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“As the clarification and development of neurophysiological biomarkers continues, 
shifts in our approach to diagnosis and treatment decisions should follow. After all, 
the success of precision medicine lies within these neuroscientific advances, and will 

likely be the roadmap to a next-generation brain-based Diagnostic and Statistical 
Manual.”
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Using biomarkers to inform diagnosis, guide 
 treatments and track  response to interventions in 
psychotic illnesses
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Following the release of the recently updated fifth 
edition of the Diagnostic and Statistical Manual 
(DSM‑V), psychiatry has fallen under fire from 
critics outside and even within the field [101,102]. 
Among the most frequently mentioned criti‑
cisms is that diagnosis and treatment decisions 
are based largely on patient reports, behavioral 
observation and our ability to make inferences 
about patients’ true inner experiences (e.g., clini‑
cal judgment), rather than objective laboratory 
tests. Psychiatric researchers have long recog‑
nized that our current symptom‑based diag‑
nostic approach is inconsistent with our emerg‑
ing understanding of the overlapping  neural 
networks that subserve multiple psychiatric ill‑
nesses [1]. To address these and other shortcom‑
ings, the National Institutes of Mental Health 
(NIMH) has launched the Research Domain 
Criteria Project (RDoC) as a framework for the 
next generation of neuropsychiatric research. 
In this forthcoming RDoC era, researchers are 
encouraged to directly assay deficiencies in neu‑
ral systems in order to guide diagnosis, develop 
and inform treatments, and predict and track 
outcomes. The RDoC aims to further expand 
our knowledge of brain–behavior relationships, 
and ultimately infuse this understanding of neu‑
ral dysfunction into clinical practice and accel‑
erate the development of more effective treat‑
ments. This paradigmatic shift toward “preci‑
sion medicine” joins brain‑based disruption with 
clinical observation, serving to align patient and 
provider treatment goals for more effective out‑
comes. Here, we provide an example of a trans‑
latable EEG biomarker, mismatch negativity 
(MMN), that offers great promise for improv‑
ing our understanding, treatment, and perhaps 
even the prevention of a severely disabling and 
frequently intractable condition: psychosis. 

Many candidate biomarkers have provided 
critical insights into the pathophysiology of 
schizophrenia and related psychotic disorders. 
Some of these biomarkers include: prepulse 
inhibition of the acoustic startle reflex [2,3], and 
EEG‑based measures such as the P300 event‑
related potential amplitude [4] and cortical oscil‑
latory dynamics [5]. In this paper, we focus on 
MMN [6]. In concert with efforts to further 
infuse neuroscience into psychiatric assessment 
and care, an expert consensus panel formed as 
part of the Cognitive Neuroscience Treatment 
Research to Improve Cognition in Schizophre‑
nia (CNTRICS) initiative highlighted MMN 
as one of the more “mature” biomarkers that is 
“promising” and ready for immediate incorpo‑
ration into multisite clinical trials [7]. Recently, 
this measure has been described as a “break‑
through biomarker” [8] that is “translatable” [9] 
and potentially “the one we’ve been waiting for” 
[10] in neuropsychiatry. 

Auditory MMN: critical findings in 
psychosis
Auditory MMN reflects an automatic change 
detection process that is elicited in response 
to unattended and infrequent sound stimuli 
embedded in a sequence of frequently presented 
standard stimuli. The MMN is elicited when 
a stimulus physically differs (e.g., in duration, 
pitch, intensity) from the context of the stan‑
dard trials, and also during a sequential pattern 
violation [11]. Importantly, because MMN does 
not require sustained task engagement or even 
consciousness [12,13], it is thought to reflect an 
initial step from bottom‑up sensory information 
processing leading to the conscious awareness 
of environmental change. MMN amplitude 
reduction in schizophrenia was first reported part of
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over 20 years ago [14], and subsequent studies 
have consistently shown a reduction of MMN 
in chronic (effect size Cohen’s d = 1.00 [14–23]), 
recent onset [21–30] and even unmedicated schizo‑
phrenia patients [16,25,28,31,32]. Over the past two 
decades, other studies have demonstrated robust 
relationships among MMN deficits and clinical 
and functional impairments (e.g., [33–35]). MMN 
amplitude exhibits utility as a repeated measure 
with high test–retest stability over short and long 
(e.g., 12‑month) retest intervals in both healthy 
subjects and schizophrenia patients (retest cor‑
relation = 0.90 [36]), comparable to or exceeding 
reliability levels observed in common neuropsy‑
chological tasks [37]. Additionally, MMN testing 
is well‑tolerated by a wide range of patients [32,38]. 
Based on this collection of attributes, MMN ful‑
fills criteria for use as a biomarker in clinical 
outcome studies [37]. Moreover, MMN accounts 
for substantial portions of variance in cognition 
[6,39,40], psychosocial functioning [29,41–43] and 
level of independence in community living [35]. 

“...mismatch negativity fulfills criteria for use 
as a biomarker in clinical outcome studies.”

The vast majority of MMN studies in psycho‑
sis, however, have been cross‑sectional character‑
izations of deficits in patients who have already 
experienced a psychotic event. What is the time 
course of the emergence of MMN deficits? Are 
deficits present prior to the onset of psychosis? 
The answers to these critical questions are begin‑
ning to be addressed in longitudinal biomarker 
validation studies [28,44,45]. 

Using biomarkers to develop 
preemptive interventions for 
psychosis 
There has been a recent surge of interest in 
improving the prediction of psychosis onset in 
individuals at high risk for developing schizo‑
phrenia (for review see [9], also [45,46]). In the 
past decade, several research groups have devel‑
oped clinical criteria to identify individuals 
at clinical high‑risk for psychosis. Under the 
 Criteria of Prodromal Syndromes (COPS) [47] 
or the comparable At‑Risk Mental States criteria 
(ARMS) [48], 18–36% of the individuals iden‑
tified as clinical high‑risk for psychosis subse‑
quently developed a psychotic disorder within 
a 2–3‑year follow‑up period [49,50]. This means 
that approximately 65–80% of individuals 
identified as being at high risk do not convert 
to psychosis. This low hit rate is a major bar‑
rier for attempting prophylactic pharmacologic 

interventions, particularly with antipsychotic 
medications, which cause metabolic or motor 
side effects. Ultimately, this lack of predictive 
power has raised doubts about the utility of the 
clinical high‑risk syndrome [51]. 

Recently, longitudinal studies have shown 
that the prediction of the onset of psychosis in 
individuals at clinical high‑risk can be consid‑
erably improved by MMN recordings [9,45]. In 
the first of these studies, Bodatsch et al. com‑
pared high‑risk participants who converted 
to psychosis relative to nonconverters during 
a follow‑up period of approximately 3 years 
[28]. At baseline, converters had significantly 
smaller MMN amplitude comparable to that in 
early‑illness psychosis patients; MMN in non‑
converters was comparable to that of healthy age‑
matched controls. As an illustration of MMN as 
a biomarker, greater severity of MMN deficits 
contributed to higher estimates of individual‑
ized risk. Furthermore, Perez and colleagues 
[45] showed that attenuated MMN amplitude 
can be used to forecast the time lag to psycho‑
sis onset in high‑risk individuals – those with 
more severe MMN abnormalities more immi‑
nently developed psychosis. These and related 
studies [30,44,45,52] demonstrate the feasibility of 
identifying biomarkers that are associated with 
disease vulnerability, predicting the develop‑
ment of psychosis, estimating the interval to 
psychosis onset, and enhancing individualized 
risk‑estimation/prevention strategies [10]. 

Predicting therapeutic response: 
towards biomarker-informed 
treatment stratification
While it is now widely recognized that neuro‑
cognitive impairments present in most psychosis 
patients contribute to the severity of psychoso‑
cial disability, we can now be optimistic in our 
ability to ameliorate these impairments. Emerg‑
ing findings indicate that the impaired neural 
systems of psychiatric illnesses are not fixed, but 
may be modified by carefully designed train‑
ing interventions that harness neuroplasticity‑
based learning mechanisms [53–55]. One prom‑
ising intervention, targeted cognitive training 
(TCT), is designed to sharpen the accuracy 
and fidelity of auditory information processing 
in psychosis via daily computer‑based cognitive 
exercises [53,56]. Plastic changes within the neu‑
ral systems that subserve early perceptual pro‑
cessing are thought to feed forward to enhance 
higher order cognition [56]. Studies in psychosis 
patients who completed 50 h (1 h/day, 5 days/
week) of TCT demonstrated large effect size 
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gains that generalized to auditory‑dependent 
cognitive domains (verbal learning and memory; 
effect size Cohen’s d = 0.86–0.89), as well as 
global cognition (effect size Cohen’s d = 0.86) 
and quality of life [53]. Although TCT is effica‑
cious at the group level, individual participant 
responses vary considerably; some patients show 
little or no benefit after even a full course of 
training [53]. As such, there is a need to identify 
predictive biomarkers of response to this daily, 
resource‑intensive intervention. Since MMN 
is regarded as a robust, reliable and sensitive 
index of central auditory system plasticity [57] 
with important relationships to cognition and 
psychosocial functioning [33,35,36,58], could it 
also serve as a biomarker that predicts or cor‑
responds to changes following TCT? Studies are 
underway to investigate this application, with 
notable precedents showing that MMN predicts 
response to intensive computerized cognitive 
training [59] and psychosocial skills training [41] 
in clinical populations. 

“...biomarker-informed treatment 
stratification could delineate subgroups of 

individuals for better responses to even 
currently available treatments and contribute 

to future diagnostic classifications.”

Since MMN improves the prediction of psy‑
chosis in clinically high‑risk individuals and it 
reflects the neural systems targeted by TCT, it 
may prove useful in future treatment stratifica‑
tion algorithms (Figure 1). Current symptom‑ 
based models of diagnosis and treatment 
employ clinical assessment for symptom stabi‑
lization using medication, hospitalization and 
psychotherapy as treatment methods. As illus‑
trated in the figure, the addition of biomarker 
profiles could indicate neural circuitry patterns 

subserving/predicting: 1) disruption of auditory 
processing centers calling for neuroplasticity‑
based cognitive enhancing treatment such as 
TCT; 2) neuropsychological impairment to be 
addressed with compensatory cognitive remedia‑
tion strategies [60]; 3) maladaptive thoughts and 
social skills targeted by cognitive behavioral and 
social skills treatment for psychosis [61]; or 4) 
impaired role development requiring vocational 
training and rehabilitation services [62,63]. If suc‑
cessful, biomarker‑informed treatment stratifi‑
cation could delineate subgroups of individuals 
for better responses to even currently available 
treatments and contribute to future diagnostic 
classifications.

Future directions & unresolved 
issues
While it is easy to argue that MMN and related 
neurophysiological biomarkers have tremendous 
promise, much work is still required for their 
safe and effective application in clinical settings. 
For example, with a low base rate of psychosis in 
the general population and a movement towards 
implementing more widespread screening proce‑
dures in schools and clinics, false positives, the 
potential for misuse and other problems are a cer‑
tainty. Aside from the substantial validation that 
will be necessary to develop protocols for consid‑
ering false positives, biomarker instrumentation 
also needs to be greatly simplified for adminis‑
tration by nonspecialists. Studies are underway 
using low‑cost, portable systems reliable for 
multisite studies, similar to electrocardiography, 
with even fewer, smaller and easier‑to‑use elec‑
trodes. Biomarker tools could also capitalize on 
telemetry monitoring, where testing could take 
place in clinics, with data being uploaded to the 
cloud for sophisticated offline analyses and expert 
consultation, if required. Aside from improving 

Current clinical model Future neuroscience-informed model

Treatment stratification

    Medication
    Hospitalization
    Psychotherapy

Brain-based diagnosis and treatment

Neuroplasticity-based cognitive enhancement

Compensatory cognitive remediation

Cognitive behavioral social skills training

Vocational training and rehabilitation

    Mismatch negativity
    Prepulse inhibition
    P300
    Neural oscillatory activity
    Others

Symptom-based diagnosis 
and treatment

+
1

3

4

2

Symptom assessment and
stabilization:

Biomarker test battery:

Figure 1. Clinical and neuroscience-based models combine to improve diagnosis and develop treatment algorithms for 
psychiatric illness. 
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the hardware, software and analytic capacity, we 
still do not know which (if any) parameters are 
maximally predictive of therapeutic response. 
If these  barriers can be overcome, lengthy gov‑
ernment and other regulatory oversight will be 
required.

Conclusion
The field of neuropsychiatry has made transfor‑
mative advances in our understanding of the neu‑
ral dynamics of normal and aberrant brain pro‑
cesses. In addition, many patients benefit from 
current mental health treatments that reduce 
seriously impairing symptoms and improve 
quality of life and daily functioning – facts 
that are often overlooked by critics of our field. 
Still, patients and their loved ones have grown 
impatient with our failure to take some of the 
promising advances out of the laboratories and 
into the clinics. Care providers have similarly 
called for upgrading our therapeutic arsenals 
to better combat the complex disabling condi‑
tions they face at the front lines of their clinics. 
Given the paradigmatic shift of the NIMH to 
apply a more dimensional RDoCs template to 
fuel ongoing research, we can continue to be 
optimistic about the future utility of biomark‑
ers derived from clinical neuroscience. With 
many barriers to widespread implementation, 
a most promising example, MMN, can be used 
in conjunction with careful clinical assessment 
to identify individuals at highest imminent risk 
for developing serious mental illnesses to inform 

early intervention decisions. To avoid undesir‑
able medication side effects, cognitive train‑
ing and/or psychosocial interventions may be 
course‑altering early treatment options. 

The time is ripe for advancing the use of bio‑
markers to redefine illness criteria and evaluate 
treatment efficacy. Qualitative symptom descrip‑
tions no longer need to be used as a stopgap for 
diagnostic clarity. As the clarification and devel‑
opment of neurophysiological biomarkers con‑
tinues, shifts in our approach to diagnosis and 
treatment decisions should follow. After all, the 
success of precision medicine lies within these 
neuroscientific advances [64], and will likely be 
the roadmap to a next‑generation brain‑based 
Diagnostic and Statistical Manual. 
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