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ABSTRACT

Proper prediction of traffic flow parameters is an essential component of any proactive

traffic control system and one of the pillars of advanced management of dynamic traffic networks.

In this paper, we present a new short term traffic flow prediction system based on an advanced

Time Delay Neural Network (TDNN) model, the structure of which is optimized using a Genetic

Algorithm (GA). After presentation of the model's development, its performance is validated using

both simulated and real traffic flow data obtained from the California Testbed in Orange County,

California. The model predicts flow and occupancy values at a given freeway site based on

contributions from their recent temporal profile as well the spatial contribution from neighboring

sites. Both temporal and spatial effects were found essential for proper prediction. An in-depth

investigation of the variables pertinent to traffic flow prediction was conducted examining the

extent of the “look-back” interval, the extent of prediction in the future, the extent of spatial

contribution, the resolution of the input data, and their effects on prediction accuracy. Results

obtained indicate that the prediction errors vary inversely with the extent of the spatial contribution,

and that the inclusion of three loop stations in both directions of the subject station is sufficient for

practical purposes. Also, the longer the extent of prediction, the more the predicted values tend

toward the mean of the actual, for which case the optimal look-back interval also shortens.

Interestingly, it was found that coarser data resolution is better for longer extents of prediction.

The implication is that the level of data aggregation/resolution should be comparable to the

prediction horizon for best accuracy. The model performed acceptably using both simulated and

real data. The model also showed potential to be superior to such other well-known neural

network models as the Multi layer Feed-forward (MLF) when applied to the same problem.

Keywords: Traffic Flow Prediction, Neural Networks, Genetic Algorithms, Traffic Management.
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INTRODUCTION

Advanced Traffic Management and Information System components typically rely directly

on traffic monitoring data as inputs to their underlying decision logic. These systems utilize either

historical, current, or projected traffic data. In this context, the problem of reactive versus

anticipatory, or proactive, traffic control received considerable attention in the past few years. The

prime question is whether to formulate control decisions to react to latest observed traffic

conditions or rather attempt to forecast or anticipate short-term future conditions as the basis for

control decisions. Reactive control, as the name implies, reacts to already-observed conditions of

the traffic stream. Not only do such control systems await problems to arise before reacting but

also, the conditions of the traffic system may have changed by the time the control decisions are

formulated and implemented. In such cases, the system might operate under already-dated control

strategies. Alternatively, proactive control reacts to near-term anticipated conditions.

Consequently, the traffic network would always operate (theoretically at least) under control

strategies that are more relevant to the prevailing conditions. Therefore, anticipatory control is both

intuitively and theoretically preferred over reactive control. Nevertheless, the appeal of anticipatory

control is usually discounted because of the inaccuracy of the essential 'traffic forecasting'

component. Forecasting traffic conditions, even a few minutes into the future, has proven to be a

challenging task that needs more research and attention.

In this research, the problem of short term forecasting of traffic variables is studied and a

new Artificial Intelligence (AI) based model using a combination of Genetic Algorithms (GA) and

Neural Networks (NN) is presented.

EXISTING MODELS VS. THE PROPOSED METHODOLOGY

Evolution of traffic patterns at a particular location x is essentially a spatio-temporal

process. If both space and time are discretized, traffic patterns at a location x at time t depend on

traffic patterns at locations x, (x-i) and (x+i), i= 1,2,…n, at times (t-j), j=1,2,….,m. For such a

relatively confined environment as a freeway stretch, upstream sections send traffic to the location

under consideration and downstream sections may send backward propagating shockwaves as

well, as shown in Figure 1. Although the process is intuitively simple, its modeling is not. Several

factors interact in a complex manner, including the levels of traffic on both the affecting and the

affected sections, as well as the less well-understood effects of driver behavior. A model is

needed, the inputs to which are the measured traffic parameters up to the current interval at the

section under consideration, as well as from both the upstream and the downstream chain of
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sections, and the output of which would be the anticipated traffic conditions at that location in the

near future. The model should also be adaptive to tailor itself to the dynamic traffic environment.

Research in this area has been active in the past few years, but unfortunately not

comprehensive enough. One common approach to the problem of forecasting traffic parameters is

based on time series models. However, forecasts using time series have been found to be over-

predictive and lagging (Smith and Demetsky, 1995), which makes the prediction itself reactive in

some sense, as it follows the current measurement with some time lag. Davis and Nihan (1991)

attempted to replace the time series approach by a non-parametric regression approach, but they

concluded that the performance of their k-nearest neighbor approach “performed comparably to,

but not definitely better than, the time series approach”. Several exploratory attempts have been

made to use Neural Networks (NN) in replacement of the more traditional regression and time-

series approaches (Smith and Demetsky, 1995, Doughetry and Lechevallier, 1995, Dougherty and

Kirby, 1993). Common to all are a conclusion of potential superiority of NN and a recommendation

for further in-depth investigation under different scenarios and using larger real databases.

Existing conventional macroscopic traffic flow models also are numerous and vary from

very simple to complex. A conceptually plausible set of models is the Payne's model and its off

springs. In a series of publications, Payne (1971, 1978) introduced a traffic model that includes a

momentum equation in addition to the continuity equation characterizing the fairly old continuum

model. The momentum model was derived from car-following theory concepts. Payne’s model has

the form:
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where: u, k, x, t and ue are speed, density, distance, time and equilibrium speed respectively.

The second term on the right-hand-side of equation (1) represents relaxation to equilibrium,

that is, the effect of drivers adjusting their speeds towards the equilibrium speed-density

relationship. The third term represents anticipation, which is the effect of drivers reacting to

downstream traffic conditions (for example, the tendency to decrease speed if downstream density
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where superscripts denote time step, subscripts denote space step, and gon and goff indicates

on- and off-ramp flows.

Conceptually, the model attempts to capture shorter term dynamic deviations from

equilibrium values of traffic flow variables. Also, it attempts to capture the effects of downstream

conditions on the section under consideration. Although it has been reported that the application of

this model has presented several problems, including instability (see for instance Rathi et al,1987),

the conceptual formalization of the model is appealing. However, the mathematical formulation

might be limiting and unjustified; Artificial Neural Networks (ANNs) may better capture the overall

concept underlying the model, without the limitation of pre-specifying the model structure or the

level of nonlinearity involved.

The proposed model draws heavily of the concepts embedded in traffic flow theories and

models, as well as forecasting models. However, the model structure itself is new, adaptive and

dynamic as it is capable of tailoring itself to changes in the traffic environment and the levels of the

model's sophistication and non-linearity evolve during the training process itself. Genetic

Algorithms (GA) are used in this research to 'evolve' several advanced Time-Delay-based Neural

Networks (TDNN). This research also seeks to investigate and optimize all of the key variables in

the prediction problem, as opposed to arbitrary fixing of some of them. These are:

1. The extent of the look-back interval in time,

2. The extent of prediction in the future or prediction 'horizon',

3. The extent of spatial contribution from neighboring freeway,

4. The resolution of the data used for prediction (30 sec., 1 min., 5 min. ..etc.)

This research also utilizes:

1. Real as well as simulated freeway data.

2. Inputs from both upstream and downstream sections, to capture the effects of the incoming

traffic as well as the back propagating shockwaves.

3. Different freeway sites with different geometrics and on and off ramps.

4. Peak and around near-peak traffic conditions to capture different levels of congestion.

5. Different NN architectures.

GENETICALLY OPTIMIZED NEURAL NETWORKS

Genetic algorithms, from artificial intelligence, are defined by a problem-solving

methodology that uses genetics as its model for problem solving, applying the rules of
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reproduction, gene crossover, and mutation to a population of candidate solutions or pseudo-

organisms. Those organisms can pass beneficial and survival-enhancing traits to new generations

(Chambers 1996). GA are known to be a powerful new technology for searching through large

and complex solution spaces featuring large numbers of local minima.

Alternatively, Artificial Neural Networks (ANNs), also from artificial intelligence are

mathematical models inspired by the human brain structure. ANNs prove to be superior to

conventional techniques in the particular area of traffic pattern recognition and classification and

are capable of learning from exemplar patterns (see for instance Abdulhai, 1996). The choice of

neural networks structure and parameters, however, is an empirical-artistic exercise that relies on

“rules of thumb” derived from past development experiences. The space of possible architectures

and parameter combinations is extremely large. As a consequence, some significant amount of

trial-and-error experimental hand-crafting is necessary before an adequate solution is achieved. It

is impractical to rely on such “guesstimation” and trial and error to design networks for serious

real-world problems. The empirical approach does not always produce a near-optimal network.

Additionally, a good solution might be data-dependent, requiring re-optimization after every

significant change in the application environment. The search for the best attainable network

structure and parameter-setting combination is therefore a logical application for genetic

algorithms.

Genetic algorithms have been applied to the problem of NN design in several ways. For

instance, Montana and Davis (1989) have explored the use of GA in training a NN of known

structure. Belew et al (1990) used GA to set the learning and momentum rates for feed forward

NN. Chang and Lippmann (1991) used GA to preprocess data in order to reduce the inputs to a

NN without degrading performance. Harp and Samad (1991) explored using GA to discover the

size, structure and parameters of a network to be trained by a separate NN learning algorithm.

Koza and Rice (1992) looked at GA as a tool for developing architectures and weights together. In

1997 BioComp Systems released a Neuro-Genetic Optimizer for the architectural optimization of

neural networks. More details on the subject of using GA for NN development can be found in

Chambers (1996) and Winter et al (1995).

THE TIME DELAY NEURAL NETWORK MODEL

The Time Delay Neural Network (TDNN), schematically shown in Figure 2, features

multiple connections between the individual neurons, as opposed to single connections as in the

more basic NN. The multiple connections look-back over time to capture the temporal evolution of
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patterns in the data; i.e., each neuron is provided with a memory in order to remember previous

layer outputs for N periods of time. This is different from just lagging inputs N periods of time, as

the look-back period of the TDNN affects the hidden layer and output layer as well, causing it to

remember previously developed patterns and not just inputs. Adaptive Time NN (ATNN) extends

the TDNN by making the look-back intervals automatically adapt and change as learning

progresses, seeking phase relationships that produce higher correlation over history and

optimizing the look-back interval. Both TDNN and ATNN promise potential higher accuracy than

the commonly used Multi-Layer Feed Forward Neural Network (MLF), also known as Back

Propagation (BP).

Non time-delay NN such as the MLF can only learn an input-output mapping that is static.

This form of mapping is well suited for cases where both the input vector and the output vector

represent spatial patterns that are independent of time. It can be used to perform nonlinear

predictions on a stationary time series i.e., when its statistics do not change with time. However,

the time dimension is important for traffic flow predictions as traffic flow patterns evolve and

change with time. Therefore, TDNN is expected to outperform MLF-like models and can be

considered a more general form of the MLF. Similar to the MLF, the TDNN employs back

propagation techniques for setting weights between neurons.

To train the TDNN network, the actual response of each neuron in the output layer is

compared with a desired target response at each time instant. Assume that neuron j lies in the

output layer with its actual response denoted by Ε Φy nj and that the desired response for this

neuron is denoted by Ε Φd nj , both of which are measured at time n . The instantaneous value for

the sum of squared errors produced by the network is as follows:

Ε Φ Ε Φ• n e nj
j

Ζ �
1

2
2 . . . . . . . . .(3)

where the index j refers to the neurons in the output layer only, and Ε Φe nj is the error signal,

defined by

Ε Φ Ε Φ Ε Φe n d n y nj j jΖ ϑ . . . . . . . . . (4)

The goal is to minimize the cost function defined as the value of Ε Φ• n computed over all time:

Ε Φ• •total
n

nΖ� . . . . . . . . . .(5)

Differentiating the cost function with respect to the weight vector wji



Abdulhai, Porwal and Recker
______________________________________________________________________________________________________________________________________

7
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It is only when the expression is summed over all n that the equality holds. From (6) and using the

idea of gradient descent in weight space, the updating of the weights is done as follows:

Ε Φ Ε Φ
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where ♣ is the learning-rate parameter. For any neuron j in the network, the partial derivative of

the activation potential Ε Φ↑ j n with respect to the weight vector Ε Φw nji is given by
Ε Φ
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where Ε Φx ni is the input vector applied to neuron j . The local gradient for neuron j is
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Accordingly, we may rewrite (8) as

Ε Φ Ε Φ Ε Φ Ε Φw n w n n x nji ji j iΗ Ζ ϑ1 ♣≤ . . . . . . . .(10)

The explicit form of the local gradient Ε Φ≤ j n depends on whether neuron j lies in the output layer

or a hidden layer of the network. The local gradients for the two cases are given below as

Ε Φ
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Ε ΦΕ Φ
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Ε Φαm
T

mjn w : inner product of the vectors Ε Φαm n and wmj both of which have dimensions

Ε ΦmΗ1 .

Ε Φαm n = Ε Φ Ε Φ Ε Φξ ζ≤ ≤ ≤m m m

T
n n n M, ,......Η Η1 , a vector.

⊥ : set of all neurons whose inputs are fed by neuron j , located in a hidden layer, in a

forward manner.

Ε Φv nj : internal activation potential of neuron j that belongs to set ⊥ .

A modification to TDNN is the Adaptive Time Delay neural network (ATDNN) and the

slightly different Continuous Adaptive Time neural network (CATNN). The latter two have look-

back intervals that adapt automatically as learning progresses, seeking phase relationships that

produce higher correlation over history.

Both TDNN and CATNN have been employed in this research to develop traffic flow

prediction models. Their look-back features make them particularly appropriate for learning spatial

patterns that change in time (i.e., spatio-temporal). Therefore, they tend to be superior to time

series approaches which ignore the spatial component of the spatio-temporal patterns and also

superior to static artificial neural networks that ignore the temporal component.

FREEWAY SITE DATA DESCRIPTION

A section of interstate 5 (I-5) freeway in Orange County, California, was selected for this

research. The length of the section is about 5 miles with 9 loop detector stations along the main

line between the intersection of the I-5 and the I-405 freeways (the El-Toro “Y”) and the

intersection of Jeffrey Rd. and I-5 in the city of Irvine. This section also includes 2 off-ramps and 5

on-ramps. Therefore, flow and density data from a total of 16 loop detector stations were used.

Real-time on-line data were available via the Caltrans Advanced Traffic Management (ATMS)

Testbed headquartered the University of California Irvine (UCI). In addition to the real data, a

comprehensive set of simulated data was produced using Paramics, a state of the art, ATMS-

ready microscopic simulator (Paramics, 1998).

A dynamic Origin-Destination matrix available for the Testbed network that includes the

section noted above was used to drive the simulator; O-D Data for the evening peak of April 2,

1997, from 16:00 hr. to 18:00 hr. were arbitrarily selected. The whole Irvine network including the
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same section of the I-5 freeway was coded into Paramics with the exact geometry and loop

detector station layout as in the real world. At each detector station, flow and density values were

collected, averaged across lanes and used to develop the NN models. The finest resolution of the

data used was 30 seconds.

The simulation data set was used for training, testing and validating the TDNN. The real

data were reserved for real-world validation of the model and were not used in the development

phases due to absence of some ramp data. The neural networks were trained to predict the flow

and density in the immediate future for a middle location, based on the flow and density in the past

at the same location as well as at the neighboring upstream and downstream locations. Of the 9

main line loop stations, numbered consecutively, station number 5 was used as the location at

which prediction takes place, given the input from the other stations (1 to 4, and 6 to 9 and the

on/off ramp stations).

The “walk forward” method was used for developing the network, training on the first

number of records defined as the training set, testing on the next number of records defined as the

test set and validating on the following number of records defined as the validation set. This is

called the first “fold”. Once that is complete, the process walks forward in the data by the number

of records defined as the validation set and retrain. The process continues until the end of the file.

The “walk forward” parameters used are: 180 training records, 25 testing records and 25 validation

records.

For the genetic algorithm used to optimize the neural network structure, 30 generations

and population size of 300 were settled upon, as will be discussed shortly. The well-known

roulette wheel method was used for selection, which gives chromosomes with the highest fitness

greater probability of being selected and, hence, producing better generations.

Different sets of TDNN and CATNN were developed in subsequent phases as follows:

 Investigate the effect of the extent of prediction in future on the prediction accuracy, using 30

second data resolution,

 Optimize the spatial contribution from neighboring detector stations,

 Optimize/select data resolution that minimizes prediction errors.

PRELIMINARY INVESTIGATION AND CHOICE OF OBJECTIVE FUNCTION:

Since the number of generations and the population size used by the genetic algorithm has

a direct bearing on the optimality of the structure of the resulting neural network, a phase of

preliminary investigation was necessary. In this phase, 30-second flow and densities from all
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stations were used to train TDNN and CATNN to predict flow and density values at the middle

station number 5.

The extents of prediction in future were: 30 seconds, 1, 2, 4, 5, 10 and 15 minutes. An

optimization run using the GA to produce a winner TDNN or CATNN was made for 'each'

prediction extent. The objective (fitness) function used was the Average Absolute Error (AAE),

defined as the absolute of the difference between the actual value and the predicted neural output

and is averaged across all records as follows:

Ε Φ
AAE

y y

n
actual predicted

Ζ

ϑ�

where:

yactual = actual value of the output in the data set;

ypredicted= predicted output value, and

n = number of records in the data set.

For each of the prediction horizons, the population size and the number of generations

used by the GA to optimize the NN were incremented and the effect of the results observed.

The population size was incremented from 30 to 300 and the number of generations was

incremented from 10 to 30. It was observed that as both numbers increased the prediction errors

decreased. However, higher numbers of generations and population sizes were found not

warranted due to minimal improvements and considerable increase in run times. Therefore, the

number of generation was set to 30 and the population size to 300 in the remainder of the

research.

EFFECT OF EXTENT OF PREDICTION ON PREDICTION ACCURACY

To examine the effect of the extent of prediction on prediction accuracy, data resolution

was fixed to 30 seconds and the spatial contribution was also fixed to full contribution from all loop

stations. The TDNN and CATDD both optimize the look-back interval (temporal contribution).

Although the TDNN has a fixed look-back interval (as opposed to the CATNN), the GA optimizes

its look-back interval. The GA examines several TDNNs, as chromosomes in the gene pool during

optimization, with varying look-back interval settings; and, hence, the look-back interval gets

optimized as well. However, it should be made clear that each TDNN in the population has a fixed

look-back interval. In the case of the CATNN, each network varies the look-back interval during

training, together with the variety of networks in the population processed by the GA, resulting in



Abdulhai, Porwal and Recker
______________________________________________________________________________________________________________________________________

11

an optimized look-back interval. An optimization scenario using the GA is implemented for each

prediction horizon of 30 seconds, 1, 2, 4, 5, 10 and 15 minutes. The resulting optimal network in

each case is validated on the validation data set and the error reported. Figures 3.a, for example,

show the predicted and actual flow and densities for the case of a 30-seconds prediction. Figures

3.b show the same for the other end of the spectrum for a 15 minutes prediction.

From the plots of predicted value versus actual values (not all are shown in order to save

space), it can be seen that the predicted flow and density values are quite close to the actual

values for up to 2-minutes of prediction. After two minutes, the predicted values tend to become

closer to the mean of the actual values, which becomes very evident at 15-minutes extent of

prediction. This is in agreement with expectations; as the extent of prediction increases it

becomes increasingly difficult to predict far ahead using 30-second dynamics, and the model

resorts to guessing the 'average'.

Figure 4 shows a summary of the extent of prediction versus the average absolute

percentage error, defined as:

Ε ΦΕ Φ
Average Percentage error value

y y

y
N

actual predicted

actual

Ζ

ϑ *
/

100

where N is the total number of records for which predictions are made.

It can be seen from the figure that the average percentages of error are less than 10% for

both flow and density up to 4 minutes of prediction extent. After 2 minutes, the average

percentage error values exceed 10% and increase gradually to 15% for 15 minutes prediction.

The best neural network that survived the genetic evolution over the 300 generations in this case

was the TDNN (and not the CATNN).

The GA also reports the optimal ”look-back” interval for each extent of prediction. The

look-back interval is the number of time steps in the past that affected the prediction the most. An

interesting pattern of look-back intervals was observed. The “look-back” interval was found to

decrease as the extent of prediction increased, indicating that the temporal history has less

bearing on far predictions--the best guess for which is around the mean values. Figure 5 shows

the “look-back” interval vs. the extent of prediction.

EFFECT OF SPATIAL CONTRIBUTION ON PREDICTION ACCURACY

In this section, the effect of the extent of upstream and downstream spatial contribution on

the prediction accuracy is examined. Spatial contribution is defined as how many loop detector

stations, upstream and downstream the subject station #5, are included in the training. For any
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given extent of prediction, four data files were prepared. The first data file had the spatial

contribution from all the detector stations except the farthest two mainline stations. In the second

data file the penultimate stations were dropped as well as any on/off ramp stations in between the

farthest and the penultimate station pairs, and so on. The fourth data included the subject station

#5 only (i.e., no spatial contribution and predictions are based on temporal history only). The

extents of prediction used were 30 second, 1 minute and 15 minutes only to keep the number of

optimization runs reasonable. Figure 6 shows the average absolute error versus the extent of

spatial contribution for the three prediction extents respectively. Figure 7 shows the relationship

between the extent of prediction and the error for the cases of full spatial contribution and no

spatial contribution at all for contrast. The following observations can be made:

� The less the spatial contribution the higher the error as shown in Figure 6,

� Three stations on both sides of the subject loop station are probably sufficient. It should be

noted that its extremely difficult to obtain good loop data from a large number of consecutive

loop stations, in practice,

� The longer the extent of prediction (towards 15 minutes) the less pronounced the effect of the

spatial contribution. Figure 7 shows that the benefit from full spatial contribution as opposed to

no contribution at all is much more evident in the case of 30-second predictions.

EFFECT OF DATA RESOLUTION ON PREDICTION ACCURACY

In this section, the effect of data resolution itself on the accuracy of prediction is examined.

The resolutions considered were 30 seconds (the original data), and 1 minute, 2 minutes, 5

minutes and 15 minutes aggregations of the original data. The extents of prediction were

multiples of the resolution of data used. For 2 minutes resolution, the extents of predictions were

2, 4, 6 , 10 and 14 minutes. Similarly, for 5 minutes resolution the extents of prediction were 5,10

and 15 minutes. All of the detector stations were considered to provide full spatial contribution.

Figure 8 summarizes the errors versus the extent of prediction for all resolutions used.

Figure 9 summarizes the effect of data resolution on prediction error for the case of 15 minutes

prediction, taken as an example. It can be seen that the higher the level of aggregation (the lower

the resolution), the lower the prediction errors in general for all prediction horizons. This is due to

the disappearance of erratic dynamics in the values of flow and occupancy, common at 30 second

readings and due to closer fit of the predicted values to the actual ones. This finding should be

carefully interpreted, however. It does not mean that higher levels of aggregation and coarser

data are always better, but rather that higher levels of aggregation are better only for longer
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prediction horizons. For instance, if 10 minute predictions are desired, 10 minute resolution is

best, and so on. That is, the level resolution should be the same as the prediction horizon. This is

significant because it has been thought that finer data should lead to better results.

VALIDATION OF TRANSFEREABILITY TO REAL TRAFFIC DATA

To validate the models transferability and verify that the above findings from simulated

traffic scenarios are applicable to the real world, a validation phase using real freeway data was

conducted. Real 30-second flow and occupancy data were obtained from the ATMIS testbed,

headquartered at the University of California Irvine (UCI). The Testbed is connected to the

Caltran’s District 12 (D12) Traffic Management Center over fiber optic lines, giving access both to

real time data as well as historical data. The data collected for validation were for the two evening

peak hours, i.e., 1600 hr. to 1800 hr. on the 15th of November, 1997. This date was selected after

thorough search for good data from consecutive loop stations on different dates and different

sections of the freeway. The selected site was on the I-5 North in San Clemente and San Juan

Capistrano in Orange county, California. The selected freeway stretch included the section

between South of Vaquero up to San Juan Creek. Only the data for mainline stations were used,

due to the absence of on/off ramp data from several consecutive stations. Holes in the data were

filled using interpolation. Data files were prepared similar to the case of simulated scenarios. The

extents of prediction used were kept the same i.e., 30 sec, 1 min, 2 min, 4 min, 5min, 10min and

15 minutes in future. The genetic and neural parameters for training and testing were also kept the

same.

Figure 10 shows the comparison of the average percentage errors for flow prediction for

both real data and simulated data. It can be seen that the model behavior in the real world follows

the same trends observed with simulated data, therefore, the previous findings are validated. The

average percentage errors were found slightly higher for the case of real data than for simulated

data for many extents of prediction. Also, the difference between the average percentage error

values for real data and simulated data seem to increase as the extent of prediction increases.

This could be attributable to more dynamics in the real data as well as less accuracy due to

absence of ramp data and holes in the mainline data.
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COMPARISON TO THE MLF MODEL (ZHANG1997)

In this section, the variety of TDNNs developed in this research is compared to the widely

used Multi Layer Feed Forward model (see for instance Zhang & Ritchie 1997). The prime

differences in their effort are:

� The spatial contribution was limited to only one neighboring station,

� The model used was the MLF NN,

� Extent of prediction was set to 15 seconds only,

� Data resolution was also set to 15 seconds only,

� Inputs used were speed, density and ramp volumes,

� Only simulated data were used.

To facilitate cross comparison, Zhang's model was replicated using the same data from

this research as well as 30-seconds resolution instead of 15. Figure 11 shows the relative

performance of the two models.

It can be seen that the average percentage error for TDNN with no spatial contribution is

the highest. However, the average percentage error for the MLF is higher than the TDNN with

same spatial contribution. This shows that TDNN is superior to the MLF for traffic flow modeling

and prediction, mainly because of its ability to “look-back” over time and select the optimal

temporal contribution. Also, the percentage error for TDNN with full spatial contribution is the

lowest. This clearly indicates the significance of both the temporal and spatial contributions to

capture and predict spatio-temporal traffic patterns.

SUMMARY AND CONCLUSION

In this paper, we presented a new short term traffic flow prediction study and produced a

system based on an advanced Time Delay Neural Network (TDNN) model synthesized using

Genetic Algorithms (GA). The model structure was presented and its performance validated using

both simulated and real traffic flow data obtained from the California Testbed in Orange County.

The model predicts flow and occupancy values based on their recent temporal profile at a given

freeway site during the past few minutes as well as the spatial contribution from neighboring sites.

Both temporal and spatial effects were found essential for proper prediction. An in-depth

investigation of the variables pertinent to traffic flow prediction was conducted; the extent of the

look-back interval, the extent of prediction in the future, the extent of spatial contribution, the

resolution of the input data, and their effect on the prediction accuracy. Obtained results indicated
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that the less the spatial contribution the higher the prediction errors, and that the inclusion of three

loop stations in both directions of the subject station is sufficient for practical purposes. Also, it

was found that the longer the extent of prediction, the more the predicted values lean towards the

mean of the actual ones for a given data resolution. The optimal look-back interval also shortens

due to becoming increasingly irrelevant. Interestingly, results revealed that coarser data resolution

is better for longer extents of prediction. The implication is that the level of data

aggregation/resolution should be comparable to the prediction horizon for best accuracy. The

model performed acceptably using both simulated and real data. The model also showed potential

to be superior to other well-known neural network models such the MLF.
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Figure 1 Schematic Illustration of the Traffic Forecasting Problem

Figure 2. Architecture of the Time Delay Neural Network
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Figure 3.a. 30 sec. predictions using 30 second data resolution
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Predicted vs. actual 15 min. flow values
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Figure 3.b. 15 min. predictions using 30 second data resolution
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Percentage error for Flow and Density
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Average percentage errors for Flow predictions
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Prediction accuracy for different prediction horizons
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30 second: Density
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1 minute: Flow
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Predicted vs. actual values
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A-9

Predicted vs. actual values
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A-10

Predicted vs. actual values

0

100

200

300

400

500

600

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

Tim scale (minutes)

de
ns

ity
(v

eh
/m

i)

Predicted

Actual

Percentage error

-100

-80

-60

-40

-20

0

20

40

60

80

100

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

Time scale (minutes)

pe
rc

en
ta

ge
er

ro
r

va
lu

e

10 minute: Flow



Abdulhai, Porwal and Recker
______________________________________________________________________________________________________________________________________

A-11

Predicted vs. actual values
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A-12

Predicted vs. actual values
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A-13

Predicted vs. actual values
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A-14

Predicted vs. actual values
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