Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Plasma eicosanoids as noninvasive biomarkers of liver fibrosis in patients with nonalcoholic steatohepatitis.

Abstract

Background

Eicosanoid and related docosanoid polyunsaturated fatty acids (PUFAs) and their oxygenated derivatives have been proposed as noninvasive lipidomic biomarkers of nonalcoholic steatohepatitis (NASH). Therefore, we investigated associations between plasma eicosanoids and liver fibrosis to evaluate their utility in diagnosing and monitoring NASH-related fibrosis.

Methods

Our analysis used baseline eicosanoid data from 427 patients with biopsy-confirmed nonalcoholic fatty liver disease (NAFLD), and longitudinal measurements along with liver fibrosis staging from 63 patients with NASH and stage 2/3 fibrosis followed for 24 weeks in a phase II trial.

Results

At baseline, four eicosanoids were significantly associated with liver fibrosis stage: 11,12-DIHETE, tetranor 12-HETE, adrenic acid, and 14, 15-DIHETE. Over 24 weeks of follow up, a combination of changes in seven eicosanoids [5-HETE, 7,17-DHDPA, adrenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), 16-HDOHE, and 9-HODE) had good diagnostic accuracy for the prediction of ⩾1 stage improvement in fibrosis (AUROC: 0.74; 95% CI: 0.62-0.87), and a combination of four eicosanoids (7,17-DHDPA, 14,15-DIHETRE, 9-HOTRE, and free adrenic acid) accurately predicted improvement in hepatic collagen content (AUROC: 0.72; 95% CI: 0.50-0.77).

Conclusion

This study provides preliminary evidence that plasma eicosanoids may serve as noninvasive biomarkers of liver fibrosis and may predict liver fibrosis improvement in NASH.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View