encompasses work in four main related areas: traffic

theory, network equilibrium modelling, road pricing and investment analysis, and

urban location theory. The first two areas are directly concerned with the prediction

of traffic behavior and are predominantly the domain of transportation engineers and

scientists. The latter two areas concentrate on the economic effects of congestion,

particularly on how to achieve an efficient use of the road infrastructure using control

mechanisms and on how land use patterns and congestion are related.

Obviously a full review of a research area so broad in scope cannot be presented in

an introductory chapter. Therefore, we will only focus on the historical evolution of

congestion studies, highlighting the main approaches and discussing their limitations.

Our objective is to identify the areas where improvement is necessary.

1.1.1 Traffic theory

Traffic models are fundamental in any analysis of congestion. They represent the

physics governing the interaction of vehicles in a traffic stream and provide formula-

tions that allow estimating travel conditions as a function of known vehicle volumes

and road characteristics. Models can be coarsely divided in two main groups: micro-
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scopic models (i.e., those that study individual vehicle interactions) and macroscopic

models (i.e., those that represent traffic as fluid and study only the behavior of some

aggregated variables). We limit our attention to the latter models since those are the

relevant ones for policy and economic analysis.

A significant portion of the literature focuses on steady-state (or time invariant)

representations of traffic. Stationary traffic conditions are represented by a funda-

mental diagram, which describes the possible states of a homogenous traffic stream in

terms of three main parameters: density k (vehicles per unit length), speed v (distance

per unit time) and flow q (vehicles per unit time). The fundamental diagram varies

with the road characteristics, traffic composition and other environmental factors, but

it has a basic shape represented in Figure 1.1a (see May [1990] for a literature review).

As shown in the upper part of the figure, speed decreases monotonically with density

(i.e., the number of vehicles in the road), with the decrease being steeper with larger

densities when queues appear. This behavior is not surprising since commuters tend

to keep smaller spacing between vehicles as speed decreases. Traffic flow is determined

by speed and density through the identity q = kv; therefore, it first increases with

density up to a maximum flow (called the capacity qmax) and then decreases until

the density reaches a maximum value (called the jam density kj) when both flow and

speed are zero; see the lower part of Figure 1.1a. The increasing branch of the q − k

diagram is normally called the free-flow or uncongested regime, since the stationary

states in this branch arise when no restrictions exist downstream of the road. The

decreasing branch is called the congested or queued regime since its states describe

the traffic stream inside queues caused by downstream restrictions. The decreasing

branch is sometimes termed the hypercongestion regime in the economics literature

and the term volume is also often used instead of flow.
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For network design, planning and economic analysis, the usual goal is predicting

travel times. Many studies customarily use, instead of the fundamental diagram,

some form of a link-based volume vs. trip time curve for that purpose. Volume-

trip time curves give the average vehicle trip time as an increasing function of the

volume/capacity ratio under stationary conditions; see Figure 1.1b. Mathematically,

these functions can be derived from the uncongested branch of the fundamental di-

agram since the trip time for a link of length ` is `/v and the volume capacity ratio

is q/qmax. These curves are often called link performance functions or volume-delay

curves. Because of their convenience, link performance functions have become a stan-

dard tool of the network literature (see section 1.1.2), and many ad-hoc forms (not

necessary consistent with the traffic fundamental diagram) have been proposed and

tested empirically; see Branston [1976].2 There are, however, some important limi-

tations that are not always clearly recognized in this representation of traffic. First,

link performance functions represent steady-state behavior that cannot be assumed

to hold during a full peak period. Hence, link performance functions estimated from

time-dependent data may internalize not only the technological aspects of the road

segments where they are estimated, but also features of its demand. Second, from a

spatial point of view, these functions ignore spatial interactions between connected

links (e.g., interactions at merges or diverges). Hence, their use on most network

settings is unrealistic. Finally, volume-delays function can only represent adequately

situations of mild congestion. When queues fill a link, experience and experiments

show that longer travel times arise when flow declines, a result contrary to the link

function prediction. Obviously, this limitation reduce the applicability of such func-

tions since networks without spillovers are rare (i.e., the situations of interest are

2By far the most widely used link performance functions are the BPR curves [Bureau of Public
Roads, 1964].
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normally those where large delays are experienced by commuters). To overcome

these limitations, traffic models must explicitly consider the traffic dynamics.

qmax

qmaxflow
( )q

flow
( )q

density
( )k

speed
( )v travel time

(tt)

v

kj

(a) Fundamental Diagram (b) Travel time-volume function

Figure 1.1. Steady-state traffic model.

Dynamic models allow for traffic conditions (e.g., flow, density and speed) to vary

with location and time. The simplest and most widely accepted dynamic model is

the kinematic wave (hereafter KW) model, first proposed by Lighthill and Whitman

[1955] and Richards [1956]. This model assumes that traffic can be treated at the

macroscopic level like a fluid and that the stationary fundamental flow-density dia-

gram holds also under non-stationary conditions at every location and time. Tran-

sitions between different stationary states (e.g., between a free-flow and a queued

situation) are represented by waves that propagate along the road segment. The

KW theory – as originally presented by Lighthill and Whitman, and Richards – re-

quires a burdensome mathematical apparatus to obtain solutions. This inconvenience

has limited its use for practical applications, and several alternative approaches have

been proposed. The most common simplification consists in assuming that the static

volume-delay functions also apply to the dynamic case; i.e., that the travel time (or
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for that matter, the speed) of a vehicle entering a road is only a function of the road

inflow at the time of entry. This is equivalent to assuming that congestion is a local

phenomena and that no propagation of traffic conditions occurs on time or space

(from now on, we call this the local congestion assumption). This simplification leads

to clearly inconsistent behavior – for example, the classical Smeed’s paradox [Smeed,

1967] in which vehicles departing late in a low-flow cohort catch up a high-flow cohort

that departed earlier, overtake them and arrive to the destination before them.3 To

alleviate this problem, link performance functions have been amended to allow the

travel time of an entering vehicle to depend on the link outflows and/or the occu-

pancies (see Ran and Boyce [1996], chapter 12). However, Daganzo [1995c] shows

the inconsistencies persist in any model where travel time depends in any way on the

inflows or outflows. A model that explicitly accounts for flow propagation and avoids

Smeed’s paradox is proposed in Mahmassani and Herman [1984]. In this model, den-

sity and speed change simultaneously and uniformly along the link with every change

in the link inflow. Unfortunately, such assumption implies rather unrealistically that

traffic conditions propagate in the forward direction instantly (i.e, that vehicle speed

continues to be affected by following traffic) and this has undesirable effects too; see

Newell [1988].

A more consistent treatment of traffic dynamics is obtained by representing each

link as a bottleneck with a fixed capacity and a dimensionless (or point) queue form-

ing upstream when link inflow exceeds capacity; see, for instance, Kuwahara and

Newell [1987] and Kuwahara and Akamatsu [1997]. With this assumption, link travel

time depends exclusively on link occupancy at the time of entry. Although these

models do not suffer from Smeed’s paradox, they still yield wrong predictions when

3Newell [1988] showed that the paradox never arises if the speed of vehicles is affected by congested
conditions ahead of them, as in the KW model.
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queues spillover across links; see Daganzo and Lin [1994]. Thus, even queuing models

fail to represent adequately the macroscopic traffic behavior under heavily congested

situations.

Fortunately, Newell [1993] recently showed that the KW solution procedures can

be simplified dramatically if (i) traffic is represented in terms of cumulative vehicle

counts (instead of flows) and, (ii) a triangular fundamental q-k diagram is used. Un-

der these assumptions, an alternative treatment based on standard queuing theory

methods is possible, opening the door for the analytical treatment of some impor-

tant problems. Daganzo [1994, 1995a] extend Newell’s ideas by including consistent

models of merge and diverge interaction and an efficient approximation procedure

for very large networks (the so-called cell transmission model). Recent empirical evi-

dence [Windover, 1998] has confirmed that the KW model captures the macroscopic

behavior of queues quite realistically and provides estimates of overall vehicle delays

in agreement with empirical observations. The KW model is known to have some lim-

itations, but higher-order modifications to the KW model or alternative microscopic

models based on car following theory do not necessarily present a better grounded

representation of traffic [Daganzo, 1997] and have failed to provide better predictions

of travel times [Brockfeld et al., 2003].

Newell KW procedure will be adopted throughout this dissertation. A detailed

explanation of the theory is given in chapters 2 and 3.

1.1.2 Network models and equilibrium

Network models are used to simulate traffic behavior when different origins and

destinations are linked through a series of routes. These models must recognize

that vehicle flows on each route are not known a priori, since they are the result
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of commuters’ trip decisions. Commuters respond to congestion by choosing among

different modes, routes and departure times. Since the focus of this thesis in on road-

traffic congestion, we shall restrict this review to models that incorporate route and

departure time choice.

The conceptual framework to analyze route choice under steady-state conditions

was introduced by Wardrop [1952]. According to Wardrop first principle, users choose

routes so as to minimize their individual trip cost. This behavior leads to an equi-

librium situation in which the trip costs between each origin destination (OD) pair

are equal in all used routes and larger on the routes not used; i.e., commuters do

not have an incentive to change routes. The resulting pattern is normally called the

user equilibrium. The user equilibrium differs from system optimum patterns where

the minimum total travel time in the system is achieved as if an overseeing authority

could direct all commuters. Wardrop’s principle is an oversimplification of reality be-

cause it assumes perfect information and utility-maximizing commuters that behave

deterministically,4 but it is reasonable as a first approximation for rough planning

analysis. Beckmann et al. [1956] proposed a mathematical optimization framework

to solve Wardrop’s network equilibrium problem under static traffic conditions using

link performance functions. Extensions of Wardrop’s principle to stochastic route

choice have been provided in Daganzo and Sheffi [1977]. Extensions that consider

multiple vehicle classes can be found in Dafermos [1980] and Daganzo [1983].5

Since the static models are not very satisfactory to represent situations of high

congestion as mentioned in §1.1.1, dynamic traffic equilibrium has been an active area

of research for the last two decades. Dynamic network equilibrium is both conceptu-

ally and computationally more difficult. A first conceptual complication stems from

4Wardrop principle is a special case of Nash equilibrium.
5For a more through review of static network models see Patriksson [1994].
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the fact that different definitions of equilibrium are possible under dynamic condi-

tions, depending on the information available to the users. The natural generalization

of Wardrop principle assumes that the routes chosen on each OD pair at each time

of departure are those that minimize the experienced trip cost (which is now time-

dependent). This type of equilibrium, normally termed ideal or predictive dynamic

user equilibrium (PDUE ), assumes that the dynamic evolution of traffic conditions

is consistent day-after-day and therefore, that users can be aware (i.e., predict) of

future traffic conditions at links visited downstream when selecting optimal routes

at their origin. Smith [1993], Wie et al. [1995], Ran et al. [1996], Ran and Boyce

[1996], Akamatsu and Kuwahara [1999], Tong and Wong [2000], Akamatsu [2001]

and Huang and Lam [2002] provide different network models under this assumption.

Since equilibrium route choice must be based on future traffic conditions this type

of equilibrium problems are notoriously difficult to solve. Equilibrium is generally

modelled through a set of discrete variational inequalities [Wie et al., 1995] or an

equivalent non-linear optimization problem [Akamatsu, 2001; Ran et al., 1996]. In all

cases, laborious numerical search procedures (e.g., Frank-Wolf -like decomposition)

are required to solve the problem. Furthermore, route enumeration is normally un-

avoidable (when multiple destinations exist) since it is necessary to keep track of

flow propagation along specific routes. Therefore, substantial computational effort is

required even for medium size problems. Alternatively, simulation-based approaches

can be used [Huang and Lam, 2002; Smith, 1993; Tong and Wong, 2000] but still

some sort of heuristic is needed to update volumes in each path until equilibrium

conditions are approximately met.

An alternative representation of equilibrium, normally termed instantaneous or

reactive dynamic user equilibrium (RDUE ), assumes that commuters choose routes
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at each time based on the current travel times prevailing on the network. Works in

this class include Friesz et al. [1989] (extended in Wie et al. [1990]), Papageorgiou

[1990], Janson [1991], Ran et al. [1993], Lam and Huang [1995] and Kuwahara and

Akamatsu [1997]. This type of equilibrium is easier to solve since no prediction of

future travel conditions is needed. For example, if one ignores the multi-commodity

contraints, as done in Wie et al. [1990] or Papageorgiou [1990], the problem can then

be formulated as a standard optimal control problem. A better approach solves a

shortest path problem in each time interval [Kuwahara and Akamatsu, 1997]. Fur-

thermore, route enumeration is not required. The assumption about instantaneous

travel times, however, is not very realistic when commuters trip times are comparable

in duration with the length of the rush.

In a dynamic traffic setting, commuters also reschedule their departure times based

on congestion levels. Anecdotal evidence suggests that this scheduling adaptation may

have effects as important as route choice;6 notwithstanding, dynamic equilibrium

models that explicitly consider commuter departure time choice have received less

attention, perhaps because departure time equilibrium is more difficult to model.

A framework to analyze departure-time choice was first proposed by Vickrey [1969].

Vickrey assumed that commuters have a preferred time of arrival to their destinations

and schedule their departure (or arrival) times to avoid periods of high congestion

at the expense of suffering a scheduled delay for arriving earlier or later than desired

to their destination. Small [1982] provides empirical verification of this behavior.

Vickrey analyzed equilibrium in a very simplified time-dependent scenario with a

single bottleneck, a single destination and a fixed number of commuters (more details

6The omission of timing changes can lead to incorrect predictions about the benefits of policy
measures such as congestion pricing or capacity expansions. Small [1992] discusses the example of
BART opening in San Francisco.
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are given in chapter 2). Vickrey’s framework has been incorporated into network

models with route choice in Kuwahara and Newell [1987], Bernstein et al. [1993], Wie

et al. [1995], Ran et al. [1996] and Huang and Lam [2002]. These models inherit all

the difficulties of route-choice PDUE models and need to be solved with heuristic

and/or simulation-based techniques.7

A common limitation to all the equilibrium models above, however, is that they

are based on traffic models that are not fully consistent. The models in Friesz et

al. [1989]; Janson [1991]; Papageorgiou [1990]; Ran et al. [1993, 1996]; Tong and

Wong [2000]; Wie et al. [1990] adopt some form of link performance function (link

travel time is expressed as a function of link inflow rate, outflow rate and/or vehicle

accumulation, depending on the model). Akamatsu [2001]; Bernstein et al. [1993];

Huang and Lam [2002]; Kuwahara and Akamatsu [1997]; Kuwahara and Newell [1987];

Smith [1993] adopt a network of point-queues bottlenecks. As mentioned in §1.1.1,

none of these representations is a sound approximation for the spatial propagation

of congestion. Unfortunately, no model of equilibrium has convincingly incorporated

traffic behavior based on the KW model yet. Recent attempts can be found in Lo

[1999], which proposes a formulation for the ideal route-choice user equilibrium based

on Daganzo’s cell transmission model (no solution algorithm is proposed, though),

and Kuwahara and Akamatsu [2001], which proposes an ad-hoc algorithm to solve

the reactive equilibrium. However, no model yet combines commuter departure time

choice with the KW model.

7Note that departure time choice is only consistent with predictive equilibrium since it is based
on the assumption that arrivals times at the destination can be predicted.
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1.1.3 Economic analysis: road pricing and investment

The ultimate objective of traffic prediction is controling the overall system so as

to achieve an efficient use of the road infrastructure. This is specially important in

the case of road networks since users tend to make decisions taking in account their

individual trip costs, but disregarding the cost (i.e., delays) imposed onto other road

users. This “selfish” behavior usually leads to more congestion than what would

be optimal from a social point if everybody cooperated (what we called the system

optimum).

Pigou [1920] first brought up this mismatch and fathered the concept of a con-

gestion toll as a way improve road usage. Since then, economists have long studied

the possibilities of road pricing. Economic modelling, though, has been largely based

on the steady-state representation of traffic, as typified by the early works of Wal-

ters [1961] and Mohring and Harwitz [1962]. The basic paradigm is schematized in

Figure 1.2. It uses the link performance functions of Figure 1.1 reinterpreted as an

average travel cost vs. traffic demand (or number of trips made during the rush hour)

curve, AV C(q) in the figure. In agreement with the assumption of negative conges-

tion externalities marginal cost is assumed to increase with demand as indicated by

MC(q).8 At the same time, since traffic demand must logically depend on travel

cost, a down-sloping demand curve D(q) can be defined reflecting both the individ-

ual average and marginal value of using the road. The equilibrium traffic volume,

qUE is found at the crossing of the demand curve and the average cost curve. This

equilibrium volume is higher than the social optimal usage, qSO, found at the inter-

section of the marginal cost curve and the demand curve. To reestablish the social

8Cost are expressed as a function of traffic volume assuming an homogeneous monetary cost of
time and considering vehicle operation costs independent of traffic level. As initially presented by
Walters [1961], the cost curve also included a backward bending portion representing the congested
branch of the fundamental diagram but, it is clear that for steady-state analysis this is not adequate.



1.1 Traffic congestion analysis: state-of-the-art 15

optimum usage level, a toll equal to the difference in average and marginal cost at

qSO can be imposed. The optimal investment can also be analyzed since the travel

cost curve depends on the road capacity level and the cost of providing capacity (i.e.,

the construction cost) can be reasonably estimated; see Mohring and Harwitz [1962]

and Keeler and Small [1977]. A basic result is that congestion tolls will cover con-

struction and maintenance costs over the long run in the presence of constant returns

in road construction and maintenance. This single road pricing/investment model

has been further enriched by considering users with different values of times, possible

indivisibleness on the provision of capacity, etc.; see Hau [1998] for a review.

This basic static model can be also extended to network problems considering

Wardrop’s user equilibrium and system optimum principles [Wardrop, 1952]. Under

the assumption that congestion on each link is a function of its volume, the system

optimum can be achieved by imposing on each link an optimal toll of the same form

as in the single road case [Beckmann et al., 1956]. Network road pricing modelling

has been further enriched in different ways. For instance, models have been proposed

to include different types of users (i.e., trucks, cars), to analyze second-best situations

where only a reduced set of roads is priced, and to analyze situations where other

modes of transport are also available. Reviews of the state-of-the-art on network road

pricing models can be found in Lindsey and Verhoef [2000] and Arnott [2001]. The

reliance on the classical steady-state model, however, has tilted the economic analysis

towards considering trip quantity as the only factor of analysis, focusing excessively

on pricing as the only solution (Arnott [2001] offers a good critique).

Dynamic settings have received less attention. The seminal work is Vickrey [1969]

(already metioned above) where pricing and investment policies are evaluated un-

der a time-varying congestion model represented by a single bottleneck queue. A
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Figure 1.2. Congestion pricing model.

similar dynamic analysis is proposed in Henderson [1977] – later revisited and cor-

rected in Chu [1992] – where a model of local congestion is used instead. Despite

its highly idealized nature, Vickrey’s bottleneck model unveiled some interesting in-

sights particular to the dynamic case. For instance, unlike in the static case where

congestion tolls always penalize road users, a time-dependent toll payment can leave

all the commuters as well-off as before while turning wasted time in the queue into

toll revenue. Vickrey’s model has been extended to different scenarios (e.g., several

parallel bottlenecks between a single OD pair, alternative modes), different demand

assumptions (e.g., elastic mode-dependent demand, heterogeneous commuters) and

different time-dependent toll policies (e.g., continuous toll, step toll); see Arnott et

al. [1998] for a comprehensive review. More recent innovations include the analysis of

mixed rationing/pricing schemes that prove to be Pareto improving for all road users

[Daganzo and Garcia, 2000]. All these works are a substantial advance with respect

to the traditional stationary analysis but their results are somehow limited because

they do not explicitly consider spatial differences – congestion affects all commuters

in a equal manner independently of their origins and destinations.
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Kuwahara [1990] and Arnott et al. [1993a] extend Vickrey’s analysis to consider

two separate origins and a single destination, but the predictions in these works

are based on a traffic model with point queues, which still limits the validity of

the results. Wie and Tobin [1998] present a network traffic equilibrium model with

dynamic pricing on each link, but again their model of traffic behavior does not

consider properly queue propagation. Work that combines dynamic pricing with

traffic models that account properly for queue propagation in space and time appears

not to be done.

1.1.4 Urban location theory

A further step on the study of congestion recognizes the intimate link between

land-use patterns and traffic congestion. Residential location choices generate a need

for mobility which produces congestion and congestion, in turn, affects residential

locations. Because individual location decisions affect the cost of living at other

locations through increased congestion, an inefficient equilibrium distribution of pop-

ulation (e.g., with excessive sprawl) may arise if the congestion externality is not

properly internalized through adequate pricing or land-use regulations.

The first models of urban location which explicitly incorporated congestion were

proposed in Mills and de Ferranti [1971] and Solow [1973]. These work study the

efficient provision of transportation infrastructure when congestion costs are properly

internalized. The Mills/Solow framework abstracts from cumbersome network formu-

lations and assumes a continuous mono-centric city where a distributed population

travels to the CBD using a continuous network of radial roads. To represent traffic

behavior, a model of local congestion is adopted where travel speed is only a function

of the local traffic volume at each location (i.e., the number of vehicles crossing the
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location) and independent of the conditions at any other location. Analytical and

simulation results show that excessive sprawl and excessive land devoted to trans-

portation happen if congestion is not priced adequately. A variety of works extend

the Mills/Solow analysis to include different economic aspects. For example, Oron

et al. [1973], Henderson [1975] and Arnott and MacKinnon [1978] primarily focus

on inefficiencies in land use for housing under different market structures; Sullivan

[1983a,b] explicitly consider labor markets; Wheaton [1998] compares land regulation

and congestion pricing; Akai et al. [1998] analyzes equilibrium when transportation

in provided by a private agent. Invariably, all adopt the local congestion model of

traffic.

The results in all these works must be regarded with care for two main reasons,

however. First, the local congestion model is highly unrealistic. As a result, the rela-

tionship between population sprawl and congestion are quite artificial. For example,

it is easy to show that the level of congestion is dependent on the distance scale; i.e.,

if all the distances are doubled, the congestion cost are doubled. Therefore, results

about optimal city size are irrelevant. Second, under the steady-state representation,

the results are also clearly dependent on the order at which commuters are assumed to

pass through each location, since this determines local traffic volumes and hence the

congestion levels [Ross and Yinger, 2000]. For instance, the traditional Mills/Solow

approach assumes that commuters join upstream users as they pass through their

access location so that all commuters travel together and arrive to the common desti-

nation at the same time. On the other hand, Yinger [1993] assumes that commuters

depart at the same time so that people at different location travel in different groups,

or cohorts, and arrive at the destination ordered by distance to the destination, lead-

ing to an equilibrium location pattern different from those of Mills and Solow. To
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make timing decisions endogenous, Ross and Yinger [2000] incorporates Henderson’s

model of dynamic equilibrium into the urban location problem, but it is concluded

that no reasonable timing equilibrium can arise. This is yet another indication that

local congestion is inadequate for the analysis.

In summary, finding an adequate way of incorporating a sensible model of flow

propagation and commuter trip timing into the equilibrium model of urban location

continues to be a challenge.

1.2 Dissertation overview

1.2.1 Scope

The literature review in the previous section shows that substantial effort has

been devoted to the study of congestion in various fields. Although progress has been

made in many areas - specially in the modelling of traffic dynamics - there are still

substantial needs for improvement. The following four needs will be addressed in this

thesis:

• Models of morning commute need to better incorporate congestion

propagation. The available models of traffic equilibrium adopt unrealistic as-

sumptions about traffic behavior. Either they ignore the spatial effect of queues

or they assume that commuters are not spatially differentiated. Incorporating

a realistic model into the network equilibrium analysis that can capture ade-

quately the effect of physical queues will help addressing the aforementioned

limitations.

• Models of morning commute need to incorporate commuters trip tim-
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ing decisions. Insights on the effects of departure time choice on traffic equi-

librium patterns are very limited. This is unfortunate since trip rescheduling

is a likely commuter reaction to many policy measures. Since departure time

decisions differ by location, it is necessary to extend the analysis of network

problems to include departure time choice.

• Models of morning commute need to focus on stylized scenarios. Dy-

namic network equilibrium modelling has focused excessively on the develop-

ment of algorithms rather than on the study of solutions; i.e., in the qualitative

behavior of congested systems as a whole. The ‘algorithmic’ approach turns

out to be rather inadequate to guide policy. Solutions can only be obtained

through cumbersome computer-based simulation due to the complexity (and

details) of network problems. From these solutions which are only particular

to the scenario simulated, it is very difficult (if not impossible) to draw general

qualitative insights about the behavior of congestion, which would be necessary

to guide taxation and policy. Simplified scenarios that allow for the expression

of the system behavior as a function of a few significant parameters and lead

to analytical solutions may shed more light about the fundamental behavior of

congestion.

• Economic theory of urban location needs to revisited. As shown in

§1.1.3 and §1.1.4, the economic models of congestion have been largely based

on steady-state and local-congestion assumptions. As a result, these models

fail to adequately represent the true spatial behavior of congestion. Consistent

relationships between the cost of congestion and the distribution of population

need to be developed from realistic traffic models, such as the KW model, so

that they can be further used for economic analysis.
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The objective of our research is to relax as much as possible these four limitations.

We develop a general model of the morning commute, which explicitly considers both

realistic traffic behavior and commuters’ departure time decisions in response to con-

gestion. In addition, the dependence of departure time decisions and the distribution

of population is explored. We seek to use the model to derive qualitative insights

about the behavior of traffic in urban areas that will be valid in general. Therefore,

the analysis will focus on selected geometries which include symmetries that allow

for analytical solutions. Mono-centric cities, where commute is bound exclusively to

a central business district (CBD) will be the main focus.

1.2.2 Main contributions

The main contributions of this research include:

• The development of the first model of traffic equilibrium which combines de-

parture time choice and a realistic model of traffic flow. This model combines

Vickrey’s model of departure time choice with Newell’s model of the KW theory.

• The development of an analytical procedure to solve the departure-time equilib-

rium for: (a) simple network with two-origins, (b) many-to-one tree networks.

• The theoretical analysis of the effects of ramp metering and capacity expansion

when departure time is an issue. This analysis reveals unexpected situations

where ramp-metering can be beneficial, and others where the provision of more

freeway capacity or storage can be counterproductive.

• The study of the relationship between congestion cost and population distri-

bution for mono-centric cities. This study is based in both discrete (network-

based) and continuous models.
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• The development of closed-form expressions that link congestion costs to loca-

tion and spatial population distribution. These formulae are structural rela-

tionships since they make endogenous commuters timing decisions and traffic

dynamics; hence, they can be generally applied to study other more general

urban problems.

1.2.3 Organization

The thesis is organized in a series of self-contained chapters. Chapter 2 presents

a first model that explicitly considers the most important determinants of congestion

behavior during the morning commute: different commuter origins, merge interac-

tions and queue spillovers. We examine the simplest possible network (2 origins and

one destination) exhibiting the three important features. This model can be used as

a building block for the analysis of more complex, single-destination networks with

departure-time choice. Chapter 3 extends the analysis to the case of a long homo-

geneous freeway. This model is relevant since a long homogeneous freeway is the

logical unit of analysis for mono-centric cities with ring-radial street networks. We

develop an exact analytical procedure that can be used to model morning commute

traffic evolution in long corridors. The analysis of congestion in monocentric cities is

presented in chapter 4. Both a discrete and continuous formulation are investigated.

General closed-form solutions are proposed that allow the quantification of commut-

ing costs as a function of location and population distribution. The focus of chapters

2, 3 and 4 is on concepts, qualitative insights and policy analysis, rather than in

methodologies. For that purpose, we adopt some simplifying assumptions that allow

direct analytical treatment; e.g., that the networks are homogenous and commuters

have the same desired arrival time to the destination. Chapter 5 - which can be
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considered a technical addendum to the previous chapters - extends the analysis to

more general instances where the network is nonhomogeneous and commuters have

different desired arrival times. This chapter provides additional insight and discusses

the difficulties one encounters in the design of solution algorithms for the morning

commute problem over general networks. Finally, chapter 6 presents some conclusions

and discusses possible extensions of the work in this thesis.
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Chapter 2

A Simple Network Model

Vickrey [1969] describes the first traffic model where commuters can adapt their

departure time to avoid periods of high congestion. The model is very simple –

a single bottleneck with a fixed number of commuters – but also very revealing of

possible policy actions for congestion reduction. Because of its appeal and simplicity,

Vickrey’s model has been extensively analyzed under different demand assumptions

[Arnott et al., 1993b; Daganzo, 1985; Hendrickson and Kocur, 1981; Newell, 1987;

Smith, 1984] and has also been adopted to analyze various toll policies [Arnott et al.,

1990; Daganzo and Garcia, 2000; Laih, 1994]. The model, however, only applies to

cases where congestion is concentrated at a single location, affecting all commuters

equally. These conditions are violated when the access network is itself congested.

For example, freeway queues caused by bottlenecks often spill over long distances

imposing different penalties on its access points. Obviously, network effects should

be investigated.

This chapter introduces a network model that integrates Vickrey’s theory with a

realistic traffic flow model [Newell, 1993] and a reasonable merging mechanism [Da-

ganzo, 1995a]. Our ultimate goal is the qualitative understanding of the relationship
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Figure 2.1. Homogeneous 2-origin network.

among congestion, departure time choice and the spatial distribution of population

for the morning commute, recognizing the networks are congested and have different

origins. We consider the simplest network with all these relevant characteristics. It

consists of two origins, one destination and two links merging into a third, as shown

in Figure 2.1.

The chapter is structured as follows. Section 2.1 introduces relevant background

and discusses the single bottleneck (Vickrey) model. Section 2.2 presents the equi-

librium and the traffic model for the two origin network. Section 2.3 presents the

results. Section 2.4 compares the solutions with those obtained under point-queue

assumptions. Finally, section 2.5 discusses policy implications and relates them to

earlier work.

2.1 The single bottleneck model

It is commonly assumed that traffic conditions during the morning commute are

similar day-after-day. Commuters, aware of these, choose their departure time to

minimize their individual trip cost, which consist of a trip-time component and a
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schedule penalty. The latter is associated with the actual arrival time at the destina-

tion relative to a preferred arrival time. In the case where the only traffic restriction is

a single bottleneck of capacity qD with no delay elsewhere, it is customary to express

commuter decisions as a function of the preferred passage time through the bottleneck

or deadline. If wt is the deadline for the commuter that passes the bottleneck at time

t and we express costs in units of trip time, then the trip cost for that commuter is

c = τ + p(t − wt), (2.1)

where τ is the trip time and p(·) is a schedule penalty function such that p(·) ≥ 0 and

p(0) = 0. It will be assumed here that p(·) is piecewise linear and V-shaped, where e

and L are the positive conversion rates for earliness and lateness into trip time; i.e.,

p(s) =















−es if s < 0

Ls if s ≥ 0.

(2.2)

Normally, earliness is preferable to both queuing and lateness, i.e., e < L, e < 1

[Small, 1982]. The objective is then determining an equilibrium schedule of departures

from a single origin such that no commuter/vehicle would have an incentive to change

its departure time given the queues that resulted from the equilibrium. The model

also applies to multiple origins if all access routes to the bottleneck are uncongested

and pass through a common point, O; i.e., point O can be modelled as the single

origin.

The solution can be represented by means of continuous cumulative plots, as-

suming that the number of commuters is so large that vehicles can be treated as a

continuous variable; see Figure 2.2. W (t) expresses the cumulative number of com-

muters wishing to pass the bottleneck by time t, and it will be called the deadline
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curve. It will be assumed that W (t) is S-shaped, with slope greater than the capacity

qD during some interval so that a queue must necessarily develop. W (t) is a step

function if all the commuters have the same deadline, as shown in Figure 2.2a. Then,

the objective is finding an equilibrium curve of cumulative arrivals at the common

point O, AO(t) – or equivalently the curve of cumulative virtual arrivals at the bot-

tleneck, A(t) = AO(t − tOD) where tOD is the fixed uncongested trip time from O to

the bottleneck location, D.1 According to standard queuing analysis, the curve of

cumulative departures from the bottleneck, D(t), is the highest curve with slope less

than or equal to qD such that D(t) ≤ A(t).2 Under a FIFO (first-in-first-out) queue,

the delay τ for any given vehicle number is the horizontal distance between curves A

and D. Likewise, the scheduled delay s is given by the horizontal distance between

D and W if vehicles depart from the bottleneck in the order of their deadlines. It

is known that if the penalty function p(·) is convex and common to all commuters,

the solution exists [Smith, 1984] and is unique [Daganzo, 1985]. Furthermore, in

the equilibrium solution, vehicles depart from the bottleneck in the order of their

deadlines. An example of such equilibrium is represented in Figure 2.2 both for the

case when commuters have a common deadline (Figure 2.2a) and when they do not

(Figure 2.2b). Both solutions exhibit a unique queuing episode with two clearly dif-

ferentiated phases. In the first phase, commuters depart from the bottleneck earlier

than desired and queuing delay increases with vehicle number at a rate that precisely

compensates for the reduction in earliness. Therefore, the slope of A(t) is given by

qD/(1 − e). In the second phase, commuters depart from the bottleneck later than

1A vehicle virtual arrival time to D is the time at which the vehicle would have passed D if it
had travel unhindered from O to D.

2In queuing lingo, the terms arrivals and departures refer to the bottleneck. Therefore, they have
the reverse meaning assigned to them in the economics literature where arrivals to the bottleneck

correspond to the departures from the origin and vice-versa.
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desired and queuing time declines with vehicle number to compensate for increasing

lateness penalties. As a result, the slope of A(t) is also given and equal to qD/(1+L).

Note that the vehicle arriving on time experiences the highest delay as given by the

length of segment AO, |AO|, in Figure 2.2. In the single deadline case of Figure 2.2a,

|AO| is the common cost suffered by all commuters.

If ts and tf are the times when the queue starts and vanishes, equilibrium requires

|AO| = Ltf = −ets. Furthermore, if we use N to denote the number of commuters

who queue, then N = qD(tf−ts) since all these commuters depart when the bottleneck

is at capacity. In the single deadline case, N is known (i.e., all the commuters suffer

delay), therefore these three equations define the three remaining unknowns: |AO|,

ts and tf . Since the slopes of A(t) above and below AO are given, it follows that

there is only one possible geometry for the equilibrium curves. Figure 2.2a shows

that the number of commuters departing early at equilibrium is NL/(e + L) and

the number departing late is Ne/(e + L). One can also see that the common cost

is |AO| = NeL/(e + L). Finally note that the equilibrium delay for a commuter

departing at time t, τ(t), is

τ(t) =















|AO| + et = e(t − ts) if t < 0

|AO| − Lt = e(tf − t) if t ≥ 0

, (2.3)

which precisely balances the schedule penalty as required.

Consideration shows that a similar geometric pattern is an equilibrium for any

S-shaped deadline curve; see Figure 2.2b. The main difference is that in this case not

all the commuters queue; therefore, one also needs to find N .

Most of the existing literature deals with fixed-capacity bottlenecks, but the anal-

ysis can be extended to variable capacities, qD(t). Then, ts, tf and A(t) can be
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Figure 2.2. Single bottleneck equilibrium solution (fixed capacity).

determined as before since (2.3) continues to hold. This means that in any equilib-

rium, such as that shown in Figure 2.3a, the horizontal separation between A and D

at # = D(t) continues to be given by (2.3). Therefore, if the equilibrium diagram is

rescaled vertically by means of the transformation # = D−1(t) which makes the de-

parture rate equal to 1 at all times, i.e., D−1(D(t)) = t , then we recover Figure 2.2a.

This is shown in Figure 2.3b. The re-scaled arrival curve, T (t) = D−1(A(t)), now

returns the departure time td (on the vertical axis) as a function of the arrival time

ta (on the horizontal axis). We shall refer to T (t) as the arrival-departure schedule

curve (or A/D curve) to differentiate it from the actual equilibrium arrival curve,

A(t). The invariance of the rescaled diagram with respect to qD(t) will become useful

later.

It should be remembered that the single bottleneck model does not apply if delays

experienced by vehicles entering the network at different locations are different, as is

normally the case for freeway networks. Unfortunately, no existing model addresses
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Figure 2.3. Single bottleneck equilibrium solution (time-dependent capacity).

the three key effects required to model a simple freeway: multiple origins, merging

interactions and queue spillovers. The next section describes a first step in this

direction.

2.2 Two-origin departure-time equilibrium and re-

alistic traffic behavior

2.2.1 Problem formulation

We shall consider here the simplest network exhibiting all three effects; see Fig-

ure 2.1. On this network, N (A) and N (B) commuters travel everyday from origins A

and B to a common destination D. The routes from these origins merge at an inter-

mediate location, M , and share a final link MD of length `. A bottleneck of (possibly
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time-dependent) capacity qD(t) may exist just upstream of D and queues may form

on the common link and spill over the merge.3 For simplicity, we assume that: (1)

the network is homogeneous (i.e. its three links have the same characteristics), (2)

all commuters have the same deadline and penalty function (i.e., commuters are only

distinguishable by their origin). Generalizations for networks with non-homogeneous

links and different deadlines are discussed in chapter 5.4

We express our solution in terms of origin-specific cumulative inflows (or cumula-

tive departures from each origin) and cumulative outflows from point D (or arrivals

to the destination). We can ignore free-flow trip times in our analysis, since those are

fixed for each origin and independent of the time of arrival. In this case, the solution

is defined by the curves {A(r)(t), r = A,B}, which represent the virtual cumulative

arrivals at point D for each origin – instead of the actual cumulative departure curves

from origins A and B – and {D
(r)
D (t), r = A,B}, the cumulative departures from D.

(From now on, superscripts identify the origin to which the variable or function refers,

while subscripts refer to the physical location over which the variable or function is

defined. Furthermore, a(r) and d
(r)
D represent the time-derivatives or flows respec-

tively; e.g, d
(r)
D (t) is the flow at D of commuters from origin r.) Delays – instead of

actual travel times - are given by the horizontal separation between A(r) and D
(r)
D ;

i.e., τ (r) = t − A(r)−1
(D

(r)
D (t)). The actual departure curves from the origins can be

obtained by shifting the virtual curves back in time by the origin-specific free-flow trip

times; i.e., A
(r)
r (t) = A(r)(t + `rD/vf ) where `rD is the total distance from origin r to

point D and vf the free-flow speed. Actual trip times are given by τ
(r)
rD = τ (r)+`rD/vf .

A possible assignment pattern (not necessarily in equilibrium) is presented in

3The flow restriction could be due to a variable inflow from another ramp (not depicted in
Figure 2.1) very close to D.

4A summary of the notation used in this chapter and throughout the dissertation can be found
in appendix B.
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Figure 2.4. The two origin-specific diagrams of Figure 2.4a can be conveniently su-

perimposed, by adding vehicle numbers, to analyze the traffic behavior on link MD

as shown in Figure 2.4b. The curves DM and DD represent the actual departure

curves from M and D, respectively. The proportion of departures by origin at time

t is defined as α
(r)
D (i.e., d

(r)
D (t) = α

(r)
D (t)dD(t)). Under FIFO conditions, the delays

experienced in link MD, τMD – given by the horizontal distance between DM and DD

– must be equal for both origins. Furthermore, the proportion of vehicles departing

from D must be the same when the vehicles passed M , i.e., α
(r)
M (t−τMD(t)) = α

(r)
D (t).

Finally, it is convenient to consider the re-scaled origin-specific A/D curves T (A) and

T (B) constructed as explained in §2.1 since these curves allow recovering the actual

experienced delays. Total delays are given by the horizontal distance between T (r)

and DD; delays in each approach upstream of the merge by the horizontal distance

between T (r) and DM . We will make extensive use of this construction when analyzing

the solutions.

2.2.2 Traffic dynamics

The equilibrium solutions must then be consistent with both link and node dy-

namics. Basically, the two phenomena that affect the traffic solution are the queuing

behavior on link MD and the merge interactions. Traffic in link MD is modelled as

in the simplified kinematic wave (KW) theory proposed in Newell [1993]. According

to the theory, traffic obeys a triangular fundamental relationship linking flow q with

density k defined by three parameters: a fixed free-flow speed (vf ), a maximum flow

or capacity (qmax) and a jam density (kj);
5 see Figure 2.5a. Newell shows that the

delay-based traffic problem can be solved as a standard problem with the modified

5Jointly they define a wave speed w which represents the unique speed at which flow disturbances
propagate upstream within a moving queue.
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Figure 2.4. Traffic assignment with 2 origins. Cumulative plot representation.

fundamental diagram of Figure 2.5b, which has the same qmax and kj but vf = ∞.

The traffic model is completed by defining how vehicles interact at the merge. We

will use the rules in Daganzo [1995a]. These are depicted in Figure 2.5c and explained

later.

Physical queues dynamics: The delays in link MD must be predicted since we

must guarantee that commuters from different origins passing M at the same time

incur the same delay on link MD (i.e., queues are FIFO). Physical queue are relevant

in link MD since the common delays on the link depend on the queue spilling over

the merge section or not. For links AM and BM , physical queues are not an issue

because the delays suffered in these links are always common to all the commuters

from the same origin.

According to Newell, a capacity curve at M , DD
M , is defined from the departure

curve at D, DD, by the shift,
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Figure 2.5. Traffic flow model and merge model [Newell, 1993].

DD
M(t) = DD(t −

kj

qmax

`) + kj` (2.4)

This capacity curve tracks the effects of the backward moving queue on the entrance

of link MD and sets an upper bound to the cumulative number of commuters that

can pass M by time t; see Figure 2.6. The actual cumulative curve of vehicles pass-

ing through M , DM(t), is the lower envelope of DD
M and the cumulative number of

commuters who would have passed M in the absence of a queue, which is determined

by upstream demand. In our case, the upstream behavior depends on the merge

behavior.

Merge interactions: The flows from the two approaches must share the downstream

capacity according to some pre-specified merging rules. Daganzo [1995a, 1996] pro-

poses that the upstream flows from each merging approach – d
(A)
M , d

(B)
M – must be a
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function of the capacity of the upstream approaches (i.e., qmax), the available capac-

ity downstream (qM) and some approach-specific priority ratio – α̃(A), α̃(B) – where

α̃(A) + α̃(B) = 1. For the case of interest here where the (time-dependent) downstream

capacity is given by qM(t) = dD
M(t) < qmax, the upstream approach capacities do not

play a role and the rules reduce to the following two:

(1) during periods when there are no queues upstream of M , arrival flows equal

discharge flows and dM = d
(A)
M + d

(B)
M ≤ qM(t);

(2) when there is a queue on approach r, then dM = qM(t) and the departure ratio

α
(r)
M ≡ d

(r)
M /dM ≥ α̃(r).

It follows from (2) that when there is a queue in both approaches, then d
(A)
M /d

(B)
M =

α̃(A)/α̃(B). These rules are illustrated in Figure 2.5c. A more detailed description of

the dynamics of the merge section for more general cases can be found in Daganzo

[1995a, 1996] and in chapter 3, §3.2.

Delay-based representation: In our case, it is convenient to express all the traffic

feasibility conditions in terms of the some candidate equilibrium departure curves

from D – D
(A)
D and D

(B)
D – and the origin-specific equilibrium delays – τ (A) and τ (B) –

indexed by time of departure. As we shall show later in §2.2.3, equilibrium conditions

are easily expressed as a function of these functions.

To express behavior in link MD as a function of delays, first note that DD will

be such that

dD(t) = qD(t) if max{τ (A)(t), τ (B)(t)} > 0 (2.5)

Furthermore, note that DD
M(t)−DD(t) is an upper bound for the length of the queue

at MD at time t. Hence, the horizontal separation between DD
M and DD, νMD(t),
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Figure 2.6. Newell’s KW procedure.

is also an upper bound for the delay on link MD for any given departure time (we

call νMD(t) the maximum delays or M-delays). We can compare the delays τ (A) and

τ (B) with νMD in an attempt to infer the actual delays τMD and hence, the actual

departure curve from M , DM . Since 0 ≤ τMD ≤ νMD and 0 ≤ τMD ≤ max{τ (A), τ (B)}

(because of the FIFO discipline), then three main situations cases can arise, as given

by

dM(tM) =































dD
M if νMD = τMD ≤ max{τ (A), τ (B)}

qmax if τMD < max{τ (A), τ (B)} < νMD

min{a(A) + a(B), qmax} if τMD = max{τ (A), τ (B)} < νMD

(2.6)

The first equality corresponds to the case with queues spillovers at M ; the second, to

the case with no queue spillover at M but queues at the upstream approaches; the
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third, to the case with queues only downstream of M . Based on (2.6), the actual curve

DM and the delays τMD can be defined as function of max{τ (A), τ (B)} in the following

graphical manner (see Figure 2.6): draw the curve Tmax such that the horizontal

distance between Tmax and DD for each t corresponds to max{τ (A)(t), τ (B)(t)} (i.e.,

Tmax is the A/D curve for the maximum delays); then, obtain DM as the lower

envelope of DD
M and the higher curve underneath Tmax with slope ≤ qmax. The delays

τMD are given by the horizontal distance between DD and DM for each departure

time t, i.e., τMD(t) = t − D−1
M (DD(t)).

The merging rules must also be expressed in terms of our candidate departure

and delay curves. When τ (r)(t) > τMD(t), vehicles from approach r departing from

D at t experience delay upstream of the merge. Hence, in view of merge condition 2,

they must enter the merge in a proportion α
(r)
M ≥ α̃(r). Since this proportion must be

preserved at D, we can write:

τ (r)(t) > τMD(t) ⇒ α
(r)
D ≥ α̃(r) (2.7)

τ (A)(t) > τMD(t), τ (B)(t) > τMD(t) ⇒ (α
(A)
D , α

(B)
D ) = (α̃(A), α̃(B)). (2.8)

Condition (2.7) applies when the merge is at capacity with one congested approach

and (2.8) with two. When the merge is non-congested, any proportion of flows is

allowed. Finally, if τ (r)(t) < τMD(t) the solution is only feasible if d
(r)
D (t) = 0.

2.2.3 Equilibrium conditions

Departure time-equilibrium requires that the trip cost for commuters in the same

origin r must be equal for any chosen arrival time and equal or larger for any other

non-chosen times. The traffic-equilibrium problem could be solved by considering the
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arrival curves {A(r), r = A,B} as the unknowns since these define through the traffic

model unique {D
(r)
D , r = A,B} and {τ (r), r = A,B}. One would need to iterate on

the A(r)’s until finding costs that satisfy the equilibrium criterion.

The equilibrium solution, however, can be more easily obtained in one takes in

account some properties of the solution.

Property UE(1) (or Parametric representation of equilibrium). The equilibrium

delays (or trip times) for each origin, τ (r) , are uniquely determined by the time of

arrival of the first commuter from the origin suffering any delay, t
(r)
s , and so is the

equilibrium cost, C̃(r).

Proof. Recall that in the single origin the equilibrium delay τ(t) was affected by D(t)

through ts and tf . Obviously, the same simple principle applies now but with origin-

specific t
(r)
s and t

(r)
f . From equation (2.1), the equilibrium cost for the commuter

arriving at t
(r)
s is given by C̃(r) = p(t

(r)
s ) and thus,

τ (r)(t|t(r)s ) = C̃(r) − p(t) = p(t(r)s ) − p(t).� (2.9)

Property UE(1) suggests the following solution approach. Choose initially a set

{t
(r)
s , r = A,B}, which defines unique origin-specific equilibrium delays (or travel

times), {τ (r),r=A,B}. Then, find the traffic-feasible arrival and departure processes

{A(r), D
(r)
D , r = A,B} which are consistent with the {t

(r)
s , r = A,B} and {τ (r),r=A,B}.

We can use the delay-based traffic formulation in §2.2.2 to do this. This traffic assign-

ment {A(r), D
(r)
D , τ (r)} will be an equilibrium but the total outflows {D

(r)
D (t

(r)
f ), r =

A,B} may not match the populations N (r), r = A,B. Hence, we would have to

change the t
(r)
s ’s until {D

(r)
D (t

(r)
f ), r = A,B} are equal to {N (r), r = A,B}.

An immediate corollary of property UE(1) is
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Property UE(2) (or sequential ordering of delays). Given an ordering by origin

of initial times t
(r)
s (or equivalently, of costs C̃(r)), the equilibrium trip times for any

other departure time follow this same order, i.e., ∀r, s C̃(r) > C̃(s) ⇐⇒ τ (r)(t) > τ (s).

Property UE(2) states that the maximum delays experienced by any commuter for a

given departure time, max{τ (A), τ (B)}, necessarily coincide with the equilibrium de-

lays for one of the origins. This suggests that the solution procedure can be stream-

lined even more by considering only equilibrium solutions where the full capacity

available at D is utilized during the interval Π = [ts, tf ] given by the single origin

bottleneck solution with total population N (A) + N (B), i.e., the combined departure

curve at D, DD, coincides with that of a single origin problem. This is intuitive

since our network model allows un-delayed travel from both origins when section D

is under capacity (therefore, commuters independently of the origin they come from

would have an incentive to use the full capacity at the preferred times).

2.3 Equilibrium analysis

We consider the single deadline problem and analyze it in two phases: (i) cases

with no bottleneck restriction at D (qD(t) ≡ qD = qmax) where queues cannot form

on link MD and merging effects dominate, and (ii) cases with time-dependent flow

restrictions at D (qD(t) ≤ qmax ) where queue spillovers can affect performance.

2.3.1 No downstream restrictions (Merging effect)

When no restrictions exist downstream of merge M , no delays can arise beyond

it. Therefore, we can ignore link MD and treat M as if it was the destination us-

ing DM(t) ≡ DD(t), α
(r)
M (t) ≡ α

(r)
D (t). In essence, the system is modelled as a pair
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of single-origin bottlenecks with departure rates coupled by the merging rule. As

mentioned in §2.2.3, it is logical to consider equilibrium solutions in which the aggre-

gated departure curve DM is given by the single bottleneck solution with capacity qD

and total population N (A) + N (B), i.e., where the merge is saturated only during the

preferred interval Π = [ts, tf ] of Figure 2.2a.

Since DM is given, the capacity shares {α
(A)
M (t), α

(B)
M (t)} need to be found. If

we further consider that only one queuing episode can occur on each approach, the

solution is as shown in Figure 2.7a. The figure displays the arrival and departure

pattern on the two approaches separately. Commuters from one origin (B in the

figure) flow through the bottleneck during an interval when the other approach is

queued. Therefore, from (2.8), they use a fixed share of the capacity α
(B)
M (t) = α̃(B).

The solution for B -users is a single bottleneck equilibrium with population N (B)

and capacity α̃(B)qD ; see the bottom part of Figure 2.7a, curves D
(B)
M and A(B).

Commuters from A flow at full capacity qD when the approach B is not active and at a

reduced capacity α̃(A)qD otherwise. The solution for A-users is also a single bottleneck

equilibrium, albeit with time-dependent capacity; see the top part of Figure 2.7a,

curves D
(A)
M and A(A).

The two diagrams of Figure 2.7a can be re-scaled and superimposed following

the procedure explained in §2.2.2 to show the A/D curves for both origins and the

common departure curves on a single diagram, see Figure 2.7b. The quantities in

parenthesis following each colon are {α
(A)
M (t), α

(B)
M (t)}. The curves on the figure must

be similar, as shown, since commuters share a common deadline and penalty function.

Commuters from A experience the same commuting cost as if everybody had the same

origin, since AO is equal in length to the corresponding segment of a single bottleneck

solution with population N (A) + N (B). Commuters from B, however, experience a
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Figure 2.7. Equilibrium solution, no queues in link MD.

reduced cost, |BO|. From the figure, it is clear that B-commuters experience less

cost if N (B)/α̃(B) < N (A)/α̃(A). The reverse is true if N (B)/α̃(B) > N (A)/α̃(A). The

worst case arises if N (B)/α̃(B) = N (A)/α̃(A) when all commuters experience the highest

cost. The best case arises if α̃(A) = 0 or 1 (complete priority) since one of the origins

experiences the least possible cost.

These results have an economic interpretation. Since the capacity of M is a scarce

resource, commuters impose onto each other an external cost (delay) as they jockey

for their preferred departure times. In the single bottleneck scenario, everybody is

affected equally by the actions of the others and the result of this game is a symmetric

equilibrium. A saturated merge, however, allocates its capacity in fixed shares – α̃(A)

and α̃(B) – to the two approaches, which insulates B-drivers from actions of A-drivers

and vice-versa. This allows one part of the population to reduce its cost by traveling

at the most desired times. The effect can be exploited by manipulating (α̃(A), α̃(B)),
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proving that Pareto-improving ramp metering schemes exist for single-destination

freeways with time-elastic demand. These is further discussed in the final section.

2.3.2 Downstream restrictions (Spillover effect)

Let us now assume that qD(t) ≤ qmax, with the possibility of spillovers from

link MD. A feasible equilibrium can be found in a sequential manner. Figure 2.8

illustrates the steps for the case of a permanent restriction, qD < qmax, but the

solution is general for any time-dependent qD(t).

Step 1 : Aggregate departure curve and maximum delay. As before, we look for so-

lutions in which the aggregate departure curve DD is given by the single bottleneck

solution with capacity qD(t) and total population N (A) + N (B); see Figure 2.8a. This

defines the duration of the queuing episode, Π = [ts, tf ]. By virtue of Property UE(2),

necessarily one of the origins flows at both ts and tf . We shall assume that A-vehicles

discharge uninterruptedly in the interval Π(A) ≡ Π (i.e., t
(A)
s = ts,t

(A)
f = tf ) and

that B-vehicles discharge in an interval Π(B) ⊆ Π (i.e., t
(B)
s ≥ ts, t

(B)
f ≤ tf ) possi-

bly with interruptions. Of course, The roles of the origins can be reversed and we

show below that this depends on the population-to-priority ratio. The equilibrium

delay function for origin A, τ (A)(t) = max{τ (A)(t), τ (B)(t)} , is obtained from t
(A)
s and

t
(A)
f ; i.e., τ (A) coincides with the single origin delays. This can be expressed graph-

ically in conjunction with curve DD by means of an A/D curve T (A) such that the

horizontal difference between T (A) and DD for any departure time t is the A-delay:

τ (A)(t) = t − T (A)−1
(DD(t)); see Figure 2.8a. Neither DD nor T (A) are cumulative

counts for A-vehicles since DD gives the cumulative count for A and B -vehicles to-

gether.
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Step 2 : Delays on the common link. Since the aggregate departure curve DD and

the maximum delays, τ (A), are given, we can use the procedure explained in §2.2.2

to obtain the actual delays on link MD, τMD: first, shift DD according to (2.4) to

obtain the capacity curve at M , DD
M , and the M-delays, νMD(t) (see Figure 2.8b);

then, obtain the curve of cumulative flows through M , DM , as the lower envelope

of DD
M and the higher curve underneath T (A) with slope ≤ qmax. The horizontal

difference between DM and DD is the actual delay τMD (see Figure 2.8c). These

delays are highlighted by the shaded area of the figure.

Step 3 : Solution for secondary origin (B). We first look for a starting time t
(B)
s >

ts = t
(A)
s . For each candidate t

(B)
s , the equilibrium delays τ (B) are given. Thus, we

can again define a curve T (B) such that the horizontal difference between T (B) and

DD gives directly the equilibrium delay for origin B (see Figure 2.8d). To obtain the

outflows from B users consider that: (i) no departures from B can take place when

τ (B) is less than τMD (i.e., in the non-shaded bands of Figure 2.8d when the curve

T (B) dips below DM), (ii) positive departures rates for B -vehicles always occur when

τ (A) > τ (B) ≥ νMD (on the shaded areas in Figure 2.8d), that is, B -vehicles cross

the merge when both approaches have queues and, hence, they will flow through the

merge using a share α̃(B) of the capacity. This means that in the shaded intervals

α
(B)
D = α̃(B) and outside α

(B)
D = 0. The total number of B -vehicles passing through D

is, therefore, the product of α̃(B) and the vertical projection of the shaded areas. By

changing the starting time t
(B)
s we can ensure that the correct number of B -vehicles

N (B) is discharged. This is the equilibrium starting time. Figure 2.8e shows the final

result. The arrival and departure curves for origin B are just rescaled versions of

the A/D curve T (B) and the departure curve DD: D
(B)
D (t) =

∫ t

−∞
α

(B)
D (ε)dD(ε)dε and

A(B)(t) =
∫ t

−∞
α

(B)
D (ε)Ṫ (B)(ε)dε.
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Step 4 : Solution for primary origin (A). Since α
(A)
D (t) = 1 − α

(B)
D (t), the departure

and arrival curve for origin A can be built by scaling curvesDD and T (A): D
(A)
D (t) =

∫ t

−∞
α

(A)
D (ε)dD(ε)dε and A(A)(t) =

∫ t

−∞
α

(A)
D (ε)Ṫ (A)(ε)dε. Note α

(A)
D (t) = α̃(A) or 1 in

agreement with our assumption that α
(A)
D (t) > 0 . This completes the solution.

Three different solution types can arise depending on the populations {N (A), N (A)}

and the priority ratios {α̃(A), α̃(B)}.

Solution 1B. If the number of B -vehicles is small enough so that t
(B)
s > t

(A)
s , the

solution is as illustrated by Figure 2.8e. In this case, B -commuters suffer less cost

then A-commuters since |OB′| < |OA′|. This solution arises if 0 < N (B) ≤ Ñ (B) =

α̃(B)(N (A) +N (B)−NU), where NU is the total number of vehicles that find the merge

uncongested; see Figure 2.8c.

Solution 1A. A symmetric solution to 1B where A-vehicles experience less cost is

obtained by interchanging the superscripts A and B. This solution arises if 0 < N (A) ≤

Ñ (A) = α̃(A)(N (A) + N (B) − NU).

Solution 2. It is also possible to find an equilibrium for the remaining situations

with intermediate values of N (B)/N (A). In these cases, t
(A)
s = t

(B)
s and both origins

share the same cost |OB′| = |OA′|. Consideration shows that the solution is now

as in Figure 2.8f. As required by the traffic model, (α
(A)
D , α

(B)
D ) = (α̃(A), α̃(B)) in the

intervals when both approaches are queued (shaded area) and (α
(A)
D , α

(B)
D ) is arbitrary

in the periods when M is below capacity (cross-hatched area). An equilibrium is

reached for any (α
(A)
D , α

(B)
D ) that generates total discharges matching the populations

N (A) and N (B). This solution arises if Ñ (B) ≤ N (B) ≤ α̃(B)(N (A) + N (B)) or Ñ (A) ≤

N (A) ≤ α̃(A)(N (A) + N (B)).6

6Note that a solution always exists since NU changes continuously with N (A) + N (B) and kj`.
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The same procedure applies for any time-variable capacity at D. Figure 2.9 shows

an example. Note that an equilibrium pattern arises where commuters in B depart

during two separated episodes. Figure 2.10 shows the spatial evolution of the queues

for time intervals where different queuing patterns arise. Thin black arrows represent

the observed flows at the critical sections; thick white narrows, the movements of the

head and tail of the queues.Sequence numbers refer to states shown in the cumulative

plot.

From an algorithmic point of view, it is important to highlight the following

property of the equilibrium solution when the network is homogeneous: given any

time-dependent capacities at D and M , qD(t), qM(t), both DD and DM can be con-

structed as function of the total population N (A) + N (B) (and independently of the

ratio N (A)/N (B)), that is, the equilibrium traffic behavior on link MD is independent

of the distribution of populations upstream of M . This property allows to decompose

the problem when more than two origins exists as we shall show in chapter 3.
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Figure 2.9. Equilibrium solution, queues in link MD (Time-dependent bottleneck).



48 2 A Simple Network Model

#

t

o

.

.

1 32 4 5 6 7 108 9

1

1

a(A)

a(A)a(A)

a(A)
qD

-

1

qD

-
<1

1

qD

-
<1

qD

-
<1

qD

-
<1

1

qD

-
<1

qD

-
<1

</>
-

qD

<
-

qD

<
-

qD

>1

<1

>/<a(A)

<a(A)
<a(A)

>(1-a)
-

qD

<1

>a(B)

<a(B)

<a(B)

>
-a(B)

qD

0

0

a(B)

a(B)a(B)

a(B)
qD

-

0

0

0

0

1

9

5

3

7

2

2

2

1

1

10

6

4

8

qD

_

1

1

Figure 2.10. Physical queue evolution in equilibrium solution (time-dependent ca-
pacity at D).



2.4 Departure-time equilibrium and point queue models 49

A comparison of Figure 2.8e and Figure 2.8f with the single origin solution in

Figure 2.2 and the solution with merging effects only in Figure 2.7 reveals some

interesting insights. In all cases, the population from the origin with the largest

population-to-priority ratio (A in our case) experiences the same cost equivalent to

the cost commuters would suffer in a single origin scenario with total population

N (A) + N (B). On the other hand, commuters from the other origin (B) can incur

lower cost. Curiously, this cost reduction decreases with the number of vehicles that

can be stored in link MD, kj`. In the extreme case where kj` → 0, we recover the

solution of section 2.3.1 (albeit with a time-dependent capacity) which is actually

the least total cost scenario. This is may seem paradoxical at first sight since the

provision of extra storage space in link MD makes things worse even though the link

capacities remain unchanged (!). The explanation is that the extra space allows A-

commuters to mix with B-commuters in the downstream queue. This dilutes part of

the segregation advantages that the merge gave to origin B. Again the policy-making

implications of these effects are discussed in the final section.

2.4 Departure-time equilibrium and point queue

models

In the last decade, a number of works [Akamatsu, 2001; Arnott et al., 1993a; Bern-

stein et al., 1993; Huang and Lam, 2002; Kuwahara, 1990] have proposed point-queue

models with fixed link capacities to solve network equilibrium subject to departure-

time choice. These models improve the realism of previous static models by including

transient queuing phenomena, but they are still quite restrictive since they neglect the

two important forms of link-to-link interaction explicitly consider in our model: tail-
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Figure 2.11. KW model vs. point-queue model. No downstream restrictions.

to-head (spillovers) and head-to-head (merging competition). These omissions lead

to predictions that substantially overstate total cost as shown below. It is therefore

important to incorporate link interactions in network models. The goal is achievable

because the complexity of the problem appears not to be increased by doing so.

Consider first the issue of over-prediction and start with the constant-capacity case

in §2.3.1. Since the above-mentioned point queue models do not restrict merging flows

they predict that queues develop at D, although these queues would never appear

in reality. The delays produced by these queues must be common to both origins.

The ideas of section 2.3.2 can now be used to see that Figure 2.11b is a point-queue

equilibrium with queues at D when dM(t) > dD(t). This can be compared with

Figure 2.11a, which is the solution of section 2.3.1 with (α̃(A), α̃(B)) = (0.5, 0.5).

Clearly, the point-queue models predict a significantly larger equilibrium cost for

B -users, |OBPQ|, and the wrong location and length of the queues.

The same overstatement of equilibrium delays can be observed if we compare the
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KW solution and the point-queue solution when time-dependent restrictions exist at

D, as shown in Figure 2.12.

Apart from their realism, solving models with spillover and merge effects involves

the same degree of difficulty. The biggest complication with all models (see Fig-

ure 2.11) is keeping track of the common delays on link MD to obtain consistent

solutions that preserve FIFO. In some cases, it may even be simpler to solve the

model with merges and spillovers, since delays turn out to be a function of the down-

stream conditions and the maximum delays, which can be known a-priori. As we

shown in §2.3.2, this knowledge can be used to decouple the equilibrium solution by

origin, and to simplify the solution method (this is always the case when the net-

work is homogeneous; for other cases, see chapter 5). The same simplification does

not work with fixed-capacity point-queue models, however, because in this case the

delays on link MD always depend on the origin-specific flows from upstream.
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2.5 Policy implications

It was shown in Arnott et al. [1993a] that total system cost could decrease if

one decreases the capacity of a link in a fixed-capacity point-queue network with-

out a route choice. The result is interesting because it suggests that ramp-metering

schemes could yield benefits in situations where the conventional wisdom (with fixed

departure times) would say that none are to be had. On the other hand, the finding

is of limited use because the assumptions underlying rarely arise in ramp-metering

practice. Thus, it is fair to ask whether the effect would also arise under the less re-

strictive assumptions of the model here, and whether it would be any more prevalent.

The findings at the end of sections 2.3.1 and 2.3.2 suggest that the answer to both

questions should be affirmative since it was shown that if storage capacity is not an

issue then a Pareto-improvement can always be achieved by giving some priority to

one of the origins. Although this result is only demonstrated for a network where

both approach capacities are equal or greater than the capacity at the destination,

the result is more general. As shown later in chapter 5 and appendix A for the general

case, similar improvements to those of section 2.3.2 can be obtained if the metering

rate is constrained never to starve the destination bottleneck for flow. The reason for

the generality is that the merge allows the origin flows to interact in a detrimental

way, and this happens whether or not the queue-mixing effect identified in Arnott

et al. [1993b] also arises. Since in most cases priority should go to the narrower and

lower populations approach, the results suggest that contrary to common practice

priority in multi-origin freeways should go to the ramps closest to the bottleneck.

It is also shown in §2.3.2 that reducing the storage capacity of link MD (i.e., its

length) can reduce delay. This result is just as interesting because it shows that bring-

ing the origins closer to the destination not only decreases free-flow travel time, but
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it also decreases delay (!). If the effect continues to arise with multi-origin networks,

as we expect, it should have significant policy ramifications because it indicates that

the travel costs added by congestion decrease with population density, if one holds

the total population constant. This may seem paradoxical because it says that the

denser a city the lesser its crowding cost. Next chapter 3 extends the analysis to

multi-origin networks and gives more precise answers to these questions.
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Chapter 3

A Single Freeway Model

This chapter extends the morning commute analysis of chapter 2 to a long freeway

leading to a single destination; see Figure 3.1. This model is relevant since a long

homogeneous freeway is the logical unit of analysis for mono-centric cities with ring-

radial street networks. We characterize the equilibrium solution under departure-time

choice and propose an algorithm to solve the problem with the KW model of traffic

flow. We show that the freeway problem can be decomposed merge-by-merge and

solved recursively as a series of two-origin merge problems (equivalent to the problem

in chapter 2). The preliminary insights derived in that chapter about the relation-

ship between population distribution, timing decisions and congestion evolution can

now be confirmed through test examples on this network. We show that congestion

increases with population sprawl and decreases when greater priority/accessibility is

given to downstream origins. These results should have important implications for

the treatment of urban congestion in cities with predominantly CBD-bound commute

trips.

The chapter is organized as follows. Sections 3.1, 3.2 and 3.3 extend the problem

statement of chapter 2 to the freeway setting. Section 3.1 introduces the problem
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formulation. Section 3.2 extends the KW traffic model to general single destination

network instances. For consistency with the rest of the chapters, the KW model

description is kept more general than what it is required to solve the freeway problem.

In section 3.3, the departure-time equilibrium conditions and the properties of the

solution are revisited. The solution procedure is presented in section 3.4. Numerical

solutions are discussed in 3.5 and policy implications discussed in section 3.6.

3.1 The freeway network

3.1.1 Network representation

We shall consider a long freeway running through a residential area (see Fig-

ure 3.1). Commuters access the freeway at a number of ramps and travel to a com-

mon destination located just downstream of point O. The freeway network can be

represented by a graph consisting of a set of N nodes, a set of R origins (a subset of

the nodes) and a set of L directed links connecting the nodes. Each origin r is con-

nected by a unique link, (i.e., ramp) to a merging section of the freeway represented

by node i (with i = r). Merging nodes are located at distances {xi, i = 1 . . . R} from

O and are numbered in increasing order of distance; `ij = xi−xj is the length on link

(i, j). A fixed demand η(r) travels every from each origin r to the common destina-

tion during the morning rush period. For convenience, Ni represents the aggregated

population originating upstream of node i including η(i) (i.e., NO ≡ N1 represents

that total population).



3.1 The freeway network 57

O

(h
(1)

)(h
(R)

) (h
(2)

)(h
(3)

)

r=1r=2r=3r=R

i=1i=2i=3R

Figure 3.1. Single freeway network.

3.1.2 Traffic representation

Figure 3.2 shows a scheme with the notation used to characterize the traffic so-

lutions (a summary of all the notation used can be found in appendix B). A net-

work assignment is defined by a set of cumulative departure curves from each origin,

{A(r)(t), i = 1 . . . R} (indexed by the time of desired arrival at the merge node i = r).

The traffic model solution should then provide as a function of these inflows, the

origin-specific cumulative arrival curves at the destination, or outflows at point O,

{Y (r)(t), i = 1 . . . R} and the origin-specific total travel times experienced τ (r)(t), that

we express as a function of the arrival time to O, t. A(r) and Y (r) are non-decreasing

continuous piecewise differentiable functions with respective derivatives (i.e., flows)

a(r) and y(r). Under the desirable FIFO property, then

A(r)(t − τ (r)(t)) = Y (r)(t) (3.1)

The traffic solution is characterized in each link (i, j) by Aij(t), the cumulative

number of vehicles entering the link and Dij(t), the cumulative number of vehicles

leaving it (aij and dij are the respective time derivatives or flows). To guarantee

the assignment feasibility, we must also assume that queues may form upstream of
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each network entry point when the available capacity is not sufficient to accept the

desired inflow A(r)(t). We do this by modelling ramps as links with infinite storage

capacity, whose outflows can be restricted by the inherent ramp capacity or because

a freeway queue has backed up beyond the merge. Ramps queues have cumulative

inflows A(r)(t) and departure outflows Drr(t), i.e., Drr is the actual cumulative inflow

from origin node r into the freeway merge node i (i = r), which is controlled by the

merge behavior.

Finally, in a single destination network, the traffic solution can be alternatively

represented by the following set of functions: {Yi(t), i = 1 . . . N}, the cumulative

number of commuters crossing node i (i.e., crossing link (i, j)) that have arrived

at O by time t, and {τi(t), i = 1 . . . N}, the travel times from each node i to O

experienced by vehicles arriving at time t.1 Under FIFO conditions, the actual arrival

1It is important to distinguish between τi, the travel time experienced in the freeway from i to
O which is common to all upstream users, and τ (i) which includes the waiting time in the ramp as
well and it is particular to origin-i commuters.
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and departure curves at each link are automatically recovered as

Aij(t − τi(t)) = Dij(t − τj(t)) = Yi(t). (3.2)

Link travel (i, j) times experienced by vehicles arriving at the destination at time t are

τij(t) = τi(t) − τj(t). The set of variables {Yi, τi} is convenient because it represents

all traffic information as a function of the arrival time to the destination, t, only.2

This will become useful to characterize equilibrium solutions in §3.3 and §3.4.

3.2 KW network model

As in chapter 2, we adopt Newell’s simplified kinematic wave (KW) model of traffic

flow to represent traffic behavior [Newell, 1993]. We shall as well neglect the free-flow

travel times since these are fixed for each origin and independent of the arrival times;

hence, τi and τ (r) represent the delays due to congestion exclusively (the term delay

or trip time will be equivalent through the rest of the chapter). In agreement with

this assumption, traffic behavior in each link (i, j) follows a triangular flow-density

diagram with maximum capacity qij, jam density kij, free-flow speed vf = ∞ and a

modified backward wave-speed 1/ŵ = 1/vf + 1/w; see Figure 3.3.

Under the KW model, the entering flows at a link must be determined both from

upstream and downstream traffic conditions, since queue spillovers from a down-

stream node may reduce flow capacity an the entrance of a link. The exact graphical

procedure suggested by Newell [1993] and briefly outlined in §2.2.2 can be used to

analyze spillovers; see Figure 3.3.

2This representation holds for any single destination network with unique O/D paths as long as
the traffic model preserves FIFO. In this case, it can be shown that it also holds for many-to-one
networks with route choice under user equilibrium conditions [Akamatsu and Kuwahara, 1999].
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We shall consider first the case where a unique link (i, j) heads into a link (j, k),

with (possibly) different characteristics. In the absence of spillovers, the inflow into

link (j, k) would only restricted by the capacity qjk. If Aij represents the cumula-

tive inflow into link(i,j), then the no-spillover upstream demand to enter (j, k) would

be the highest curve underneath Aij with slope ≤ qjk (i.e., the output curve of a

point-queue bottleneck with arrivals Aij and capacity qjk). We represent this unre-

stricted demand as AU
jk. On the other hand, for an actual curve of departures at the

downstream end of a link (j, k), Djk, the shifted curve

AD
jk(t)

.
= Djk(t − `jk/ŵ) + kjk`jk (3.3)

tracks the effects of the backward queuing wave just downstream of location j and

represents the maximum cumulative number of vehicles allowed into (j, k) as given

by downstream conditions. We shall call AD
jk the spillover curve at link (j, k).

Newell showed that the actual arrival curve at j, Ajk, is the lower envelope of AU
jk

and AD
jk, i.e.,

Ajk(t) = Dij(t) = min{AU
jk(t), A

D
jk}. (3.4)

Mathematically, the procedure can also be represented in terms of flows as follows.

The maximum possible departure rate from link (i, j), dmax
ij (i.e., the outflow from

link (i, j) in the absence of any downstream restriction) will be equal to the capacity

qij if a queue exists on the link; otherwise, it will be equal to the inflow on link (i, j)

as observed downstream of node i; hence,

dmax
ij =















qij if Aij(t) > Dij(t) (i.e., queue upstream)

aij(t), if Aij(t) = Dij(t) (i.e., no queue upstream)

. (3.5)
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Figure 3.3. KW model: q-k diagram and analysis of spillovers.

Note that aU
jk = min{dmax

ij , qjk}.

The maximum flow allowed to enter link (j, k), amax
jk , by the downstream queue is

amax
jk =















aD
ij ≡ djk(t − `jk/ŵ) if Ajk(t) = AD

jk(t) (i.e., spillover)

qjk if Ajk(t) < AD
jk(t) (i.e., no spillover)

. (3.6)

The actual flow at j is given by the minimum of (3.5) and (3.6), i.e.,

ajk(t) = dij(t) = min{dmax
ij (t), amax

jk (t)}. (3.7)

In the freeway network, a merge node exists upstream of each link (j, k) with

upstream approaches (i, j) and (i′, j) (actually one of the approaches is always a

origin access ramp). In this case, the outflows in each of the incoming links must

share the capacity available downstream according to some priority rules. Following

Daganzo [1995a, 1996], we assume that each upstream link (i, j) uses as large a share



62 3 A Single Freeway Model

αij of the capacity available downstream as possible subject to the following rules:

(i) flow on the approaches can never be larger than the exiting demand dmax
ij , (ii) the

sum of flows can never exceed the (j, k) entering capacity amax
jk and (iii) when queues

exist on approach (i, j) , its share αij must equal or greater than a fixed merge-specific

share α̃ij , i.e., αij > α̃ij (when queues exist on both approaches, αij and αi′j must

be equal to the merge-specific fixed ratios since it is assumed that α̃ij + α̃i′j = 1).

Mathematically, this maximization can be expressed as a simple linear program:

max{dij + di′j} s.t.:











0 6 dsj 6 dmax
sj s = i, i′; dij + di′j 6 amax

jk ;

dsj > α̃sja
max
jk if dmax

sj = qsj s = i, i′











(3.8)

where dmax
ij (or dmax

i′j ) and amax
jk are given by equations (3.5) and (3.6). The solution

to (3.8) is

dsj(t) = min{dmax
sj (t), αsj(t)a

max
jk (t)} s = i, i′

with

αij(t) amax
jk (t) =











amax
jk (t) − dmax

i′j (t) if dmax
i′j (t) < (1 − α̃ij)a

max
jk (t)

α̃ija
max
jk (t) o.w.

αi′j(t) amax
jk (t) = (1 − αij(t))a

max
jk (t)

(3.9)

Note that from equation (3.9) the flow observed just downstream of j is ajk(t) =

dij(t)+di′j(t). Figure 3.4 depicts the possible different states of the merge graphically

and the associated flow values.

Finally, at the origin nodes, considering the infinite-storage ramp with arrival

curve A(r) and departure curve Drr, the maximum departure demand as given by the

queues state in the ramp is
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Figure 3.4. General merge behavior. Possible flows depending on merge queuing
states.

dmax
rr (t) =











qrr if A(r)(t) > Drr(t)

min{a(r)(t), qrr} if A(r)(t) = Drr(t)
(3.10)

Hence, the actual departure rate drr(t) is determined from dmax
rr (t) and the share

of capacity available for the ramp approach at the merge given by (3.9).

Equations (3.5)-(3.10) allow tracking the evolution of the traffic solution for any

time t as a function of any origin inflows A(r). In the departure time equilibrium

problem, however, the curves A(r) are unknown and must be determined as a function

of the equilibrium conditions.

3.3 Departure-time equilibrium assignment

3.3.1 Departure-time equilibrium definition

A network assignment is a dynamic user equilibrium (DUE ) under departure

time choice if no commuter can reduce his commute cost by changing unilaterally his

departure (equivalently, arrival) time. We adopt the same assumptions as in chapter
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2. First, the individual commute cost is defined as a combination of a trip time cost

and a scheduled delay arrival penalty. Furthermore, we assume that commuters are

homogeneous in their valuations of travel time and schedule delay and have a common

preferred arrival time or deadline w = 0. Expressing cost in units of trip time and

referring all the functions to the commuter’s arrival time to the destination, the cost

for an origin-r commuter with deadline w is

C(r)(t, w) = τ (r)(t) + p(t) (3.11)

where τ (r)(t) is the travel delay and p(·) is the common convex schedule penalty

function, with ṗ(s) < 1 [Daganzo, 1985; Smith, 1984].

Under the common deadline assumption, the general network equilibrium problem

consists of finding a set {A(r), r = 1 . . . R} that will yield through the traffic model

outflows {Y (r), r = 1 . . . R} and delays {τ (r), r = 1 . . . R} (hence, costs C(r), r =

1 . . . R) which satisfy the following set of constraints:

y(r)(t)(C(r)(t) − C̃(r)) = 0 ∀r∀t (3.12)

Y (r)(T ) − η(r) = 0 ∀r (3.13)

where C̃(r) = inft C
(r)(t) is the equilibrium cost for origin r, and T is a sufficiently

large time denoting the end of the study period. Equation (3.12) states that the cost

for commuters on the same origin should be equal for any chosen arrival time and

equal or larger for any other non-chosen times. Equation (3.13) represents the pop-

ulation conservation constraint for each origin. Equations (3.12)-(3.13) also express

the equilibrium conditions for general networks if one includes route choice in the

definitions of C(r)(t, route) and C̃(r) = inft,route C(r)(t, route) ∀r.
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Using the KW model, no one has yet proven that a set {A(r)} verifying (3.12)-

(3.13) always exists for general network instances, nor there is an evident strategy

to find them in cases where they may exist. In the case of a single freeway, we

shall show that an exact analytical procedure can be developed that always yields a

solution; therefore, the existence of equilibrium solution is proven by construction.

This procedure exploits the same properties UE(1) and UE(2) of the equilibrium used

in chapter 2, which are briefly revisited next.

3.3.2 Equilibrium properties revisited

Under a departure time equilibrium where commuters share the same deadline

and penalty functions the following properties must hold:

Property UE(1)(or Parametric representation of equilibrium). The equilibrium

delays (or trip times) for each origin, τ (r) , are uniquely determined by the time

of arrival of the first commuter from origin suffering any delay, t
(r)
s , and so is the

equilibrium cost, C̃(r).

Property UE(2). (or sequential ordering of delays). Given an ordering by origin of

initial times t
(r)
s (or equivalent of cost C̃(r)), the equilibrium trip times for any other

departure time follow this same order, i.e., ∀r, sC̃(r) > C̃(s) ⇐⇒ τ (r)(t) > τ (s).

Recall that the equilibrium delays were given by (2.9) as τ (r)(t|t
(r)
s ) = C̃(r)−p(t) =

p(t
(r)
s ) − p(t). This equation holds independently of the arrival flow y(r)(t) being

positive or zero. It simply states what the equilibrium delays would have to be if

there were some arrivals from origin r at time t.3

3We can as well define t
(r)
f as the time of arrival of the last commuter suffering any delay (which

depends on t
(r)
s through the relationship p(t

(r)
s ) = p(t

(r)
f ). Then, Π(r) = [t

(r)
s , t

(r)
f ] (with t

(r)
s < w and
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Property UE(1) suggests, as in chapter 2, that the equilibrium solution be found

as a function of the vector of times ts = {t
(r)
s , r = 1 . . . R}. This could be done

in the following manner: choose a set of t
(r)
s which defines uniquely the equilibrium

travel times for each origin as a function of the arrival time, {τ |ts} = {τ (r)(t|t
(r)
s ), r =

1 . . . R}; then, find (by some yet unspecified method) a set of inflows {A(r)} that

would yield, through the KW traffic model, outflows {Y (r)} and delays {τ (r)} equal to

{τ (r)|t
(r)
s } and such that{A(r), Y (r), r = 1 . . . R} and satisfy the equilibrium condition

(3.12). The total outflows {Y (r)(T )} may not match the η(r). Hence, we would have

to change the set t
(r)
s until {Y (r)(T )} satisfies (3.13). In practice, this procedure

involves two steps: first, solving the traffic inversion problem that yields the {A(r)}

and {Y (r)} as a function of {τ (r)|t
(r)
s }; second, performing a multi-valued search over

the t
(r)
s .4 These tasks can be streamlined in the case of a linear homogeneous freeway,

since, as we show in the next section, both steps of the procedure can be decomposed

by origin. Therefore, t
(r)
s , A(r) and Y (r) can be obtained for each origin sequentially.

Before, however, it is necessary to rewrite the necessary condition (3.13) in terms of

t
(r)
s , A(r), Y (r).

3.3.3 Necessary conditions

We shall assume that the actual total delays experienced from merge node r (i.e.,

the access node to the freeway for origin r) τr(t) are known; then equations (3.11)

and (3.12) imply

y(r)(t)(τr(t) − τ (r)) 6 0 ∀r∀t. (3.14)

tsr > w) gives the time interval where origin-r commuters can potentially arrive since outside Π(r)

the cost is larger, i.e., y(r)(t) = 0 ∀t ∈ Π(r).
4These tasks are not clearly defined a-priori. If they can always be done, the procedure could

potentially be applied to any single destination network (with or without route choice).
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Furthermore, when the arrival flow y(r)(t) is positive, we can take derivatives in (2.9)

and in the FIFO condition (3.1) to obtain respectively the following relationships:

τ̇ (r)(t) = −ṗ(t), and a(r)(t − τ (r)(t)) = y(r)t)/(1 − τ̇ (r)(t)). Together, these yield the

following necessary conditions on the departure and arrival flows

τr(t) − τ (r)
6 0 ⇒ a(r)(t − τ (r)(t)) = y(r)(t)/(1 + ṗ(t))∀t ∈ Π(r) (3.15)

τr(t) − τ (r) > 0 ⇒ a(r)(t − τr(t)) = y(r)(t) = 0 (3.16)

3.4 Equilibrium solution procedure

We shall assume that the freeway is uniform in width, i.e., all links including the

ramps have equal capacity qmax, but the ramp priority coefficients α̃rr can vary across

origins.5 For simplicity, we will use the notation α̃rr = α(r).

3.4.1 Aggregation-by-merge and recursive logic

We propose a recursive procedure to solve the freeway problem based on the

following assumptions:

(1) At the destination node O, the equilibrium departure curve YO(t) and maximum

equilibrium delays τM
O (t) can be calculated as if we had a single origin problem

with total population NO and a bottleneck capacity qmax.

5The equal freeway-ramp capacity is formally required for the proposed algorithm to work always.
In most solutions, however, it can be shown that equilibrium outflows on each ramp never exceed
α(r)qmax; hence, the solution is only affected by α(r) but not by the capacity of the ramp. One can
hence choose a α(r) that reflects the lower capacity of ramps, i.e., if qr is the actual capacity of the
ramps, the α(r)qmax < qr.
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(2) At each merging node i, commuters can be treated as if they came from two

origins (one for each approach) with populations Ni+1 and η(i). The equilibrium

problem can be reduced to a two-origin problem, equivalent to that solved in

chapter 2 with a known capacity curve at O and a spillover curve at merge node

i determined from downstream conditions.

The basic solution procedure works recursively progressing upstream merge-by-merge,

using prior solutions {Y (r), r = 1 . . . i − 1} to determine both the capacity available

at O and the spillover curve at the merge. The details of a step are as follows. First,

we define the available capacity curve at O such that qi(t) = qmax−
i−1
∑

r=1

y(r)(t) and the

spillover curve at merge i as a function of {Y (r), r = 1 . . . i−1} using (3.3) sequentially

at each link (j, j − 1) for j = 1 . . . i. The problem is then equivalent to the one on

chapter 2 (the equivalence between the two-origin and the freeway merge problem

is represented in Figure 3.5, the only difference being the way the spillover curve is

defined). From the two origin problem solution, we obtain the solution for origin i,

{Y (i),τ (i)}.

We shall justify that the procedure actually yields an equilibrium solution, using

the following equilibrium property of the homogeneous network.

Property UE(3). (or aggregation by-node) For each node i, the equilibrium depar-

ture curve from i, Ai,i−1, and the arrival curve at the destination of commuters passing

i, Yi, depend on the total upstream population and the distribution of downstream

populations, but not on the distribution of commuters across upstream origins.

Proof : Property UE(3) follows directly from the insight derived in chapter 2. We

showed that in the two origin homogeneous network problem, for any given time-

dependent capacities at the destination node D, qD(t), and at the merge M , qM(t),
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an equilibrium solution existed where the actual departure curves from D, DD(t),

and from M , DM(t), were a function of the total population N (A) + N (B) only but

did not depend on the ratio N (A)/N (A). (Recall that this was mainly a consequence

of Property UE(2)). The same principle applies now. Consider first the equilibrium

solution for the last two origins R and R − 1 whose routes coincide at merge R −

1. For any possible solution at the downstream origins {Y (r),r = 1 . . . R − 2}, the

equilibrium problem for origins R and R−1 reduces to a two-origin network problem

with known available capacity at O , qR−1(t), and at merge R − 1 , amax
R−1,R−2; hence,

the equilibrium arrival curve at the destination for people crossing merge R−1, YR−1

and the observed departure curve at node R − 1, DR−1,R−2 are only a function of

the aggregated population upstream of node R − 1, NR−1 = η(R) + η(R−1). That
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is, property UE(3) holds for merge node R − 1. It is apparent too that commuters

at downstream origins will then ‘act’ as if a single origin existed upstream of merge

R − 1. Hence, the equilibrium solution for these origins will be as if origin R and

R − 1 where combined, i.e., as if the freeway had R − 1 origins. Hence the foregoing

logic can now be applied to the shortened freeway to show that the property UE(3)

holds for r = R − 2 and then by recursion to the rest of origins. �

Note in particular, that, YO(t) ≡ Y1(t) will be a function of the total population

N1 and the freeway capacity qmax only. Knowledge of Y1(t) allows determining, by

solving a three link problem: {Y (1)(t), τ (1)(t)}, which is the solution for origin 1 and

{Y2(t), τ1(t)}, which gives the upstream population departures curves from O and

from merge node i = 1. In turn, the latter curves allow finding {Y (2)(t), τ (2)(t)} and

{Y3(t), τ2(t)} by solving another 3-link problem, etc. . . The specifics of this procedure

are described below.

3.4.2 Solution algorithm

The algorithm is summarized in table 3.1. The recursion to obtain {Yi+1(t), τi(t)}

from {Yi(t), τi−1(t)} is implemented more efficiently by also including the state vari-

able τM
i , the virtual delay for the aggregated upstream of node i (which includes η(i)),

and iterating instead on {Yi, τi−1, τ
M
i }. It turns out that τM

i represents the worst case

delays or delays experienced from the most disfavored origins upstream of i (we call

these maximum delays). Recall from chapter 2 that necessarily one of the two up-

stream origins experienced these worse delays (equal to the delays experienced if all

upstream population came from a single origin) while the delay for the other origin

could be less. Now too, the delays for some upstream origins can be less than τM
i .

At each iteration, equilibrium behavior is link (i, i − 1) is directly obtained from
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{Yi, τi−1, τ
M
i } (step 1 ). The departure curve upstream of node i − 1 is directly given

by Di,i−1(t − τi−1(t)) = Yi(t). To obtain the arrival curve at link (i, i − 1), Ai,i−1

(i.e., the actual departure curve at node i), we can use directly the procedure in §3.2.

Since by virtue of Property UE(3), we treat all upstream users as coming from a single

upstream origin, the curve AM
i,i−1(t−τM

i (t)) = Yi(t) represents the desired inflows into

link (i, i − 1); hence, the demand curve AU
i,i−1 is defined as the highest curve with

slope ≤ qmax underneath AM
i,i−1. The spillover curve AD

i,i−1 is defined as a function of

Di,i−1 by (3.3). Then, the actual Ai,i−1 is Ai,i−1(t) = min{AU
i,i−1(t), A

D
i,i−1(t)}.

The merge i equilibrium solution (step 2 ) is obtained with the recipe of chapter

2. We look for the solution on the origin • with lower population-to-priority ratio, for

which potentially τ (•) < τM
i (i.e., we choose origin i if η(i)/α(i) < Ni+1/(1− α(i)); the

virtual origin M , otherwise). Only a minor variation to the solution is introduced.

Recall that when η(i) > Ñ (i) – where Ñ (i) = α(i)(Ni+1 + η(i) − NU
i ) represents the

maximum population from origin i that can depart when the merge is congested –

then τ (r) = τM
i and the excess commuters η(i) − Ñ (i) from origin i cross the merge

at any arbitrary rate at times when the merge is not at capacity (i.e., they arrive at

O when τ (r)(t) = τM
i+1(t) = τi(t) ). To avoid choosing an arbitrary flow rate when

this happens, one can assume procedure the excess η(i) − Ñ (i) commuters from origin

i will depart from the virtual origin M instead. This does not alter the equilibrium

solution since this portion of commuters always flows when neither of the approaches

is congested. Obviously a symmetric modification applies when the virtual origin M

is the approach with the lower population-to-priority ratio.
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Table 3.1. Departure-time equilibrium algorithm for the homogeneous freeway

Let Φ denote the operation that solves the single bottleneck problem for a
population N and a capacity q(t), possibly time-dependent, i.e., {Y, τ} =
Φ(N, q(t)) where Y (t)= equilibrium departure curve and τ(t) = equilibrium
delay.

1. Initialization (i = O). Solve a single bottleneck with population N1 and
capacity qmax to obtain Y1(t) = D10(t) and τM

1 (t) , i.e., {Y1, τ
M
1 } :=

Φ(N1, q
max}. Set τO(t) := 0 and update node: i = 1

2. Solve link (i, i − 1) equilibrium behavior. The substeps are:

2.1 Departure curve, Di,i−1, given by Di,i−1(t − τi−1(t)) = Yi(t).

2.2 Arrival curve, Ai,i−1, given by Ai,i−1(t) = min{AU
i,i−1(t), A

D
i,i−1(t)},

where: AD
i,i−1 from (3.3) and, AU

i,i−1(t) is given by the higher curve
with slope 6 qmax underneath AM

i,i−1(t − τM
i (t)) = Yi(t).

2.3 Obtain from τi(t) = t − A−1
i,i−1(Yi(t))

3. Solve the merge problem with populations {Ni+1, η
(i)}, aggr. depar-

ture curve Yi(t) and delay from node i, τi(t). Obtain {Y (i), τ (i)} and
{Yi+1, τ

M
i+1}. The substeps are:

3.1 Choose the approach � with minimum population-to-priority ratio
(i.e., •= origin i if Ni+1/(1 − α(i)) > η(i)/α(i)

3.2 Solve equilibrium for the approach • according to recipe of chapter
2:

{Y•, τ
M
•
} := Φ(min{N•, Ñ

(•)}, y
(•)
i }, where

y
(•)
i (t) =

{

α̃•yi(t) if τ (•)(t) > τi(t)
0 if τ (•)(t) 6 τi(t)

3.3 Update solution in each approach:

Y (i) = Y•, τ (i) = τM
•

Yi+1 = Yi − Y•, τM
i+1 = τM

i

(The opposite is true if approach • is the upstream freeway)

4. Update node: i = i + 1. Repeat 1-3 until i = R.
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3.5 Numerical analysis

Results are presented for the case where a population NT is uniformly distributed

along an homogeneous freeway of capacity qmax, jam density kj and length `T . There

are R equally-spaced ramps with equal priority ratio α̃(r) = α; hence, η(r) = NT /R ∀r.

The 6 parameters that control this symmetric setting (qmax, kj, L,NT , α, R) can be

reduced to 3 if we use as units of time 1/qmax, units of length L and units of pop-

ulation NT (i.e., q̂ = q/qmax, ˆ̀ = `/`T and N̂ = N/NT ). The new parameters

are: k̂j = kj`T /NT , the relative storage capacity of the freeway as a percentage of

total population; R, the number of ramps; and α, the ramp priority. Note that k̂j

is inversely proportional to the average population density, NT /`T , hence an indirect

measure of population sprawl.

The commute cost for each origin, C̃(r) , is expressed as a fraction of the equivalent

equilibrium cost suffered in a single origin scenario.6 Note that the cost C̃(r) is purely

associated with congestion and scheduled delay since it does not include the time

portion corresponding to free-flow trip times.

Figure 3.6 shows typical commute cost curves as a function of the origin distance

to the destination for different k̃j (and fixed α = 0.2, R = 15). For all three curves,

cost increases as a function of distance, the increase being sharper the further away

from the destination; beyond a critical location, cost remains constant. The reasoning

behind this behavior has to be found in the effects of queues and merge priorities.

The principal queues will appear at the most downstream merge and will spill beyond

the access ramps located close to the destination during most of the peak time.

Commuters in these origins hold an advantage since they can arrive at the preferred

6Assuming a V-shaped schedule penalty function with with earliness and lateness conversion rate
e and L, the single bottleneck cost is NT

qmax
eL/(e + L).
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times and save a great part of the delay by cutting ahead of the queue (i.e., they

experience some delay at the ramp but this is much less that the equivalent delay

experienced in the upstream freeway for the same arrival time). As origins get further

away, spillovers are less prominent and commuters choose to arrive at least preferred

times where the delays experienced at the ramp are still smaller (instead of withstand

the maximum equilibrium queues in the freeway at the most preferred arrival times).

Beyond a critical location, commuters in the upstream origins must endure the full

delay (either at the ramp or at the freeway) independently of the time they choose

to arrive at. This is the same delay they will endure if everybody came from a single

origin. Examples of origins in each of these scenarios are shown in Figure 3.7. For each

origin, the total equilibrium delay (solid line) and the freeway delay (dashed line) are

compared as a function of the arrival time to the destination. The difference, when

positive, is the actual delay experienced at the ramp. (On the other hand, when

negative, commuters at the origin do not depart.) Note that for the first origin shown

r = 3 (ˆ̀ = 0.08), freeway delays are never large enough as to discourage arrival in

the times close to the deadline. For origin r = 10 (ˆ̀= 0.38), however, commuters are

‘forced’ to arrive at very early arrival times when the freeway delays are shorter than

the equilibrium ones; at the times close to the deadline, delays in the freeway are

larger and no flow of commuter from this origin happens. Finally, for origin r = 15

(ˆ̀= 0.58), commuters are indifferent among any arrival time, since they must endure

the maximum equilibrium delays either part at the ramp and the freeway or entirely

at the freeway.

Consequently with the above behavior, commuting cost should grow as the relative

storage capacity increases since spillovers will be less likely. This is confirmed in

Figure 3.6. Since storage capacity increases with population dispersion, – recall that
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Figure 3.6. Individual congestion cost vs. origin location. Sensitivity with k̂j

(α = 0.2; R = 15).

Figure 3.7. Equilibrium delay vs. freeway delay (k̂j = 0.6; α = 0.2; R = 15).

k̂j = kj`T /NT –, this is implies that a more disperse population results not only on

longer non-congested trip times but also on increased congestion in the freeway. This

confirms the initial insights derived for the two-origin network in 2.

Conversely, as shown in Figure 3.8, an increase on the number of ramps available

renders the individual cost down. The gain is more important in origins closer to
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Figure 3.8. Individual congestion cost vs. origin location. Sensitivity with R
(k̂j = 0.6; α = 0.2).

the destination since these origins benefit from larger outflows during the intervals

where commuters can cut ahead of the queue. Figure 3.9 shows that an equivalent

effect is obtained if the priority of ramps is increased. This confirms the idea that

current ramp metering practice (which conversely reduces priority of downstream

access points at the most congested times) may lead to undesirable outcomes.

To assess quantitatively the importance of these phenomena, table 3.2 displays

the change on total system cost as a function of both population sprawl and ramp

accessibility (cost are expressed as a percentage of the total equilibrium cost in a

single origin scenario). The percentage changes indicate that the effects of population

sprawl are very limited. Most costs saving arise mainly as a result of the priority that

commuters in downstream approaches hold. This somehow hopeful for society since

it implies that adequate ramp metering (or equivalently, other access-control policy

such as tolls) may compensate for the undesirable sprawl effects.
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Figure 3.9. Individual congestion cost vs. origin location. Sensitivity with α (k̂j =
0.6; R = 15).

Table 3.2. Total cost sensitivity (as % of single origin cost)

Relative storage capacity (k̂j)

Ramps 0.2 0.4 0.6 0.8 1

r = 10 0.81 0.82 0.84 0.85 0.86

r = 15 0.73 0.76 0.79 0.81 0.81

r = 20 0.69 0.73 0.76 0.78 0.79

r = 25 0.67 0.71 0.75 0.77 0.77

3.6 Final remarks

The analysis in this chapter should have an important influence on the way urban

economists treat congestion. The traditional economic analysis, as discussed in the

introductory chapter, has been based on steady-state models that are flawed when

applied to spatial/dynamic settings. Here we have presented an alternative robust
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characterization of traffic that can be used to study spatial problems more adequately.

Since timing decisions and traffic dynamics are determined endogenously, our cost

curves provide a consistent structural relationship between population distribution

and congestion cost.

Our results suggest that, after all, population distribution may not be such an im-

portant driver of congestion costs on corridors with predominantly single destination

work trips. In such instances, policies aimed at changing commuters timing behav-

ior (e.g., congestion tolls or access control policies) may be more efficient in general

than those aimed at controlling urban growth. Today, there is a renewed interest

among policy makers in access-control schemes that combine time-dependent traffic

tolls with restricted automobile access. The efficiency gains that can be achieved

by across-the-board tolls, however, have a regressive effect on non-wealthy popula-

tion groups-and this often makes them politically unpopular. More equitable tolling

schemes that exempt from the toll a different subset of the vehicular population each

day (e.g., on odd or even days, by weekday, etc.) have been devised [Daganzo and

Garcia, 2000]. Our equilibrium results strongly suggest that spatial equity should also

be considered in the design of tolling schemes, since the desired effects of tolls may

differ with location given the distributed impact of queues. In that regard, the design

of time and location-dependent tolling strategies to reduce congestion is a promising

alternative.

The study of urban location pattern as a function of congestion should be also

adapted to our representation of costs. Next chapter embeds the freeway model on

a more general urban traffic model. Some simplifications on the traffic assumptions

are also considered that yield continuous closed-form solutions and, at the same time,

preserve most of the realism of the models.
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Chapter 4

Mono-centric Cities

This chapter extends the equilibrium analysis to consider the evolution of conges-

tion in mono-centric cities; i.e., in cities with all trips bound to a central location

where all the economic activity happens (the central business district or CBD). Com-

muters can choose to travel to the CBD using the freeway network or an alternative

dense grid of city streets. We model this choice under departure time equilibrium.

Section 4.1 presents a general model. Customarily, we assume the freeway as subject

to congestion and the alternative street network as non-congested (note that we could

alternatively consider another non-congested mode of transportation). This general

model is too complex and requires numerical solutions. In section 4.2, a radially sym-

metric city is considered where the analysis can be reduced to study traffic behavior

in a single linear freeway/arterial system. We show that the same logic in chapter 3

can be used to solve this linear problem analytically and obtain additional insight.

Finally, section 4.3 proposes a continuum approximation. By considering a continu-

ous solution, we are able to obtain an approximate closed-form expression that links

congestion cost with the continuous population distribution.
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4.1 General case: Freeway network/street grid

A typical mono-centric city transportation network is represented in Figure 4.1.

It consists of two main components: a freeway system and an underlying dense grid

of streets that allows commuters to travel between each origin and destination, and

between freeway access ramps. The freeway system is modelled as a many-to-one

tree network with homogeneous links (i.e., with unique paths from each origin to

the common destination). The street network is modelled as a continuum with no

congestion, with fixed travel times between each pair of points always larger than the

equivalent free-flow travel times on the freeway between the same points.

Origins are located along the freeway network. Each origin i represents a neigh-

borhood with population η(i). Commuters always prefer to use the freeway from their

respective origins when the latter is not congested. As congestion builds up, however,

they have the following possibilities: (a) travel from their origin to O on the freeway,

(b) use the street network to access the freeway at other less congested origins and

travel on the freeway from there to O, and (c) travel directly to O on the street

network.

4.1.1 Homogeneous freeway tree network

If we consider that commuters travel to CBD using exclusively the freeway net-

work from their respective origins, one needs only considering the departure time

equilibrium problem on the freeway network as a function of the populations {η(i), i =

1 . . . R}. It should be obvious from Property UE(3) in chapter 3 that the sequential

procedure in §3.4 can also be applied to any tree network of homogeneous freeways.

In this case, at each merge node, virtual upstream origins must be considered on both

approaches to each merge. The solution still progresses traversing each branch of the
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O (CBD)
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Figure 4.1. Mono-centric city: freeway-street grid representation.

tree, starting from the root.

4.1.2 Freeway network and street grid (Route-choice)

The equilibrium problem with freeway/street route choice can be treated as if

we had an elastic demand across origins. Besides commuter timing, we also need to

decide for each origin population η(i): (a) which portion uses the freeway from origin

i, η
(i)
i , (b) which travels through any of the other origins η

(i)
j , j 6= i, and (c) which

travels on the street network to the destination, η
(i)
0 . Obviously, η(i) =

R
∑

j=0

η
(i)
j .

For each origin i, let ∆Tij > 0, j 6= i represent the additional time required to

travel from origin i to O through origin j assuming free-flow on the freeway (i.e.,

option (b)) and ∆Ti0 the additional time required to travel from i to O on the street

network (i.e., option (c)).1 Logically, ∆Ti0 6 ∆Tij + ∆Tj0. As in chapter 3, we

set the free-flow travel times on the freeway equal to zero. Hence, the ∆Tij can

1Note that ∆Tij = TS
ij + TF

j0 − TF
i0 6= ∆Tji where TS

ij is the travel time between i and j on the

streets and TF
ij on the freeway. Equivalently, ∆Ti0 = TS

i0 − TF
i0 .
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be interpreted as extra travel times (i.e., delays) for the transformed delay − based

problem. Furthermore, under the no street congestion assumption, commuters using

the street network always arrive on time; hence, their total congestion cost is fixed

and equal to ∆Ti0. In this case, the population split vector η = {η
(i)
j : i = 1 . . . R, j =

0 . . . R} must be determined to satisfy the following cost constrains:

[∆Ti0 − C̃(i)] η
(i)
0 6 0 ∀i (4.1)

[∆Tij − (C̃(i) − C̃(j))]η
(i)
j 6 0 i, j = 1, . . . R , j 6= i (4.2)

Equation (4.1) states that for each origin i, the equilibrium congestion cost in the

freeway cannot exceed the additional travel time in the street network since, in this

case, commuters would shift to the streets in a proportion that makes freeway conges-

tion cost equal to street excess travel time. Similarly, equation (4.2) states that the

difference in congestion cost between two origins must never exceed the additional

inter-origin street travel time, since, if this happens, a portion of commuters from the

higher cost origin i will choose to travel through the lower cost origin j.

The general freeway/street grid problem can then be treated as a bi-level equilib-

rium problem:

• At the lower level, the freeway network equilibrium problem can be solved con-

ditional on the population split vector η. Note that the number of commuters

travelling in the freeway from each origin will be η̃i =
R
∑

r=1

η
(r)
i . We can use the

algorithm in §3.4.2 to obtain the unique freeway congestion cost associated with

each origin.

• At the upper level, one must find the vector η that satisfies the set of inequality

constrains (4.1)-(4.2), using the implicit relationship between η and {C̃(i) : i =
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1, . . . R} given by the freeway equilibrium problem (i.e, the lower level).

This bi-level equilibrium problem can be easily recast as a finite-dimensional nonlinear

complementary problem (NCP) or a fixed-point problem (FPP) and solved numeri-

cally with one of the several heuristic methods available for this type of problems; see,

for instance, Facchinei and Soares [1995] for NCP; Nagurney and Zhang [1998] for

projected FFP. Not much insight can be derived in this way and we shall not pursue

the procedure forward. Instead, we concentrate on the case of a radially symmetric

city.

4.2 Symmetric case: Linear freeway/arterial

In many urban analyses, it is customary to assume a symmetric ring/radial net-

work of freeways and streets and a symmetric population distribution around the city

center (or CBD). The problem can then be reduced to study just the behavior in one

of the radial freeways. In this case, we can represent the freeway/street network by a

system composed of a single linear freeway and a parallel arterial. We shall show that

one can make use of the recursive logic in §3.4 to determine the final equilibrium.

4.2.1 Extended solution procedure

Let ∆Ti(i−1) represent the additional required (free-flow) travel time on the street

network to move from ramp i to i − 1 and ∆Ti0 the additional travel time in the

street network to reach the destination O from origin i. We assume that ∆Ti0 =

∆T(i−1)0 + ∆Ti(i−1); i.e., travel in the street network is parallel to the freeway. Under

this assumption the following property must hold:

Property UE(4). If upstream origin i sends flows through origin k (i.e., η
(i)
k > 0)
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then it can also send flow through all the intermediate origins (i.e., η
(i)
j > 0, j =

k . . . i).

Proof: The proof is immediate by contradiction. Consider that property UE(4) does

not hold for an intermediate origin j, that is, origin i sends flow through k but cannot

through j. Hence, condition (4.2) implies C̃(i) < ∆Tij + C̃(j) and C̃(i) = ∆Tik + C̃(k),

or equivalently combining the two conditions, ∆Tik − ∆Tij < C̃(j) − C̃(k). Since the

parallel travel in the arterial requires ∆Tjk = ∆Tik −∆Tij, we get ∆Tjk < C̃(j) − C̃(k)

which clearly violates condition (4.2). �

The same recursive logic in §3.4 can be used to determine the {η
(i)
j , i = 1 . . . R, j =

0, . . . , i} and the final equilibrium cost {C̃(i), i = 1 . . . R}. We start by the most

downstream merge and solve each merge progressing upstream (i.e., adding one origin

at a time). At each merge i, we assume that {Y (r), τ (r), r = 1, . . . , i − 1} are known

and that the associated {C̃(r), r = 1, . . . , i − 1} satisfy (4.1) and (4.2). (Note that

now {Y (r),τ (r)} represent the arrivals and equilibrium delays of all commuters entering

the freeway at ramp r; these may include commuters from other origins upstream of

r. At the same time, C̃(r) represents both the equilibrium cost for origin r and the

commuting cost experienced by travelling in the freeway from ramp r). For every

merge, the solution is obtained in two major steps:

First, we obtain the solution for the two-origin problem with virtual upstream origins

but without considering route choice for these origins (i.e., ∆Ti,j = ∞, ∆TM,j =

∞, j = 0, . . . , i). This can be done as in §3.4.2; steps 1 and 2 in table 3.1. We

obtain the solution for origin i {Y
(i)
NR, τ

(i)
NR} and the cost C̃

(i)
NR, where the subscript

NR indicates that this solution does not incorporate route choice.

Second, we must update the origin i solution to take in account route choice. By
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virtue of property UE(4), we just need to identify the lower j s.t. ∆Tij + C̃(j) < C̃
(i)
NR.

Three different scenarios may arise:

(a) C̃
(i)
NR < ∆Ti(i−1) + C̃(i−1). Then C̃

(i)
NR satisfies both (4.1) and (4.2) for all j =

0, . . . , i−1. This implies that all commuters from i choose the freeway at ramp i

and {Y
(i)
NR, τ

(i)
NR} is the origin-i equilibrium solution (at the end of the merge-step

i).

(b) ∆Ti(k−1) + C̃(k−1) < C̃
(i)
NR < ∆Tik + C̃(k). Then, η

(i)
j > 0 ∀j = i, . . . , k. In

this case, some commuters from i choose to use ramps i to k. As shown in

chapter 2, a shift in the relative populations between two origins will only

increase cost for users in the least cost origin. Hence, with a shift of population

from i to (i − 1) the equilibrium cost at i must remain C̃(i) = C̃
(i)
NR while

the new commuting cost for using the freeway from origin (i − 1) must be

C̃(i−1) → C̃(i−1) = C̃
(i)
NR − ∆Ti(i−1). Since C̃(i−1) has changed, condition (4.2)

does not hold for (i−1) anymore. Using the same reasoning, C̃(i−2) → C̃(i−2) =

C̃(i−1) −∆Ti−1(i−2), and so on, for the rest of downstream origins until origin k.

(c) ∆Ti0 < C̃
(i)
NR. Then, η

(i)
0 > 0, that is, some commuters from i travel to O on

the street network. The equilibrium cost for all downstream origins must be

updated as C̃(j) → C̃(j) = ∆Tj0, j = 1 . . . i.

The {Y (r), τ (r)} must then be recalculated for all the origins r = k, . . . , i for which

C̃(r) has been updated. This can be done using steps 1 and 2 in table 3.1, noting that

now the equilibrium {t
(r)
s , r = k . . . i} are already given by t

(r)
s = p−1(C̃(r)) and the

equilibrium delays by τ (r)(t) = C̃(r) − p(t). This finalizes the merge i solution. By
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construction the new {Y (r), r = 1 . . . i} satisfy the equilibrium conditions (4.1) and

(4.2). One can then proceed then by iteration to solve the origin/merge (i + 1).

4.2.2 Some basic results

Some important qualitative insights can already be gained even without explicitly

solving the problem.

A main conclusion is that the existence of an alternative to the freeway would not

always relieve congestion, i.e., it will not always reduce system cost. For instance, in

case (b) above when some users have an incentive to use downstream ramps to travel

to the CBD but not to travel directly to the destination through the street network,

the system congestion cost always increases with respect to the freeway-only solution.

Note that this situation always arises in cases where the final access to the CBD can

only be done through the freeway (e.g, a bridges is the only access to a peninsula or

an island like in San Francisco, Manhattan or Hong Kong).2 This apparent paradox-

ical behavior is a dynamic reminiscence of Braess’s Paradox [Braess, 1968]. Similar

paradoxes in a dynamic scenario with fixed time-dependent OD demand and point

queues can be found in Akamatsu and Kuwahara [1999]. Our results here are stronger

since timing decisions are also considered. From a policy standpoint, this suggests

that such undesirable route-choice must be discouraged.

In cases when a part of the upstream population uses downstream ramps but

also reaches the destination directly through the street network case (case (c) above),

there is a cost trade-off: cost savings arise because a net amount of population is

completely shifted away from the freeway, but some additional cost is also imposed

into downstream users by part of the upstream commuters still using downstream

2In this case, ∆Ti,O = ∞, ∆Ti,j < ∞.
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ramps. It is reasonable to believe that normally the former will offset the latter, but

there is no evidence that this would always be the case.

In the extreme case when all upstream commuters travel to the destination either

using the freeway from their origin ramp or directly through the street network – e.g.,

the alternative to the freeway is another mode of transportation instead of the street

network – 3, then cost always decreases with respect to the freeway-only scenario.

4.3 A continuum approximation analysis

To study the behavior of a large system like a city traffic network, it is convenient

to consider a continuous model, as an approximation to the (discrete) network for-

mulation. This approximation characterizes the system by means of a few significant

continuously distributed variables (e.g., population density) and enables to generalize

the analysis to more complicated problems.

The urban economics literature uses extensively the continuous representation to

analyze the interactions between congestion, infrastructure provision and residential

location in mono-centric cities; see chapter 1, §1.1.4. Unfortunately, these urban mod-

els represent traffic behavior and congestion incorrectly by assuming a local congestion

model. This literature would benefit from an alternative continuous approximation,

based on the freeway equilibrium model proposed in chapter 3.

4.3.1 Traditional vs. KW-based equilibrium representation

We shall first briefly revisit the traditional continuous model as presented in Mills

and de Ferranti [1971] and Solow [1973] to compare it with a continuous version of

3In this case, ∆Ti,O < ∞, ∆Ti,j = ∞



88 4 Mono-centric Cities

our freeway equilibrium solution. In agreement with this literature, a single freeway

model (symmetric city) is considered and no route choice is explicitly modelled.

4.3.1.1 Traditional local congestion model

A total population NT is continuously distributed over a length `T with a density

of η(x) commuters per kilometer, where x is the distance from the CBD.4 Every

commuter accesses the freeway at his residential location x. Freeway characteristics

are given by the freeway width at each location which determines the capacity qmax(x).

For consistency with the rest of the analysis, a homogeneous capacity qmax(x) = qmax

is considered from now on.

The objective is to obtain an expression of the commuting cost C̃(x) which in this

case is only a function of the travel time from location x, τ(x). Congestion is modelled

assuming a steady-state situation, where travel time per unit length at location x,

τ̇(x) = dτ(x)
dx

(i.e., the inverse of the speed), is a function Ψ of the ratio between the

location steady traffic flow d(x) and the freeway capacity. The function Ψ(�) can take

several forms but usually, a BPR-like power function is adopted; i.e.,

Ψ(x) = τu

(

1 +
d(x)

qmax

)a

(4.3)

where τu represents the free-flow travel time per unit length and a is a dimensionless

constant.

Some implicit assumptions about commuter departure timing are adopted to ex-

press the traffic volume at each location as a function of the population distribution

η(x). Customarily, it is assumed that commuters depart uniformly in time so as to

joint upstream commuters as they pass through the origin in question. Hence, every

4The CBD is assumed not to take up space.
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arrival interval contains the same mixture of origins (i.e., all origins) in the arrival

stream [Solow, 1973].5 In this case,

d(x) = ν

∫ `T

x

η(x)dx. (4.4)

where ν is dimensional factor to account for the departure spread of the population

over the rush hour (i.e, ν converts populations into steady flows and has units of

time−1; it is normally chosen to bound the maximum travel cost to a desired value).

Since the local congestion model does not explicitly consider propagation of con-

gestion in space or time, the assumptions about how people lump together govern

completely the shape of the location-based delay function. Unfortunately, these as-

sumptions are arbitrarily adopted more for the convenience of modelling that for their

realism.6 Consequently, any analysis of location patterns based on this local repre-

sentation of congestion must be considered very carefully. Consider, for example, the

case of a uniformly distributed population η(x) = η, a congestion function Ψ with

a=1 and neglect free-flow travel times; hence, (4.4) yields τ(x) = κη(`T x − x2/2)

with κ = τuν/qmax and it can be concluded that spreading the same population over

double the distance (i.e., η̃ = η/2; x̃ = 2x) will double the congestion cost. This result

is, however, only a fictitious consequence of the assumption that all upstream popu-

lation lump together in the traffic stream. Different assumptions will yield different

results.7

5Users depart in the same interval at all origins except for a time shift equal to the freeway trip
time.

6Mills/Sollow bundling of all upstream population in a common cohort may be adequate to
represent congestion in public transportation systems. One can imagine that a common vehicle
picks up people as it travels to the CBD and riders experience a progressive discomfort as the
vehicle becomes crowded. However, this assumption is not amenable to model freeway congestion.

7For instance, Yinger [1993] assumes that users stagger their departures so as to arrive to the
destination in order of distance to the destination. The model assumes a two-dimensional city and
accounts for the perpendicular travel time/distance necessary to reach the single freeway. For the
linear case above, however, the model yields d(x) = νη(x) and, assuming a = 1 and η(x) = η,
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4.3.1.2 Continuous KW-based equilibrium model

A more robust continuous representation of the congestion cost as a function of

distance and population distribution can be obtained taking the limit of the discrete-

ramp freeway equilibrium solution in chapter 3 as the number of ramps R → ∞.

For consistency, one must keep the aggregated ramp priority per unit length constant

to a value α(x).8 Although no formal proof is provided here, extensive simulations

showed that the cost curve C̃(r) converges to a continuous solution C̃(x) as R → ∞.

C̃(x) is always an upper-bound to the actual discrete-ramp costs with the same ramp

priority per unit length. The bound is tight for moderately large number of ramps

(R > 15).

Using a similar dimensional analysis as in §3.5, a full range of curves representing

congestion cost (expressed in units of NT /qmax) as a function of distance (expressed

in units of `T ) can be obtained for any population distribution in terms of two main

parameters: k̃j = kjNT /`T and α = α(x). One can as well consider a parameterized

family of population distributions, e.g., η(x) = ηe−βx, and define the cost curves as a

function of the new parameter (β).9

From a practical point of view, however, it even more convenient to have a simple

analytical expression of the cost. An analytical expression can be incorporated in

other models of urban behavior (e.g., the mentioned models of residential location

choice in Solow [1973]). Unfortunately, an exact closed-form solution is not readily

τ(x) = κηx. Hence, the location-based congestion cost turns out to be independent of city size.
Yinger’s assumption is rather absurd: it basically implies that users do not get in the way of each
other; that is, there is no congestion interaction among populations at different distances, which is
precisely what one wants to model. It is mentioned here, however, to make evident the dependence
of the solution on the arbitrary timing assumptions.

8One should consider α(x) such that α(x) = lim
R→∞

{

lim
∆x→0

(

∑

i∈[x,x+∆x]

α(r)/∆x

)}

. The function

α(x) has units of length−1.
9If we normalize to NT = 1 and L = 1, then η = β

1−e−β .
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available for the general case. For that reason, we shall consider some special cases

for which exact closed-form solutions can be obtained and derive an approximate

expression for the rest.

4.3.2 Full ramp priority solution

It is assumed here that ramp flows can block completely the freeway; i.e., α̃(r) = 1

in the discrete case, α(x) = ∞ in the continuous case. Obviously, this is not fully

realistic but captures in the limit the fact that downstream ramp users enjoy a priority

over upstream traffic and hold a location advantage. If the number of ramps per unit

length is high, the solution with this assumption could coarsely approximate real

behavior.

The analysis of how cost changes with location is notably simpler with this as-

sumption. Note that commuters at any origin can always flow out of their ramp at

the maximum capacity qmax whenever the freeway is not blocked immediately down-

stream. Therefore, in an equilibrium, they choose the most favorable time, no queues

form on the on-ramps and all delay occurs in the freeway. Furthermore, the equilib-

rium cost C̃(x) must necessarily be non-decreasing with x.10 The cost C̃(x) defines in-

terval [ts(x),tf (x)] where commuters at x can depart, where C̃(x) = −ets(x) = Ltf (x).

Since arriving at ts(x) implies always cutting ahead of upstream commuters and fac-

ing no traffic downstream, one only needs deciding if the infinitesimal population at

[x, x + dx], dN(x) = η(x)dx departs on the neighborhood of ts(x) or at other times

by comparing the earliness with the delay experienced in any point in [ts(x), tf (x)].

These delays will depend on the behavior of queues.

10Note that if the equilibrium cost for a upstream commuter arriving at time t is smaller than the
cost experienced by commuters at some origin downstream, the latter would reduce their cost by
cutting ahead of the former.
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To provide a clearer understanding, we shall describe the solution for three differ-

ent scenarios: (a) zero freeway storage (kj = 0), (b) infinite freeway storage(kj = ∞),

and (c) finite freeway storage (0 < kj < ∞). Rather than providing a formal proof

we shall give a graphical intuition for the shape of the cost curve in each of these

cases; see Figure 4.2. (Of course, one can always check that the solution proposed is

actually exact by using a continuous version of the algorithm in §3.4.2.)

Zero freeway storage. This is equivalent to assuming that sudden capacity restric-

tions at any section propagate to all upstream sections of the freeway immediately;

i.e. vehicle sizes or queues are infinite. In this case, vehicles cannot queue on the

freeway and commuters at any ramp have always the incentive to arrive at the closest

arrival times to the deadline not used by commuters in downstream ramps; i.e., they

behave as if they faced a bottleneck with zero capacity during the interval used by

downstream users [ts(x), tf (x)] and the full capacity qmax otherwise (see Figure 4.2a).

Therefore,

dC̃(x) =
dN(x)

qmax

eL

e + L
. (4.5)

Hence, the equilibrium cost can be directly obtained as

C̃(x) =
N(x)

qmax

eL

e + L
. (4.6)

Infinite freeway storage. The opposite limit case assumes that queues only have

a local effect at every merging section and do not affect upstream ramps capacity. In

this case, late departure always implies mixing in common queues with the upstream

population. Two different regime may exist:

(a) Commuters originating downstream of a given location x∗ (yet to be defined)
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always prefer to depart on the early side since otherwise they would lose their location

advantage. This implies that

dC̃(x) =
dN(x)

qmax

e. (4.7)

(b) Commuters originating upstream of location x∗ arrive all mixed during the late

interval and hence experience the same cost equal to the maximum single-origin bot-

tleneck cost, NT

qmax

eL
e+L

.

To see how this comes about in more detail consider the equilibrium representation

in Figure 4.2b. Users downstream of x∗ choose to arrive during [ts(x
∗), 0] = [N(x∗)

qmax
, 0]

ordered by origin distance. Upstream commuters behave as if they they came from a

single origin and faced a bottleneck of capacity 0 during [N(x∗), 0] and qmax otherwise;

see the upper triangle in Figure 4.2b. Note then when commuters at any x < x∗ arrive

in the early ts(x), they cut ahead of the upstream demand and experience no queues

downstream; hence, their cost is C̃(x) = eN(x)
qmax

. If they choose to depart late at

tf (x), they will have to mix with upstream commuters which have departed earlier

and suffer a cost C̃(x) = NT

qmax

eL
e+L

. Hence, as long as eN(x) ≤ NT
eL

e+L
, they prefer to

depart early and the location x∗ is such that N(x∗)e = NT
eL

e+L
. The final cost curve

can be defined by parts in the following manner:

C̃(x) =















e
x
∫

0

η(x)
qmax

dx = N(x)
qmax

e if 0 6 x 6 x∗

NT

qmax

eL
e+L

if x∗ 6 x 6 L

. (4.8)

Finite freeway storage. The finite storage capacity can be intuitively derived as

a mix of the two previous cases. Note that in the infinite case, users at x < x∗ are

discouraged from departing late because all upstream commuters can get ahead of
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*
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Figure 4.2. Continuous solution. Full ramp priority (qmax = 1).

them and, hence, they would endure the full delay (or the full lateness once the queue

has cleared). With finite storage, there is a maximum quantity kjx of upstream

commuters which can queue in front; hence, if the freeway stops being blocked at

t = 0 commuters at x can wait to depart at t =
kjx

qmax
when all the vehicles in front

have cleared and the freeway opens. In this case, they experience no delay and suffer

a maximum lateness L
kjx

qmax
; see Figure 4.2c-d, where the shaded area represents the
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maximum delays experienced at location x given that all downstream commuters

departed in the early side. Hence, people can still choose to arrive late and enjoy a

location advantage in some cases. Three regimes are possible:

(a) Commuters at x still arrive at the early time ts(x) only when N(x) < L
e
kjx; see

Figure 4.2c. Hence, as in the infinite storage case,

dC̃(x) =
dN(x)

qmax

e. (4.9)

(b) Commuters depart early and late as soon as N(x) = L
e
kjx; see Figure 4.2d.

In this case, further observation reveals that if dNs(x) and dNf (x) are the shares

of the population dN(x) that arrive at ts(x) and tf (x) respectively, then edNs(x)
qmax

=

L
(dNf (x)+kjdx)

qmax
;11 hence,

dC̃(x) =
dN(x) + kjdx

qmax

eL

e + L
. (4.10)

Note that for dNf (x) to be positive, we need dN(x) > L
e
kjdx; otherwise, regime (a)

will happen.

(c) Finally, as soon as C̃(x) = NT

qmax

eL
e+L

, users suffer always the maximum cost and

are indifferent among any late available arrival time.

For the sake of simplicity, we have discussed a particular case where regime (a)

first happens downstream and then (b) follows upstream. This may not always be the

case and, depending on the population distribution, the solution may switch between

regimes several times as we progress upstream of x. Regime (a) will occur first when

η(0) > L
e
kj and it will prevail until η(x̄) = L

e
kj for some x̄. Then, regime (b) will

11Note that if some commuters from x depart from their ramp at t, commuters at [x + dx] suffer

a maximum additional delay at t + dt equal to
kj

qmax
dx.
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happen as long as (N(x)−N(x̄)) < L
e
kj(x− x̄). A new transition to (a) will happen

for the next x̃ such that N(x̃) − N(x̄) = L
e
kj(x̃ − x̄). In this case, it is easy to prove

that C̃(x̃) =
N(x̃)+kj x̃

qmax

eL
e+L

always.

Taking in account all these, the cost curve for the finite storage case will then

be given by the lower envelope of the curve
N(x)+kjx

qmax

eL
e+L

with slope lower of equal to

η(x)e and always bounded by the maximum single origin cost NT

qmax

eL
e+L

. Logically, we

recover the zero storage and infinite storage solution when kj → 0 and ∞ respectively.

Full analytical expressions can be obtained for the particular case of a population

distribution with decreasing η(x) – e.g., η(x) = ηe−βx, β > 0. In this case, the cost

curve is defined as

C̃(x) =































N(x)+kjx

qmax

eL
e+L

if 0 6 x 6 x̄

C̃(x̄) + N(x)−N(x̄)
qmax

e if x̄ 6 x 6 x∗

NT

qmax

eL
e+L

if x∗ 6 x 6 `T

(4.11)

where x̄ is such that η(x̄) = L
e
kj and x∗ is such that C̃(x∗)qmax + (N(x∗)−N(x̄))e =

NT
eL

e+L
. Equation (4.11) can be simplified further assuming that only one of the

two first domains takes place in the same cost curve. If η(0) < L
e
kj, then x̄ = 0

and C̃(x) = N(x)
qmax

e in [0, x∗]. If η(0) > L
e
kj this is not true but one can consider

instead that C̃(x) =
N(x)+kj

qmax

eL
e+L

in [0, x∗] since the difference with the exact solution

is generally very small.

A equivalent expression for increasing η(x) – e.g., η(x) = ηe−βx, β < 0– is,

C̃(x) =































N(x)
qmax

e if 0 6 x 6 x̃

N(x)+kjx

qmax

eL
e+L

if x̃ 6 x 6 x∗

NT

qmax

eL
e+L

if x∗ 6 x 6 `T

(4.12)
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where x̄ is such that N(x̄)e = (N(x̄) + kjx̄) eL
e+L

(x̄ = 0 if η(0) > L
e
kj) and x∗ is such

that (N(x̄) + kjx) eL
e+L

= NT
eL

e+L
.

4.3.3 Partial ramp priority approximations

For more general problems where α(x) = α < ∞, an exact closed-form expression

C̃(x) cannot be obtained (or when it is possible, it has a cumbersome expression). A

reasonable approximation can be obtained instead by adopting the cost expressions of

the full priority case, but assuming a distribution of population ηα(x) = η(x)+ 1
α

∂η(x)
∂x

,

i.e., a cumulative population Nα(x) = N(x) + η(x)
α

.12

To see why this approximation is reasonable consider the solution with partial

ramp priority and zero freeway storage. Users at x take as given the decisions of

downstream users and observe a time-dependent available capacity at the destination,

y(x, t). Unlike in the full ramp priority case, users at x do not block the freeway

completely, but they always use a share α of this available capacity. Since, no freeway

delays are possible, the solution interval Π(x) = [ts(x), tf (x)] of arrivals for each

location x will be given by the single bottleneck solution with capacity αy(x, t); i.e.,

η(x) =

∫

Π(x)

αy(x, t)dt. (4.13)

with C̃(x) = −ets(x) = Ltf (x). To see then how cost changes as a function of η(x),

one can apply Leibniz’s rule into (4.13) to see how Π(x) changes; hence,

∂η(x)

∂x
=

∫

Π(x)

α
∂y(x, t)

∂x
dt +

dtf (x)

dx
αy(x, tf (x)) −

dts(x)

dx
αy(x, ts(x)). (4.14)

12Note that ηα(x) may be < 0. In this case, dC̃(x)
dx

< 0.



98 4 Mono-centric Cities

Then, taking in account that ∂y(x,t)
∂x

= −αy(x, t) and dC̃(x) = −edts(x) = Ldtf (x),

equation (4.14) yields

1

α

∂η(x)

∂x
+ η(x) =

dC̃(x)

dx

(

y(x, ts(x))

e
+

y(x, tf (x))

L

)

. (4.15)

If ηα = 1
α

∂η(x)
∂x

+ η(x) > 0, i.e., if Π(x) always grows, then y(x, ts(x)) = y(x, tf (x)) =

qmax and

dC̃(x)

dx
=

1

qmax

(

1

α

∂η(x)

∂x
+ η(x)

)

eL

e + L
. (4.16)

Hence, the approximation is exact for solutions with zero-storage and ηα > 0.

In the other cases, this approximation will work well as long ηα ≥ 0, i.e., as long

as C̃(x) does not decrease. An example is shown in Figure 4.3. The proposed closed-

form approximation is compared to the exact solution, calculated using a continuous

version of the algorithm in §3.4.2, for different storage capacity assumptions. Solu-

tions correspond to the case of a homogenous distributed population η = 1, β = 0

and α(x) = 3.0 (i.e, the continuous limit case of the discrete solutions in Figure 3.6).

In all cases, the approximation preserves the right qualitative behavior.

A general expression of congestion cost for a decreasing density distribution η(x)

is then given by,

C̃α(x) =































(N(x) + η(x)
α

+ kjx) eL
e+L

if 0 6 x 6 x̄

C̃α(x̄) + (N(x) − N(x̄) + η(x)−η(x̄)
α

)e if x̄ 6 x 6 x∗

eL
e+L

NT if x∗ 6 x 6 `T

(4.17)

with x̄ s.t. η(x̄) + η(x̄)
α̃(x̄)

= L
e
kj and x∗ s.t. C̃α(x̄)qmax + (N(x∗)−N(x̄) + η(x∗)−η(x̄)

α
)e =

NT
eL

e+L
.
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Figure 4.3. Continuous solution vs. closed-form approximation (η(x) = η; α(x) =
3).

4.3.4 Final remarks

Expressions (4.11), (4.12) and (4.17) are remarkably simple and intuitive. From

a qualitative point of view, they reveal the dependence of cost on queue spillovers

(as discussed in §3.5). Note that the three domains correspond to different spillover

situations and, clearly, increased storage capacity contributes to larger system costs.

But, more importantly, they provide a inmmediate quantification of these effects and

a clear measure of the mutual congestion interactions among populations located at

different places. Commuting cost is shown to be mainly a function of the cumulative

intervening population (i.e., the population located between the commuters residential

location and its destination). Storage capacity available downstream contributes as

additional intervening population. This should be intuitive since the storage capacity

provides an opportunity to upstream commuters to queue in front of population in
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x and hence, ‘affect’ the latter as if they were downstream. On the other hand,

priority effects are measured as a function of the density/priority ratio (if density

increases more rapidly than priority, cost necessarily must increases with distance

and viceversa). One can also observe that there is a threshold level for kj beyond

which increases in kj leave unaffected the cost curve. (The first domain in (4.11)

and (4.17) never arises for a sufficiently large kj and the cost in other domains is not

affected by kj.) This is interesting since it suggests that there is a sprawl threshold

beyond which the system congestion level stagnates.13

All these causal relationships differ greatly from the implicit assumptions made

in the traditional congestion models. Hence, the analysis done here clearly opens the

door to reconsider most of the analysis of urban location based on congestion as a

promising new line of research.

13Recall from §3.5 that k̂j =
kj

NT `T
was an indirect measure of sprawl.
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Chapter 5

Some Generalized Models of

Departure Time Equilibrium

Every model abstracts from reality in order to focus on the essentials and avoid the

details. In that regard, some simplifying assumptions were adopted in the previous

chapters, mainly that the freeway network was homogeneous and that all commuters

had the same deadline. Under these assumptions, the morning commute equilibrium

problem could be treated analytically and general qualitative insights were gained.

This chapter extends the equilibrium analysis to more general instances. The

goal is twofold. First, we seek to show that the main insights derived in chapters 2

and 3 about the spatial behavior of congestion hold under more general assumptions.

Secondly, we want to provide some additional technical analysis that can be used in

the future to define general algorithms to solve the dynamic traffic assignment problem

under the KW model of traffic flow. For that purpose, we first extend the analysis

of the two-origin network in chapter 2: in section 5.1, the case of a heterogeneous

network (i.e., links are not identical) and, in section 5.2, the case where commuters
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have different preferred arrival times. Then, in section 5.3, the freeway problem is

briefly revisited to incorporate these assumptions. Finally, section 5.4 briefly discusses

possible extensions to problems with route choice and multiple destinations.

5.1 Two-origin network: Heterogeneous links

We shall consider a network where the upstream links AM and BM have capac-

ities qAM and qBM smaller than the capacity of the downstream link MD, qMD; see

Figure 5.1.1 We shall first explore the traffic dynamics and briefly summarize how

solutions are obtained. Then, some equilibrium solutions examples are discussed. As

in chapter 2, we present solutions for: (i) cases with no bottleneck restriction at D

(qD(t) = qMD) where queues cannot form on link MD and merging effects dominate,

and (ii) cases with (time-dependent) flow restrictions at D (qD(t) 6 qMD) where queue

spillovers affect performance.

D

B

A
M

(N )
(A)

(N
(B)

) l
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qBM

qAM

q (t)D

queues
@ A
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(d) queues
@ B
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A&B

no
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Figure 5.1. Heterogeneous 2-origin network.

1When the upstream capacities are larger (i.e., qAM , qBM > qMD) the outflow is always controlled
by the downstream capacity qMD and hence, the overall behavior of the system is as if all links had
equal capacity.
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5.1.1 General solution procedure

Restricted capacity upstream may cause bottleneck starvation; i.e., the capacity

available at M or D may not be fully used even if a queue exists in one of the upstream

approaches. As result, the equilibrium problem may not always be treated as a single

bottleneck in the aggregate or be decomposed by origin. It is still possible, however,

to obtain the equilibrium solution as a function of the times {t
(r)
s , r = A,B} when

commuters in each origin first experience any delay. If these are known, so are the

equilibrium delays {τ (r), r = A,B}; see Property UE(1) in §2.2.3. Hence, we shall

show how the traffic solution for each origin can be constructed as a function of the

{τ (r), r = A,B}. The basic idea is that one can express all traffic information as

a function of the arrival time to the destination t and construct incrementally the

solution advancing over t. That is, one can build the cumulative curves in Figure 2.4

by staking successively horizontal slices on top of each other.2

We shall then express first link and merge behavior as a function of the delay

information. Note that link and merge behavior follow the KW and merge rules

outlined in §3.2 for general networks.

Link MD behavior. First, the departure rate at D, dD (≡ dMD, using the link

notation in chapter 3) will be equal to qMD if a queue exists at link MD; otherwise,

it will be equal to the observed departure rate at M , dM(≡ aMD); i.e.,

dD(t) =











qMD if τMD(t) > 0 (i.e., queues in link MD)

dM(t) if τMD(t) = 0 (i.e., no queues in link MD)
(5.1)

On the other hand, the available capacity downstream of M , dmax
M (tM) 6 qMD will

2This decomposition by arrival time has been applied to route choice equilibrium in Akamatsu
and Kuwahara [1999]; Kuwahara and Akamatsu [1993].
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depend on spillovers happening or not, i.e.,

dmax
M (tM) =











dD
D(tM) ≡ dD(tM − `

ŵ
) if τMD(t) = νMD(t) (i.e., spillover)

qMD if τMD(t) < νMD(t) (i.e., no spillover)

(5.2)

where tM = t − τMD(t) is the time of pass through point M of a vehicle arriving at

the destination at time t.

Merge behavior. The departure rate at M depends on the merge behavior, which

is controlled by the downstream available capacity dmax
M and the maximum departure

rates from each approach dmax
rM ; see equations (3.8)-(3.9). Figure 5.1b shows the

merge diagram when the approaches have reduced capacity (this figure is equivalent

to Figure 3.4).

The maximum departure rate from each approach dmax
rM depends on the queuing status

upstream, which is given by the difference between the equilibrium delays τ (r) and

τMD. If τ (r) > τMD, a queue exists upstream of approach rM . If τ (r) = τMD queues

are not present and outflow at the upstream approach must be equal to the origin

arrival rate (that is, the departure rate from the origin). If τ (r) < τMD, commuters

at origin r will not flow during at this time since the common delay at link MD is

higher than the equilibrium delay. Hence,

dmax
rM (tM) =























qrM if τ (r)(t) > τMD(t) (i.e., queues)

a(r)(tM) if τ (r)(t) = τMD(t) (i.e., no queue, feasible)

0 if τ (r)(t) > τMD(t) (i.e., no queue, non-feasible)

(5.3)

Then, four sustained scenarios are only possible in agreement with (3.9), assuming



5.1 Two-origin network: Heterogeneous links 105

from Property UE(2) that τ (A) > τ (B):3

(a) min{τ (A)(t), τ (B)(t)} > τMD(t) (i.e., queues in both approaches). Then, dM(tM) =

dmax
M (tM) and vehicles arrive at the ratio α

(A)
D (t)/α

(B)
D (t) = α̃(A)/α̃(B).

(b) τ (A)(t) > τMD(t) > τ (B)(t) (i.e., a queue in one approach and no departures in

the other). Then, dM(tM) = min{qAM , dmax
M (tM)}.

(c) τ (A)(t) > τMD(t) = τ (B)(t) (i.e., a queue in one approach and some departures in

the other). Then, dM(tM) = qAM +a(B)(tM) where a(B)(tM) = d(B)(t)/(1+ ṗ(t)).

Hence, the proportion of flows is α
(A)
D (t)/α

(B)
D (t) = qAM/a(B)(tM). This scenario

is sustained if a(B)(tM) + qAM < dmax
M (tM).4

(d) τ (A)(t) = τ (B)(t) = τMD(t) (i.e., no queues in any approach). Then, dM(t) =

a(A)(t) + a(B)(t). Furthermore, any split of flows between A and B is feasible

since the equilibrium arrival curves must satisfy dM(t) = a(A)(tM) + a(B)(tM) =

d(A)(t)/(1 − τ̇ (A)) + d(B)(t)/(1 − τ̇ (B)) = (d(A)(t) + d(B)(t))(1 + ṗ(t)).5 This

scenario is sustained as long as τ (A) = τ (B) 6 νMD.

The four situations are summarized in Figure 5.1b.

The full traffic solution can be constructed sequentially as a function of t for given

equilibrium delay curves {τ (r), r = A,B} in the following manner. For each t′ < t,

we know: the history of departures from D for each origin {D
(A)
D (t′), D

(B)
D (t′)}, the

actual delay experienced in link MD for all vehicles arrived before t {τMD(t′)}, the

time of pass through the merge M , tM = t−τMD, and the spillover delay νMD(t) – the

horizontal difference of DD(t) and the shifted DD(t − `/ŵ) + kj`. Then, we can use

3Symmetric results apply for τ (A) 6 τ (B).
4This situation never arose on the homogeneous network since qAM = qMD ≥ dmax

M (tM ).
5As shown later, if commuters have different deadlines the indetermination can be avoided.
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equations (5.1)-(5.3) and the four cases above to determine directly the increments

with t dDD(t) and dDM(tM) and {α
(A)
D (t), α

(B)
D (t)}. Hence, we can also obtain the

increments in dτMD(t) and dνMD(t) and construct the solution incrementally.

The equilibrium {t
(r)
s , r = A,B} – those that yield origin-specific departure pro-

cesses {D
(A)
D , D

(B)
D } with total outflows equal to the populations {N (A), N (B)} – must

be obtained by iteration. This is a two-dimensional search which, however, is straight-

forward since each origin total outflow is increasing with earlier t
(r)
s . Furthermore,

in many cases the search can be decoupled by origin as in the homogenous case, but

this can not always guaranteed.

5.1.2 No downstream restrictions

As in the homogeneous case, when no restrictions exist downstream of merge

M , the system behaves as a pair of single-origin bottlenecks with departure rates

coupled by the merging rule and, in this case, the solution can be decoupled by

origin. Figure 5.2 illustrates the combined final solution. Commuters from one origin

(B in the figure) flow through the bottleneck during an interval when the other

approach is always queued. Therefore, they use a fixed share of the capacity α
(B)
M (t) =

α̃(B), i.e., case (a) above. Hence, the equilibrium solution for this origin (i.e., the

interval [t
(B)
s , t

(B)
f ]) is obtained by solving a single bottleneck equilibrium with capacity

α̃(B)qMD. Origin A-commuters flow at α̃(A)qMD during the interval [t
(B)
s , t

(B)
f ] and at

capacity qAM otherwise. We obtain the arrival and departure curve solving a time-

dependent capacity single bottleneck.

From the figure, it is again evident that B-users experience less cost than A-users

if N (B)/α̃(B) < N (A)/α̃(A). The opposite is true if N (B)/α̃(B) > N (A)/α̃(A). In the limit

case, N (B)/α̃(B) = N (A)/α̃(A), the cost coincide for both origins (and the solution is as
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in the homogeneous case, since the merge section is always at the full capacity qMD).

Therefore, we recover the origin order by cost based on the population-to-priority

ratio.

As in the homogeneous case, the performance of the system can be improved by

manipulating the priorities {α̃(A), α̃(B)}. Note, however, that increasing the priority

to origin B decreases the cost for commuters on this origin but increases the cost for

the commuters in A. Therefore, there is a trade-off on the possible cost-improving

ramp metering strategies. As show in appendix A, however, it is still optimal to give

as much priority to the one the approaches as possible.

N

:(1,0)qAM

:(1,0)qAM

t
(A)

:( )qMD a a(A) (B),

N + N
(A) (B)

N /
(B)

a(B) t

o

W(t)

.

.

A B O
t

(B)

Figure 5.2. Equilibrium solution: heterogeneous links, no queues in link MD.

5.1.3 Downstream restrictions

The equilibrium patterns when queues happen on link MD can be very diverse,

depending on the characteristics of the restriction at D and the values of the upstream

capacities. Figure 5.3 shows equilibrium solutions for the case where a perennial
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bottleneck with capacity qD(t) = qD 6 qMD exists at D. We have assumed the

origin population proportions such that the cost for B-users is always smaller; i.e.,

the equivalent to solution type 1B in chapter 2 when t
(B)
s < t

(A)
s . Each solution

corresponds to a different assumption about the upstream capacities. The different

queuing episodes and the corresponding origin-specific outflow shares are defined in

agreement with cases (a)-(d) in §5.1.1: shaded areas correspond to intervals where

queues exists upstream of both approaches and the merge is saturated, i.e., case (a);

non-shaded areas correspond to intervals where only A-commuter flows, i.e., case (b);

cross-hatched areas to intervals where queues exists upstream of A but B-commuters

use the portion of downstream merge capacity not used by A-users, i.e., case (c).6

From Figure 5.3, it is apparent that the same overall qualitative behavior observed

on the homogeneous network holds now. Fundamentally, the performance of the

system worsens as the length of the common link MD increases (i.e., we shift away

the thick dashed curve in Figure 5.3). Cost for origin B increases while the cost for

origin A remains unchanged. This comes at no surprise since, as explained in chapter

2, the common link gives an opportunity for A-users to mingle in a common queue

with B-users and this is independent of the upstream capacities values. Furthermore,

the total cost may also increase as we increase the capacity of the upstream link

AM (total cost always increases if qAM > qD and may increase in some cases when

qAM < qD; see Figure 5.3b-c). This is yet another example that a ‘capacity-increasing

paradox’ can arise in dynamic scenarios as a consequence of commuter departure

time adaptation only. This was already pointed out in [Arnott et al., 1993a] using a

model with point queues. Our analysis shows, however, that such paradoxes are less

prevalent than stated there since the influence of an increase in the capacity of an

6Case (d) only arises in solutions where t
(B)
s = t

(A)
s .
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upstream link is somewhat limited by the merging interactions, which are neglected

in that latter work. A more detailed discussion can be found in appendix A.
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Figure 5.3. Equilibrium solution: heterogeneous links, queues in link MD.

From an algorithmic point of view, note that when t
(B)
s → t

(A)
s , we recover

the homogeneous case solution; i.e., in this case, the solution is not affected by



110 5 Some Generalized Models of Departure Time Equilibrium

the upstream capacities since queues in both approaches happen simultaneously

and the merge works always at capacity during these intervals. This is fortunate

because we can use the same criteria to discriminate among the different types

of solutions that arise with different populations: B-commuter cost is lower when

0 < N (B)/α̃(B) 6 (N (A)+N (B))−NU , and A-commuter cost is lower when N (A)/α̃(A) 6

(N (A) + N (B)) − NU) where NU is the total number of vehicles flowing through the

merge in non-congested conditions assuming the homogenous solution. This criterion

is independent of the values of the capacities upstream.

5.2 Two-origin network: Different deadlines

Further realism is added if we consider that commuters have different desired

times of arrival to the destination. The distribution of deadlines of commuters in each

origin can be conveniently represented by a cumulative curve W (r)(t) representing the

number of commuter wishing to arrive to D before time t (where W (r)(T ) = N (r)).

W (r)(t) is commonly assumed to be S-shaped, such that a major intensity of desired

arrivals occurs at the peak of the rush hour and a single main global congestion

period happens [Smith, 1984] – this is not strictly necessary, however. We shall

further consider that the distribution of deadlines is homogeneous across origins, i.e.,

W (r)(t) = η(r) W (t) ∀t. This condition is not unreasonable and it is very convenient

to extend the single deadline rationale naturally. Note, for instance, that η(r) plays

now the role of population N (r), i.e., the population-to-priority ratio is defined as

η(r)/α̃(r). The implication of considering deadlines distribution non-homogeneous of

across origins are also briefly explored at the end of section 5.2.2.
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5.2.1 Equilibrium under different deadlines

The equilibrium conditions must take in account that the commuters decisions

and the equilibrium cost depends on commuter’s deadline. It can be shown that

there is always an equilibrium pattern in which commuters in each origin arrive to

the destination in the order of desired deadlines; see Daganzo [1985] for a formal

proof with a single origin; Kuwahara [1990] for several origins. With this condition

(that we call fist-desired-first-in or FDFI ) one can always define for each arrival time

a unique schedule delay s(r)(t) such that D(r)(t) = W (t − s(r)(t)). Hence,

ṡ(r)(t) = 1 − d(r)(t)/w(r)(tw) (5.4)

with tw = t − s(r)(t) being the deadline of the commuter arriving at time t and d(r)

and w(r) the respective derivatives of D(r) and W (r). Furthermore, the cost for origin

r commuters can then be uniquely expressed as C(r)(t) = τ (r)(t) + p(s(r)(t)). Taking

derivatives with respect to arrival time, we obtain the following necessary condition

for equilibrium when equilibrium delays are positive and origin outflows continuous:

∂C(r)
/

∂t = 0 ⇒ τ̇ (r)(t) = −ṗ(s(r)(t)) ∀τ (r)(t) > 0. (5.5)

Similarly to the case with a single deadline, we could define for each origin the time

at which the first commuter suffers any delay, t
(r)
s . For each set of {t

(r)
s , r = A,B},

equation (5.4) and (5.5) could be used in combination with the traffic model rules in

§5.1.1 to define incrementally {τ (r)(t), s(r)(t), D(r)(t)} for each origin as function of

the departure time from D. Equilibrium would be reached by finding {t
(r)
s , r = A,B}

that make the equilibrium delay τ (r)(t) and scheduled delay s(r)(t) vanish at the same

departure time t
(r)
f .
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We shall present typical solutions with a homogeneous network (with link capacity

qmax) and discuss qualitatively some of the implications of the results.

5.2.2 No downstream restrictions

We first consider the case where no queues form at link MD, qD(t) = qD = qmax.

Figure 5.4 illustrates the final solution – we assume that the queuing period at one

approach (i.e., B in the figure) always happens when the other approach is congested,

i.e., Π(B) = [t
(B)
s , t

(B)
f ] ⊂ [t

(A)
s , t

(A)
f ] = Π(A). The equilibrium solution for this origin is

obtained by solving a single bottleneck equilibrium with capacity α̃(B)qD and deadline

curve W (B)(t) ≡ η(B)W (t). Note that outside the interval [t
(B)
s , t

(B)
f ] B-commuters

still flow at a rate d(B)(t) = w(B)(t) since they must suffer no delay or schedule

delay. More importantly if η(B) is small enough no queues appear in this approach

and people experience no congestion costs at all. Origin A-commuters must flow at

α̃(A)qD during the interval [t
(B)
s , t

(B)
f ] and at q − w(B)(t) otherwise. We obtain the

arrival and departure curve solving a time-dependent capacity single bottleneck with

deadline W (A)(t) ≡ η(A)W (t).

The individual solutions for each origin are presented in Figure 5.4a. As in chapter

2, we rescale and superimpose the two solutions in a unique aggregated in Figure 5.4b.

Note that T (A) and T (B) are A/D curves which define the equilibrium delays for

each origin.At the same time, W̃ (A)(t) and W̃ (B)(t) are re-scaled deadline-schedule

curves (or D/W curves) that define the scheduled delays as a function of the arrival

time. Although the slopes of the curves T (A) and T (B) must be the same for both

origins since commuters share a common penalty function, the departure times from

D corresponding to the vehicles that arrive on time, which are actually those that

experience the highest cost in each origin, do not necessarily coincide for both origins.
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Figure 5.4. Equilibrium solution: different deadlines, no queues in link MD.

Note that the aggregated departure curve from M , DM , necessarily coincides with

the departure curve of a single bottleneck solution with capacity qmax and aggregated

deadline curve W (t) = W (A)(t)+W (B)(t). Furthermore, since t
(A)
s = ts and t

(A)
f = tf ,

the delays for origin A must also coincide with those of the single origin solution (the

schedule delay s(A)(t) may not coincide, however). Whenever approach B is queued,

W̃ (B)(t) must increase at a rate η(B)w(t)/α̃(A). Hence, as long as η(B)/α̃(B) < 1 (i.e.,

η(B)/α̃(B) < η(A)/α̃(A)) B users queue always when the other approach is congested as

we assumed; i.e., t
(B)
s > t

(A)
f , t

(B)
f < t

(A)
f ). In this case, the cost associated with each

deadline is always higher for A-vehicles. When η(B)/α̃(B) = η(A)/α̃(A) solutions for

both origins overlap (i.e., t
(B)
s = t

(A)
s , t

(B)
f = t

(A)
f ) and the cost associated with each

deadline is equal for both origins.

This result holds whenever the distribution of deadlines is assumed homogenous

across origins,7 and is important, because implies that we can establish a ordering

7The proof seems relatively straightforward from our analysis
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of origin delays as a function of the ordering in cost C(r) (or t
(r)
s ); i.e., Property

UE(2) in chapters 2 and 3 still holds. This is relevant to extend the different deadline

analysis to multi-origin networks. For the sake of completeness, Figure 5.5 shows a

typical solution with a distribution of deadlines non-homogenous across origins. An

extreme case is represented where all B-commuters desire to arrive before time O

and all A-commuters afterwards. In this case, the aggregated departure curve from

D still coincides with that of a single origin. However, the ordering in delays does

not necessary hold and the single origin delays represents now an upper bound to the

maximum delays in any of the two origins.

a
(A)

qD

a
(B)

qD

qD

qD

t

A

##

:(1,0)qD

:(0,1)qD

t

A

B
B O

(B)

O
(B)

O O
(A)

O
(A)

T (t)
(A)

A (t)
(B)

A (t)
(A)

T (t)
(B)

D (t)M

D (t)
(B)

D (t)
(A)

(t)W
~ (B)

W (t)

(t)W
~ (A)

W (t)
(B)

W (t)
(A)

:( , )qD a a
(A) (B)

(a) Origin-specific solution (b) Aggregated re-scaled solution

Figure 5.5. Equilibrium solution: non-homogeneous deadlines, no queues in link
MD.

5.2.3 Downstream restrictions

Figure 5.6 show the aggregated final solution for the case of a permanent bottle-

neck at D and Figure 5.7 for the case of a time-dependent restriction at D. Different

types of solution may arise depending on the values of η(B)/α̃(B) and η(A)/α̃(A). In
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each figure, cases (a) to (d) correspond to different solutions for increasing η(B)/α̃(B)

with η(B)/α̃(B) > η(A)/α̃(A); i.e., a lower origin B population-to-priority ratio. Sym-

metric results follow otherwise. (Note that only the aggregated deadline curve W and

the origin-B rescaled deadline curve W̃ (B) are shown; W̃ (A) is omitted since it does

not provide additional information.)

To see that the solutions shown are equilibria consider the following:

• When τ (A)(t) = τ (B)(t) = τMD(t) 6 νMD(t) (i.e., no queues upstream, all com-

muters suffer common delay at MD), the FDFI condition requires ṡ(A)(t) =

ṡ(B)(t) = ṡ(t); hence, the outflows from each origin must be in the same pro-

portion as the desired arrivals (α
(A)
D , α

(B)
D ) = (η(A), η(B)). Graphically, we have

that w̃(B)(tw) = w(tw) = w̃(A)(tw).

• When τ (A)(t) > τ (B)(t) = τMD(t) (i.e., B-commuters suffer no delay upstream of

M), equilibrium requires that s(B)(t) = 0 and ṡ(B)(t) = 0. Therefore, d(B)(t) =

w(B)(t) or equivalently, (α
(A)
D , α

(B)
D ) = (1−w(B)/qD(t), w(B)/qD(t)). Graphically,

we have that W̃ (B)(t) = DD(t). Note that this is only sustained if τ̇MD(t) = 0.

• When τ (A)(t) > τ (B)(t) > τMD(t) (i.e., B-commuters suffer delay upstream of

M), then (α
(A)
D , α

(B)
D ) = (α̃(A), α̃(B)). Hence W̃ (B)(tw) = η(B)W (tw)/η(B) where

tw = t − s(B)(t).

The transitions between the different states correspond to the commuter in B that,

given his deadline, is indifferent between departing in one or other state.

Type 1 solutions corresponds to where η(B)/α̃(B) is small enough such that most B-

commuters experience less cost than corresponding A-commuters. Type 2 corresponds

to situations where only commuters from B arriving late experience less cost than the
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A commuters having the same deadline. Finally, type 3 corresponds to cases where

A and B commuters having the same deadline experience the same cost. In the limit

when η(A)/α̃(A) = η(B)/α̃(B) we have a perfectly symmetric solution, as in the no

spillover case. Note that unlike in the single deadline case, a unique flow assignment

satisfying the FDFI solution exists for each value of η(A)/α̃(A) and η(B)/α̃(B).

We see that increasing the priority of the smaller population approach always

reduces cost for this population. At the same time, increasing link MD length or its

storage capacity increases the total cost for this population. Note however that the

cost savings do not accrue to the complete approach population equally but depend

on commuter’s deadline. This is relevant since the average cost may not change across

origins as much as in the single deadline case, suggesting that the spatial effects of

queues are less important when commuters have different deadlines.

From an algorithmic point of view, note that since Property UE(2) holds for

the case with homogeneous distribution of deadlines across origins, the solution for

the homogeneous network can be constructed following the rationale of the single

deadline case. First, the aggregated departure curve DD(t) and the maximum delays

τM(t) are obtained as if we had a single bottleneck problem with deadline curve

W (t) = W (A)(t) + W (B)(t) and capacity qD(t) < q (Step 1). Then, the delays in link

MD τMD(t) can be inferred as in chapter 2 as a function of τM(t) and the spillover

delays νMD(t) given by Newell’s Shift (Step 2). Then, we need to obtain the solution

for the origin with smaller population-to-priority ratio as a function of [t
(B)
s , t

(B)
f ] (Step

3), where now t
(B)
s and t

(B)
f represent the first and last departure time from D at which

a commuter from B experiences any delay upstream of M . The solution of this step

is quite tedious however, since for each candidate t
(B)
s it is necessary to identify the

commuters for which the transition between different queuing states occur.
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5.3 The freeway model revisited

The analysis in the previous sections can also be extended to the case of the linear

freeway of chapter 3.

5.3.1 Heterogeneous freeway/tree networks

Reduced capacities at upstream links may restrict flow and affect the observed

departure curve at any downstream node. Hence, Property UE(3) in chapter 3 does

not strictly hold for a freeway with heterogeneous links and the equilibrium solution

at any node may depend on the distribution of population across upstream origins.

One can still try to use the recursive procedure presented in §3.4. An equivalent

two-origin problem where the upstream links have different capacity will be solved

at each merge as indicated in §5.1.1. The actual departure curve upstream of a node

will be updated according to the lower capacity of the upstream approach. Since

Property UE(3) does not strictly hold, this procedure may not always yield a feasible

equilibrium but it is reasonable to believe that the solution obtained will likely differ

very little from the true equilibrium and provide a sufficiently accurate measure of

the variation of origin costs. Note, for example, that for the two origin network the

solution for commuters in the lower cost origin is only affected by the fact that the

high-cost commuters will tend to use the maximum capacity available upstream of the

merge during the times when the former commuters flow; it does not depend, however,

on the actual solution of the high cost origin, since delays for this origin are always

higher. Hence, if the distribution of populations on the freeway network are such that

costs at origins upstream of node i is always larger then the equilibrium cost at origin

i (i.e., Π(i) ⊂ Π(j) ∀j > i), the equilibrium at origin i can be calculated as if the whole

upstream population came from a single origin and used the full capacity available
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at the link upstream; i.e., the sequential procedure must yield exact solutions.

In regard to the change of congestion cost with distance, reduced capacity up-

stream will lower the cost of the downstream origins and increase those of upstream

origins (as it is shown in the two-origin network solution). At the same time, with

narrower links queues will spillover more easily. This suggests that stepper increas-

ing gradients on the congestion cost with distance will be found in freeways with

decreasing capacity upstream. Still, there will be a threshold location beyond which

congestion costs stagnate. Further analysis needs to be pursued to provide full evi-

dence, though.

5.3.2 Different deadlines

In §5.2.1, we showed that thanks to the FDFI property of the equilibrium un-

der different deadlines, the equilibrium delays can also be uniquely determined as a

function of the arrival time of the first commuter incurring any delay in each origin.

Furthermore, if a homogenous distribution of deadlines across origins is assumed,

property UE(2) still holds. Hence, the recursive logic of §3.4 can be used to solve the

equilibrium freeway problem with different commuter deadlines merge-by-merge as

well. This would lead to an exact solution for an homogeneous freeway and approxi-

mate for a heterogenous freeway.

5.4 Final remarks

In this chapter, we have shown that the qualitative insights derived in chapter

2 hold for more general instances with an heterogeneous network and different com-

muters deadlines. Unfortunately, solving these more general cases is notoriously more
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difficult.

The analysis should now be extended to incorporate joint route and departure

time choice and consider networks with multiple destinations. It is expected that

solving the dynamic equilibrium problem exactly will not generally be possible and

that heuristics will likely be required. The insights derived in this chapter may help

adapt some of these heuristics.

For single destination networks, Akamatsu [2001] recently proposed an efficient

algorithm to solve the dynamic equilibrium under route choice and a point queue

traffic model. The procedure suggested uses the fact that the solution can be decom-

posed as a function of the common arrival time to the destination. In §5.3.1, we have

shown that, for a two-origin network, it is always possible to formulate the KW-based

traffic behavior and the departure-time equilibrium conditions as a function of the ar-

rival time. A similar formulation can be obtained for any single destination network;

hence, it seems reasonable to think that Akatmatsu’s approach could be naturally

extended to consider KW behavior and joint route and departure time choice.

Our results raise more concerns, however, about the possibility to define sound al-

gorithms for multi-destination networks. We showed that the need of preserving FIFO

when queues occur in common links leads to equilibrium solutions with discontinuous

departure episodes for some origins. At the same time, different types of solution arise

depending on the population distributions. Under these circumstances, the equilib-

rium problem for multi-destination networks may have a combinatorial nature and,

in such situations, solutions could only be obtained through ad-hoc heuristic proce-

dures. This will not be strange since less restricted problems, which combine both

FIFO and multiple destinations, are known to be hard; see Erera et al. [2002]. Huang

and Lam [2002] recently presented a simulation-based heuristic to solve joint route
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and departure time choice equilibrium in general networks with a point-queue traffic

model and a common commuter deadline. Since the algorithm proposed is based on

simulating traffic behavior, it could be straightforwardly extended to consider physical

queues – by embedding the KW model – and different commuter deadlines. Several

issues need to be solved, however. The existence of equilibria and the convergence

of the proposed heuristic depend on the continuity and monotonicity of travel times

with origin/route inflows [Huang and Lam, 2002; Smith, 1993]. These properties hold

with point queues almost always. With physical queues and fixed departure times,

however, some studies show that gridlock situations may arise where travel times are

not continuous functions of the inflows [Daganzo, 1996], or where the route choice

equilibrium can be very sensitive to the input flows and design parameters [Daganzo,

1998]. Additional analysis needs to be pursued to see if similar problems arise when

commuters can choose departure time before the heuristics available are extended to

consider traffic equilibrium with physical queues.
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Chapter 6

Conclusion

This final chapter summarizes the results in this dissertation and proposes ideas

for future research.

6.1 Summary

In this dissertation, we have analyzed how traffic congestion develops in urban

areas during the morning commute as a function of the spatial distribution of popu-

lation, and how congestion affects commuter departure time choice.

We argued that the traditional economic models of congestion provide only limited

answers to these questions because: (1) they fail to correctly consider the spatial

nature of traffic congestion by neglecting the effect of physical queues and merging

bottlenecks, and (2) they often overlook dynamic aspects such as the adaptation of

commuters departure time choice to (time-varying) queuing conditions.

As a remedy, we proposed a general analysis framework that for the first time in-

corporates both realistic traffic behavior and departure time adaptation. This frame-

work combines Vickrey’s pioneering representation of departure-time choice [Vickrey,
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1969] with the spatial model of traffic dynamics in Newell [1993] and the model of

merge traffic interactions in Daganzo [1994, 1995a].

The analytical characterization of equilibrium solutions in a stylized two-origin

network (chapter 2) enabled us to unveil fundamental insights about the effects of

merge interactions and queue spillovers in cases where commuter have different ori-

gins. Inefficient congestion levels arise as a result of commuters jockeying for the

scarce capacity in common bottleneck queues. Unlike in the traditional common-

origin case where congestion accrues to the full population uniformly, a merge bottle-

neck grants different priorities to different origins population and reduces the unde-

sirable interaction in common queues. Hence, separating the population into different

origins often results in reduced total costs. The benefits accrue principally to the less

crowded origin. This indicates that efficient ramp metering schemes can be achieved

for single-destination freeways when demand is time-elastic. The extended analysis in

chapter 5 and appendix A suggests that priority should be given to lower population

origins. We also showed that the beneficial effects of merges are partly offset if, as

occurs in long freeways, commuters have to share common downstream queues. This

implies that reducing the storage capacity of a freeway can reduce total costs for the

morning commute if all drivers travel to a common destination. This counterintu-

itive results suggest that bringing the origins closer to the destination (i.e., decreasing

sprawl) not only decreases free-flow travel times, but it also decreases delays.

From a methodological point of view, the insights above allowed us to conclude

that previous models of morning commute, which neglect the physical extent of queues

and the merging competition, tend to predict wrongly the distribution of cost among

origins and substantially overstate total congestion. Fortunately, the improvements

proposed in this thesis to incorporate spatial queuing dynamics and merging behavior
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do not increase algorithmic complexity.

By exploiting the fundamental properties of the equilibrium solutions for the ba-

sic two network model, we were able to extend the analysis to long freeway corridors

(chapter 3) and stylized mono-centric cities (chapter 4). In these settings, we char-

acterized the location-based commuting cost as a function of the distribution of pop-

ulation, freeway storage characteristics and ramp priority. Downstream commuters

experience reduced cost because they cut into the queues spilling over their access

ramps. Far upstream origins, on the other hand, experience the full cost since they

always encounter the full queues downstream. This result suggests then that, con-

trary to current ramp metering practice, it is better not to restrict ramp flows at

downstream access points. Additional analysis showed that when a non-congested

network of streets exists as an alternative to the freeway, the total level of congestion

may indeed increase with respect to a freeway-only situation. The cost increase is

observed when users use the street network to access the freeway at less congested

origins. Thus, in practical situations, it would be very important to examine how

ramp metering or other access control schemes may affect these diversion patterns.

The freeway/city models also confirmed that a larger population sprawl results on

more congestion. Nevertheless, the numerical tests indicated that the distribution of

population may not be a very important driver of congestion on cities with predomi-

nantly mono-centric work trips. Consequently, policies aimed at changing commuter

timing behavior (e.g., congestion tolls or access control policies) may be more efficient

in general than those aimed at controlling urban growth.

We finally proposed a continuum formulation as an alternative to the network-

based (discrete) representation, and obtained approximate closed-form expressions

for the commuting costs as a function of distance from the city center and the pop-
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ulation distribution (chapter 4, §4.3). These formulae (e.g., (4.17)) characterize in a

simple way: (i) the overall system evolution as a function of a few parameters, and (ii)

the congestion interaction among populations located at different locations. Further-

more, they provide a consistent structural relationship between cost and population

distribution since they incorporate endogenously realistic timing decisions and traffic

dynamics. We found that commuting cost at an origin is a weighted function of the

cumulative intervening population (the population located between the origin and the

destination) and the intervening freeway storage. They are so simple that they should

be very good substitutes for the traditional steady-state representations of congestion

costs in urban location models.

To preserve the tractability of most of the analysis in this dissertation, some

simplifying assumptions where adopted; namely, the network was homogenous and

commuters had the same desired arrival time to the destination. These assumptions

were relaxed in chapter 5 and solutions exhibited the same qualitative behavior.

6.2 Future work

This dissertation is not the final word on the analysis of morning commute con-

gestion. Several research areas related to this thesis deserve further investigation.

(a) Joint route choice/departure time models. This dissertation examined departure-

time choice in single destination networks without route choice. The consider-

ation of simultaneous route and departure time choice (SRD) is a next topic.

Some brief remarks on this matter have been outlined in §5.4. The study of

algorithms for the SRD problem is a very active research area. Some heuristics

algorithms (see, e.g., [Huang and Lam, 2002]) already exists to solve the prob-
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lem on general networks with a point-queue traffic model. These algorithms

are based on simulating traffic behavior and can be extended to consider phys-

ical queues – embedding the KW model – and different commuter deadlines.

Still, several issues need to be resolved since the existence of equilibria and

the convergence of most heuristics is not guaranteed when spillovers are an is-

sue. Computational efficiency is also important. The results in this dissertation

could be used to improve heuristic procedures in special cases. For instance,

for many-to-one networks, some route-decomposition strategy may be possible

that enables obtaining the equilibrium by solving a sequence of tree-network

problems.

(b) Polycentric scenarios. Many metropolitan areas are becoming increasingly poly-

centric nowadays. Although the single destination scenario may still applicable

if work is concentrated in a few centers, it is also necessary to analyze cases

where the working activity is very disperse. As shown in this dissertation, it

is of much value to consider scenarios that can be treated analytically. An

approach similar to the one in this dissertation can be applied to the case of

translationally symmetric cities: cities where the commuter density and the

trip distribution length are identical at every location. There is a parallelism

between this problem and the monocentric one because commuters only have

to be differentiated in one way in both cases: by location in the monocentric

city, and by commute trip length in the translationally symmetric city. Timing

decisions will depend on trip length instead of location and congestion now will

change with time but not with space.

(c) Spatially-dependent pricing. Most applied work in congestion pricing only fo-

cuses on global efficiency gains. The efficiency gains that can be achieved by
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across-the-board tolls, however, are known to have a regressive effect on non-

wealthy population groups and this often makes them politically unpopular.

More equitable tolling schemes that exempt from the toll a different subset of

the vehicular population each day (e.g., on odd or even days, by weekday, etc.)

have been devised [Daganzo, 1995b; Daganzo and Garcia, 2000]. These schemes

are now possible thanks to electronic tolling technologies, but they have only

been studied in simple cases that do not involve the geographical distribution of

population. Our equilibrium results strongly suggest that spatial equity should

also be considered in the design of tolling schemes, since the desired effects of

tolls may differ with location given the distributed impact of queues. Time-

and location-dependent tolling strategies that can reduce congestion equitably

should be sought.

(d) Capacity investment vs. sprawl. The analysis of sprawl in this dissertation has

focused exclusively on user cost. A more complete analysis must take in account

the investment costs required to provide capacity. Economists have long studied

the optimal investment problem under different pricing assumptions but always

under unrealistic static scenarios. As noted by Vickrey [1969] early on, capac-

ity is provided mainly to satisfy peak-hour demand; hence the analysis should

explicitly consider timing decisions to account for possible shifts in demand and

assess the real benefits of the capacity expansion. Not much work is done that

combines both timing and spatial effects. The continuous models presented in

§4.3 should be a good starting point.

(e) Urban Location Models Revisited. The traditional economic equilibrium models

of urban location should incorporate traffic models that account for queuing

effects. The cost curves developed in this dissertation can be used as a funda-
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mental ingredient in the determination of residential location equilibrium. Since

the proposed cost expressions are simple (e.g., a linear function of the interven-

ing people) and generally valid, they can add realism without complicating the

analysis too much. If the results are simple, further qualitative insights may be

gained into the residential location problem.
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Appendix A

Two-Origin Network: Metering

and Capacity Expansion

In this appendix, we analyze the optimal ramp metering and capacity expansion

strategies for the two-origin heterogenous network of section 5.1. Without loss of

generality, we adopt: qMD (the downstream link capacity) as the unit of capacity,

hence the capacities at the upstream links are defined as the ratios ζ(A) = qAM/qMD

and ζ(B) = qBM/qMD. Cost is expressed in units of 1
qMD

eL
e+L

(the single bottleneck

equilibrium cost with population 1).

No spillovers

Consider first the solution with no spillovers of Figure 5.2. Then the following

properties hold:

Property A.1. (Optimal Ramp Metering) If we assume fixed link capacities and

that variable priority ratios α̃(A) and α̃(B) as a function of some metering control,

then the optimal metering is always (α̃(A), α̃(B)) = (ζ(A), 1 − ζ(A)) or (α̃(A), α̃(B)) =
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(1 − ζ(B), ζ(B)).

Proof. First notice that we should always consider priority ratios such that α̃(A) ≤ ζ(A)

and α̃(B) ≤ ζ(B) since, otherwise, the full capacity downstream is never used and

the total cost can always be reduced by using the full capacity. Hence, for any

population split {N (A), N (B)}, we should look for the optimal α̃(A) ∈ [1 − ζ(B), ζ(A)]

(or equivalently, α̃(B) ∈ [1 − ζ(A), ζ(B)]).

Each origin equilibrium cost varies continuously with α̃(A). When N(A)

α̃(A) > N(B)

α̃(B) , (i.e.,

N(A)

N(A)+N(B) > α̃(A)), they are given by

C̃(A) =

(

N (A)

ζ(A)
+

N (B)

α̃(B)
(1 −

α̃(A)

ζ(A)
)

)

eL

e + L
and C̃(B) =

N (B)

α̃(B)
. (A.1)

Then,

dTC

dα̃(A)
= N (A) dC̃(A)

dα̃(A)
+ N (B) dC̃(B)

dα̃(A)
=

(

(
N (B)

α̃(B)
)2

{

N (A)

N (B)

(

1 −
α̃(B)

ζ(A)
+

α̃(A)

ζ(A)

)}

+ (
N (B)

α̃(B)
)2

)

(A.2)

and, since α̃(A) + α̃(B) = 1, we have

dTC

dα̃(A)
= (

N (B)

α̃(B)
)2

{

N (A)

N (B)

(

1 −
1

ζ(A)

)

+ 1

}

. (A.3)

Equivalently, when N(A)

α̃(A) < N(B)

α̃(B) , we have

dTC

dα̃(A)
= (

N (A)

α̃(A)
)2

{

N (B)

N (A)

(

1 −
1

ζ(B)

)

+ 1

}

. (A.4)

From (A.3) and (A.4), then we have

dTC

dα̃(A)
=



































> 0 if 0 ≤ N(A)

N(A)+N(B) ≤ 1 − ζ(B)

< 0 if 1 − ζ(B) < N(A)

N(A)+N(B) ≤ α̃(A)

> 0 if α̃(A) < N(A)

N(A)+N(B) ≤ ζ(A)

< 0 if ζ(A) < N(A)

N(A)+N(B) ≤ 1

. (A.5)
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The optimal α̃(A) is 1 − ζ(B) when 0 ≤ N(A)

N(A)+N(B) ≤ 1 − ζ(B) and ζ(A) when ζ(A) <

N(A)

N(A)+N(B) ≤ 1. When 1−ζ(B) ≤ N(A)

N(A)+N(B) ≤ ζ(A) both α̃(A) = ζ(A) and α̃(A) = 1−ζ(B)

are optimal since they yield the same total minimum optimal cost TC∗ = N(A)2

ζ(A) +

N(B)2

ζ(B) + N(A)N(B)

ζ(A)ζ(B) (ζ(A) + ζ(B) − 1).

An alternative graphical argument maybe more intuitive. Consider the arrival-time

domains Πq = {t : dD(t) = qMD = 1} and Π = {t : dD(t) > 0} in Figure 5.2.

Obviously, Πq ⊂ Π. Let dC̃(B) be the infinitesimal change in C̃(B) due to a change in

priority ζ(A). Then it is straightforward from the figure that

d|Πq| = dt(B)
s + dt

(B)
f =

1

e
dC̃(B) +

1

L
dC̃(B) =

e + L

eL
dC̃(B) (A.6)

d|Π| =

(

1 −
1

ζ(A)

)

d|Πq| =

(

1 −
1

ζ(A)

)

e + L

eL
dC̃(B) (A.7)

dC̃(A) =
eL

e + L
d|Π| =

(

1 −
1

ζ(A)

)

dC̃(B) (A.8)

Then,

dTC

dα̃(A)
= N (A) dC̃(A)

dα̃(A)
+ N (B) dC̃(B)

dα̃(A)
=

dC̃(B)

dα̃(A)

{

N (A)

(

1 −
1

ζ(A)

)

+ N (B)

}

(A.9)

Hence, we recover the same criteria as before. �

The results in property A.1 are summarized in Figure A.1. The continuous bold

lines represent the optimal metering as a function of the ratio N(A)

N(A)+N(B) . Note that

property A.1 confirms the idea that under departure time choice the optimal ramp

metering must give to one of the approaches as much priority as possible as long as

the downstream link is not starved. Since this is not generally feasible and one can

only alter the natural merge priority moderately, what the analysis suggest is that one
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should give at least some additional priority to the approach with the lower priority-

to-population ratio (i.e., ramps in the freeway). Furthermore, one should only meter

during the rush interval where queues exist in both approaches.

a
(A)

N
(A) (A) (B)

/(N +N )

z
(A)

T
C

<
0

TC<0

TC<0

TC>0

TC>0

T
C

>
0

z
(A)1-z

(B)

1-z
(B)

Figure A.1. Total cost change with metering.

Property A.2. (Capacity investment). Assume that the priority ratios are pro-

portional to each approach capacity, i.e., α̃(A)/α̃(B) = ζ(A)/ζ(B) and A is the higher

population-to-priority approach (i.e., N(A)

N(B) > α̃(A)

α̃(B) ), then,

(a) An increase in the capacity downstream capacity qMD always reduces total cost.

(b) System cost decreases with an increase in the capacity of approach B as long

as 1 − ζ(A) < N(B)

N(A)+N(B) < α̃(B).

(c) System cost always decreases with an increase in the capacity of A.

Proof.

a This is immediate since both C̃(A) and C̃(B) are inversely proportional to qMD.

(Note that C̃(A) and C̃(B) in (A.1) are expressed in units of 1
qMD

eL
e+L

.)
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b This is also immediate since when B is the lower population-to-priority origin, the

total cost is only affected through α̃(B). Increasing ζ(B) increases α̃(B), and then by

virtue of property A.1, the total cost decrease always when 1 − ζ(A) < N(B)

N(A)+N(B) <

α̃(B).

c First consider that dα̃(A)

dζ(A) = ζ(B)

(ζ(A)+ζ(B))2
and dα̃(B)

dζ(A) = − ζ(B)

(ζ(A)+ζ(B))2
. Then, taking

derivatives with respect to ζ(A) in (A.1), we have

dC̃(A)

dζ(A)
= −

N (A)

ζ(A)2
+

N (B)

α̃(B)
;

dC̃(B)

dζ(A)
=

N (B)

ζ(B)
. (A.10)

Hence,

dTC

dζ(A)
= −

N (A)2

ζ(A)2
+

N (B)

α̃(B)

(

N (A) + N (B)
)

. (A.11)

From (A.11), dTC

dζ(A) < 0 ⇐⇒ N(A)

N(A)+N(B) > ζ(A)

ζ(A)+ζ(B) . But N(A)

N(B) > α̃(A)

α̃(B) = ζ(A)

ζ(B) implies

N(A)

N(A)+N(B) > ζ(A)

ζ(A)+ζ(B) , hence dTC

dζ(A) < 0. �

Property 2 suggest that a capacity increasing paradox (i.e., total cost increasing

when more capacity is provided) is not likely, since one would normally increase the

capacity of the more congested approach.

Spillovers

The analysis of optimal metering and capacity investment complicates when spillovers

exists since equilibrium patterns can be very diverse depending on the existing re-

strictions at D. Here we develop some basic guidelines considering the case of a fixed

capacity bottleneck at D with ζD = qD/qMD < 1; see Figure 5.3.

Property A.3. Assuming A is the origin with higher population-to-priority , then:

(a) If ζ(A) > ζD, then it is always optimal to meter the combined flows at the merge,

so that no queues develop at D (i.e., qM(t) ≤ qD), and give as much priority as



142 Appendix A

possible to approach B.

(b) If ζ(A) < ζD, then metering the combined flows at M (i.e., qM(t) ≤ qD) and

giving as much priority to B as possible is still beneficial as long as α̃(A) <

N(A)

N(B) < ζ(A)

1−ζ(A)
e+L
L

.

Proof.

a This immediate from Figure 5.3b,d since reducing spillovers and giving priority to

B reduces C̃(B) but does not affect C̃(A). Actually, we can interpret this problem as

having a homogeneous network problem with link capacities qD and a ‘generalized’

spillover curve. Then, as in the homogeneous case solution, it is always optimal to

avoid spillovers.

b We use the same graphical logic of property A.1. Consider the arrival-time domains

Πq = {t : dD(t) = qD} and Π = {t : dD(t) > 0} in Figure 5.3a,c and dC̃(B) be the

infinitesimal change in C̃(B) due to any change due to metering. In this case,

d|Πq| = dt(B)
s =

1

e
dC̃(B) (A.12)

d|Π| =

(

1 −
1

ζ(A)

)

d|Πq| =

(

1 −
1

ζ(A)

)

1

e
dC̃(B) (A.13)

dC̃(A) =
eL

e + L
d|Π| =

(

1 −
1

ζ(A)

)

L

e + L
dC̃(B) (A.14)

Then,

dTC = dC̃(B)

{

N (A)

(

1 −
1

ζ(A)

)

L

e + L
+ N (B)

}

(A.15)

Since reducing spillovers or giving priority to B makes dC̃(B) < 0, then dTC < 0 ⇐⇒

α̃(A) < N(A)

N(B) < ζ(A)

1−ζ(A)
e+L
L

. �
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Note that the situation in 1 is typical of a bottleneck occurring downstream of

a ramp merge (i.e., the capacity of the upstream freeway – approach A – is always

larger than the bottleneck – D). Our results suggest that avoiding queues in the

downstream freeway, which is one of the main objectives of freeway ramp metering

should be beneficial. However, this should be done by restricting upstream freeway

flows rather than ramp flows. Since metering freeway is not possible, one would like

at least not to meter the ramp.
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Appendix B

Nomenclature

What follows is a partial list of symbols used in the dissertation. Symbols are catego-

rized by the model they refer to: first, the two-origin network (chapters 2, 5); then,

the freeway-city model (chapters 3, 4). A lower-case variable following an upper-case

variable represents the time-derivative of the latter.

Chapters 2,5: Two origin-network

r = A, B origins

A(r), a(r) cumulative departures for origin r, inflow

C̃(r) origin-r equilibrium cost

D
(r)
D , d

(r)
D origin-r cumulative departures from point D, outflows (or arrivals to the

destination)

DD, dD aggregated cumulative departure from D (outflow)

DM , dM aggregated cumulative departures from M (outflow)

DD
M , dD

M maximum cumulative allowed departures from M as determined by down-

stream conditions (“spillover curve”)

dmax
M maximum departure rate from M
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dmax
rM maximum departure rate from M coming from approach rM

kj freeway jam density (or storage per unit length)

` length of link MD

N (r) origin r population

Ñ (r) population threshold for different equilibrium solutions

NU total population crossing the merge when it is non-congested

η(r) origin r population ratio

qmax freeway capacity and jam density (homogeneous case)

qD capacity at point D (possibly time-dependent)

qM capacity at point M (time-dependent)

qMD, qrM link-MD, -rM capacities (heterogeneous case)

T (r) origin-r arrival/departure (A/D) schedule curve

t
(r)
s time when the first commuter in origin r may experience delay

t
(r)
f time when the last commuter in origin r may experience delay

vf freeway free-flow speed

W (r), w(r) cumulative desired arrivals at the destination (deadline curve)

wt deadline of commuter arriving at time t

α̃(r) congested ramp priority ratio for approach/origin r

α
(r)
D origin-r flow proportion departing from D

α
(r)
M origin-r flow proportion departing from M

τ (r) origin-r equilibrium delay (or trip-time)

τMD delay in link MD

νMD maximum possible delay (M-delay) in link MD

Π(r) arrival time interval for origin r
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Chapters 3,4: Linear freeway/Monocentric city model

r = 1 . . . R set of origin

A(r), a(r) cumulative desired departures, inflow, from origin r

Aij , aij cumulative arrivals (inflow) to link (i, j)

AD
ij cumulative allowed arrivals into link (i, j) by downstream spillovers (i.e.,

“spillover curve” at node i from node j at link (i, j)

AU
ij cumulative allowed arrivals to link (i,j) in the absence of spillovers

(i.e.,“point bottleneck” flows at node i)

amax
ij maximum arrival rate at link (i, j)

C̃(r) origin-r equilibrium cost

C̃(x) location-x equilibrium cost (continuous case)

Dij , dij cumulative departures (outflow) from link (i, j)

Drr, drr cumulative departures (outflow) from ramp r

dmax
ij maximum departure rate from link (i, j)

`ij length of link (i, j)

η(r) population at origin r

η(x) population density at location x (continuous model)

ηα(x) modified population density at location x (continuous model)

Ni aggregated population originating upstream of merge i

N(x) cumulative population between O and x or intervening population (contin-

uous model)

qmax, kj freeway capacity and jam density

Y (r), y(r) origin-r cumulative arrivals, outflow, to the destination O

Yi cumulative departure from link (i, j) (i.e., passing node i) arriving at O by

time t.

α(r) congested ramp priority ratio
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α(x) ramp priority per unit length at location x (continuous model)

αij actual flow share for incoming link (i, j) at merge (i, j)-(i′, j)

α̃ij congested capacity share for incoming link (i, j) at merge (i, j)-(i′, j)

τ (r) origin-r equilibrium delay (or trip-time)

τi freeway delay (or trip-time) from node i to O

τM
i maximum equilibrium delay experienced by users upstream of node i

∆Tij additional travel time to travel from origin i to O through origin j

∆Ti0 additional travel time to travel from origin i to O on the street network

Π(r) arrival time interval for origin r




