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Abstract 
This report deals with the lateral guidance of vehicles in Intelligent Vehicle 

Highway Systems (IVHS) with the main emphasis on the lane change maneuvers. In this 

study, the lateral position of the vehicle is assumed to be measured using the magnetic 

road reference system, which consists of magnetometers installed on the vehicle and 

magnets embedded in highway. In addition, a yaw rate sensor and an accelerometer are 

assumed to be installed on vehicles. 

Two approaches are studied for the lane change maneuvers in IVHS; one is to 

treat the maneuvers as a tracking control problem, and the other is to use the unified 

lateral guidance algorithm proposed in this report. In the tracking control approach, the 

desired trajectory for the lane change maneuvers, called the virtual desired trajectory 

(VDT), is designed considering the lateral acceleration and the lateral jerk for passengers’ 

ride comfort. A sliding mode controller is used as the tracking controller. To enhance 

passengers’ ride comfort, the sliding surface is constructed with respect to the filtered 

tracking error, which results in smoother control action than the standard sliding mode 

controller. A reduced order Kalman filter is designed to provide the estimates of the state 

variables of a vehicle, which are required to implement the sliding mode controller. This 

approach is validated by experiments performed on a full size vehicle. 

111 
... 



The unified lateral guidance algorithm consists of the desired yaw rate generator 

and the yaw rate tracking controller. The desired yaw rate generator provides the yaw 

rate tracking controller with the desired yaw rate to achieve the desired maneuvers, either 

lane change maneuvers or lane following maneuvers. Therefore, the same control 

algorithm may be applied to the two types of maneuvers. The desired yaw rate for lane 

following maneuvers is obtained by analyzing the kinematics of the lateral position 

measurement from the magnetic road reference system. The desired yaw rate for lane 

change maneuvers is obtained from the virtual desired trajectory. A mode switching 

algorithm for smooth transitions from the lane change maneuvers to the lane following 

maneuvers, and vice versa, is proposed. Simulation results validate this approach. 

Keywords: Automated Highway Systems, Lateral Motion Control, Lane Change 

Maneuvers, Unified Lateral Guidance, 
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Executive Summary 

In this report, the lane change maneuvers are studied in two ways: one is to 

treat the maneuvers as a tracking control problem, and the other is to use the unified 

lateral guidance algorithm. In the tracking control approach, the desired trajectory for the 

lane change maneuvers, called the virtual desired trajectory (VDT), is designed 

considering the lateral acceleration and the lateral jerk for passengers’ ride comfort. The 

trapezoidal acceleration trajectory is proposed as the VDT, and the design of appropriate 

trapezoidal acceleration can be achieved by compromising the lateral jerk, lateral 

acceleration and the maneuvering time. The sliding mode control is proposed as the 

tracking controller to make the vehicle to follow the VDT. In order for the sliding mode 

controller not to cause adverse effect on the passengers’ ride comfort, the sliding surface 

is constructed with respect to the filtered tracking error, which results in the frequency 

dependent weight on the tracking error. A reduced order Kalman filter is designed to 

provide the estimates of the state variables of a vehicle which are required to implement 

the sliding mode controller. This approach is validated by experiments performed on a full 

size car at Richmond Field Station, University of California at Berkeley. 

In order to achieve smooth transitions between the lane change maneuvers and the 

lane following maneuvers, the unified lateral guidance algorithm is proposed. The unified 

lateral guidance algorithm consists of the desired yaw rate generator and the yaw rate 

tracking controller. The desired yaw rate generator provides the yaw rate tracking 

controller with the desired yaw rate to achieve the desired maneuvers, either lane changing 

or lane following maneuvers. Therefore, the same control algorithm may be applied to the 

two types of maneuvers. The desired yaw rate for lane following maneuvers is obtained 

by analyzing the kinematics of the lateral position measurement from the magnetic road 

reference system. The desired yaw rate for lane change maneuvers is obtained from the 

virtual desired trajectory. A mode switching algorithm for smooth transitions from the 

lane change maneuvers to the lane following maneuvers, and vice versa, is proposed. 

Stability of the overall system was proven. Simulations support the validity of the 

proposed algorithm. 
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Chapter 1 

Introduction 

1.1 Objectives 

The California Partners for Advanced Transit and Highways Program (PATH) was 

launched in 1986, and has been leading the research in Intelligent Transportation Systems 

(ITS) or its predecessor Intelligent Vehicle Highway Systems (IVHS). The goal of PATH 

is to develop the foundations for the advanced technologies that will help increase 

highway capacity, resolve congestion of highways, enhance driving safety, save energy and 

reduce pollution. 

Under the above stated goals, PATH activities are subdivided into three broad 

categories: 

e ATMIS - Advanced Transportation Management Information Systems; 

e AVCS - Advanced Vehicle Control Systems; 

e Systems - the cross-cutting and institutional issues that apply to both ATMIS and 

AVCS. 

Among the activities, the AVCS includes the lateral motion control of a vehicle to be 

investigated in this report. 

To realize the lateral motion control, the reference sensing and the vehicle state 

sensing systems are essential. Under the PATH program, the road reference sensing 

system based on magnets and magnetometers has been extensively studied[40]. It consists 

of the magnets embedded in highways and the magnetometers installed on vehicles to 
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measure the magnetic field generated by the embedded magnets. The vehicle lateral 

position is then obtained from a table indexed by the measured magnetic fields. 

Additionally, a yaw rate sensor and accelerometers are used as on-board sensors. 

The lateral motion control problem consists of lane following maneuvers and lane 

change maneuvers. The main focuses of this report are the lane change maneuvers using 

the magnetic reference sensing system. The objective of the lane change maneuvers is to 

design a control system that controls a vehicle to move from one lane to the adjacent lane 

using only on-board sensors without jerky switching to and from the lane following 

controller. One of the significant differences in the lane change maneuvers from the lane 

following maneuvers is the fact that the road reference system is not available during the 

lane change maneuvers. Thus, the lane change maneuvers are performed in an open loop 

manner in the sense that the lateral position measurement is not available. 

In this report, the lane change maneuvers in AHS are investigated in two ways; 

one is to treat the maneuvers as a tracking control problem, and the other is to use the 

unified lateral guidance algorithm. For the tracking control approach, the desired 

trajectory for the lane change maneuvers, called the virtual desired trajectory (VDT), is 

designed by considering passengers’ ride comfort. Then, a tracking controller is designed 

to follow VDT. 

The unified lateral guidance algorithm consists of two modules that are connected 

in a cascaded structure: the yaw rate generation module and the yaw rate tracking control 

module. The yaw rate generation module generates the desired yaw rate to achieve a 

desired maneuver, i.e., lane change maneuver or lane following maneuver. Then, the 

desired yaw rate is realized by the yaw rate tracking controller. The unified lateral 

guidance algorithm is advantageous because it allows one to design a lateral motion 

controller for various maneuvers and various sensors through the unified design step 

without redesigning the feedback controller. This advantage becomes evident in the 

PATH scenario. In longitudinal control, a set of vehicles is controlled to keep their 
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spacing automatically. The set of vehicles behaves like a string; this set is called a platoon. 

In the platoon, the spacing between vehicles is too small to use the visual measurement 

because most of the image is blocked by the preceding vehicle. Therefore, a hybrid use of 

the visual measurement and the magnetic sensors is desirable. To realize the hybrid 

sensing system, the lateral control system should be designed for each sensing system and 

combined to accommodate various situations. This control system design can be 

simplified by the proposed unified lateral guidance algorithm. By designing the desired 

yaw rate from the kinematics of each measurement, the control system design is 

completed. Thus, the lateral control of a vehicle under various scenarios can be achieved 

in the unified way by designing the yaw rate generation module in series with the yaw rate 

tracking controller. 

1.2 Previous Work 

In this section, a literature review of the research related to the topics covered in 

this report is presented. 

Vehicle Modeling 

Lateral motion dynamics of a vehicle have been studied since the late 1950’s. A 

three-degree-of-freedom vehicle model, which includes the yaw, lateral, and roll motions, 

was developed by Segel[31]. It suggested that the longitudinal velocity of a vehicle 

should be considered as a major parameter for its stability. A simpler model, usually called 

the bicycle model, was then developed by neglecting the roll motion([9][32][37]). For the 

purpose of controller design, the bicycle model has been acknowledged to be sufficiently 

accurate and widely used ([3][9J[15][22][25][27]). More complex models with a larger 

number of degree-of-freedoms have been also developed for realistic simulation 

studies([20][26]). 
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Lane Followinrr Maneuvers 

In the late 1950’s, GM and RCA conducted research on the lane following 

maneuvers [ll]. Fenton et. al. used classic frequency domain control theory to design a 

controller for the lane following maneuvers. Their design was verified by experiments[9]. 

Ackermann utilized robust control theory based on the parameter space to design an 

automatic steering system for vehicles with the lateral position measurement using the 

continuous wire embedded in highways[2]. 

In the PATH program, linear lateral motion controllers, using frequency shaped 

linear quadratic (FSLQ) optimal control theory and the optimal preview control theory, 

have been developed ([25][26][27][28]). In addition, a fuzzy rule-based controller has 

been designed. The effectiveness of these controllers has been verified by experiments 

([151[161[271). 

To deal with various uncertainties in road-tire interaction, sliding mode control 

approaches to steering control have been proposed in Pham et. al.[29] and Ackermann et. 

al. [3]. Pham et. al. used a saturation function in place of a sign function in the standard 

sliding mode control in order to avoid the chattering problem[34]. Ackermann et. al. 

proposed a two stage design: in the first stage, the desired yaw rate is obtained so that the 

measured lateral position converges to zero, and in the second stage a sliding control law 

is constructed to force the yaw rate to follow the desired value obtained from the first 

stage. This two stage design was originally proposed by Pappas et. al.[23] for the lateral 

guidance of vehicle-like robots. In his work, the unicycle model was used to represent the 

dynamics of the vehicle-like robot at low velocities where the no slip condition was 

assured. 
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Lane ChanPe Maneuvers 

In contrast to lane following maneuvers, considerably less research has been 

conducted for lane change maneuvers. Godthelp et al.[12] investigated human driving 

patterns and reported that steering angle variations during lane change maneuvers 

resemble sine functions and that lane change maneuvers may be divided into four stages 

according to the signs of steering angle and its time derivative. A preview control model 

of a human driver during lane following maneuvers and lane change maneuvers was 

proposed by Hess and Modjtahezadeh([l3][14][21]). Chee and Tomizuka proposed the 

FSLQ controller and the sliding mode controller for lane change maneuvers, and showed 

the effectiveness of the control algorithms by simulations([5][6]). Experimental results 

were presented in [7] to show the effectiveness of the controller and the estimation 

scheme. 

1.3 Organization of the Report 

This report is organized as follows. In Chapter 2, some preliminaries for the 

vehicle lateral guidance are discussed. The simplified vehicle model, the new algorithm for 

road reference sensing system and VDT are discussed in Chapter2. In Chapter 3, the lane 

change maneuvers are treated as a tracking control of VDT. The tracking controller is 

designed via sliding mode control theory, and a reduced order K h a n  filter is proposed as 

a state estimator. Some analyses of the tracking error and experimental results are 

presented. In Chapter 4, the unified lateral guidance algorithm is proposed, and applied to 

the lateral guidance under the PATH scenario. The stability of the overall system is 

proven, and the effectiveness of the proposed algorithm is confirmed by simulations. 

Finally, conclusions are drawn in Chapter 5. 
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Chapter 2 

Preliminaries for Lateral Guidance of a Vehicle 

In this chapter, the lateral guidance (or lateral motion control) of a vehicle, 

including lane change maneuvers and lane following maneuvers, is explained in the context 

of intelligent vehicle highway systems (IVHS). Then, the vehicle model is discussed from 

the control point of view. The new algorithm to get the lateral position from the magnetic 

road reference sensing system is presented in detail. Finally, the desired trajectory for the 

lane change maneuvers is proposed. 

2.1 Lateral Guidance System for IVHS 

Increasing highway congestion, resulting in gridlock, deteriorating effects on the 

environment through inefficient use of fuel, and hazardous driving conditions, has inspired 

a great deal of research interest in the intelligent vehicle highway systems (IVHS). The 

underlying goals of the IVHS include the reduction of highway congestion, improvement 

of driving safety, and reduction of pollution. 

The lateral guidance of a vehicle falls into the category of advanced vehicle control 

systems (AVCS). The goal of the AVCS in the IVHS context is to achieve complete 

driving automation. Thus, the lateral guidance system should be able to execute both the 

lane change maneuvers and lane following maneuvers. The concept of the two maneuvers 

is depicted in Figure 2.1. 
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Figure 2.1: Concept of Maneuvers 

The task of the lane following maneuvers is to control a vehicle to follow the road 

reference sensing system. As shown in Figure 2.1, the road reference sensing system in 

PATH is based on magnets embedded in highway lanes. The lane following maneuvers 

can be treated as a tracking problem since the lateral position of the vehicle, which 

represents a tracking error, is always available. Many works on the vehicle lateral 

guidance have been devoted to the lane following maneuvers as mentioned in Chapter 1. 

The objective of the lane change maneuver in IVHS is to control a vehicle to move 

from the current lane to the adjacent lane(Figure 2.1). One important issue in the magnet 

based lateral guidance is the availability of the lateral position measurement. Since the 

vehicle passes the region where the magnetic fields generated by the embedded magnets 

are not detectable during the lane change maneuvers, the maneuver may have to be 

conducted in an open loop manner without lateral position measurement. In such cases, 
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the lateral position of a vehicle should be estimated using the information from on-board 

sensors, such as yaw rate sensors and accelerometers. 

Another important issue is the transition from a lane change maneuver to a lane 

following maneuver and vice versa. Since the lateral position is available only during lane 

following maneuvers, the control algorithm for lane change maneuvers needs to 

accommodate such data switching. A smooth transition algorithm will be discussed later. 

2.2 Bicycle Model 

In this section, we discuss the dynamics of the vehicle for controller design. The 

bicycle model is used to design control and estimation algorithms presented in the later 

chapters. The bicycle model represents vehicle motions in a horizontal plane. It is 

obtained by lumping the two front and the two rear wheels into one front and one rear 

wheels in the center line of the vehicle, and by neglecting suspension dynamics. Thus, the 

roll, pitch, and heave motions are not included. 

1 . .  

1 
0 ) X  

Figure 2.2: Coordinates for Bicycle Model 
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Referring to Figure 2.2, and assuming a constant longitudinal speed (Ifx), the 

equations of motion using the axes fixed to the vehicle (oxy) can be written as follows. 

m(vy +VI&) = f, cos6 + f, (2.1) 

I z &  = 1, f, cos6 - 1, f, (2.2) 

In these equations, V,  denotes the speed in the direction of ox axis and V y  the one in the 

direction of oy axis. The velocity of a vehicle, V, is obtained from V, and V y  . E denotes 

the yaw angle with respect to the absolute coordinates, OXU, and 6 represents the 

steering angle of the vehicle. Other symbols and their nominal values are h ted  in Table 

2.1. fr and f, are the side forces for the front tire and the rear tire, respectively. 

Table 2.1: Variables and Parameters of Model 

6 

E 

V 

CS 

m 

Iz 

11 

12 

front steering wheel angle 

yaw angle of the vehicle (or y/ ) 

longitudinal speed of the vehicle (3 1. l d s ec )  

cornering stiffness (40000 Nlrad) 

mass of the vehicle (1720 kg)  

moment of inertia of the vehicle (3250 kgm’ ) 

distance from c.g. to front axle (1.137 m) 

distance from c.g. to rear axle (1.530 m) 

It is noted that the side force in each tire is a function of tire side slip angle. The 

slip angle is defined as the angle between the direction of an object and the velocity vector 

of the object. If the object is a tire, we can obtain the tire slip angle as follows. 

l,& + vy 
VX 

a, = 6 -  

l,& - vy 
VX 

a, = 
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Here, a, and a, represent the front and the rear tire side slip angle, respectively. Now, 

the side force can be represented as follows. 

f f  = f , ( 4  

f r  = f r ( a r )  

f f  = %a, 

f, = 2Csa,. 

If we assume the tire slip angles are small, the side forces are written as 

Then, the linearized bicycle model can be written as 

2cs (21 - 22 ) 4cs m(vy + vx€) = 2cs6  - € - - V ,  
vx VX 

2CS(Zl2 + 2,2) 2cs  (21 - 22) 
I,& = 22,CsS - € -  VY - v, VX 

(2.10) 

This linearized model will be used in the later chapters. 

2.3 Desired Trajectory for Lane Change Maneuvers 

In the study of lane change maneuvers, we assume that the maneuvers are 

performed on the automated lanes, on which magnets are installed at every lm. The 

objective of the lane change maneuver is to make the vehicle move laterally from one lane 

to the adjacent lane using on-board computer and sensors. One of the key performance 

objectives of the maneuvers is to maintain ride comfort throughout the maneuvering 

period under any reasonable environmental uncertainties, such as road surface conditions 

and lateral wind conditions. 

In order to achieve the performance objective, the desired trajectory for the lane 

change maneuvers is designed to minimize the lateral acceleration and lateral jerk that are 

generated when the vehicle exactly follows the trajectory under the specified values. 

Several trajectories have been studied previously[5]. Among the trajectories proposed in 
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[5] ,  the trapezoidal acceleration trajectory is chosen as the desired trajectory in this 

dissertation. 

For the trapezoidal acceleration trajectory, the acceleration profile is specified as 

shown in Figure 2.3. Here, the jerk corresponds to the slope of the acceleration profile. 

I 

Figure 2.3: Trapezoidal Acceleration Profile 

From this figure, the desired lateral acceleration, y d  , can be written as 

y d  = J m x ~ * ~ ( t ) - ~ , ,  ( t - t , ) ’u( t - t , ) -J , ,  ( t - t , ) * u ( t - t , )  
(2.11) + J , , ( t - t 3 ) . u ( t - t 3 ) +  J , , ( t - t , ) - u ( t - t , ) -  J , , ( t - T ) . u ( t - T )  

where, Jmax is the jerk limit and u(t) is the unit step function. Temporal parameters for 

this trajectory, tl ,t2, t3, t4, and T can be obtained by integrating equation (2.11) twice with 

respect to time and setting y d ( T )  = d with zero initial conditions. Then, the lateral 

position can be written as 

The parameters of the trajectory are obtained as follow. 

(2.13) 
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Note that the parameters, t, ,t2, t,,and t4 as well as T, depend on -. Several trajectories 

with different values of the acceleration limit for the same lateral jerk limit, O.lg/sec, are 

shown in Figure 2.4. Here, the longest time trajectory is for O.lg, and the shortest time 

trajectory is for 0.4g. Between the two extreme trajectories, other trajectories are 

designed with increments by 0. lg. 

amax 
J m x  

4 

3.5 

3 

2.5 

y d  (m) 2 

1.5 

1 

0.5 

0 
0 2 4 6 8 10 

Time (sec) 

Figure 2.4: Trapezoidal Acceleration Trajectories ( Jmar = O.lg/sec) 

To obtain the maneuvering time as a function of the lateral jerk and acceleration 

limits, t2 should be expressed as 

Then, the maneuvering time, T, can be written as 

2 
T = 2 ( t 1 + t 2 ) = - + , / ( - )  a m a x  a m a x  +4- d 

Jmax Jmax a m a x  

(2.14) 

(2.15) 
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0.3 

h 

$ 0.25 
fn 
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% 
-J 0.2 

0.15 

0.1 

Figure 2.5: Transition Time vs. Lateral Acceleration and Lateral Jerk 

The transition time for various accelerations and jerks is shown in Figure 2.5. In 

this contour plot, the numbers on contours represent the transition time as shown in 

equation (2.15). Figure 2.5 can be used as a design tool for the virtual desired 

trajectories. For example, if one wants to design a trajectory with 4-second transition time 

and 0.15g lateral acceleration, then the jerk limit is read as 0.3g/sec from Figure 2.5. With 

the lateral acceleration and the jerk value, one can obtain the desired trajectory from 

(2.12). The trapezoidal acceleration trajectory is easy to parameterize, and it allows us to 

find the optimal trade-off between the maneuvering time and the specification of the ride 

comfort constraints. Thus, it may be the most practical and desirable candidate for the 

VDT of lane change maneuvers. In the rest of this dissertation, the trapezoidal 

acceleration trajectory will be selected as the VDT. 
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2.4 Summary 

This chapter covered the preliminary information regarding the vehicle model, 

concept of maneuvers, lateral position sensing algorithm and the desired trajectory of the 

lane change maneuvers. The new lateral position sensing algorithm was validated by 

experimental results. Compared with the algorithm proposed in [40], the new algorithm 

provides wider measurement range and an increased number of the sensed positions, and is 

simpler to implement. The desired trajectory for the lane change maneuvers was designed 

with the consideration of ride comfort. Since the positions are not measurable, this 

trajectory is called "virtual" desired trajectory (VDT). 
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Chapter 3 

Lane Change Maneuvers - Tracking Control 

Formulation 

In this chapter, lane change maneuvers for the automated highway systems are 

treated as a tracking control problem with the virtual desired trajectory (VDT) proposed 

in Chapter 2. The tracking controller to follow the desired trajectory is designed based on 

the sliding mode control theory. A filter is cascaded with the tracking error to include the 

frequency dependent weightings in order to enhance passenger ride comfort[6]. These 

frequency dependent weightings can be interpreted as frequency shaping of the sliding 

mode found in [39]. Since the controller is a state feedback controller, a reduced order 

Kalman fdter[38] is designed to estimate the lateral position and the lateral velocity that 

are not measurable. Experimental results validate this strategy for lane change maneuvers. 

3.1 Vehicle Model for Controller Design 

For the control algorithm design and the estimation algorithm design, the bicycle 

mode1[37] mentioned in Section 2.2 is used. As a tracking problem, the controller is 

designed for the vehicle to follow the VDT introduced in Chapter 2. The tracking error is 

defined as the difference between y, shown in Figure 3.1 and the desired lateral position 

obtained from the VDT. Here, the vehicle model is expressed in terms of y, and the yaw 

angle E to simplify the controller design. 
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Center of Lane 

Figure 3.1: Definition of Variables 

The equations of lateral and yaw motions of a vehicle mentioned in Chapter 2 are 

written as 

2cs(z1 - 4 )  . 4cs 
m(vy + V X € )  = 2CSS - 

VX 
E--Vy 

VX 

2CS(Zl2 + zz2) 2cs(z1 - zz) 
I$ = 2Z,CS6 - &-  5' 

VX VX 

(3.1) 

In these equations, Vx denotes the speed in the direction of the ax axis, and Vy is the 

speed in the direction of the oy axis. V ,  and Vy constitute the velocity of a vehicle, V. 

Yaw angle is denoted by E ,  and S represents the steering angle of a vehicle. Other 

symbols and their nominal values are listed in Table 2.1. 

From Figure 3.1, 9, can be related to V,  , 5 , and yaw by 

y, = Vy COSE + Vx sin E 

Assuming that E = o(1) , (3.3) can be approximated as follows. 

y, = vy +VxE 

Additionally assuming that V ,  is constant (= V), y, becomes 

y, = vy +VX€ 

(3.3) 
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By using (3.4)and (3.5), and denoting V, by V, equations (3.l)and (3.2) can be written as 

& = - Y r  A3 -A3E+-€+B26 A4 
V V 

(3.7) 

The 1 s t  term in the right hand side of equation (3.6) represents the lateral wind drag. 

Here, A, Is and Bi are defined as follows. 

-4.0cs -2.0cs (E, - z2) -2.ocs(z1 - z2) 
A1 =- ,A2 = ,A3 = 

m m 4 
- 2 . o q  E,2 - z;) 2.0cs 2.0csz1 

A4 = ,Bl = - ,and B2 =- 
4 m 4 

Here, 4 and ii denote their nominal values, while &. and A B i  represent the 

multiplicative uncertainty terms. 

Table 3.1: Possible Ranges of Parameters 

Cornering Stiffness (C,) 0.2 - 1.0 Csnominal 

Mass (m) 
0.85 - 1.15 &nominal Moment of Inertia 

0.85 - 1.15 mnominal 

about Vertical Axis (Iz) 
~ 

~~ ~ 

Considering the ranges of the parameters shown in Table 3.1, we find that these 

uncertainty terms are bounded by 

1w.11~~ , l I i 1 4  

p j l l p  , 1 9 1 2  

cx = p = 0.8261 

(3.10) 
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Details of the derivation can be found in Section 3.5. These bounds are used in the design 

of the sliding mode controller. 

3.2 Design of Control Algorithm 

Since the simplified model described by equation (3.6) includes a nonlinear term, 

the sliding mode controller is designed as the tracking controller for the VDT. The sliding 

mode controller is an effective nonlinear controller in the presence of uncertainties and 

disturbances. Due to its high gain controller characteristics, the sliding mode controller 

shows several undesirable consequences. One of them is a large control input when the 

tracking error is large. To reduce large and rapid variation of the control input, a filter is 

implemented in the following development. 

The tracking error is defined as 

e(t> = { y ,  ( t>  - Y d  ( t> }+  liT{dt> - Ed (t,> (3.11) 

where, yd and E ,  are the desired lateral position and the desired yaw angle of the vehicle 

obtained from the VDT. Here, liT is a dimension conversion factor and weighting factor 

as well. In the following, liT is assumed to be 1 for the convenience of the calculations. 

The sliding surface is defined as 

s(t) = ( i + + ( t )  = 0 

where, v(t) is the filtered tracking error satisfying 

-- dv(t) In y - v(t> = e(t>, o < y < 1.0 . 
dt 

Note that v(t) can be viewed as the weighted integral of the tracking error: 

v(t> = y('-')e(z)dz . 

Convergence of the tracking error to zero when S(t) =O is proved in Section 3.6. 

(3.12) 

(3.13) 

(3.14) 
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Figure 3.2: Impulse Response of Filter 

y-0.7 

Figure 3.2 shows the impulse response of the filter for some selected values of y 

When y = 1.0 , the impulse response becomes a unit step function, and v(t) represents the 

integral of the tracking error, which has been suggested in the design of sliding mode 

controllers by several researches ([29][34]). Therefore, an integration can be interpreted 

as a convolution with the filter whose impulse response is a constant, i.e., a filter that 

equally emphasizes all the past errors. With 0 < y < 1.0 , the impulse response places more 

weights on near-past errors than far-past errors. Thus, v(t) implies the weighted 

integration of the tracking error with emphasis on the near-past errors. These relatively 

light weights on far-past errors imply a forgetting action. 

The stability of the sliding surface ( S(t) = 0 ) can be guaranteed by the sliding 

condition([34][36]). 

I d  
2 dt 
--(P) -77 - Is1 (3.15) 
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However, this ideal sliding condition requires the discontinuity of the control law across 

the sliding surface. To remove the discontinuity, a boundary layer with thickness 6, can 

be introduced([34][39]). This implies that, for IS[ 2 Q, , equation (3.15) is attempted, and, 

for 14 < 6, , 

I d  
2 dt 6, 
--(s2) < --.s 7 7 2  . (3.16) 

This condition has the advantage in that it does not require the discontinuity mentioned 

above. Its drawback is that S(t) = 0 is not achieved in the presence of disturbance. A 

remedy for this problem is to include the integral of the tracking error, i.e., y = 1 in the 

equation (3.14). 

The control input that satisfies the ideal sliding condition (3.15) is 

('2 +'4) K Y  
6 =  A y, + (i, + &)E - € + 7 ( y r  - VE)lY, - VEl 

B, + B 2  V m . (3.17) 

In this equation, K denotes the robust term which cancels the system uncertainties, and is 

given by 

('1 + 23) ('2 + '4) 
y, - (A, + A 3 ) E  + K=77+2a 

V V 
€ 

(3.18) 

+ a l j i d  + i d  - (2a + In y ) i  - (a + In y )  e - 1ny(a + In y12 vi 
2 

where, a is the system uncertainty bound obtained from equation (3.10). Derivation of 

equations (3.17) and (3.18) can be found in Section 3.7. 

The control input which will satisfy the condition (3.16) is still given by equations 

(3.17) and (3.18). However, sgn(S) in equation (3.17) is now replaced by the saturation 

function defined as 
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(3.19) 

Due to the steady state error caused by this saturation function, the value of y is 

bounded below by the allowable steady state error. From the ride comfort consideration, 

we can find the upper bound for y Combining these two bounds, we can obtain 

e - G c <  2 - y 4 e  -&E7 (3.20) 

The detailed derivation of (3.20) is in Section 3.8. 
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Figure 3.3: Effect of Filter Constant y (Simulation) 

Figure 3.3 shows the effect of the filter constant y on the system performance 

when the cornering stiffness is set to 50% of its nominal value, which represents slippery 

road condition. The initial lateral error is 0. lm. In this figure, the upper left plot shows 
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the tracking error relative to the VDT, and the upper right plot shows the steering wheel 

angle. The lower two plots show the lateral acceleration and the lateral jerk, respectively. 

As can be seen in the figure, the peak values of the steering wheel angle (6) are reduced as 

y becomes smaller, especially over the time interval, 0 - 1 sec. Consequently, the 

acceleration and the jerk are also reduced, which means ride comfort enhancement. 

However, the tracking error near the end of the maneuver tends to be bigger as y is 

reduced. 

Therefore, the filter makes the control input smooth, and the vehicle responds with 

smaller peaks of the lateral acceleration and jerk at the expense of tracking performance. 

3.3 Design of State Estimator 

Since the lateral position of a vehicle is not directly measurable during lane change 

maneuvers, a state estimator using on-board sensors (a lateral accelerometer and a yaw 

rate sensor) is necessary. A Kalman filter is designed based on the linearized model of a 

vehicle. Its purpose is to estimate the necessary states for control, such as lateral position, 

lateral speed and yaw angle. 

From equations (3.6) and (3.7), the linearized model can be written in the state 

space form as 

X=Ax+B6+Bw (3.21) 

where, 
T 

x = [x1 x2 x3 x4] = [ y ,  y, E €IT (3.22) 
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0 1  0 

A =  Jy 0 0  $ -," +I, B =  I;]. 
o - - A , -  A3 A4 

V V B2 

(3.23) 

Here, w denotes the system disturbance whose variance is 0:. Since 0: is not avahble, 

it is used as one of the design parameters of the estimator. Measurements from a lateral 

accelerometer and a yaw rate sensor are written as 

Y = C - X + D S + V  (3.24) 

where, 

y = [lateral acceleration (scalar) yaw rate 

(3.25) 

yaw rate sensor noise, respectively. Note that the measured lateral acceleration is the 

same quantity denoted by Vy in equations (3.1) and (3.2). 

Since the linearized system is unobservable, we decompose the system into the 

observable part and the unobservable part [ 171. Then, by designing the Kalman filter for 

the observable subsystem, we can obtain a reduced order Kalman filter [38]. The 

unobservable subsystem is estimated by an open loop estimator. 

The estimate of the original state can be represented as 
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where 2o and 2uo are the observable and the unobservable state components respectively, 

and M-' is a nonsingular matrix that transforms the original system into the decomposed 

system. The details of a procedure to obtain this matrix can be found in [17] and [38]. 

The estimator for the decomposed system is written as 

&,. = A,%, + B,S + PC;V-'{Y - C$, - DS} 

where, 

A,=NAM=[A1 A21 A2 "1, B,=NB=[:l] 

C, =CM =[Cl C,], N=M-'  

The matrix P satisfies the following algebraic Ricatti equation. 

O=A,P+PA;-PC,V T -1 C,P+B,WB; 

Note that the order of this Ricatti equation is 4 X 4 .  

(3.28) 

(3.29) 

(3.30) 

(3.31) 

By partitioning P as 

(Note that order of each submatrix is 2 X 2 ), we can obtain the state estimates as follows. 

Po = AIGo + B16 + P1CTV-'{y - ClG0 - DS} 

Suo = A2iiuo +A2,;, + B,S + P21CTV-1{~ - Clk0 - DS} 
(3.32) 

where, Pl and P2, satisfy 

o = A,P, + P,A; - P,CTV-~C,P~ + B , W B ~  

o = A,P,, + P,,A; - P ~ c ~ v - ~ c ~ P , ~  + B, WB; 
(3.33) 

Instead of solving the full order equation (3.31), we can obtain the estimates of the 

original states by solving partitioned system (3.32) and (3.33). Note that the order of each 

equation in (3.33) is 2 X 2 , which implies the reduction in number of computation. 
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3.4 Experimental Results 

To validate the control algorithm and the state estimation algorithm in the previous 

chapters, experimental tests were conducted on a PONTIAC 6000 STE sedan at 

Richmond Field Station (RFS) of the University of Cahfornia at Berkeley. Figure 3.4 

depicts the arrangement of the experimental equipment. Here, the on-board sensors 

include a yaw rate sensor and an accelerometer, and are installed at the center of gravity of 

the vehicle. The sampling time of the system was 10 msec and the command signal to the 

front wheel steering actuator was updated at the same sampling rate. 

On-Boad Sensors 

Figure 3.4: Experimental Vehicle 

Figure 3.5 shows the representative experimental results. In this experiment, the 

lane width was 2m, and the vehicle speed was maintained at 4.44 d s e c  (10 MPH) by a 
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human driver. The parameters of the VDT were amax= 0.05g and Jm,= O.lg/sec. The 

uppermost plot shows the accelerometer output, the estimated acceleration, and the 

simulation result. 

Notice that the lateral acceleration measurement is noisy and has a time-varying 

bias component. The middle plot shows the yaw rate. The lowermost plot shows the 

steering angle. In this plot, the solid line is the command to the steering actuator, and the 

dotted line is the actual steering angle measured at the front wheel. 
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Figure 3.5: Comparison of Measurement and Estimation 

Figure 3.6 shows the comparison between the estimated states and the simulated 

states. The actual states were not measured in this experiment. From these two figures, 

we can c o n f i i  a good correspondence between experiment and simulation, which 
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supports the effectiveness of the proposed estimation scheme, as well as the control 

scheme. 
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Figure 3.6: Comparison of Estimation and Simulation 

3.5 Derivation of Uncertainty Bounds 

Each coefficient in equations (3.6) and (3.7) can be written in terms of the 

uncertainties in cornering stiffness, mass, and moment of inertia. 

- 4cs Cs(l+ACs) A1 =-- --4 = ti,(l+AA,) 
m tii(l+Am) 

(3.34) 
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A -4c, 
A1 =y 

m 
b (3.35) 

where e, and i i  are nominal values given in Table 2.1. AC, and Am are the uncertainties 

in parameters. In the same way, other coefficients are written as follows. 

(3.36) 

(3.37) 

(3.38) 

As shown above, uncertainties for 4 ' s  ,Mi, are in the same form. Recalling the ranges of 

AC, ,Am,&, defined in Table 3.1, we find that 

(3.39) 

1 + AC, 
1+Am 

Considering the actual values of AC, , A m Y A l z ,  we can obtain 0.1739 I I 1.1764. 

From this, we obtain a = 0.826 1. 

For Bits,  

(3.40) 
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A 2ks 
B, =y 

m 
(1 + A G )  1+M, = 
(l+Am) I 

and 

2tS4 (1 + ACS) 
B2 =T' (l+Am) 

= & ( l + M 2 )  

1+  

(3.41) 

(3.42) 

(3.43) 

Thus, from (3.39), we obtain 

IM,II a, and l M 2 1 <  a. (3.44) 

Equations (3.39) and (3.44) imply that 1 4 . 1  and l h B , I  can be bounded by the same 

constant. 

3.6 Convergence of Tracking Error On Sliding Surface 

On the sliding surface defined by (3.12), the filtered error satisfies 

v = (clt + c,). e-& (3.45) 

where c, and c2 are some constants, which are dependent on the initial condition of v. 

Equation (3.45) confirms that the filtered signal (v)  as well as its first time derivative 

exponentially converges to zero on the sliding surface. Therefore, from equation (3.13), 

we obtain 

lim e(t)  = 0 . 
t+-= 

If we assume that the steering angle remains small, 

y r  = V * &  

(3.46) 

(3.47) 
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which can be also applied to the relation between y ,  and E,, we obtain the following 

equation from equations (3.12) and (3.46). 

(3.48) 

error converges to zero exponentially. 

lim( y ,  - y ,  ) = o 
t+- 

With (3.46)and (3.49), we finally confirm the convergence of the yaw angle error. 

lim(E -E,) = o 
t+m 

3.7 Derivation of Control Input 

By differentiating (3.12) with respect to time, we obtain 

s = V+2hV+h2P. 

Derivatives of v(t) are obtained as 

~ ( t )  =(~ny).v(t)+e(t) 

d 
dt 

v(t) = -P(t) 

d 
dt 

v( t )  = -v(t) 

= (In y)3v(t) +(In y)2 e(t> + (In y) ~ . ( t >  + ~ ( t )  

Therefore, S( t )  and $ ( t )  are written as 

s = ( ~ + l n y ) ~ v + ( 2 h + l n y ) e + t  

s = 1ny.(h+lny)2v+(h+lny)’e+(2h+lny)t+2;. 

Substituting equation (3.11) into equation (3.56), we obtain 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

30 



= ( ; 4 ) y r  -(Al + A 3 ) € +  ( A2 + A4 )€ -%(vw + y, -VE]Vw + y, -V€I (3.57) 

+ ( B ,  + ~ , ) & - j ; ,  -id + ( 2 ~ + 1 n y ) i + ( ~ + l n y ) ~ e + l n y . ( ~ + 1 n y ) ~ v  

Now, substitute the nominal conditions, i.e. the nominal parameter values and 

V,,,,, = 0 ,  in the right hand side of equation (3.57), and equate it to - K. sgn(S) : i.e., 

where K is called the robustness term, which will cancel all the uncertain dynamics in the 

control system. This term will be determined later. 

From equation (3.58), the control input 6 is determined as 

The sliding surface S = 0 is attractive, if the right hand side of equation (3.57) is 

bounded by -q.sgn(S). With the control input 6 of equation (3.59), we have 

. (i,dA, + A,&,) (A,&, + 2 4 " l )  
y - ( L i , A A ,  + A,&,)€ + S =  

V V 
& 

- s [ ( V  rn WY + y r - V € k W y  + y r  - V E ~ -  (yr - V . ] y r  - V E ~ ] -  K.sgn(S) 
,- 

which assures the stability of the system. 
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In this inequality, as q becomes larger, S converges to zero faster. Thus, we can adjust 

the controller performance by choosing q appropriately. 

(3.61) 

This inequality is combined with other bounds for uncertainties that are derived in 

Section 3.5 to yield 

(A1 + 4) ( A 2  + A )  
K277+2a y, - (Al +A,)€ + 1 

V V 

(3.62) 

+ a l j i d  + i d  - (2a  + 1ny)i - (a + In y>' e - In y(n + In y>2 vi 

The robustness term Kin  equation (3.59) must satisfy equation (3.62). 

3.8 Derivation of Bounds For y 

3.8.1 Umer Bound 

The gain crossover frequency of the filter is obtained from equation (3.13) as 

6Jg.c. = J1-cl"r>l (3.63) 
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Then, the upper bound for y is obtained by c o n f i i g  the gain crossover frequency of the 

filter to less than the given frequency, Ql . 

(3.64) 

This inequality can be also written as 

y l e  -&q (3.65) 

In the application to lane change maneuvers, S l l  is selected as the upper limit of the 

human-sensitive frequency range. 

3.8.2 Lower Bound 

With the condition (3.16), the steady state filtered error for the worst case 

becomes 

Q, 
vss = h' * (3.66) 

where, Q, is the boundary thickness when the saturation function (3.19) is used in the 

control law (3.17). Using the balance condition introduced in [34], we can relate the 

robust term and the boundary thickness as 

K(ydY);dYEdYEd)=h*Q, 

To simplify the analysis, A is chosen as follows. 

max(K(yd 7 Yd " d ) )  h= 
@ 

With this choice of il , the boundary layer thickness is constant. 

Then, (3.66) is written as 

KnaX 
vss = 

(3.67) 

(3.68) 

(3.69) 

where, K- =mm(K(yd,);,Y&d,&d)) * 

From (3.69), the steady state tracking error is derived as 
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eiS = -In ye-. Kmax 

h3 
(3.70) 

Now, denoting the allowable steady state tracking error as c ,  we can place the upper 

bound on eiS as 

From (3.71), the lower bound for ybecomes 

- 3 . c  
y 2 e  Km . 

(3.71) 

(3.72) 

3.9 Summary 

In this chapter, we investigated the lane change maneuvers as a tracking control 

problem with the VDT. The bicycle model was modified to represent the lateral position 

with respect to the center of the lane where the lane change would begin. The sliding 

mode control algorithm was studied as the control algorithm. The sliding surface was 

constructed with the filtered error to achieve smooth control action. The sliding mode 

controller with an error filter was proposed to achieve acceptable comfort level and steady 

state error. 

The reduced order Kalman filter based on the linear model was designed as the 

state estimation algorithm, and found to provide satisfactory state estimates from 

experimental results. 

Experimental results conf i ied  that the combination of the sliding mode controller 

and the state estimator was effective for lane change maneuvers at low speeds. Even 

though high speed tests were not performed, similar results can be expected because the 

response of a vehicle resembles the bicycle model more at higher speeds. 
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Chapter 4 

Unified Lateral Guidance with Road-Reference 

System and On-Board Sensor 

In this chapter, a unified control system structure for both lane change and lane 

following maneuvers including transition maneuvers between the two types of maneuvers 

will be presented. The sensing system includes the road reference sensing systems 

proposed by PATH program and yaw rate sensor. Thus, the magnets embedded in the 

road and two magnetometers installed on the vehicle constitute the road reference sensing 

system. 

4.1 Control System Structure 

Previously, switching between the two different controllers for the lane change 

maneuvers and the lane following maneuvers was studied in [5 ] .  Since the two controllers 

involved in this switching were dynamic controllers, the switching method had a problem 

in setting the initial conditions for the controllers. Thus, the transition response during the 

switching shows large acceleration even though large jerk response could be avoided. In 

addition, the lateral position estimation during the lane change maneuvers, which involves 

integrals with uncertain initial conditions, was necessary because the lane change control 

was attempted as a tracking control. 
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Figure 4.1: Structure of Unified Lateral Control System 

In order to avoid these problems, the unified lateral control system is proposed as 

shown in Figure 4.1. This system is in cascade structure, which can be seen in the 

previous literature([3][23]). Pappas and Kyrrakopoulos proposed a cascade control 

algorithm for guiding a vehicle-like robot considering the nonholonomic constraint of the 

vehicle dynamics[23]. Since the vehicle-like robot runs at very low speed, the effect of 

side slip of a vehicle, which is evident when a vehicle runs at high speed, is not considered 

in [23]. Thus, the unicycle model is used for the dynamics of the vehicular object. The 

stability of the whole system has been achieved by placing high gain at the yaw rate 

tracking error, and is proven via the singular perturbation theory. This high gain applied 

to the yaw rate tracking error is potentially undesirable in vehicle lateral control 

applications since the ride comfort is one of the key issues. Ackermann et. al.[3] proposed 
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the same structure control algorithm for the vehicle lateral control. In thls algorithm, a 

simple bicycle model is used to include the effect of side slip of a vehicle. For the yaw rate 

tracking controller, they proposed a sliding mode controller. To eliminate the chattering 

effect of the sliding controller, they adopted the equivalent control method for the discrete 

sliding mode systems based on Filippov’s construction of equivalent dynamics in sliding 

mode, which result in a linear output feedback controller ([34][35]). Although they 

showed the stability of each block in the system, they do not prove the stability of the 

whole system. 

Here, the cascade structure control system is extensively exploited in order to 

include multiple maneuvers, which include lane change and lane following maneuvers. All 
the sensor data are provided to the desired yaw rate generator, where the desired yaw rate 

for each maneuver is generated, while data from the on-board sensors are provided to the 

yaw rate tracking controller. The rationale of this strategy of using sensor data is due to 

the limited availability of the magnetic sensor outputs, which are available only during the 

lane following maneuvers. Thus, lane change maneuvers are performed in open loop 

manner in the sense that the position measurement is not available. To avoid performing 

the lane change maneuvers completely in open loop manner, the desired trajectory 

information is expressed in terms of the yaw rate. By tracking the yaw rate, we can 

achieve the lane change maneuvers as in the closed loop manner because the tracking error 

of the yaw rate reflects the motion error for the desired maneuvers. 

Lane following maneuvers are achieved by deciding the yaw rate from the analysis 

of the kinematics of the lateral position measurement. This analysis of the kinematics is 

totally dependent on the measurement system. Thus, the scheme can incorporate other 

lateral position measurement systems, such as vision sensor, with the same yaw rate 

tracking controller. With this methodology, we can achieve various maneuvers with 

various lateral position measurement systems in some unified way: i.e. the desired 

maneuvers are achieved by kinematics analysis and the yaw rate tracking controller design. 

Therefore, we call this methodology the unified lateral guidance algorithm. 
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4.2 Yaw Rate Tracking Controller Design 

Once the desired yaw rate for a desired maneuver is decided, the unified lateral 

control system needs a controller to follow the desired yaw rate. Here, we design a 

controller utilizing only the yaw rate sensor output to track the desired yaw rate. Since 

the system order of the simplified vehicle model is two and only one sensor is used to 

measure one of the system state, we need an observer for the unmeasured state, Vy . 

s Other 
b I Vehicle ’ Sensors 

r 

; {,- rd From Yaw 
Controller 4 W- Rate Gen. 

Figure 4.2: Yaw Rate Tracking Controller 

The controller in Figure 4.2 is designed via the Lyapunov-based scheme[30]. The 

Lyapunov-based control scheme is advantageous in proving the stability of the overall 

feedback system, which is in cascade structure. The controller is designed with respect to 

the nominal road condition, but the controller gains are scheduled with respect to the 

longitudinal speed of the vehicle since this is the primary parameter affecting vehicle 

response as mentioned in [ 113. In addition, the road condition cannot be measured and is 

very difficult to estimate whereas the longitudinal vehicle speed can be reliably measured. 
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4.2.1 Vehicle Model DescriDtion for Yaw Rate Controller Design 

For the design of the yaw rate tracking control, the bicycle model is used. 

However, it is expressed as follows in order to congregate the totally uncertain quantities 

in the expression, such as cornering stiffness, mass, and moment of inertia of a vehicle. 

i- = (alr + a2Vy + b,6)Ic (4.1) 

V y  = (a3r + a4Vy + b,6)mc - Vxr 

Here, the coefficients are defined as follows. 

Z12 + l Z 2  11 - 4 11 - 12 4 
a,  = -2 , a2 =-2- 

VX 
, a3 =-2- 

VX 
, a4 = -- 

VX VX 
(4.3) 

b, = 24, b2 = 2 (4.4) 

The symbols in the above equations are listed in Table 2.1. 

In this model, the input of the vehicle is the front wheel steering angle(@. Unlike 

the approach in Chapter 3, only the yaw rate(r) is measured as an output of the vehicle. 

Thus, the lateral velocity is taken as an internal state, and an estimation algorithm for the 

lateral velocity is designed. It is assumed that the longitudinal velocity can be measured 

from wheel speed. 

4.2.2 Design of Yaw Rate Tracking: Controller 

The yaw rate controller is designed via Lyapunov method. One of the advantages 

of this design methodology is that the controller can be expressed analytically in terms of 

the known quantities and longitudinal velocity. In the following design, it is assumed that 

desired yaw rate(rd) is smooth and the magnitude of its time derivative(id) is bounded. 

An output feedback controller is proposed by the following theorem. 
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Theorem 4.1: Yaw Rate Tracking Controller 

Consider the model of a vehicle represented as (4.2) and (4.1). Assume that the 

yaw rate ( r )  and the longitudinal velocity (Vx ) are measured. Assume that desired yaw 

rate(r,) is smooth and the magnitude of its time derivative(id) is bounded. Then, with 

the following dynamic output feedback controller 

we can achieve 

r ( t )  j rd(t), fy(t) vy(t) as t O0 9 

and the magnitude of Vy is bounded. 

Here, qy denotes estimate of the lateral velocity and Ae is a positive constant that 

represents the yaw rate convergence rate. The relative weight on estimation error with 

respect to the yaw rate tracking error is defined as a positive constant do.  

(Proof) 

Define the following two quantities for notational convenience. 

e, = r - rd  
- n vy = vy - vy 

Equation (4.8) denotes the yaw rate tracking error, and equation (4.9) denotes the 

estimation error. 

Consider the estimation of the lateral velocity in the following form. 

cy = (a3r + a y y  +b26)mc -V,r + x (4.10) 

Here, x will be determined later, and ai’s and hi's are defined in (4.3) and (4.4), 

respectively. 
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Then, the dynamics for vy can be obtained as follows. 

- 
Vy = a4Vymc - x  - 

(4.11) 

Now consider the following control Lyapunov function candidate. 

V, =-e, 1 2  +-Vy2 1 
2 2dO 

(4.12) 

Differentiating (4.12) with respect to time, and considering (4.1) and (4.10), we can obtain 

Vl = e, a,r + a2py + b16)Ic - id]  +Vy [( 
Now take x = d01ca2er and 6 as in (4.7). Then, we have 

V, 2 -keer2 - 4- mC vy - = - -4 (e, v y  ) 
Vxdo 

By applying Theorem A S ,  we can c o n f i i  the global uniform stability of 

shown in Figure 4.2. 

By applying Theorem A.7 with V, and W, , we finally obtain 

r ( t )  + rd(t) ,  ri,(t) -+ vY(t) as t + 00. 

(4.14) 

the system 

Boundedness of the lateral velocity can be shown as follows. 

Now replace 6 in equation (4.2) with (4.7). Then, (4.2) becomes 

By considering the definition of a, ’s, we can find that 

(a4-?)=-- v, 4 +v, 2 ( - I, - I, 1, ). 

(4.13) 

(4.15) 

(4.16) 

From the typical values listed in Table 2.1, we can show that 

(a4 -?]<0 (4.17) 

Thus, the dynamics of Vy is stable. Therefore, the magnitude of Vy is bounded if r , <, 

e,, and I d  are bounded. Since e, -+ 0 as t + 00, r -+ rd as t + 00 . In addition, 
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vy + 0 as t + 00 . Therefore, 

From the assumptions on r, 

bounded. 

the magnitude of Vy is bounded if rd and id are bounded. 

and id, we can conclude that the magnitude of V, is 

4.3 Desired Yaw Rate for Lane Following Maneuvers with 

Magnetic Road Reference System 

4.3.1 Kinematics Analvsis for Lane Following 

Lane following maneuver is attempted by forcing the lateral position measured by 

the magnetic road reference system to converge to zero. To achieve the convergence of 

the measured lateral position, the kinematics of the measurements has been conducted 

0 X 

Figure 4.3: Kinematics Analysis for Lateral Position Measurement 
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First, adopt a coordinate system OXY which is fured in space, and the unit vectors 

for OX and OY are represented as i, and i, , respectively. Let a magnet be located at 

(XM,YM) with respect to OXY, and the vector M denotes the position vector for the 

magnet. Now, consider a rotating coordinate system oxy whose origin is fixed at the 

position of the magnet with the unit vectors i, and i, . Note that the two sets of the unit 

vectors are related as follows. 

(4.18) 

Here, Y is the yaw angle of a vehicle with respect to OX axis. 

Then, the measured position, (x,, y,) , are represented by the vector m , and can be 

written as 

m = x,i, + y,i . (4.19) 

Considering equation (4.18), we can write equation (4.19) as 

m = (x, COSY - y, siny)i, + (x,  sin^ + y, c o s ~ ) i ,  . 

From the geometrical relations of the vectors as shown in Figure 4.3, we have 

S = M + m  (4.2 1)  

s=c+m, (4.22) 

- (4.20) 

and 

where, 
- 
C = xcix + yci, (4.23) 

and 

m, = d, cos%, + d,  sin !Pi,. - (4.24) 

It is worthwhile to note that the lateral and the longitudinal velocity are related with X, 

and y, as follows. 

V, = i ,  cosy/ + y, sinY (4.25) 

Vy = y, COSY - i, sin Y (4.26) 

From equation (4.21), we have 
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S = l i i  
4 .  

since the magnet is fixed in space. 

With equation (4.20), we obtain 
4 .  

S = = {x, cosy/ - y, sin y /  - Y(x ,  s i n y  - y ,  cosy/)}i, 
(4.27) 

+ {is sin y /  + y, cosy/ + Y(x, cosy/ - y ,  sin y/)}iy . 

From equation (4.22), we can get 

s’ = (x, - Yd, sinY)i, + ( y c  + Yd, cosY)i, (4.28) 

By solving equations (4.27) and (4.28) together, we find 

x, = x c  cosy/ + y, sinY +e, (4.29) 

y s  = y, cosy/ +Yd, -xc sinY -‘€!x,. (4.30) 

Recalling (4.25) and (4.26), we can write (4.29) and (4.30) as follows. 

x, =v, +e,, (4.3 1) 

y, = Vy + Y(d, - x , )  (4.32) 

Equations (4.31) and (4.32) represent time derivative of the longitudinal and the lateral 

position measurement, respectively. From (4.32), it is possible to make the lateral position 

measurement converge to zero by posing the desired dynamics of the lateral position 

measurement as y, = -A,y, . 

4.3.2 Desired Yaw Rate for Lane Following Maneuver 

Once the desired dynamics of the lateral position measurement is obtained, it can 

be expressed in terms of the yaw rate (4.32). This yaw rate is the desired yaw of the 

vehicle to be realized by the yaw rate tracking controller designed in Section 4.3. The yaw 

rate of the vehicle that ensures the desired dynamics of the lateral position measurement, 

y, = -A,y,, is achieved by the following theorem. 
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Theorem 4.2: Desired Yaw Rate for Lane Following Maneuver 

Assume that the longitudinal position( x,) and the lateral position( y ,  ) of the 

vehicle are available continuously. Then, the desired yaw rate(r,) to make y ,  converge 

to zero can be obtained as 

(Proof) 

Take the Lyapunov function candidate as 

1 2  v, = - y ,  . 
2 

Then, the time derivative becomes as follows considering (4.32). 

By taking r as (4.33), we can write (4.35) as follows. 

v, = -asYs2 
By applying Theorem A.7, we can achieve y, + 0 as t + 00. 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

rn 

Remark: 

The desired yaw rate as shown in (4.33) results in the dynamics for the lateral position 

measurement as 

Y, = - 5 Y s .  (4.37) 

Thus, the larger A, is, the faster the convergence of y ,  is. However, the resulting 

acceleration becomes larger as A, becomes larger. Since one of our go* of the lateral 

guidance is to maintain passengers' ride comfort during the guidance, we cannot make A, 

arbitrary large considering the resulting acceleration. Thus, the value of As is decided by 

compromising the ride comfort and the tracking performance. 
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4.4 Desired Yaw Rate for Lane Change Maneuver 

As mentioned above, the lateral position measurement from the road reference 

sensing system is available only in the limited range near the magnets. Since the lane 

change maneuvers under the PATH scenario controls the vehicle to move between two 

adjacent lanes, the vehicle should pass through the region where the road reference system 

information is not available. Thus, the control algorithm for lane following maneuvers can 

not be implemented. 

Here, we propose a strategy for the lane change maneuvers as shown in Figure 4.4. 

The lane change maneuvers are divided into three stages: transition I, transition 11, and the 

VDT tracking stage. During the VDT tracking stage, the lateral position can not be 

measured by the road reference sensing system because the vehicle is in the range where 

the magnetic fields of the magnets are weak. Thus, the VDT information is translated into 

the desired yaw rate via 

Lane Change 

4 b 
Target Lane 

Figure 4.4: Strategy For Lane Change Maneuvers 

(4.3 8) 

Transition I stage corresponds to the region that is up to 0.3m apart laterally from 

the center of the lane where the lane change maneuvers begin. During transition I stage, a 
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smooth transition from tracking the road reference system to tracking the VDT is 

attempted by taking the desired yaw rate as follows. 

r1 = w ( t ) r c h n g e  + (1 - ~ ( t ) ) r f o l l o w  3 ldt,ls 1 (4.39) 

The weighting function, w(t> , is designed not to produce large lateral jerk of the vehicle 

during the transition. Here, the following weighting function is used. 

w(t> = 1 - e - # ( r - t c )  (4.40) 

Here, q represents the smoothness of the convergence of w(t)  . t denotes the running 

time of the vehicle system, and t ,  represents the start time of the transition I stage. 

The transition I1 stage corresponds to the region that is up to 0.3m apart laterally 

from the target lane. During the transition I1 stage, a smoothing transition from VDT 

tracking to the lane following maneuvers is attempted by the following yaw rate. 

r11 = d t ) rchge  + (1 - w(t>)rfollo, , lwwls 1 (4.41) 

w(t) = e-"(f-") (4.42) 

Here, the following weighting function is used. 

where, t ,  is the start time of the transition I1 stage. Once w(t)  reaches some threshold 

value, indicating that the vehicle has neared to the target lane, the desired yaw rate is 

obtained totally from lane following maneuvers. 

Like the lane following maneuvers, the desired yaw rate is realized by the yaw rate 

tracking controller. Thus, we can achieve multiple maneuvers by one feed controller. 

Therefore, the two maneuvers of the lateral guidance can be realized by the unified 

methodology. 

Remark: 

In the previous research [ 5 ] ,  two dynamic tracking controllers were designed: One 

was for the lane change maneuvers and the other for lane following maneuvers. In ths  

case, the switching between the two maneuvers involved setting the initial condition of the 

controller states because both controllers are dynamic feedback controller. The initial 
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condition of the controller should be carefully set in order to avoid undesirable transient 

during the switching. Since the controllers were designed based on vehicle model, the 

"careful" initial condition setting was not possible with model uncertainties. 

4.5 Stability of Overall System 

Since each block of Figure 4.1 has been designed separately, the stability of the 

overall system, and convergence of the tracking error in the case of lane following 

maneuvers and convergence of the estimation error are not proved. In this section, we 

prove the stability of the overall system. Since each block is based on the Lyapunov 

design, the stability of the whole system can be proven by building a Lyapunov candidate 

for the entire system. This methodology based Lyapunov design is more convenient to 

prove the stability than the previous sliding mode controller design based on yaw rate 

tracking structure presented in [3]. There, the stability of the whole system is assumed by 

presuming that the error dynamics of the estimation are extremely fast. 

Theorem 4.3: (Stability and Convergence for Lane Following Maneuver) 

With the desired yaw rate, 

p, - & Y s  
r, = - 

d s  - x ,  
(4.43) 

the estimator of lateral velocity (4.6), and the yaw rate tracking controller (4.7), we can 

achieve 

y,(t) -+ 0 7 

if we choose Ae and As 

e , ( t )  -+ 0, and q ( t )  -+ 0 as t + OQ. 
as follows. 

1 
ae '44 (4.44) 
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(4.45) 

(Proof) 

Take a Lyapunov candidate as 

v =VI +v, 
Here, VI  is defined as (4.12) and V, as (4.34). 

Take the first time derivative of the Lyapunov function considering (4.43). 

V = Ys(+y + r d ( d s  - x s ) ) + v y y s  +erys  + V I  

Now consider (4.6), (4.7), and (4.14). Then, (4.46) becomes 

V 5 -asys2 + f y y s  + e , y s  +a4-Vy . mc - 2  

d0 

(4.46) 

(4.47) 

To proceed further, we need to consider the following equalities. 

Then, (4.47) becomes 

If we choose and As to satisfy (4.44) and (4.45), respectively, then, from Theorem 

AS, the stability of the whole systems is proved. 

By applying Theorem A.7, we obtain 

y , ( t ) + O ,  e , ( t ) + O , a n d v y ( t ) + O  as t + m .  

Remarks: 

1. Considering the typical values of the vehicle model parameters listed in Table 2.1, 

(4.45) becomes 
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a, > 0.0026875- v,d0 . (4.48) 

2. During lane change maneuvers, the desired yaw rate is decided in open loop 

manner because the lateral position is not available. Thus, no further stability 

proof is necessary. 

4.6 Simulation Results 

To validate the proposed unified lateral guidance algorithm, simulations have been 

conducted. In the simulation, magnets are modeled as a dipole, and lateral position is 

obtained from the method introduced in Chapter 2. The spacing of magnets is selected to 

be lm. Yaw rate sensor is the on-board sensor. Sensor noises for magnetometers and the 

yaw rate sensor are modeled as white normal signals whose powers are obtained from 

experimental data. The complex vehicle model proposed in [26] is used to simulate the 

vehicle response. Parameters of the VDT are chosen from Figure 2.21: lateral 

acceleration = 0.2g, and lateral jerk = 0.2g/sec. According to Figure 2.21, the transition 

time with theses parameters becomes 3.88 sec. 

Convergence parameters, le and A,, introduced in (4.7) and (4.33) satisfymg 

(4.44) and (4.48) are decided after choosing do = 4.0, which corresponds to 2 times more 

weight on yaw rate error. With do = 4.0, (4.48) becomes 

a, > 0.01075.v, (4.49) 

a, = o.o1o75.v,KS (4.50) 

Considering (4.49), A, is chosen as 

where, K, is a constant and K, > 1. 

To determine the value of K,, we investigate the effect on the vehicle response 

through simulations when the value of K, varies. Simulation results are shown in Figure 
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4.5 and Figure 4.6. Lines in these two figures represent the system responses for different 

values of K,. Here, the tracking error is defined as the distance between the center of 

gravity and the road center, and shown in the upper plot of the figures. The lower left plot 

shows the steering angle variation during the maneuver, and the lower right plot displays 

the resulting lateral acceleration. Figure 4.5 shows the case when the initial tracking error 

of the vehicle is 0.3m. Figure 4.6 shows the results for the O.lm initial tracking error. 

Considering the tracking error convergence time and the resulting lateral accelerations, we 

choose K ,  = 5.0. With K ,  = 5.0, we can reduce the convergence time to almost a half of 

the one for K, = 3.0. In addition, we can limit the resulting lateral acceleration by 0.2g for 

the case with a large initial tracking error shown in Figure 4.5. 

The nominal performance of the proposed scheme is shown in Figure 4.7 and 

Figure 4.8. Here, the lane change command is issued at 3 sec, and the initial tracking 

error is set to be 0.3m. Until 3 sec, the desired yaw rate is generated using (4.43). After 3 

sec and until the lateral position of the vehicle with respect to the center of a lane becomes 

0.3m, the desired yaw rate is generated using (4.39). After the vehicle moves more than 

0.3m laterally, the desired yaw rate is generated from (4.38). Then, the desired yaw rate is 

obtained from (4.41) once the vehicle enters the region where the distance from the center 

of the target lane is less than 0.3m. After the transition time of the VDT, the desired yaw 

rate is again obtained from (4.43). In the upper plot of Figure 4.7, the vehicle position 

with respect to the center of the original lane is presented. The lower left plot shows the 

steering angle variation during the maneuver and the lower right plot shows the resulting 

lateral acceleration. With the choice of K ,  = 5.0, the resulting lateral acceleration can be 

bounded by 0.2g through the maneuver. Figure 4.8 shows the yaw rate tracking 

performance by displaying the desired yaw rate in the upper plot and the yaw rate error in 

the lower plot. 

Figure 4.9 and Figure 4.10 show the results for the slippery road condition, where 

the cornering stiffness is reduced to the 30% of the nominal value. From these two 

figures, we can still achieve a similar tracking performance as the nominal road condition 
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except for more active steering action. Thus, we can verlfy the robustness of the unified 

lateral guidance algorithm to system uncertainties. 
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4.7 Summary 

The unified lateral guidance algorithm has been introduced in this chapter. This 

algorithm consists of two parts: one is the desired yaw rate generator, and the other is the 

yaw rate tracking controller. The desired yaw rate tracking controller was obtained by 

Lyapunov design. The desired yaw rate for lane following maneuvers under PATH 

scenario and for lane change maneuvers were presented. A smooth transition between the 

lane change maneuvers and the lane following maneuvers was proposed. The stability of 

the overall system was proven. Simulations were conducted to validate the proposed 

algorithm. The simulations demonstrated the roboustness of the proposed scheme to the 

plant uncertainties such as road surface condition and wind disturbance. 
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Chapter 5 

Conclusions and Future Research 

5.1 Conclusions 

This report has investigated the lateral guidance of a vehicle under PATH scenario: 

i.e., the road reference system composed of road-embedded magnets, on-board 

magnetometers and on-board inertia measurement sensors (a yaw rate sensor and an 

accelerometer). 

The focus of the research was placed on the lane change maneuvers of the lateral 

guidance and two strategies for the lane change maneuvers were studied. In the first 

strategy, the lane change maneuvers were accomplished by constructing a tracking control 

system. The desired trajectory, called VDT, to be tracked by the control system was 

designed by including the ride comfort parameters (lateral acceleration limit and lateral 

jerk limit) explicitly. In Chapter 2, we have investigated the relations between the 

maneuver time and the ride comfort parameters, and provided a graphical way of 

designing the VDT. In Chapter 3, we proposed a tracking controller to follow the VDT. 

A sliding mode controller was designed with respect to the frequency-weighted tracking 

error in order to enhance ride quality. Since the tracking controller designed in Chapter 3 

was a state feedback controller, a state estimation was provided. This methodology was 

validated by the results of experiments with a prototype vehicle. 
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As the second strategy for the lane change maneuvers under the first scenario, the 

unified lateral guidance algorithm was proposed in Chapter 4. The unified lateral guidance 

algorithm consisted of the desired yaw rate generator and the yaw rate tracking controller. 

The desired yaw rate generator computed the desired yaw rate of a vehicle to achieve the 

desired maneuver, either lane change or lane following maneuver. We could achieve the 

desired maneuver by tracking the desired yaw rate through the action of the yaw rate 

tracking controller. Thus, the controller design can be designed separately, regardless of 

the maneuver. The desired yaw rates were obtained from the analysis of the kinematics of 

the desired maneuvers. The stability of the closed loop system was proven via the 

Lyapunov stability theory. The effectiveness of the algorithm was verified by the 

simulations. 

5.2 Future Research 

The following topics are recommended for future research: 

8 The results of the unified lateral guidance algorithm need to be verified 

experimentally. The experimental procedure should include the variations of 

operating conditions in longitudinal velocity and road surface. 

8 Yaw rate tracking controller: a robust controller, an adaptive controller, or other 

intelligent controller can be investigated to improve the performance. 

0 Combination of the magnet based road reference system and the vision system will 

provide reliable, accurate, and robust measurements of both the road and the 

vehicle over a wide range of operations including lane following and lane changing. 



Bibliography 

[ 11 

r 21 

[31 

[41 

[51 

r61 

r71 

Ackermann, J., Sienel, W., “Robust Control for Automatic Steering,” Proceedings 

of the American Control Conference, San Diego, CA, pp. 795-800, 1990. 

Ackermann, J., Bartlett, A., Kaesbauer, D., Sienel, W., Steinhauser, R., Robust 

Control: Systems with Uncertain Physical Parameters, London, Springer-Verlag, 

1993. 

Ackermann, J., Guldner, J., Sienel, W., Steinhauser, R., Utkin, V. I., “Linear and 

Nonlinear Controller Design for Robust Automatic Steering,” IEEE Trans. on 

Control System Technology, Vol. 3, No. 1, pp.132-143, 1995. 

Caywood, W. C., Donnelly, H. L., Rubinstein, N., Guideline for Ride-Ouality 

Specifications Based on Transpo ’72 test data; Johns Hopkins University Applied 

Physics Laboratory, technical report, UMTA-MD-06-0022-77-3, 1977. 

Chee, W., Tomizuka, M., “Vehicle Lane Change Maneuver in Automated 

Highway Systems,” Publication of PATH project, ITS, UC Berkeley, UCB-ITS- 

PRR-94-22, 1994. 

Chee, W., Tomizuka, M., “Lane Change Maneuver of Automobiles for The 

Intelligent Vehicle and Highway System(IVHS),” Proceedings of the American 

Control Conference, Baltimore, MD, pp. 3586-3587, 1994. 

Chee, W., Tomizuka, M.., Patwardhan, S., Zhang, W., “Experimental Study of 

Lane Change Maneuver for A H S  Applications,” Proceedings of the American 

Control Conference, Seattle, WAY pp. 139-143, 1995. 

Conover, G. D., “The Eleven Commandments for IVHS,” Proceedings of Vehicle 

Navigation and Information Systems Conference, pp. 503-506, 1994. 

59 



Fenton, R. E., Melocik, G. C., Olsen, K. W., “On the Steering of Automated 

Vehicles: Theory and Experiment,” IEEE Trans. on Automatic Control, Vol. 21, 

NO. 3, pp. 306-315, 1976. 

Fenton, R. E., “IVHS/AHS: Driving into the future,” IEEE Control Systems 

Magazine, Vol. 14, No. 6, pp. 13-20, 1994. 

Gardels, K., “Automatic Car Controls for Electronic Highway,” GMR-276, 

General Motors Corps., Warren, MI, 1960. 

Godthelp, J., van der Horst, A. R. A., Burrij S., van de Lagemaat, C., “Open and 

Closed Loop Steering in a Lane Change Maneuver,” Institute for Perception: 

National Defense Research Organization TNO group, 1983. 

Hess, R.A.,. Modjtahedzadeh, A., “A Preview Control Model of Driver Steering 

Behavior,” Proceedings of IEEE International Conference on Systems, Man and 

Cybernetics, Vol. 2, Cambridge MA, pp. 504-509, 1989. 

Hess, R.A.,. Modjtahedzadeh, A., “A Control Theoretic Model of Driver Steering 

Behavior,” IEEE Control System Magazine, Vol. 10, No. 5, pp. 3-8, 1990. 

Hessburg, T., Lee, M.,. Takagi, H., Tomizuka, M., “Automatic Design of Fuzzy 

Systems using Genetic Algorithms and its Application to Lateral Vehicle 

Guidance,“ Proceedings of Society of Photo-Optical Instrumentation Engineers 

(SPIE’93), 1993. 

Hessburg, T., Peng, H., Zhang, W., Arai, A,, Tomizuka, M., “Experimental 

Results of Fuzzy Logic Control for Lateral Vehicle Guidance,” Publication of 

PATH project, ITS, UC Berkeley, UCB-ITS-PRR-94-03, 1993. 

Kailath, T., Linear Systems, Englewood Cliff, New Jersey, Prentice-Hall, 1980. 

Kalman, R. E., Bertram, J. E., “Control System Analysis and Design Via a the 

Second Method of Lyapunov. I1 Discrete-Time Systems,” Trans. of the ASME, 

Vol. , pp. 394-400,1960. 

Krstic, M., Kanellakopoulos, I., Kokotovic, P., Nonlinear and Adaptive Control 

Design, New York, John Wiley & Sons, Inc., 1995. 

60 



Lugner, P., “Horizontal Motion of Automobiles - Theoretical and Practical 

Investigations,” Dynamics of High-speed Vehicles, New York, Springer-Verlag, 

1982. 

Modjtahedzadeh, A., Hess, R. A., “A Model of Driver Steering Control Behavior 

for Use in Assessing Vehicle Handling Qualities,” ASME Journal of Dynamic 

Systems, Measurement, and Control, Vol. 115, No. 3, pp. 456-464, 1993. 

Ozguner,U., Unyeliog’lu, K. A., Hatipog’lu, C., “An Analytical Study of Vehicle 

Steering Control,” Proceeding of the 4Ih IEEE Conference on Control 

Applications, Albany, NY, pp.125-130, 1995. 

Pappas, G.  J., Kyriakopoulos, K. J., “Dynamic Modeling and Tracking Control of 

Nonholonomic Wheeled Vehicles,” Proceedings of the IFAC, Vol. 2, pp.241-244, 

1993. 

Pacejka, H. B., Bakker, E., “The Magic Formula Tyre Model,” Proceedings of 1“ 

International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Delft, 

Netherlands, pp. 1-18, 1991. 

Peng, H., Tomizuka, M., “Vehicle Lateral Control for Highway Automation,” 

Proceedings of the American Control Conference, San Diego, CAY pp. 788-793, 

1990. 

Peng, H., Tomizuka, M., “Lateral Control of Front-Wheel-Steering Rubber-Tire 

Vehicles, “Publication of PATH project, ITS, UC Berkeley, UCB-ITS-PRR-90-5, 

1990. 

Peng, H., Tomizuka, M., “Preview Control for Vehicle Lateral Guidance in 

Highway Automation,” Proceedings of the American Control Conference, Boston, 

MA, pp. 3090-3095,1991. 

Peng, H., Hessburg, T., Tomizuka, M., Zhang, M., Lin, Y., Devlin, P., Shladover, 

S. E., Arai, A., “A Theoretical and Experimental Study on Vehicle Lateral 

Control,” Proceedings of the American Control Conference, Chicago, Illinois, pp. 

1738-1742,1992. 

61 



r311 

r321 

Pham, H. A., Hedrick, J. K., Tomizuka, M., “Combined Lateral and Longitudinal 

Control of Vehicles for Intelligent Highway Systems,“ Proceedings of the 

American Control Conference, Baltimore, MD, pp. 1205-1206, 1994. 

Praly, L., d’Andrea-Novel, B., Coron, J. M., “Lyapunov Design of Stabilizing 

Controller for Cascaded Systems,” ZEEE Trans. on Automatic Control, Vol. 36, 

NO. 10, pp. 1177-1181,1991. 

Segel, L., “Theoretical Prediction and Experimental Substantiation of the 

Response of the Automobile to Steering Control,” Automobile Division, The 

Institute of Mechanical Engineers, pp. 26-46, 1956. 

Shladover, S .  E., Wormley, D. N., Richardson, H. H., Fish, R., “Steering 

Controller Design for Automated Guideway Transit Vehicles,” ASME Journal of 

Dynamic System, Measurement and Control, Vol. 100, No. 3, pp. 1-8, 1978. 

Shladover, S .  E., “Research and Development Needs for Advanced Vehicle 

Control Systems,” IEEE MICRO, Vol. 13, No. 1, pp. 11-19, February 1993. 

Slotine, J.E., Li, W., Aptdied Nonlinear Control, Englewood Cliff, New Jersey, 

Prentice-Hall, 199 1. 

Utkin, V. I., “Sliding Mode Control in Discrete-Time and Difference Systems,” 

Variable Structure and Lyapunov Control (A. S. I. Zinober, ed.), London, U. K., 

Springer-Verlag, pp. 83-103, 1993. 

Utkin, V. I., “Variable Structure Systems with Sliding Modes,” IEEE Trans. on 

Automatic Control, Vol. 22, No. 2, pp. 212-222, 1977. 

Wong, J. Y., Theory of Ground Vehicles, John Wiley & Sons Znc., 1993. 

Yonezawa, K. , “Reduced-Order K h a n  Filtering with Incomplete Observability,” 

Journal of Guidance and Control, Vol. 3, No. 3, pp. 280-282, 1980. 

Young, K. D., Ozguner, U .  , “Frequency Shaping Compensator Design for Sliding 

Mode,” International Journal of Control, Vol. 57, No. 5 ,  pp. 1005-1019, 1993. 

Zhang, W., R. Parsons, West, T., “An Intelligent Roadway Reference System for 

Vehlcle Lateral GuidanceKontrol,“ Proceedings of the American Control 

Conference, San Diego, CA, pp. 281-286,1990. 

“California PATH 1996 Annual Report,” California PATH, Richmond CAY 1996. 

62 



Appendices 

Review of Stability Theory 

In the design of control system, we resort to Lyapunov theory for its stability 

proof. This section will summarize the Lyapunov stability theory and the related 

convergence theorems. 

In the following formulations, R" denotes an n-dimensional linear vector space 

over the reals with the norm 11-11. Let R, = [0, -) . 

Consider the nonautonomous system 

x = f (x,t) (A. 1) 

where f :  R" x R, + R" is locally Lipschitz in x and piecewise continuous in t . 

Definition A.l : (Equilibrium Point) 

The origin x = 0 is the equilibrium point for (A. 1) if 

f (0,t) = 0, vt 2 0. 

Definition A.2 : (Class K) 

A continuous function y :  [O,a) + R, is said to belong to class K if it is strictly 

increasing and y(0) = 0. It is said to belong to class K if a = 00 and y ( r )  + 00 as 

r + m .  

Definition A.3 : (Class KL) 
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A continuous function p : [O,a) X R, + R, is said to belong to class KL if for each fuced 

s the mapping p(r ,s)  belongs to class K with respect to r , and for each fured Y the 

mapping p(r,s)  is decreasing with respect to s and p(r ,s)  + 0 as s + 00 . It is said to 

belong to class K L, if, in addition, for each fured s the mapping p(r ,s)  belongs to 

class K with respect to r . 

A.l Lvamnov Stabilitv Theorv 

In the Lyapunov stability theory, the following definition of the stability of the equilibrium 

point is considered. 

Definition A.4 : (Stability) 

The equilibrium point x = 0 of (A. 1) is 

uniformly stable, if there exists a class K function y(.) and a positive constant c, 

independent of t o ,  such that 

Ilx(t)lls &(to]I>, v t  2 t o  2 0, vx(to): Jlx(t,)Il< c ; (A.3) 

uniformly asymptotically stable, if there exists a class KL function /?(.,e) and a positive 

constant c, independent of t o ,  such that 

11x<t>ll~ p(IIx(to)II,t - t o ) ,  vt 2 to 2 0, v-X(t0): I b ( t o ) I I  c ; 04.4) 

0 exponentially stable, if (A.4) is satisfied with p(r ,s)  = kre-", k > 0, a > 0 ; 

0 globally uniformly stable, if (A.3) is satisfied with y E K for any initial state x(to)  ; 

0 globally uniformly asymptotically stable, if (A.4) is satisfied with p E K L_ for any 

initial state x ( to ) ;  and 

0 globally exponentially stable, if (A.4) is satisfied with for any initial state x ( t o )  with 

p(r,s)  = kre-", k > 0, a > 0. 
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Then, the main Lyapunov stability theorem is formulated as follows. 

Theorem A S  : (Uniform Stability ) 

Let x = 0 be an equilibrium point of (A.l) and D = { x  E R" : llxll< r }  . Let 

V:  D X R, + R, be a continuously differentiable function such that, V t  2 0, Vx E D , 

"/1 (Ilxll) 5 v b ,  t> 5 y2 (11xD (A.5) 

Then, the equilibrium is 

uniformly stable, if yl and y2 are class K functions on [O,r) and y3 (.> 2 0 on [O,r) ; 

uniformly asymptotically stable, if y1 , y2 and y3 are class K functions on [O,r) ; 

exponentially stable, if yi ( p )  = k ipa ,  ki > 0, a > 0, i = 1, 2, 3 on [O,r) ; 

globally ungormly stable, if D = R" , yl and y2 are class K functions, and 

y3( - )20  on R,; 

globally uniformly asymptotically stable, if D = R" , y1 and y2 are class K 

functions, and y3 is a class K function on R, ; and 

globally exponentially stable, if D = R "  and 

y i (p)  = k i p a ,  ki > 0, a > 0, i = 1, 2, 3 on R,. 

A.2 Convergence Theorems 

Lemma A.6: (Barbalat) 

Consider the function $: R, + R . If $ is uniformly continuous and limji@(r)dr exists 

and is finite, then 

t +- 
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Theorem A.7: (La Salle-Yoshizawa) 

Let x = 0 be an equilibrium point of (A.l) and suppose f is locally Lipschitz in x 

uniformly in t . Let V: R" x R, + R, be a continuously differentiable function such that 

Y1 (lkll) v(x, t )  5 YZ (Ilxll) 64.8) 

b't 2 0, Vx E R" , where yl and yz are class K ~ functions and W is a continuous 

function. Then, all solutions of (A.l) are globally uniformly bounded and satisfy 

lim W(X(  t ) )  = 0. (A.lO) 

In addition, if W ( x )  is positive definite, then the equilibrium x = 0 is globally uniformly 

asymptotically stable. 

r+m 

A.3 LvaDunov-Based Control 

One objective of control design is to create closed-loop systems with desirable 

stability properties. Thus, it is desired to extend the Lyapunov function concept to the 

control Lyapunov function([ 19][30]). 

Suppose that our problem for the time-invariant system 

i = f ( x , u ) ,  X E R " ,  u€R,f(O,O)=O, (A. 11) 

is to design a feedback control law a ( x )  for the control variable u such that the 

equilibrium point x = 0 of the closed-loop system 

i = f ( x , a ( x > )  (A. 12) 

is globally asymptotically stable. We can choose a function V ( x )  as a Lyapunov 

candidate, and require that its derivative along the solutions of (A.12) satisfy 
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vi(x> 2 -W(x) , where W ( x )  is a positive definite function. Thus, it is needed to find 

a ( x )  to guarantee that 

f3V 
dx - - f ( x ,a (x ) )  I -W(x) .  (A. 13) 

Definition A.8: (Control Lyapunov Function) 

A smooth positive definite and radially unbounded function V:R" + R, is called a 

control Lyapunovfunction for (A. 11) if 

(A. 14) 
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