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Abstract. 
 
We derive the family of tests for a unit root with maximal power against a point alternative when an arbitrary 
number of stationary covariates are modeled with the potentially integrated series.  We show that very large 
power gains are available when such covariates are available.  We then derive tests which are simple to 
construct (involving the running of vector autoregressions) and achieve at a point the power envelopes 
derived under very general conditions.  These tests have excellent properties in small samples.  We also 
show that these are obvious and internally consistent tests to run when identifying structural VAR's using 
long run restrictions. 
 
Keywords: Unit Roots, Power Envelopes, Structural vector autoregressions. 
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1. Introduction. 

 

Due to the effects of the assumption of a unit root in a variable on both the econometric method used and 

the economic interpretation of the model examined, it is quite common to pre-test the data for unit roots.  

This is typically done by either (or both) testing variables one by one for unit  roots or by examining 

cointegrating rank using Johansen (1988) tests or their asymptotic equivalent. 

 

In testing variables one by one, commonly the t-test method of Dickey and Fuller (1979) is employed.  This 

hypothesis test is asymptotically optimal when the data is stationary and is a natural statistic to consider.  

However in the unit root case there are many other tests available that have greater power.  Elliott et. al 

(1996) (denoted ERS in the remainder of the paper) showed that there is no uniformly most powerful test for 

this problem and derived tests that were approximately most powerful in the sense that they have 

asymptotic power close to the envelope of most powerful tests for this problem. 

 

This paper considers a model where there is one series that potentially has a unit root, and that this series 

potentially covaries with some available stationary variables. In a model similar to the one examined here, 

Hansen (1995) demonstrated in a model with no deterministic terms that no uniformly most powerful test for 

a unit root in the presence of stationary covariates exists and that power gains are to be had from using 

these covariates.  He suggested covariate augmented Dickey Fuller (CADF) tests and showed that these 

tests had greater power than tests that ignored these covariates 1.   

 

This paper extends the results in Hansen (1995) in a number of ways.  First, we show that the point optimal 

tests implicit in the power envelope derived in Hansen (1995) and computed when all nuisance parameters 

are known are feasible when these parameters are not known.  We also extend the results by deriving the 

power envelope in the more empirically relevant cases of where constants and/or time trends are also 

included in the regression.  We propose tests that are feasible to construct with data and attain the power 

envelope at a point.  These tests have good power at other points as well.  We then show that these are 

natural tests to report in justifying the unit root assumption in the popular method of identifying structural 

vector autoregressions (VAR's) from long run restrictions (as suggested by Blanchard and Quah (1989)). 

 

The paper is set up as follows.  In the next section the model is introduced, and the power bounds for the 

problem are established.  In the third section, tests which feasibly attain these power bounds at a point are 

derived and discussed.  Section four examines the tests empirically using Monte Carlo methods.  A fifth 

section discusses the tests as they relate to identifying structural VAR’s from long run restrictions.  The 

                                                                 
1  There is also a discussion of this work in Caporale and Pittis (1999). 



 3

final section concludes. All proofs are contained in a separate appendix, available from the authors upon 

request. 

 

2. Model and Power Envelopes. 

 

Consider the model 

 

  Ttutz tt ,...,110 =++= ββ    (1) 
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where zt=[yt,xt']', xt is an mx1 vector, y t is 1x1, β0 =[βy0 ,β'x0]', β1 =[βy1 ,β'x1]' ,  ut =[uy,t ,u'x,]' and A(L) is a matrix 

polynomial of finite order k in the lag operator L.  For the constructed test statistics we will assume that  

 

A1. |A(z)|=0 has roots outside the unit circle.  

A.2 Et-1(et)=0. Et-1(etet')=Σ and ∞<
+δ2

sup tt e  (a.s.) for some δ>0, where Σ is positive definite and  

Et-1(.) denotes conditional expectation with respect to { },..., 21 −− tt ee .   

A3. u0,u-1,…,u-k are 0p(1). 

 

Define [ ]'')1()( , xttyt uuLu ρρ −=  with spectral density at frequency zero (scaled by 2π) Ω , so we have 

Ω Σ= − −A A( ) ( ) '1 11 1  where we can partition this after the first column and row so that  
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(we partition Σ similarly). We will further define '112
yxxxyxyyR ωωω −− Ω= , the frequency zero correlation 

between the shocks to xt and the quasi differences of y t.  The R2 value represents the contribution of the 

stationary variables - it is equal to zero when there is no long run correlation and one if there is perfect 

correlation.  We impose that R2<1, hereby ruling out the case under the null where the partial sums of xt 

cointegrate with y t.  If there is such a cointegrating relation, this should be modeled in the system taking the 

model outside this framework (unless the coefficients of the cointegrating vector is known, in which case 

the model can be rotated back into this framework, see Elliott et. al. (2002)). 



 4

 

We consider five cases indexed by superscript i (i=1,2,3,4,5) for the deterministic part of the model (where 

parameters are free unless otherwise stated) 

 

Case 1: 010 == yy ββ and 010 == xx ββ . 

Case 2: 01 =yβ and 010 == xx ββ . 

Case 3. 01 =yβ and 01 =xβ . 

Case 4: 01 =xβ . 

Case 5: No restrictions. 

 

Each of these cases can be characterized by the restriction ( ) 0)1(2 =−+ βim SI  where β = [β0' β1']', Si is a 

2(m+1)x2(m+1) matrix where S1=0, 
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S  and S5 is the identity 

matrix. 

 

This represents a fairly general set of models in which we have a VAR in the model of x and the quasi 

difference of y.  We wish to test that the parameter ρ is equal to one (y t has a unit root) against alternatives 

that this root is less than one.  Following the general methods of King (1980, 1988) we will examine Neyman-

Pearson tests for this hypothesis. Following the application of these methods to testing for unit roots in 

ERS and Elliott (1999) we will examine Neyman-Pearson tests for this hypothesis under simplifying 

assumptions, and then in the following section we will derive general tests that are asymptotically 

equivalent to these optimal tests. 

 

With the assumption that A(L)=I (so that  Ω=Σ) and assuming the et are normally distributed and uy0=0 we 

will examine tests against the local alternative that c = c <0 where ρ = +1 c T/  and ρ = +1 c T/  with 

c, c  fixed (we will suppress the dependence of ρ on T in the notation). 

 

The system likelihood ratio test statistic for the hypothesis is given by  

 

∑∑
=

−

=

− Σ−Σ=Λ
T

t

i
t

i
t

T

t

i
t

i
t

i uuuu
1

1

1

1 )1(ˆ)'1(ˆ)(ˆ)'(ˆ),1( ρρρ  

where we have for r = ρ ,1 that  

 )(ˆ)'()()(ˆ rrdrzru i
tt

i
t β−=  



 5

where [ ]'',)1()( ttt xyrLrz −=  for t>1 and [ ]'',)( 111 xyrz = , 
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of D.  The test has rejection regions of the form { }bcxy i
tt <−Λ ),1(:, ρ  where b is a critical value. 

 

Theorem 12. 

For the model in (1) and (2) with A(L)=I, et independent N(0,Σ) random variables and  A3 holding  then 

with ρ = +1 c T/  and ρ = +1 c T/  with c, c  fixed as T → ∞  the most powerful test of H0: c=0 vs. Ha: 

c= c <0 has asymptotic power functions 

 [ ]),(),,(Pr),,( 222 RcbRccRccP i <= ψ     

where ( ) ),,(2)2(),(),,( 2
21

2/12
1

22 RcchdWWQcWQcccccgRcc ii
c

i
c

ii ++−+= ∫∫ψ , 

),( 2Rcb is a constant, )1/( 22 RRQ −= , cc WW 1
1

1 = , ∫−= cc
i
c WWW 111 for i=2,3,4 and 

∫∫ −−−−= cccc sWsWsWW 111
5

1 )612()64( , 2
1

2
1

2 )1(),( cc
i WcWcccg −= ∫ for i=1,2,3 and 

[ ]2

1
2

1
12

1
2

1
2 )1()1()1()1(),( ∫∫ +−−−+= −

cccc
i sWcWckWcWcccg  for i=4,5, ),,( 2Rcch i is 

zero except for [ ] −+−= ∫− 2

1
2

1
124 )1()1(),,( cc sWcWckRcch  

[ ] [ ]{ }2

222
2/1

1121
2

1
1

2

)()()1()1()
12

( ∫∫∫∫∫ −+−−−++−+ − dWsdWcQsWcccWccQsWcWc
c

Qk C
cc

C
cc

, 

and 3/1 2cck +−= .  All integrals are 0 to 1 over s with s suppressed, so e.g. ∫∫ =
1

0 11 )( dssWW cc and 

∫ += −s sc
c sWdWecsW

0 11
)(

1 )()()( λλλ , W1 and W2 are independent univariate standard Brownian 

motions. 

 

In case 1 this is apart from a scale factor the same as that reported in Hansen (1995)3.  A number of features 

are noteworthy.  Firstly, the dependence of the test on c  indicates that no uniformly most powerful test is 

                                                                 
2 Proofs are available in a UCSD discussion paper version of this paper. 
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available for this problem, power depends on the choice of the alternative.  Second, the distribution of the 

test is nonstandard.  Third, the optimal test statistic depends on Σ and its distribution depends on the 

parameter R2.  When  R2=0 then ),(),,( 2 ccgRcc ii =ψ  which is equivalent to the asymptotic limits of 

the tests derived in ERS, thus the most powerful tests  coincide asymptotically with tests with the relevant 

invariance properties with respect to deterministic terms which do not use the information in the covariates 

(Cases 1-3 equate to the constant included case, Cases 4-5 are the time trend included result).  When R2 is 

nonzero the optimal univariate and system tests are different, indicating that information is lost when 

information in the covariates is ignored.  

 

The results in the Theorem give the local power for any choice of c  at any local alternative c.  When we set 

c  =c, we obtain by construction the test that has the highest attainable power.  By evaluating the powers 

setting c=c  we obtain the envelope of greatest asymptotic power, which we call the power envelope.  

Figure 1 examines the power envelopes for various R2.  The power envelope when R2=0 has the lowest 

power - this is the relevant envelope if no covariate information is employed.  When R2 is greater than zero, 

the power attainable increases considerably above this lower bound.  Hence, use of covariates has the 

potential to greatly increase the power of tests for a unit root, as indicated by Hansen (1995).  The larger is 

R2, the more powerful the optimal test4.  These results are true for each of the various assumptions on the 

deterministic terms 5.  Comparing the first two panels in Figure 1 we see the effect of estimating the constant 

terms.  This effect is small, e.g. when R2=0.5 and c=-5 the power envelope in the constants known case is 

70% whilst when the constants are unknown this power is 62%.  Both of these powers are substantially 

above that of the case where no covariates are employed, where the envelope attains a power of 32%. 

 

As in the case where there are no covariates, the effect on the power envelopes for the case where the trend 

terms (coefficients on time trends) are not known is quite large.  In the case mentioned above, where R2=0.5 

and  c= -5 the maximal power in case 5 is 33%, far below the 62% when only coefficients on the constants are 

known.  Notice though that the maximal power in this case even when constants and coefficients on the time 

trend are estimated is (just) above that for the case where stationary covariates are ignored and the 

coefficient on the time trend is known.  In general the power losses from not knowing the coefficient on the 

trends in the xt regressions is small (differences between cases 4 and 5, not pictured in the figures), between 

zero (when R2 is small) and 6% or so (when R2 is large).  There is clearly the potential for much to be gained 

                                                                                                                                                                                                 
3 We also have a notational difference in that our R2 is defined in Hansen (1995) as 1-R2.  We changed the 
notation to accord with the usual use of R2. 
4 The asymptotic results are not appropriate at R2=1, which is readily seen from the limit expression which 
would not be finite at this point.   
5 Case 2 and case 1 are asymptotically identical, so we omit case 2.  Case 4 has functions similar to Case 5 
and is omitted. 
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in terms of power from exploiting stationary covariates in constructing tests for a unit root.  The 

construction of tests that achieve these gains is addressed in the next section. 

 

3. Feasible Tests. 

 

In this section we derive families of tests that asymptotically attain the power bounds derived above at pre-

specified points, relaxing the normality and known nuisance parameter assumptions.  The method for 

constructing the test is set out in 4 steps 

(a) Estimate nuisance parameters for detrending and R2. 

Run a VAR  A(L)zt(1) = deterministics + et including no deterministic terms for case 1, constants for 

cases 2 and 3, constants and time trends for cases 4 and 5.  Using the residuals from the VAR6 

construct ∑
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(b) Construct detrended data under the null and alternative hypotheses, i.e. construct for r=(1, ρ) 
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(c) Run VAR’s (for r= 1, ρ ) , i.e. run )(~)(~)(
~

reruLA t
i
t =  and construct the estimated variance 

covariance matrices  
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(d) Construct the test statistic  

 

 [ ]( ))()(~)1(~),1(~ 1 ρρρ +−ΣΣ=Λ − mtrTi  

 

                                                                 
6 In practice one can choose the lag length of the VAR through theory or a consistent lag length estimator 
such as the BIC information criterion. 
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This test will have asymptotic power that achieves the power bound at c  under the assumptions. 

 

Theorem 2. 

For the model in (1) and (2) with assumptions A1, A2 and A3 holding and deterministic terms correctly 

specified for each case then as T → ∞ 

 ),,(),1(~ 2Rccii ψρ ⇒Λ  

where ⇒ denotes weak convergence. 

 

Thus the critical values for the test depend on the alternative chosen ( c ) and R2.  The feasible test 

asymptotically achieves the highest power possible at c .  We have chosen here to let c  = -7 for cases 1-3 

and c  =-13.5 for cases 4 and 5 (which follows the choice of ERS).  In principle and practice we could choose 

different values for c  depending on R2, however as R2 rises above zero lack of power is becoming less 

problematic so it seems reasonable to us to choose c  for the worst case scenario. 

 

Asymptotic critical values for the test for selected values of R2 are given in Table 1.  The relevant critical 

value is determined for the estimated $R 2 .  For values of R2 between the ones given in Table 1, interpolation 

can be used to approximate  the critical value. 

 

4. Evaluation of the Tests. 

 

4.1. Large Sample Evaluation. 

 

Figure 2 examines the power of the feasible test for Cases 1, 3 and 5 in each panel respectively.  The figures 

give the results for R2 = 0.3, 0.5 and 0.7.  Accompanying the power curves are the power envelopes for 

comparison.  The feasible point optimal test has power that is close to the power envelope, suggesting that 

there is little asymptotic power loss at points away from where the test is optimal, especially for lower values 

for R2.  This is similar to results of ERS, where for R2=0 this was found to be true.  When R2 = 0.5 the 

difference between the power envelope and the asymptotic power of the feasible test is small for alternatives 

a moderate distance and further from the null, but a little larger for alternatives close to the null.  This 

becomes more apparent for larger R2.  To the extent that very large values for R2 are probably not too 

relevant empirically, this may not be too much of a problem.  The suggestion from these graphs appears to 

be that the most useful choice of c  in practice may depend on R2.  We also examined the power curves for 

the case where c  =-7 to perhaps improve the closeness of the power curves to the envelopes for these near 

alternatives.  When this alternative is chosen this indeed happens, however the tradeoff is that the power 
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curves for R2 small are not as close to the envelope for more distant alternatives.  Thus we recommend 

choosing c  =-13.5 as power is more of a concern when R2   is small. 

 

The power gains are clearly substantial for each of the cases for the deterministic terms (results for case 4 

are similar to those in case 5).  Consider the gains from using covariates when R2=0.5.  At the local 

alternative c = -5, in case 3 power rises by 30% and in case 5 power rises by 35%.  Such gains in power 

substantially improve the odds of correctly distinguishing a process with a unit root from a slowly mean 

reverting process.  

 

4.2.  Small Sample Evaluation. 

 

We will examine various special case models in samples of 100 observations.  Along with the above tests, 

we report results for the commonly applied test of Dickey and Fuller (1979) and also the PT test of ERS as 

well as the Hansen (1995) CADF test.  

 

Table 2 reports results of simulations of the model in (1) and (2) for each of the cases 1, 3 and 5 respectively 

where A(L)=I (and this is known), et is normally distributed with variances equal to 1 and R2 as reported in 

the Table.  Size is given in the row corresponding to ρ =1 and (empirical) power against the indicated 

alternatives in the following rows.  When there are no deterministic terms in the model the DF and PT single 

equation tests do similarly well (see ERS for a discussion of this similarity).  In the test proposed here, when 

R2=0 power and size are comparable to the univariate tests indicating that even in small samples little may be 

lost by including extraneous information and doing the system test.  As R2 increases, size remains well 

controlled whilst power rises considerably.  Consider the case of the true ρ  being equal to 0.96, the PT test 

has power around 23% whilst if R2 =0.25 the system test has power equal to 34%, roughly a 50% gain. 

 

When a constant is included, the PT statistic gains in power over the Dickey and Fuller (1979) t test are very 

large.  Again, when R2=0 the test proposed here has similar size and power to the PT statistic indicating that 

little is lost adding extraneous stationary covariates.  In general, size is less well controlled, especially for R2 

close to one (where the asymptotic theory would no longer be relevant,  however it would not be expected 

that such models would be appropriate for real world data) .  There is some evidence of power losses from 

not knowing the constant term.  At a value of ρ = 0.96 the power when the constant is known (or zero) 

power is 49% compared to the unknown constant power of 45% when R2=0.49.    Even so, power for the test 

with the constant unknown is quite high in many cases, and is far beyond that achievable when covariates 

are not employed. 
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Similar results are found for the detrended (case 5) model.  In both of these cases power when using 

covariates is substantially greater than when relevant covariates are ignored (for example, in case 3 when ρ 

=0.9, power of the test proposed here when R2=0.25 is 20% for the Dickey and Fuller test and is 49% for the 

test with covariates employed.  There are as usual power losses in including a time trend.   In the case of ρ = 

0.96 and R2=0.25 the power drops from 36% in case 3 to 13% in case 5.   

 

The effect of estimating R2 in the computation of the test is examined in Table 3 (for cases 3 and 5 in each of 

the panels respectively).  Here the results when R2 is estimated are repeated from Table 1 on the right hand 

side panels, whilst the same results using the critical value chosen using the true R2  are given in the left 

hand panels.  There is very little difference, even in a sample of 100 observations.  Most of the differences in 

size and power are at the third decimal place.  It is only for case 5 when R2 is a little larger that there is much 

of an effect, but the effect is minor (in these cases there is a small power loss from estimating R2). 

 

Table 4 compares the CADF test of Hansen (1995) with the feasible test derived here (again for the leading 

cases 3 and 5 respectively).  The CADF test augments the usual Dickey and Fuller (1979) test with lags, 

leads and the contemporaneous values of xt.  In this table, with no serial correlation, this amounts to 

including xt as a regressor in the ADF regression and then constructing the t -test of the unit root hypothesis 

as normal.  As shown in Hansen (1995) this test also depends on R2.  In the comparison we use the same 

value of R2 to compute critical values for each of the tests.  In the first column of the CADF results, where 

R2=0, we have essentially the same results as the Dickey and Fuller (1979) test in Tables 3 and 5 that ignores 

the covariates.  This should be the case, the included xt variable in the ADF regression has a population 

coefficient of zero in this case.   Likewise, the first column of the $ ( , )Λ 1 ρ test matches with the PT test for 

the reasons we have described.  This gives an insight into the difference in the two approaches, the 

difference between the CADF and $ ( , )Λ 1 ρ  is similar to the difference between the Dickey and Fuller (1979) 

approach and the ERS approach.  When R2>0, we see that the $ ( , )Λ 1 ρ test outperforms the CADF test in 

terms of power, although is slightly worse in size performance.  The increases in power can be quite large.  

In the case 3 when R2= 0.09 the power of the $ ( , )Λ 1 ρ test is two to three times that of the CADF test.  For 

case 5 the effects are not as dramatic, but still power gains of 50% or so are available from using the 

covariates test proposed here over the CADF test. 

 

 

5. Unit Root Tests and Long Run Structural VAR Estimation. 
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Blanchard and Quah (1989) derive a method for identifying structural VAR’s from restrictions placed on the 

spectral density of the data at frequency zero when there are known unit roots in the system.  Consider the 

bivariate version of the model considered in this paper when we impose that the root ρ is equal to unity, 

 t
t

t

x
y

LA ε=






∆
)( . 

 

Inverting the lag polynomial gives us  
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where C(L)=A(L)-1 and E[ηtηt ']=I.  This model is not identified in the usual sense as for any of the infinite 

possible invertible matrices K we obtain a different structural model.  In this bivariate system we require a 

single restriction so that the rotation K is unique for the model to be identified (this would be the order 

condition).   

 

In such systems, y t is permanently affected by shock(s) since it is an integrated process.   On economic 

grounds, it may be interesting to identify the model such that only one of the structural shocks has a 

permanent effect on y t .  In Blanchard and Quah (1989) this argument meant that demand shocks could not 

have a permanent effect.  In King et. al (1991) cointegration was used to imply a smaller number of 

permanent shocks than total shocks.  In such cases it is possible to identify the model as the cumulated sum 

of the structural impulse responses, D(1), will be triangular as only one of the shocks has a long run effect 

on y t. 

 

For the model above, the identification scheme would set the (1,2) component of D(1) equal to zero.  Since 

the spectral density of the data at frequency zero (scaled by 2π) is Ω = D D( ) ( )'1 1  this amounts to taking 

the choleski decomposition of the estimated matrix $Ω .  Such a restriction is only interesting and useful in 

identification when the off diagonals for Ω  are indeed nonzero, i.e. when R2>0. 

 

The crux of this approach to identification clearly is that y t indeed does have a unit root.  If instead there 

were no permanent effects then we would interpret D(1) differently and would have no reason to make this 

matrix triangular.  So in practice a useful hypothesis test to report in undertaking this method would be a test 

for a unit root in y t.  Further, when the imposed restriction is indeed informative, then R2>0 and hence we are 

exactly in the cases where the tests of this paper yield power gains over univariate testing.  Typically, such 

tests for a unit root to provide evidence of the validity of this restriction are undertaken using Dickey Fuller 
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(1979) tests (see Gali (1999) for example), which neither use the full information in the model nor are they the 

most powerful univariate tests.  The tests derived in this paper provide a natural test of the basic 

identification assumption of the Blanchard and Quah identification scheme.  

 

We apply the tests derived here and other common tests to the Blanchard-Quah dataset.  The data is 

quarterly data on income and unemployment for the US from 1950:2 to 1987:4, where unemployment is the 

stationary variable xt and income is the y t variable.  We include constants and time trends in both 

unemployment and income7 (so the tests are from case 5) and follow Blanchard and Quah in choosing eight 

lags.  The DF statistic is -1.78 and the DF-GLS statistic of ERS is -1.37.  Neither is close to rejecting for a 5% 

or 10% test.  The ),1(~5 ρΛ test is 17.93.  For the estimated R2 of 0.76 the critical value is 16.56, so we have a 

p-value of 0.07 and fail (but only just) to reject at 5% and so find some support for the Blanchard and Quah 

assumption8.   

 

6. Conclusion. 

 

Typically in economics correlation between the variables is the rule rather than the exception.  Often these 

are implied by theory.  Either way, this information can be extremely valuable in testing assumptions that are 

ancillary to the modeling process.  This appears to be especially true in the case of testing for a unit root.  

Hansen (1995) showed this with tests he developed based around the statistic of Dickey and Fuller (1979).  

In a related paper Horvath and Watson (1995) showed that power gains are available when there are known 

cointegrating relationships (which are then stationary variables).  We have shown here that even greater 

gains are possible.  The statistics are simple to implement and yield extremely large gains in power when the 

covariates are relevant. 

 

The statistics we generate, useful in many areas, are directly applicable to testing the unit root assumption 

in the identification of structural VAR’s from long run restrictions.  These restrictions do not make sense 

unless there is a process with a unit root in the model, yet typically very low power tests are used to examine 

this assumption.  The tests derived here will have much better power at detecting the mistaken use of this 

procedure. 

                                                                 
7 Blanchard and Quah included a time trend in unemployment on the grounds that it was increasing over the 
sample.  They had the equivalent of a time trend with a break for the oil shocks in income.  We do not 
include a 'known' break such as this, however not including the break if it were truly there (tests which 
search for such a break typically fail to reject the hypothesis of no break) biases us away from rejecting the 
unit root. 
8 We do reject for 7 lags, but not for shorter lags than this. 
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Figure 1: Power Envelopes for Cases 1,3 and 5 respectively. 
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Note: Envelopes for R2=0,0.3,0.5,0.7 and 0.9 where power is increasing in R2. 
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Figure 2: Power Envelopes and Power curves for Cases 1,3 and 5  
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Note: Unbroken lines are Envelopes for R2=0.3,0.5 and 0.7 and broken lines are power of Point Optimal tests 
for each R2 where power is increasing in R2.   
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Table 1: Asymptotic Critical Values (Distribution in Theorem 3) 

R2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Cases 1,2 3.34 3.41 3.54 3.76 4.15 4.79 5.88 7.84 12.12 25.69 

Case 3 3.34 3.41 3.54 3.70 3.96 4.41 5.12 6.37 9.17 17.99 
Case 4 5.70 5.79 5.98 6.38 6.99 7.97 9.63 12.6 19.03 39.62 
Case 5 5.70 5.77 6.00 6.40 7.07 8.15 10.00 13.36 20.35 41.87 

Notes:  Critical values were computed using 1500 steps as approximations to the Brownian Motion terms in 
the limit theorem representations and 60000 replications.  The critical values reported are for tests of size 5% 
with c =-7 for cases 1, 2 and 3 and c  = -13.5 for cases 4 and 5. 
 

Table 2: Small Sample results for ),1(~ ρiΛ  

 DF PT ),1(~ ρiΛ  

 
R2 = 0 0 0 0.09 0.25 0.49 0.81 

ρ         
Case 1: No Determinstic Terms  

1 0.05 0.048 0.051 0.049 0.05 0.05 0.044 
0.98 0.117 0.113 0.119 0.132 0.153 0.195 0.306 
 0.96 0.237 0.229 0.239 0.276 0.342 0.493 0.848 
0.94 0.407 0.396 0.407 0.463 0.576 0.782 0.992 
0.92 0.594 0.581 0.59 0.655 0.774 0.926 0.999 
0.9 0.758 0.744 0.748 0.807 0.896 0.977 1 

0.88 0.878 0.865 0.867 0.905 0.954 0.993 1 
0.86 0.947 0.939 0.936 0.957 0.981 0.998 1 

        
Case 3: Constants in each Regression 

ρ         
1 0.054 0.059 0.064 0.061 0.06 0.054 0.039 

0.98 0.075 0.138 0.145 0.154 0.167 0.192 0.254 
0.96 0.105 0.273 0.285 0.308 0.355 0.445 0.716 
0.94 0.159 0.453 0.466 0.499 0.572 0.709 0.946 
0.92 0.235 0.64 0.648 0.685 0.759 0.875 0.991 
0.9 0.332 0.795 0.797 0.825 0.879 0.951 0.998 

0.88 0.448 0.899 0.897 0.914 0.943 0.981 1 
0.86 0.573 0.956 0.951 0.959 0.974 0.992 1 

        
Case 5: Constants and Time Trends in each Regression 

ρ         
1 0.057 0.039 0.053 0.053 0.051 0.044 0.021 

0.98 0.062 0.049 0.065 0.069 0.076 0.085 0.08 
0.96 0.078 0.076 0.099 0.111 0.131 0.172 0.262 
0.94 0.106 0.119 0.152 0.173 0.223 0.32 0.599 
0.92 0.147 0.184 0.226 0.267 0.345 0.511 0.871 
0.9 0.204 0.27 0.325 0.379 0.488 0.699 0.971 

0.88 0.277 0.377 0.441 0.507 0.634 0.834 0.993 
0.86 0.365 0.503 0.564 0.635 0.758 0.919 0.998 

Notes: Based on 20000 replications of the model with T=100, normal errors as discussed in the text.  The 
system test is implemented with R2 estimated. 
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Table 3: Effect of estimating R2  
 R2 known  Estimated R2 

R2 = 0 0.09 0.25 0.49 0.81  0 0.09 0.25 0.49 0.81 
Case 3: Constants in each equation 

ρ             
1 0.063 0.06 0.061 0.056 0.053  0.064 0.061 0.06 0.054 0.039 

0.98 0.144 0.152 0.167 0.193 0.29  0.145 0.154 0.167 0.192 0.254 
0.96 0.283 0.305 0.356 0.45 0.758  0.285 0.308 0.355 0.445 0.716 
0.94 0.465 0.497 0.573 0.716 0.967  0.466 0.499 0.572 0.709 0.946 
0.92 0.647 0.684 0.761 0.882 0.997  0.648 0.685 0.759 0.875 0.991 
0.9 0.796 0.824 0.881 0.956 1  0.797 0.825 0.879 0.951 0.998 

0.86 0.951 0.958 0.975 0.994 1  0.951 0.959 0.974 0.992 1 
            

Case 5: Constants and Time Trends in each equation 
ρ             
1 0.053 0.052 0.052 0.048 0.05  0.053 0.053 0.051 0.044 0.021 

0.98 0.065 0.068 0.076 0.087 0.131  0.065 0.069 0.076 0.085 0.08 
0.96 0.099 0.109 0.131 0.176 0.342  0.099 0.111 0.131 0.172 0.262 
0.94 0.152 0.172 0.221 0.327 0.686  0.152 0.173 0.223 0.32 0.599 
0.92 0.225 0.265 0.345 0.522 0.923  0.226 0.267 0.345 0.511 0.871 
0.9 0.323 0.377 0.489 0.714 0.989  0.325 0.379 0.488 0.699 0.971 

0.86 0.562 0.633 0.764 0.93 1  0.564 0.635 0.758 0.919 0.998 
Notes: As per Table 2. 
 

Table 4: CADF and ),1(~ ρiΛ  

 CADF  ),1(~ ρiΛ   

R2 = 0 0.09 0.25 0.49 0.81  0 0.09 0.25 0.49 0.81 
Case 3: Constants in each equation 

ρ             
1 0.053 0.055 0.056 0.054 0.051  0.064 0.061 0.06 0.054 0.039 

0.98 0.075 0.082 0.098 0.135 0.321  0.145 0.154 0.167 0.192 0.254 
0.96 0.107 0.123 0.162 0.272 0.675  0.285 0.308 0.355 0.445 0.716 
0.94 0.16 0.188 0.262 0.456 0.885  0.466 0.499 0.572 0.709 0.946 
0.92 0.234 0.285 0.396 0.639 0.965  0.648 0.685 0.759 0.875 0.991 
0.9 0.332 0.4 0.542 0.79 0.991  0.797 0.825 0.879 0.951 0.998 

0.86 0.566 0.654 0.798 0.947 0.999  0.951 0.959 0.974 0.992 1 
            

Case 5: Constants and Time Trends in each equation 
ρ             
1 0.057 0.058 0.057 0.053 0.046  0.053 0.053 0.051 0.044 0.021 

0.98 0.061 0.067 0.079 0.106 0.219  0.065 0.069 0.076 0.085 0.08 
0.96 0.079 0.093 0.121 0.197 0.525  0.099 0.111 0.131 0.172 0.262 
0.94 0.105 0.131 0.182 0.327 0.78  0.152 0.173 0.223 0.32 0.599 
0.92 0.147 0.186 0.268 0.479 0.916  0.226 0.267 0.345 0.511 0.871 
0.9 0.203 0.257 0.375 0.635 0.973  0.325 0.379 0.488 0.699 0.971 

0.86 0.363 0.451 0.613 0.861 0.998  0.564 0.635 0.758 0.919 0.998 
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Notes: As per table 3.  The CADF refers to the test procedure in Hansen (1995).  In each case the same R2 
estimate is used to determine the critical value. 
 
Appendix.  
 
Lemma 1.  Distribution results. 
 
Under the Assumptions of the model in (1) and (2) with A1, A2 and A3 we have that 
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(all integrals are zero to one).  Applying these results to (A1) yields 
 

 
( ) ( ) ( )

( ) ( ) ( ) cccNSScDSccNS

cNSSDScNSRcc

iiii

iiii
i

+−

+⇒Λ
−

−

),,(),('),,(

),0,(),0('),0,(),,(),1( 21

δδδ

δδδψρ
 

 
The individual results follow by using the relevant Si and rearranging. 
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In case 2, we have  
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Plugging in 0 and c  for cr and taking the difference yields the result. 
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The result follows from straightforward algebra. 
 
 
Proof of Theorem 2. 
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We take part (b) first. 
 
We have  
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where NT(r) is defined as before replacing et(r) by u t(r) and Σ by Ω  and similarly for DT(r) (these are the 
generalizations to A(L)≠I) and the op(1) term arises from replacing the estimated Ω  with its true value. 
 
Using the Beveridge Nelson decomposition A(L)=A(1)+A*(L)(1-L) we have  
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This gives the result  
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Finally, following steps analogous to those in the proof of Theorem 1 we have that   
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Part (c) follows from noting that  
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Applying the convergence results in lemma 1 completes the result. 
 
Finally, it remains only to show part (a), that estimating the VAR coefficients assuming the largest root for y t 
is r does not matter asymptotically. 
 
We have that  
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(i.e. the regressors in the VAR to be run). Note that  
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t β−=  (i.e. y t detrended under the hypothesis that ρ =r). 
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The second of these terms is o p(1) as typical terms involve ∑ −
− 23 ~

ityT .  These converge to zero as 
i
tyT ~2/1−  is 0p(1).  This follows as  
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where s3 is (2m+2)x1 with the (m+2) element one and is zero everywhere else.  Similar results follow for the 
cross product terms.  So we have  
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and the third and fourth terms cancel obtaining the result in (a). 
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