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CORRECT SPECIFICATION AND IDENTIFICATION OF
NONPARAMETRIC TRANSFORMATION MODELS

PIERRE-ANDRE CHIAPPORI AND IVANA KOMUNJER

Abstract. This paper derives necessary and sufficient conditions for nonpara-

metric transformation models to be (i) correctly specified, and (ii) identified. Our

correct specification conditions come in a form of partial differential equations;

when satisfied by the true distribution, they ensure that the observables are in-

deed generated from a nonparametric transformation model. Our nonparametric

identification result is global; we derive it under conditions that are substantially

weaker than full independence.

1. Introduction

A variety of structural econometric models comes in a form of transformation mod-

els containing unknown functions. One important class are models of binary choice in

which the underlying random utilities are additively separable in the stochastic term

as well as the unobserved attributes of the alternatives; a simple two-good version

of a demand model à la Berry, Levinsohn, and Pakes (1995) is one specific exam-

ple. Another class are hedonic models studied by Ekeland, Heckman, and Nesheim

(2004) and Heckman, Matzkin, and Nesheim (2005). Further examples of nonsep-

arable econometric models that fall in the transformation model framework can be

found in a recent survey by Matzkin (2007).
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2 PIERRE-ANDRE CHIAPPORI AND IVANA KOMUNJER

The present paper focuses on the following two questions: first, is it possible to test

whether a nonparametric transformation model is correctly specified? and, second,

under what conditions is the correctly specified model also identified? Regarding

the first question, our main contribution is twofold. We derive testable implications

of nonparametric transformation models that come in a form of partial differential

equations; in addition, we show that these equations are also sufficient for the mod-

els to be correctly specified. This means that any observed distribution satisfying

these equations can indeed be derived from a nonparametric transformation model,

the components of which can moreover be explicitly constructed. Regarding the

second question, our main result is to show that transformation models are nonpara-

metrically globally identified under conditions that are significantly weaker than full

independence.

Extant literature offers few discussions on the subject of correct specification of

nonparametric transformation models. The question that we ask is whether such

models put restrictions on the distribution of the observables, restrictions which when

violated would invalidate the assumption of the transformation model being correct.

Conversely, we seek conditions on the observables which when satisfied guarantee that

the transformation models are correctly specified. Among the few papers addressing

this issue, one can mention Buera (2006) and Chiappori and Ekeland (2008) both

of which deal explicitly with restrictions that take the form of partial differential

equations.

We now discuss how the identification result of our paper relates to the literature.

It is well-known that in nonparametric linear models Y = g(X) + ε, the unknown

function g can be identified from E(ε|Z) = 0 w.p.1 if the conditional distribution of

the endogenous regressor X given the instrument Z is complete (see, e.g., Darolles,

Florens, and Renault, 2002; Blundell and Powell, 2003; Newey and Powell, 2003;

Hall and Horowitz, 2005; Severini and Tripathi, 2006; d’Haultfoeuille, 2006). Given

that the model is linear in g, this identification result is global in nature. Nothing
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is said, however, about the identification of the conditional distribution Fε|X of the

disturbance.

In this paper, we show that a similar completeness condition—when combined

with independence—is sufficient for identification of T , g and Fε|X in a nonparamet-

ric transformation model Y = T
(
g(X) + ε

)
, where T is strictly monotonic. Specif-

ically, we work in a framework in which X can be decomposed into an exogenous

subvector XI such that ε ⊥ XI , and an endogenous subvector X−I whose conditional

distribution given Z is complete. Our main assumption is that E(ε|Z) = 0 w.p.1.

Even though the nonparametric transformation model is nonlinear in g and Fε|X ,

we obtain identification results that are global. We note that by letting θ ≡ (T, g)

we can write the model as a special case of a nonlinear nonparametric instrumental

variable model E
[
ρ(Y,X, θ)

∣∣Z] = 0 w.p.1 where ρ(Y,X, θ) ≡ T−1(Y ) − g(X). For

such models, Chernozhukov, Imbens, and Newey (2007) propose an extension of the

completeness condition that guarantees θ to be locally nonparametrically identified.

It is worth pointing out that their results are local in nature, and that nothing is

being said about the identifiability of Fε|X .

Our results are close in spirit to those obtained by Ekeland, Heckman, and Nesheim

(2004) who show that assuming ε ⊥ X is sufficient to establish nonparametric iden-

tifiability of T , g and the distribution Fε of ε (up to unknown constants). In the

same paper, the authors derive an additional result that relaxes the independence

assumption and replaces it with E(ε|X) = 0 w.p.1. They show that the latter is

sufficient to identify general parametric specifications for T (y, φ) and g(x, θ) where

φ and θ are finite dimensional parameters. Once T (y, φ) and g(x, θ) are specified,

the results derived by Komunjer (2008) can be used to further check whether global

GMM identification of φ and θ holds.

We extend Ekeland, Heckman, and Nesheim (2004) in two important directions:

first, we prove nonparametric identification of the function T even when the regressor

X contains an endogenous component; and second, we show that if there exists

nonparametric instrumental variables Z such that the conditional distribution of
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X−I given Z is complete, then the conditional moment conditions E(ε|Z) = 0 w.p.1

are sufficient to identify g nonparametrically.

The results of this paper are also related to the literature on nonparametric iden-

tification under monotonicity assumptions (see Matzkin, 2007, for a recent survey).

For example, Matzkin (2003) provides conditions under which in models of the form

Y = m(X, ε) with m strictly monotone, the independence assumption ε ⊥ X is

sufficient to globally identify m and Fε (see also Chesher, 2003, for additional local

results). In a sense, our result shows that the independence condition can be sub-

stantially relaxed, if a certain form of separability between Y , X and ε holds, namely,

if we have T−1(Y ) = g(X) + ε.1

Even though we do not discuss the issue of nonparametric estimation of the trans-

formation model, we point the reader to several related results. In a special case

where g(X) = β′X, Horowitz (1996) develops n1/2-consistent, asymptotically nor-

mal, nonparametric estimators of T and Fε. Estimators of β are available since Han

(1987). In a special case where the transformation T is finitely parameterized by a

parameter φ, Linton, Sperlich, and Van Keilegom (2008) construct a mean square

distance from independence estimator for the transformation parameter φ. Finally,

it is worth pointing out that even though they do not provide primitive conditions for

global nonparametric identification of θ in the model E
[
ρ(Y,X, θ)

∣∣Z] = 0 w.p.1, the

estimation methods developed in Ai and Chen (2003) and Chernozhukov, Imbens,

and Newey (2007) yield consistent estimators for θ, and are readily applicable in our

setup.

The remainder of the paper is organized as follows. Section 2 introduces the

transformation model and recalls basic definitions. In Section 3, we derive necessary

and sufficient conditions for the model to be correctly specified under two sets of

assumptions: first, under a single independence restriction, and second, when several

independence conditions are known to hold. In Section 4 we examine the conditions

1See also the discussion on page 24 in Blundell and Powell (2003).
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under which the correctly specified model is also identified. All of our proofs are

relegated to an Appendix.

2. Model

We consider a nonparametric transformation model of the form

(1) Y = T
(
g(X) + ε

)
where Y belongs to Y ⊆ R, X = (X1, . . . , Xdx) belongs to X ⊆ Rdx , ε is in R, and

T : R → Y and g : X → R are unknown functions. The variables Y and X are

observed, while ε remains latent. We denote by Fε|X the conditional distribution of

ε given X.

Following the related literature (e.g., Koopmans and Reiersøl, 1950; Brown, 1983;

Roehrig, 1988; Matzkin, 2003) we call structure a particular value of the triplet

(T, g, Fε|X) where T : R → Y , g : X → R, and Fε|X : R × X → R. Note that

the model (1) simply corresponds to the set of all structures (T, g, Fε|X) that satisfy

certain a priori restrictions. Each structure in the model induces a conditional dis-

tribution FY |X of the observables, and two structures (T̃ , g̃, F̃ε̃|X) and (T, g, Fε|X) are

observationally equivalent if they generate the same FY |X .

When the set of all conditional distributions FY |X generated by the model contains

the true conditional distribution F 0
Y |X we say that the model is correctly specified. In

that case, the model contains at least one true structure (T 0, g0, F 0
ε|X) that induces

F 0
Y |X . The model is then said to be identified, if the set of structures that are

observationally equivalent to (T 0, g0, F 0
ε|X) reduces to a singleton. In what follows,

we derive two sets of results. First, we provide necessary and sufficient conditions

under which the model (1) is correctly specified. Second, we give sufficient conditions

under which the correctly specified model is also identified.

3. Correct Specification Conditions

Hereafter, we restrict our attention to the transformations T in (1) that are smooth

and strictly increasing from R onto Y .
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Assumption A1. T is twice continuously differentiable on R, T ′(t) > 0 for every

t ∈ R, and T (R) = Y.

In particular, the limit conditions limt→{−∞,+∞} T (t) = {inf Y , supY} hold true

under assumption A1. To simplify our analysis, we focus on the case in which the

distributions Fε|X in the model (1) are absolutely continuous.

Assumption A2. For a.e. x ∈ X , the conditional distribution Fε|X of ε given X = x

is absolutely continuous with respect to Lebesgue measure on R, and has density fε|X

that is continuously differentiable on R and satisfies:∫
R
fε|X(t, x)dt = 1 and fε|X(·, x) > 0 on R

Assumption A2 states that for almost every realization x ∈ X of X, the condi-

tional density of ε given X = x exists, is positive and continuously differentiable over

its entire support R.2 This assumption, combined with the fact that T is a twice

differentiable homeomorphism from R onto Y , guarantees that the conditional dis-

tribution FY |X of Y given X = x is absolutely continuous with respect to Lebesgue

measure on R, and has density fY |X(·, x) with support Y that is positive and contin-

uously differentiable everywhere on Y . Without loss of generality, we may assume

that Y contains zero.

3.1. Single Independence Restriction. We now further restrict the dependence

between ε and X by making the following assumption:

Assumption A3. ε is independent of X1.

Assumption A3 states that at least one component of X is strongly exogenous; we

may, with no loss of generality, assume it is X1. In what follows, whenever dx > 1,

we denote by X−1 the remaining subvector of X, i.e. X−1 ≡ (X2, . . . , Xdx). The

supports of X1 and X−1 are denoted X 1 and X−1, respectively.

2Each almost everywhere statement is to be understood with respect to the marginal distribution

of the random variable in question.
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The independence property in A3 has strong testable implications which we now

derive. In what follows, Θ : Y → R denotes the inverse mapping T−1. Under A1, Θ is

twice continuously differentiable and strictly increasing on Y . Note that in addition

Θ(Y) = R. Equation (1) is equivalent to:

(2) ε = Θ (Y )− g(X)

so by Θ′ > 0 and the independence of ε and X1,

Φ(y, x) ≡ FY |X(y, x)

= Pr (Y 6 y | X = x)

= Pr (ε 6 Θ (y)− g(x) | X = x)

= Fε|X
(
Θ (y)− g(x), x−1

)
(3)

where (y, x) ∈ Y × X , Φ : Y × X → R, and x−1 ≡ (x2, . . . , xdx). By assumption

A2, Φ(·, x) is twice continuously differentiable on Y for a.e. x ∈ X . In order to

ensure the existence of the other partial derivatives of Φ, we consider the following

restrictions on g.

Assumption A4. For a.e. x ∈ X , the second-order partial derivative ∂2g(x)/(∂x1)2

exists and is continuous; moreover, ∂g(x)/∂x1 6= 0.

Note that assumption A4 only restricts the behavior of the partial derivatives of

g with respect to x1. Nothing is being said about the behavior of g with respect

to the remaining components x−1. Under assumptions A2 and A4, the second-order

partial derivatives ∂2Φ(y, x)/ (∂y)2, ∂2Φ(y, x)/ (∂y∂x1), and ∂2Φ(y, x)/ (∂x1)2 exist,

are continuous and such that ∂Φ(y, x)/∂y > 0 and ∂Φ(y, x)/∂x1 6= 0 for every y ∈ Y

and a.e. x ∈ X .

We are now ready to state our first result.
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Proposition 1. If Φ is generated by a structure (T, g, Fε|X) that satisfies assumptions

A1-A4, then for every y ∈ Y and a.e. x ∈ X we have:

Condition C :
∂2

∂y∂xk

(
log

∣∣∣∣ ∂Φ(y, x)/∂y

∂Φ(y, x)/∂x1

∣∣∣∣) = 0, for every 1 6 k 6 dx.

Proposition 1 shows that if the model (1) is correctly specified and such that any

true structure (T 0, g0, F 0
ε|X) satisfies assumptions A1-A4, then Φ0 ≡ F 0

Y |X necessarily

satisfies condition C. We now examine whether condition C is also sufficient for the

correct specification of the transformation model.

For this, we first note that under the assumptions of Proposition 1, any function

Φ in (3) satisfies:

(4) lim
y→inf Y

Φ(y, x) = 0 and lim
y→supY

Φ(y, x) = 1

In addition, it holds that for a.e. x ∈ X ,

(5) lim
y→{inf Y,supY}

∫ y

0

∣∣∣∣ ∂Φ(u, x)/∂y

∂Φ(u, x)/∂x1

∂Φ(0, x)/∂x1

∂Φ(0, x)/∂y

∣∣∣∣ du = {−∞,+∞}

The converse to the implication in Proposition 1 is then as follows.

Proposition 2. If Φ : Y ×X → R is a mapping such that for every y ∈ Y and a.e.

x ∈ X , Φ has continuous third-order partial derivatives ∂3Φ(y, x)/ (∂y∂x1∂xk) and

∂3Φ(y, x)/ (∂y2∂xk) (1 6 k 6 dx), satisfies the limit conditions (4) and (5), and is

such that ∂Φ(y, x)/∂y > 0, ∂Φ(y, x)/∂x1 6= 0, then condition C implies that there

exists a structure (T̄ , ḡ, F̄ε̄|X) that satisfies assumptions A1-A4, and generates Φ.

According to Propositions 1 and 2, if (and only if) the true distribution F 0
Y |X

satisfies condition C, the transformation model (1) is correctly specified. In other

words, if Φ0(y, x) = F 0
Y |X(y, x) satisfied condition C, then there exists a true struc-

ture (T 0, g0, F 0
ε|X) such that Φ0(y, x) = F 0

ε|X(Θ0(y) − g0(x), x−1) for every y ∈ Y

and a.e. x ∈ X . Note, however, that condition C is by itself not sufficient to guar-

antee that this true structure is unique, i.e. that the model (1) is identified; this

issue will be addressed in the next section. Before that, we examine the issue of
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correct specification in the case in which at least two components of X are strongly

exogenous.

3.2. Several Independence Restrictions. If several of the X variables are in-

dependent of ε, additional restrictions on Φ are generated. Formally, let XI ≡

(X1, . . . , XI) be a subvector of X containing the first I components of X where now

2 6 I 6 dx.
3 We denote by X I the support of XI . Similarly, if I < dx, we let X−I

denote the remaining subvector of X, i.e. X−I ≡ (XI+1, . . . , Xdx). The support of

X−I is denoted X−I .

We now assume the following:

Assumption A5. ε is independent of XI .

Assumption A6. For a.e. x ∈ X and every 1 6 i, j 6 I, the second-order partial

derivatives ∂2g(x)/ (∂xi∂xj) exist and are continuous; moreover, ∂g(x)/∂xi 6= 0.

Assumptions A5 and A6 strengthen our earlier assumptions A3 and A4, respec-

tively. By the independence of ε and XI , under A1 and A2 we now have:

(6) Φ (y, x) ≡ Fε|X
(
Θ (y)− g(x), x−I

)
for every y ∈ Y and a.e. x ∈ X . Similar to previously, A6 combined with

A2 guarantees that for every 1 6 i, j 6 I the second-order partial derivatives

∂2Φ(y, x)/ (∂y)2, ∂2Φ(y, x)/ (∂y∂xi), and ∂2Φ(y, x)/ (∂xi∂xj) exist, are continuous

and such that ∂Φ(y, x)/∂y > 0 and ∂Φ(y, x)/∂xi 6= 0 for every y ∈ Y and a.e.

x ∈ X . For any such (y, x), the independence between ε and XI generates additional

restrictions on Φ.

Proposition 3. If Φ is generated by a structure (T, g, Fε|X) that satisfies assumptions

A1-A2 and A5-A6, then for every y ∈ Y and a.e. x ∈ X , Φ satisfies condition C,

and in addition we have:

Condition S :
∂2Φ (y, x)

∂y∂xj

∂Φ (y, x)

∂xi
=
∂2Φ (y, x)

∂y∂xi

∂Φ (y, x)

∂xj
, for every 1 6 i, j 6 I.

3Of course, the ordering of the components of X is irrelevant.
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It can be noted that at any point where ∂Φ(y, x)/∂x1 does not vanish, condition

S implies that for every 1 6 i 6 I, the ratio (∂Φ(y, x)/∂xi)/(∂Φ(y, x)/∂x1) is a

function of x only; indeed,

∂

∂y

(
∂Φ(y, x)/∂xi
∂Φ(y, x)/∂x1

)
=

(
1

∂Φ(y, x)/∂x1

)2(
∂2Φ (y, x)

∂y∂xi

∂Φ (y, x)

∂x1

− ∂2Φ (y, x)

∂y∂x1

∂Φ (y, x)

∂xi

)
= 0 by condition S

In other words, condition S is a standard separability property, expressing the fact

that the marginal rate of substitution between xi and x1 along Φ does not depend

on y. In particular, if one variable—here X1—is known to be strongly exogenous,

condition S provides a simple, nonparametric condition that can be used to decide

whether any other variable Xi is also strongly exogenous.

Similar to previously, we now derive a converse to the implication in Proposition 3.

Proposition 4. If Φ : Y × X → R is a mapping such that for every y ∈ Y and

a.e. x ∈ X , Φ has continuous third-order partial derivatives ∂3Φ(y, x)/ (∂y∂x1∂xk)

and ∂3Φ(y, x)/ (∂y2∂xk) (1 6 k 6 dx), satisfies condition C and the limit conditions

(4) and (5), and is such that ∂Φ(y, x)/∂y > 0, ∂Φ(y, x)/∂xi 6= 0 (1 6 i 6 I), then

condition S implies that there exists a structure (T̃ , g̃, F̃ε̃|X) that satisfies assumptions

A1-A2 and A5-A6, and generates Φ.

4. Identification Condition

We now address the identification problem, namely: If there exists a true structure

(T 0, g0, F 0
ε|X) that generates F 0

Y |X , is it possible to find an alternative structure that

is different from but observationally equivalent to (T 0, g0, F 0
ε|X)? More formally,

the structure (T 0, g0, F 0
ε|X) is globally identified if any observationally equivalent

structure (T̃ 0, g̃0, F̃ 0
ε̃|X) satisfies: for every t ∈ R, every y ∈ Y , and a.e. x ∈ X

Θ̃0(y) = Θ0(y), g̃0(x) = g0(x), and F̃ 0
ε̃|X(t, x) = F 0

ε|X(t, x).
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In what follows, we maintain the assumption that X1 is strongly exogenous, i.e.

independent of ε. Regarding the other variables, X−1, we assume the existence of an

observable instrument Z that takes values in Z ⊆ Rdz , and whose relation to X−1 is

specified below. As already stated, condition C—while sufficient for correct specifi-

cation of the transformation model—is not sufficient to guarantee its identification.

The problem we now examine can be restated as follows: to what extent is it possible

to recover the functions T 0 : R → Y , g0 : X → R, and F 0
ε|X : R × X−1 → R, which

for every y ∈ Y and a.e. x ∈ X satisfy: Φ0(y, x) = F 0
ε|X(Θ0(y) − g0(x), x−1), where

as before Φ0(y, x) = F 0
Y |X(y, x)?

For one thing, it is clear from (1) that some normalization of the model is needed;

indeed, for any (λ, µ) ∈ R2, the transformation model (1) is equivalent to

Y = T̃
(
λ g(X) + µ+ λε

)
where T̃ is defined by T̃ (t) ≡ T ((t− µ)/λ). We therefore impose that any T in (1)

satisfies the normalization condition:

(7) T (0) = 0 and T ′ (0) = 1

An interpretation of (7) is discussed below.

In addition to the independence assumption A3, we now restrict the dependence

between ε and X−1.

Assumption A7. For a.e. z ∈ Z, E(ε|Z = z) = 0 and the conditional distribution

of X−1 given Z = z is complete: for every function h : X−1 → R such that E[h(X−1)]

exists and is finite, E[h(X−1) | Z = z] = 0 implies h(x−1) = 0 for a.e. x−1 ∈ X−1.

Recall from A3 that ε was assumed to be independent from X1. The other compo-

nents are on the other hand allowed to be endogenous provided there exists a vector

of instruments Z with respect to which the distribution of X−1 is complete, and such

that ε is mean independent of Z. Further discussion of the completeness condition

can be found in Darolles, Florens, and Renault (2002), Blundell and Powell (2003),

Newey and Powell (2003), Hall and Horowitz (2005), Severini and Tripathi (2006),
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and d’Haultfoeuille (2006), among others. For example, it is equivalent to requiring

that for every function h : X−1 → R such that E[h(X−1)] = 0 and var[h(X−1)] > 0,

there exist a function g : Z → R such that E[h(X−1)g(Z)] 6= 0 (see Lemma 2.1. in

Severini and Tripathi, 2006).

The main identification result is provided by the following statement:

Proposition 5. Assume that Φ0 satisfies the conditions of Proposition 2. Let

(T 0, g0, F 0
ε|X) and (T̃ 0, g̃0, F̃ 0

ε̃|X) be two observationally equivalent structures that gen-

erate F 0
Y |X , and satisfy assumptions A1-A4 and the normalization condition (7).

Then, assumption A7 is necessary and sufficient to globally identify (T 0, g0, F 0
ε|X).

Proposition 5 shows two results. First, that the completeness condition is sufficient

to nonparametrically identify the transformation model (1). This identification result

is global even though the model (1) is nonlinear in g and Fε|X . The second result of

Proposition 5 is that the completeness condition is also necessary, in the following

sense: assume that there exists some function h : X−1 → R that (i) does not vanish

a.e., but (ii) is such that E[h(X−1) | Z = z] = 0 for a.e. z ∈ Z. Then there exists two

different but observationally equivalent structures that generate F 0
Y |X while satisfying

assumptions A1-A4 and the normalization condition (7).

It is worth pointing out that the case of several strongly exogenous variables con-

sidered in Subsection 3.2 is a particular version of the setting above. Indeed, assume

that the disturbance ε in the model (1) is known to be independent of Xi (1 6 i 6 I).

Then, if E(ε) = 0, it holds that w.p.1 E(ε|Xi) = 0. It then suffices to include Xi

in the vector of instruments Z for the conditional distribution of XI to be complete

with respect to Z.

Finally, we may briefly come back to the normalization condition (7). Its key role

is to pin down an additive and a multiplicative constants in the identification of Θ0.

The same could be achieved by imposing the following set of restrictions:

(8) E(ε) = 0, E[g(X)] = 0, and var(ε) = 1.
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In other words, instead of normalizing the value of T at a given point (here, zero),

we may require that both ε and g(X) have mean zero; and instead of normalizing

the value of the derivative T ′ at a given point (here, zero), we may require that ε

have unit variance. We then have the following corollary to Proposition 5.

Corollary 6. Proposition 5 remains true if we replace the normalization condition

(7) with the one in (8).

We conclude by noting that if the function g in the model (1) is further assumed

to be bounded, then the completeness condition in assumption A7 can be replaced

by a bounded completeness condition: for every bounded function h : X−1 → R,

E[h(X−1) | Z] = 0 w.p.1 implies h(x−1) = 0 for a.e. x−1 ∈ X−1. The bounded

completeness condition is weaker then the completeness condition (see, e.g., Blundell,

Chen, and Kristensen, 2007, for a discussion).

Appendix A. Proofs

Proof of Proposition 1. Consider a structure (T, g, Fε|X) that satisfies assumptions

A1-A4, and generates Φ (y, x) in the sense of equation (3). Differentiating in y and

x1 gives:

∂Φ

∂y
(y, x) = Θ′(y)

∂Fε|X
∂t

(Θ(y)− g(x), x−1)(9)

∂Φ

∂x1

(y, x) = − ∂g

∂x1

(x)
∂Fε|X
∂t

(Θ(y)− g(x), x−1)(10)

where Θ′ is the derivative of Θ, and ∂Fε|X/∂t denotes the partial derivative of

Fε|X with respect to its first variable. Let A ≡ {x ∈ X : ∂Φ(y, x)/∂y >

0 and ∂Φ(y, x)/∂x1 6= 0 for every y ∈ Y}. From assumptions A2 and A4 the set

A has probability one. Take any point (x, y) ∈ A× Y . Then ∂Φ(y, x)/∂x1 6= 0 and

we have:

(11)
∂Φ(y, x)/∂y

∂Φ(y, x)/∂x1

= − Θ′(y)

∂g(x)/∂x1
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Under assumption A1, Θ is twice continuously differentiable so we can differentiate

the above with respect to y, which gives:

∂

∂y

(
log

∣∣∣∣ ∂Φ(y, x)/∂y

∂Φ(y, x)/∂x1

∣∣∣∣) =
Θ′′(y)

Θ′(y)

Given that the right hand side is a function of y alone, the above implies condition

C. �

Proof of Proposition 2. The proof is in three steps.

Step 1: Let Φ : Y × X → R be a map such that for every y ∈ Y and a.e.

x ∈ X , Φ has continuous third-order partial derivatives ∂3Φ(y, x)/ (∂y∂x1∂xk) and

∂3Φ(y, x)/ (∂y2∂xk) (1 6 k 6 dx), and ∂Φ(y, x)/∂y > 0, ∂Φ(y, x)/∂x1 6= 0. As

before, the set A = {x ∈ X : ∂Φ(y, x)/∂y > 0 and ∂Φ(y, x)/∂x1 6= 0 for every y ∈

Y} has probability one. Consider any (y, x) ∈ Y×A. If condition C is satisfied, then

∂ log |(∂Φ(y, x)/∂y)/(∂Φ(y, x)/∂x1)|/∂y is a function of y only. Let then:

(12) φ (y) ≡ ∂

∂y

(
log

∣∣∣∣ ∂Φ(y, x)/∂y

∂Φ(y, x)/∂x1

∣∣∣∣)
Note that φ is observable. Now, let Θ̄ : Y → R be defined as a solution to the

differential equation

Θ̄′′ (y)

Θ̄′ (y)
= φ (y)

Integrating with respect to y on Y , and using the fact that 0 ∈ Y , a solution is:

(13) Θ̄ (y) =

∫ y

0

exp

(∫ u

0

φ (s) ds

)
du

Note that the function Θ̄ in (13) is defined over the whole space Y , is twice con-

tinuously differentiable on Y , and we have Θ′(y) > 0 on Y . In addition, from the

limit condition (5) we have limy→inf Y Θ̄(y) = −∞ and limy→supY Θ̄(y) = +∞, so

Θ̄(Y) = R. Letting T̄ ≡ Θ̄−1, we then have that T̄ satisfies assumption A1.

Step 2. Now, for any (x, y) ∈ A× Y , consider the partial differential equation:

(14)
∂ḡ

∂x1

(x) = −∂Φ(y, x)/∂x1

∂Φ(y, x)/∂y
Θ̄′(y)



NONPARAMETRIC TRANSFORMATION MODELS 15

Condition C implies that the right hand side is a function of x only. To see this, note

that from (12) we have:

log

∣∣∣∣∂Φ(y, x)/∂x1

∂Φ(y, x)/∂y

∣∣∣∣ = −
∫ y

0

φ(s)ds+ α(x)

for some function α of x alone. So using (13),∣∣∣∣∂Φ(y, x)/∂x1

∂Φ(y, x)/∂y

∣∣∣∣ = exp

[
−
∫ y

0

φ (s) ds

]
exp [α(x)] =

exp [α(x)]

Θ̄′(y)

which shows that |(∂Φ/∂x1)/(∂Φ/∂y)| Θ̄′ is a function of x alone. Then,

the same must hold for [(∂Φ/∂x1)/(∂Φ/∂y)] Θ̄′. This is clearly true if for

a.e. x ∈ A, the function [(∂Φ(·, x)/∂x1)/(∂Φ(·, x)/∂y)] Θ̄′(·) keeps a con-

stant sign on Y ; now, assume that for some x∗ ∈ X there exist (y1, y2) ∈

Y2 such that we have [(∂Φ(y1, x
∗)/∂x1)/(∂Φ(y1, x

∗)/∂y)] Θ̄′(y1) > 0 and

[(∂Φ(y2, x
∗)/∂x1)/(∂Φ(y2, x

∗)/∂y)] Θ̄′(y2) < 0; then, by continuity, there exists y∗ ∈

(min{y1, y2},max{y1, y2}) such that [(∂Φ(y∗, x∗)/∂x1)/(∂Φ(y∗, x∗)/∂y)] Θ̄′(y∗) = 0,

which is in contradiction with x∗ ∈ A; hence, the sign of [(∂Φ/∂x1)/(∂Φ/∂y)] Θ̄′

cannot depend on y and is a function of x alone.

Given that the set A∩X 1 has probability one, one can integrate (14) with respect

to x1 on X 1 to obtain:

(15) ḡ (x) =

∫ x1

c

(
−∂Φ (y, u, x2, . . . , xdx) /∂x1

∂Φ (y, u, x2, . . . , xdx) /∂y
Θ̄′(y)

)
du

where c ∈ X 1. Again, note that ḡ is defined over the whole set X . Moreover, from

(14), we have that ∂ḡ(x)/(∂x1)2 exists and ∂ḡ(x)/∂x1 6= 0 on A, so that ḡ satisfies

assumption A4.

Step 3. Finally, for any (y, x) ∈ Y×X , consider the following change in variables:

Γ : (y, x) 7→
(
Θ̄ (y)− ḡ(x), x

)
which maps Y ×X onto R×X . It is well defined since Θ̄′ (y) > 0 over Y ; its inverse

Γ−1 : R×X → Y ×X is precisely:

Γ−1 : (t, x) 7→
(
T̄ (t+ ḡ (x)) , x

)
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The function Φ can therefore be written as:

(16) Φ (y, x) = F̄
(
Θ̄ (y)− ḡ(x), x

)
where F̄ ≡ Φ◦Γ−1. Given our assumptions on Φ, the mapping F̄ : R×X → R is such

that for a.e. x ∈ X , F̄ (·, x) : R → R is twice continuously differentiable on R, and

∂F̄ /∂x1 exist and is continuous. From limy→inf Y Θ̄(y) = −∞, limy→supY Θ̄(y) = +∞,

and the limit condition (4) we have:

lim
t→−∞

F̄ (t, x) = 0 and lim
t→+∞

F̄ (t, x) = 1

Moreover, differentiating equation (16) with respect to y and x1, respectively, gives:

∂Φ

∂y
(y, x) = Θ̄′(y)

∂F̄

∂t
(Θ̄(y)− ḡ(x), x)(17)

∂Φ

∂x1

(y, x) = − ∂ḡ

∂x1

(x)
∂F̄

∂t

(
Θ̄(y)− ḡ(x), x

)
+

∂F̄

∂x1

(t, x)

∣∣∣∣
Θ̄(y)−ḡ(x)

(18)

where ∂F̄ /∂t denotes the partial derivative of F̄ with respect to its first variable.

Noting that for every (y, x) ∈ Y × A, ∂Φ(y, x)/∂y > 0 and Θ̄′ > 0, we have that for

every t = Θ̄ (y)− ḡ(x):

∂F̄

∂t
(t, x) > 0

Since Θ̄ is onto R, the above holds for every (t, x) ∈ R×A. Hence F̄ is a cumulative

distribution function that satisfies assumption A2. Let ε̄ be a random variable whose

conditional distribution given X = x is given by F̄ε̄|X(·, x) ≡ F̄ (·, x) for any x ∈ X .

We now show that ε̄ satisfies A3. For this, consider again any (y, x) ∈ Y × A and

take the ratio of (18) and (17):

∂Φ (y, x) /∂x1

∂Φ (y, x) /∂y
= −∂ḡ(x)/∂x1

Θ̄′(y)
+
∂F̄ (t, x) /∂x1|Θ̄(y)−ḡ(x)

∂Φ (y, x) /∂y

Since Θ̄ and ḡ have been constructed to satisfy (14), it must be the case that

∂F̄ (t, x)/∂x1 = 0 whenever t = Θ̄ (y) − ḡ(x) i.e. t ∈ R. Therefore ε̄ is indepen-

dent of X1 and we have:

Φ (y, x) = F̄ε̄|X
(
Θ̄ (y)− ḡ(x), x−1

)
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which closes the proof. �

Proof of Proposition 3. Consider a structure (T, g, Fε|X) that satisfies assumptions

A1-A2 and A5-A6, and generates Φ in the sense of equation (6). Differentiating in

y and xj (1 6 j 6 I) gives:

∂Φ

∂y
(y, x) = Θ′(y)

∂Fε|X
∂t

(Θ(y)− g(x), x−I)(19)

∂Φ

∂xj
(y, x) = − ∂g

∂xj
(x)

∂Fε|X
∂t

(Θ(y)− g(x), x−I)(20)

where Θ′ and ∂Fε|X/∂t are as in the proof of Proposition 1. Again differentiating

equations (19) and (20) with respect to xi (1 6 i 6 I) then gives:

∂2Φ

∂xi∂y
(y, x) = −Θ′(y)

∂2Fε|X
∂t2

(Θ(y)− g(x), x−I)
∂g

∂xi
(x)(21)

∂2Φ

∂xi∂xj
(y, x) = − ∂2g

∂xi∂xj
(x)

∂Fε|X
∂t

(Θ(y)− g(x), x−I)

+
∂g

∂xj
(x)

∂2Fε|X
∂t2

(Θ(y)− g(x), x−I)
∂g

∂xi
(x)(22)

where ∂2Fε|X/(∂t)
2 denotes the second-order partial derivative of Fε|X with respect

to its first variable. Let now A ≡ {x ∈ Rdx : ∂Φ(y, x)/∂y > 0 and ∂Φ(y, x)/∂xi 6=

0 for every 1 6 i 6 I and every y ∈ R}. Combining equations (21) and (22), then

gives for any (x, y) ∈ A× Y :

∂2g(x)

∂xi∂xj
= − 1

(∂Φ(y, x)/∂y)2

(
∂2Φ(y, x)

∂xi∂xj

∂Φ(y, x)

∂y
− ∂2Φ(y, x)

∂xi∂y

∂Φ(y, x)

∂xj

)
Θ′(y)

= − 1

(∂Φ(y, x)/∂y)2

(
∂2Φ(y, x)

∂xi∂xj

∂Φ(y, x)

∂y
− ∂2Φ(y, x)

∂xj∂y

∂Φ(y, x)

∂xi

)
Θ′(y)

where the second equality follows by interchanging the indices i and j in equations

(19)-(22). Therefore

(23)
∂2Φ(y, x)

∂xi∂y

∂Φ(y, x)

∂xj
=
∂2Φ(y, x)

∂xj∂y

∂Φ(y, x)

∂xi

which is condition S. �
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Proof of Proposition 4. The proof is in three steps.

Step 1. Let Φ : Y × X → R be a map such that for every y ∈ Y and a.e.

x ∈ X , Φ has continuous third-order partial derivatives ∂3Φ(y, x)/ (∂y∂x1∂xk) and

∂3Φ(y, x)/ (∂y2∂xk) (1 6 k 6 dx), satisfies condition C and the limit conditions (4)

and (5), and is such that ∂Φ(y, x)/∂y > 0, ∂Φ(y, x)/∂xi 6= 0 (1 6 i 6 I). Note that

any such Φ satisfies the requirements of Proposition 2. Let then T̃ ≡ T̄ with T̄ as

defined in Step 1 of the proof of Proposition 2; this T̃ satisfies assumption A1.

Step 2. We now prove the following Lemma:

Lemma 1. There exists a function g̃ : X → R such that for every 1 6 i, j 6 I and

a.e. x ∈ X the second-order partial derivatives ∂g̃/(∂xi∂xj) exist and are continuous;

moreover, for every 1 6 i 6 I and a.e. x ∈ X :

(24)
∂g̃

∂xi
(x) = −∂Φ(y, x)/∂xi

∂Φ(y, x)/∂y
Θ′(y)

Proof of Lemma 1. As before, the set A = {x ∈ X : ∂Φ(y, x)/∂y >

0 and ∂Φ(y, x)/∂x1 6= 0 for every y ∈ Y} has probability one. Take any (y, x) ∈

Y ×A; then from condition C, the function [(∂Φ/∂x1)/(∂Φ/∂y)]Θ′ does not depend

on y (c.f. Step 2 in the proof of Proposition 2). For some c1 ∈ X 1, define

(25) g̃1 (x) ≡
∫ x1

c1

−∂Φ (y, u, x2, . . . , xdx) /∂x1

∂Φ (y, u, x2, . . . , xdx) /∂y
Θ′(y)du

Then g̃1 : X → R, and under the assumptions of Proposition 4, the second-order

partial derivatives ∂g̃1/(∂xi∂xj) exist and are continuous (1 6 i, j 6 I). Moreover,

it is clear that for any x ∈ A

(26)
∂g̃1

∂x1

(x) = −∂Φ(y, x)/∂x1

∂Φ(y, x)/∂y
Θ′(y)

We now show that one can find some g̃2 : X−1 → R whose second-order partial

derivatives ∂g̃2/(∂xi∂xj) exist and are continuous (2 6 i, j 6 I), and such that the

function (g̃1 + g̃2) : X → R satisfies, for every x ∈ A,

(27)
∂ (g̃1 + g̃2)

∂x2

(x) = −∂Φ(y, x)/∂x2

∂Φ(y, x)/∂y
Θ′(y)
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This requires that

(28)
∂g̃2

∂x2

(x−1) = −∂Φ(y, x)/∂x2

∂Φ(y, x)/∂y
Θ′(y)− ∂g̃1

∂x2

(x)

where as before x−1 = (x2, . . . , xdx). But by conditions C and S, the right hand side

of (28) depends neither on x1 nor on y. Indeed, regarding y, we know that g̃1(x)

does not depend on y; moreover

∂Φ(y, x)/∂x2

∂Φ(y, x)/∂y
Θ′(y) =

[
∂Φ(y, x)/∂x1

∂Φ(y, x)/∂y
Θ′(y)

] [
∂Φ(y, x)/∂x2

∂Φ(y, x)/∂x1

]
and by condition C the first term of the right hand side does not depend on y (c.f.

Step 2 in the proof of Proposition 2); similarly, by condition S, the second term of

the right hand side does not depend on y. Hence, the right hand side of (28) does

not depend on y. Regarding x1, from equation (26) we have that

∂2g̃1

∂x1∂x2

(x) =
∂

∂x2

(
−∂Φ(y, x)/∂x1

∂Φ(y, x)/∂y
Θ′(y)

)
which implies, by condition S, that the partial derivative with respect to x1 of the

right hand side of (28) equals zero. We can therefore write that:

−∂Φ(y, x)/∂x2

∂Φ(y, x)/∂y
Θ′(y)− ∂g̃1

∂x2

(x) = γ(x−1)

and define g̃2 : X−1 → R as

g̃2(x−1) ≡
∫ x2

c2

γ (v, x3, . . . , xdx) dv

where c2 is a constant that belongs to the support of X2. Note that as previ-

ously, under the assumptions of Proposition 4, the second-order partial derivatives

∂g̃2/(∂xi∂xj) exist and are continuous (2 6 i, j 6 I); moreover, for every x ∈ A we

have both (27) and

∂ (g̃1 + g̃2)

∂x1

(x) =
∂g̃1

∂x1

(x) = −∂Φ(y, x)/∂x1

∂Φ(y, x)/∂y
Θ′(y)

The same method applies, by induction, for all indices 1 6 i 6 I. If for every

1 6 j 6 i− 1, we have constructed g̃j (xj, . . . , xdx), such that

∂ (g̃1 + . . .+ g̃i−1)

∂xj
(x) = −∂Φ(y, x)/∂xj

∂Φ(y, x)/∂y
Θ′(y) for all 1 6 j 6 i− 1
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then we can observe that, by conditions C and S, the expression

−∂Φ(y, x)/∂xi
∂Φ(y, x)/∂y

Θ′(y)− ∂ (g̃1 + . . .+ g̃i−1)

∂xi
(x)

does not depend on y, x1, . . . , xi−1. Letting x−(i−1) ≡ (xi, . . . , xdx), we can let

γ(x−(i−1)) denote the expression above, and for some constant ci that belongs to

the support of Xi, we can define

g̃i (xi, . . . , xdx) ≡
∫ xi

ci

γ (v, xi+1, . . . , xdx) dv

Then, we have that for every 1 6 j 6 i− 1

∂ (g̃1 + . . .+ g̃i)

∂xj
(x) =

∂ (g̃1 + . . .+ g̃i−1)

∂xj
(x)

and
∂ (g̃1 + . . .+ g̃i)

∂xi
(x) = −∂Φ(y, x)/∂xi

∂Φ(y, x)/∂y
Θ′(y)

Ultimately, the function g̃ : X → R defined by g̃ ≡
∑I

i=1 g̃i has continuous second-

order partial derivatives ∂g̃/(∂xi∂xj) (1 6 i, j 6 I); moreover g̃ satisfies Property

(24). �

Note that under the assumptions of Proposition 4, we have for a.e. x ∈ X ,

∂g̃/∂xi 6= 0 (1 6 i, j 6 I), so that g̃ satisfies assumption A6.

Step 3. Now, for any (x, y) ∈ X × Y consider the change in variables:

Γ : (y, x) 7→ (Θ̃(y)− g̃(x), x)

which maps Y × X onto R × X . Its inverse Γ−1 : R × X → Y × X , Γ−1 : (t, x) 7→

(T̃ (t+ g̃(x)), x), is again well defined since Θ̃′ > 0 on Y . Write then Φ as a function

of the new variables:

Φ(y, x) = F̃
(

Θ̃(y)− g̃(x), x
)

where F̃ ≡ Φ ◦ Γ−1, so F̃ : R × X → R. From the limit conditions (4) and

limy→inf Y Θ̃(y) = −∞ and limy→supY Θ̃(y) = +∞, we have that for every x ∈ X ,

limt→−∞ F̃ (t, x) = 0 and limt→+∞ F̃ (t, x) = 1. Under the assumptions of Proposition

4, for a.e. x ∈ X the mapping F̃ (·, x) : R→ R is twice continuously differentiable on
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R. Moreover, the partial derivatives ∂F̃ /∂xi (1 6 i 6 I) exist and are continuous.

Then, for every 1 6 i 6 I and every (y, x) ∈ Y × X

∂Φ

∂y
(y, x) = Θ̃′(y)

∂F̃

∂t
(Θ̃(y)− g̃(x), x)(29)

∂Φ

∂xi
(y, x) = − ∂g̃

∂xi
(x)

∂F̃

∂t
(Θ̃(y)− g̃(x), x) +

∂F̃

∂xi
(t, x)

∣∣∣
t=Θ̃(y)−g̃(x)

(30)

From (29), we conclude that for every t = Θ̃(y)− g̃(x) and a.e. x ∈ X , ∂F̃ (t, x)/∂t >

0. Since Θ̃(Y) = R, the statement holds for every t ∈ R, so F̃ satisfies assumption

A2. Now, consider any (y, x) ∈ Y × A and take the ratio of (30) and (29). Since g̃

satisfies (24), it must be the case that for every t = Θ̃(y)−g̃(x) and every i 6 i 6 I we

have ∂F̃ (t, x)/∂xi = 0. Since Θ̃(Y) = R, we have that for any t ∈ R and a.e. x ∈ X ,

F̃ (t, x) = F̃ (t, x−I). The proof then concludes by letting ε̃ be a random variable

whose conditional distribution given X = x is given by F̃ε̃|X(·, x) ≡ F̃ (·, x−I), and

noting that ε̃ satisfies the independence condition in A5. �

Proof of Proposition 5. The proof of sufficiency is based on that of Proposition 2.

Specifically, it is done in three steps. The fourth and last step shows necessity.

Step 1. We have seen in Step 1 of the proof of Proposition 2 that Θ0 must satisfy

the equation:

Θ0′′ (y)

Θ0′ (y)
= φ0 (y)

where

φ0(y) ≡ ∂

∂y

(
log

∣∣∣∣ ∂Φ0(y, x)/∂y

∂Φ0(y, x)/∂x1

∣∣∣∣)
This determines Θ0 up to two constants K1 ∈ R and K2 > 0: for any y ∈ Y

Θ0(y) = K1 +K2

∫ y

0

exp

(∫ u

0

φ0(s)ds

)
du

From the normalization condition (7) we have: Θ0(0) = T 0−1
(0) = 0 and Θ0′(0) =

1/[T 0′(Θ0(0))] = 1, which pins down the constants K1 and K2; finally for any y ∈ Y ,

(31) Θ0(y) =

∫ y

0

exp

(∫ u

0

φ0 (s) ds

)
du ≡ Θ̄0(y)
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(where Θ̄0 : Y → R is defined in analogy to Θ̄ in (13) by replacing φ with φ0) is the

only solution that satisfies the normalization. Hence for any y ∈ Y we have:

Θ0(y) = Θ̃0(y).

Step 2. Let A0 be a set of probability one, defined as A0 ≡ {x ∈ X :

∂Φ0(y, x)/∂y > 0 and ∂Φ0(y, x)/∂x1 6= 0 for every y ∈ Y}. Again from Step 2 of

the proof of Proposition 2 we know that for every x ∈ A0, g0 satisfies:

(32)
∂g0

∂x1

(x) = −∂Φ0(y, x)/∂x1

∂Φ0(y, x)/∂y
Θ0′(y)

In analogy with the particular solution ḡ defined in (15), a particular solution ḡ0 :

X → R to (32) is

(33) ḡ0 (x) ≡
∫ x1

c

(
−∂Φ0 (y, u, x2, . . . , xdx) /∂x1

∂Φ0 (y, u, x2, . . . , xdx) /∂y
Θ̄0 ′(y)

)
du

where c ∈ X 1. Obviously, any solution to (32) must have the same partial in x1 as

ḡ0 in (33); it must therefore be of the form:

(34) g0(x) = ḡ0(x) + β0(x−1)

for some function β0 : X 1 → R.

Step 3. Now let g0 be an arbitrary solution, and consider E(ε|Z) where ε =

Θ0(Y ) − g0(X). Letting FY |Z and FX|Z denote the conditional distributions of Y

given Z and of X given Z, respectively, we have:

E(ε|Z = z) =

∫
Y

Θ0(y)dFY |Z(y, z)−
∫
X
g0(x)dFX|Z(x, z)

=

∫
Y

Θ̄0(y)dFY |Z(y, z)−
∫
X

[ḡ0(x) + β0(x−1)]dFX|Z(x, z)(35)

Now, consider a structure (T̃ 0, g̃0, F̃ 0
ε̃|X) that is observationally equivalent to

(T 0, g0, F 0
ε|X) and has the same properties as (T 0, g0, F 0

ε|X). It follows from (35)
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that for a.e. z ∈ Z:

E(ε|Z = z) = 0 = E(ε̃|Z = z)⇒
∫
X

[β0(x−1)− β̃0
(x−1)]dFX|Z(x, z) = 0

⇔ E
(
[β0(X−1)− β̃0

(X−1)]
∣∣Z = z

)
= 0

where ε̃ = Θ̃0(Y )− g̃0(X). Then, the completeness assumption A7 implies β0(x−1) =

β̃
0
(x−1) for a.e. x−1 ∈ X−1. Combined with equation (36), this implies that for a.e.

x ∈ X ,

g0(x) = g̃0(x)

From F 0
ε|X(Θ0(y) − g0(x), x−1) = F̃ε̃|X(Θ0(y) − g0(x), x−1) for every y ∈ Y and a.e.

x ∈ X , and the fact that Θ0(Y) = R, we conclude that for every t ∈ R and a.e.

x−1 ∈ X−1, F 0
ε|X(t, x−1) = F̃ 0

ε̃|X(t, x−1).

Step 4. Finally, assume that the completeness condition is violated, in the sense

that there exists some function h : X−1 → R that (i) does not vanish a.e., but (ii)

is such that E[h(X−1) | Z = z] = 0 for a.e. z ∈ Z. Let (T 0, g0, F 0
ε|X) be a structure

generating Φ0, that satisfies assumptions A1-A4 and the normalization condition (7).

Define (T̃ 0, g̃0, F̃ 0
ε̃|X) by

Θ̃0(y) ≡ Θ0(y)

g̃0(x) ≡ g0(x) + h(x−1)

F̃ 0
ε̃|X (t, x) ≡ F 0

ε̃|X
(
t+ h(x−1), x−1

)
for every y ∈ Y , every t ∈ R, and a.e. x ∈ X . Then, the structure (T̃ 0, g̃0, F̃ 0

ε̃|X)

satisfies the normalization condition (7), as well as assumptions A1-A4. Note that

assumption A4 only requires g̃0 to be smooth with respect to the first component

x1; hence, it is satisfied even if the function h(x−1) is discontinuous. Since the

structure (T̃ 0, g̃0, F̃ 0
ε̃|X) is observationally equivalent to (T 0, g0, F 0

ε|X), (T 0, g0, F 0
ε|X) is

not identified. �
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Proof of Corollary 6. The proof is similar to that of Proposition 5. From Step 1, we

know that Θ0 is determined up to two constants K1 ∈ R and K2 > 0: for any y ∈ Y

Θ0(y) = K1 +K2Θ̄0(y)

where Θ̄0 is as given in (31). Then, from Step 2, any solution to (32) is of the form:

(36) g0(x) = K2[ḡ0(x) + β0(x−1)]

for some function β0 : X 1 → R, where ḡ0 is as defined in (33). From the normalization

condition E(ε) = E[g(X)] = 0 we have E[Θ0(Y )] = 0, so

K1 = −K2E[Θ̄0(Y )]

Now, consider two observationally equivalent structures (T̃ 0, g̃0, F̃ 0
ε̃|X) and

(T 0, g0, F 0
ε|X), and let K̃1 ∈ R and K̃2 > 0 denote the two constants defining Θ̃0.

We then have:

E(ε|Z) = K2

[
E[Θ̄0(Y )|Z]− E[Θ̄0(Y )]− E[ḡ0(X)|Z]− E[β0(X−1)|Z]

]
E(ε̃|Z) = K̃2

[
E[Θ̄0(Y )|Z]− E[Θ̄0(Y )]− E[ḡ0(X)|Z]− E[β̃

0
(X−1)|Z]

]
so, since K2 > 0 and K̃2 > 0, E(ε|Z) = 0 = E(ε̃|Z) w.p.1 if and only if E

(
[β0(X−1)−

β̃
0
(X−1)]|Z

)
= 0 w.p.1. Again, by the completeness condition this implies β0(x−1) =

β̃
0
(x−1) for a.e. x−1 ∈ X−1. Therefore, we can write that:

ε̃ =
K̃2

K2

ε

By using the second normalization condition var(ε) = 1 = var(ε̃) we then get that

K̃2 = K2, which combined with the above gives K̃1 = K1. This completes the

sufficiency part of the proof. The necessity is same as in the proof of Proposition

5. �
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