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CHAPTER §
MULTIPLE SITE DEMAND:
A KEVIEW OF EXISTING MODELS AND THE DEVELOPMENT OF NEW MODELS

Some Existing Demand Models

We start with the studies by Burt and Brewer (1971} and

Cicchetti et al. (1976), both of which treat quality implicitly
funeions
by estimating separate demandifor each group of recreation sites
Y ¥ ST, -

and both of which employ the linear demand system sz&}hﬁhapter
8 —-treating this as an incomplete demand system in which the
prices of other goods (i.e.,qz,.., ,qﬂg are subsumed in the co-
efficients (i.e. the a's or the g's). Although it appears that

each data set contains instances of corner solutions, this fact
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is ignored in the formulation and estimation of the demand
systems. Unlike Burt and Brewer, Cicchetti et al, assume no
income effects and impose the symmetry conditions across
equations. Both versions of (24) are, in principle, consistent
with the hypothesis of utility maximization and the underlying
direct utility functions have been obtained by LaFrance and
Hanemann (1984). However, the version with non-zero income
effects can only satisfy the integrability conditions (6) if the
commodities (visits to recreation sites) are assumed to be per-
fect complements, consumed in fixed proportions.

The other demand studies that we shall discuss introduce
site quality characteristics explicitly, in the sense that they
imply a utility function of the form u{x,b,z). An example is the
gravity model employed by Wennergren and Nielsen {1970} in which
there is a single quality dimension, site capacity, and
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Gravity models have subsequently been employed by a variety of

authors, two particulariy sophisticated examples being the
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studies by Cesario and Knetsch (1976) and Sutherland (1882a}. In
Cesario and Knetsch the demand system is

a -Bp, N o -Bp. ¥
{2} X, = f(y,alwie 7{2 Y e Iy, O<y<l, §=1,...,N,

=13

where a is a vector of individual characteristic and w},...,¢N
are constructed indices of site quality. As long as vY<l, this
formulation implies that a decreasé fn the cost of visiting a
site and/or an increase in its quality index have jﬁg‘effects:‘
not onlty is existing recreation actually diverted away from other
sites to the site in question, but also some new recreation ac-
tivity is generated (i.e. f x, increases). (If v=1, the latter

J 3
effect vanishes and Zx. remains constant.

3
Sutherland's model actually involves four distinct compon-
ents. In order to explain them it is necessary to introduce a
subscript for consumers, which has so far been suppressed. Let
Xit be the demand for site 1rby consumer t, Pit the cost to
consumer t of visiting site 1, Y¢ his dincome, and a, his other
attributes (e.g. age, sex).l Thus, in terms of our previous

discussion the utility function becomes u(xi,b,zt,at) and the

demand functions for sites are

. i Coa ) s
{(3) X;p = h (Plt"“’PNt’bI""’bn’qt’yt’ at) i=1,...,N.

t

A key element in the demand model is an impedance function
O5¢ = B(P;4) which is constructed as follows. Sutherland con-
structs the empirical probability density of the subset of P,'s

for which x.,>0 and then sets ©(.) equal to a smoothed version

of this empirical density. A feature of the function ©(*)



therefore, is that it is increasing over a (usually small) part

of 1ts domain, and decreasing over the remainder. bl v, 3z Z >
. L L

he Tt it botal vadubon o ol 'A“m} and %, 5z Z Yoo O votul

- H ‘,. k
atondava g ikl by ok comnwnun, The first two

components of Sutherland's model are a trip production equation
{(i.e. a participation intensity equation)

(4) x ¥ L x. = f(L b 6(P, ),H .a )
Sty it i 1 it t* t

and a site attractiveness model {i.e. an aggregate demand

function for each site)

(5) x. =2 x =abf(ze )Zx ), a, B,y >0 di=1,...,N
i t it 1 g . it 4 3t

"

where by is a measure of facilities available at site i,

§ bie(Pit) is a measure of overall availability of recreation

-

opportunities to consumer t, and I 8(P_ ) (I x t) is intended
t 1 j A .

as a measure of the overall accessibility of site i to the popu-
lation of consumers. Equations (4) and {5) are each estimated by

OLS. Using the fitted regression equations the predicted values

Lad

X pa-eaX,y are obtained from (4) and the predicted values

il-""’iN. are obtained from (5); these are substituted into

the following gravity model

(6) X (

B(Pit) X5 )
g G(Pjt) 23.

to obtain predictions, iit’ of each consumer's visit to each

it - Xet

site. Finally, for the purpose of valuing each site, the predic-

ted site visits, git are regressed on the site costs via an

equation of the form

(7) Inlxged = 65 % 2y Py

from which the Marshallian triangle is approximated.



By contrast with (3), the model (4} - (7) may appear to be
overfitting a demand system. Moreover, as with (1) and (2}, the
demand model does not appear to be desirable from a utility maxi-
mization standpoint, nor does it make any particular allowance
for the app%?ance of corner solutions which certainly abound in
the data set. This §s partially rectified in the next group of

models we consider, which we call share models.

Share Models

It is convenient here (although be no means essential) to
employ the separability assumption described in Chapter 8 and to
work with the system of pértia1 demand functions, modified so
that they now include site quality indices. That is, the utility
function is assumed to be u{x,b,z) = flulx,b),z] and the parital

demand system, derived from u{-)}, is

. x : =
(8) Xy = Ei{p,b,yx) i 1,...,M
where
- = x
{9) Yy, = Ipyxg = pyRilp,b,y ).

In additi on to summability, we assume that demand functions
E?(-),...,B:{-) posses the requisite properties of symmetry,

negative semi-definiteness and, in particular non-negativity
(10) Ritp,b,y,) > © = 1,...,N.

Suppose that we are interested in the share of recreation
conshwtt
activity allocated to each site; we cou?dLeither value shares,

W.E pixi!yx, and value share functions
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I

(11) W, = “i(p’b’yx)

x & —
i piRilpubuy My, i= 1, ..M

N
or quantity shares, sy = xi/x,, where x, = ixj, and quantity
share functions
Cx N -x
{12) s = s {(p,b,y } = h™{p,b,y }/Z h {p,b,y } 1 = 1,...,N.
i i X i x 1 3 X

Note that the latter allocate total visitation, X , among indi-
vidual sites as function of total expenditure on all sites, Yy
and not as a function of x, itself. Moreover, if the sub-utility
function wu{x,b) happens to be homothetic in x, the partial de-

mand functions take the special form

(13) X; = ﬁi(p,b,yx) =4 (p,bly, o= 1,...,N

for some set of functions ¢l{'),...,¢N(') which are each homo-
geneous of degree minus one in p. In this case, the share
equations become
N
{14) w = w (p,b,y )} =& (p,b)}/ZE (p,b) 7 = 1,....N,
i i X i 13
where 51(9,13) z pi¢i(p:b)r and
' N
(15} s = s (p,b,y } =4¢ (p,b)/Z ¢ (p,b) i = 1,...,N,
] i X i I 3

i.e. the share equations are independent of total expenditure on

site recreation activity,y,. Regardless of whether u(+) is
homothetic, the point we wish to emphasize is that modelling
approaches based on the systems of share equations are entirely
equivalent to modelling approaches based on the system of partial
demand equations. Any system of share equations implies a cor-

responding partial demand system, and conversely; both systems
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convey the same amount of information about consumer preferences
and behavior.2
The situation changes, however, as soon as we introduce

stochastic elements and begin to think in terms of statistical

wodels. Depending on the stochastic specification, 1t could make
a2 considerable difference whether we choose to estimate share or
demand systems., For example, suppose that we introduce additive,
normally distributed disturbance terms into the partial demand
system (8). In o~vdur bo atcovwmedate T Swmmu\mk% mabtHon (q))

wiada tnduces a dependence among the disturbance terms,

we  ockualiy assume tﬁat a subset of (N-1) of the x;'s have
an (N-1)-dimensional multivariate normal distribution with mean
vector [B;{p,b,yx},...,ﬁs_l(p,b,yx)] and some covariance matrix
2 which is an  (N-1)x{N-1) positive definite matrix. It is
understood that the remaining consumption level is obtained via

N-1
9) -i.e. x, = Ly, - f pixi]/PN -~ and hence is also normally
distributed.3,% |
Yt should be evident that

it matters greatly whether we estimate the partial demand system
or the share system because, whereas the xi's are multivariate
normal, the distribution of the s;'s {(the composition of depend-
ent normal variates) is extremely complex and does not possess a
closed form expression. (See Yatchew, 1983, for a discussion of
the computational problems in estimating this distribution.)
Conversely, suppose we assume that the shares are multivariate
normal, with means given by sifp,b.yx) and some covarfance matrix

5

I. While this paves the way for direct estimation of the
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share equaticns, it rules out estimation of the partial demand
system because there s no closed form expression for the distri-
bution of the x;'s.,

In these two examples one has to make a direct choice be-
tween g tractable distribution for the observed xi's and a tract-
able distribution for the observed s;'s. When distribution other
than the multivariate normal are useq’however, this dilemma can
sometimes be avoided. For example, if we assume that

XyseesXy are independently distributed gamma variates, the
gamma parameter being Y; = ﬁ?(p,b,yx) i=1,...,N, the (N-1)

shares Sy»--+sSy_y have the Dirichlet distribution with density

N .
MIy ) v-1 v -1 y -1 Y -1
N | 1 2 N-1 N
{16) f(Sl,.--,SN_l} - T““"‘"""‘ Sl 052 « = -San (1 - 51“ 2™ sN“"l}
Dy :
1 i

where it is understood that sy is obtained from the relation:
Sy = 1 “S) T e = Syg- This approach to the modelling of
shares was preposed by Woodland (1979). The estimates of the

¥ i's - i.e. the estimation of the coefficients of Eg(p,b,yx)~

aAs

caane based on either the observed quantities demanded,
X1s+-e,%Xy Or the observed shares, S31,+-+,5y- Similarly, suppose
that the xi‘s have a N-dimensional multivariate lognormal distri-
bution with parameters % and {1, where

vy = Eﬁfp,b,y) i = 1,...,N and § is some NxN positive definite

Ththn
martrix, i.e. (1ln Xpseeesln xN) is N{p, ). L_khe (N-1) shares
Sps---s5y.1 have Aitchison and Shen's (1980} logistic normal dis-
tribution with density
4 K1 -l N-1 -1 1 o -1
(17) fls youuys Y= 275 (Ws) (1- Zs) expl—{(aB) £ (a-8))0.
1 K-1 i=1 i 1 2
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whaea b W a%u{v\ vvduitesd Wrob sy = =Sy -~ - al JV

Wt , a”= {ay,...,2y), a; Z In(s./ s,},1 = 1,...,N-1, &
1 N § N

1

1l

Au, and

L = ARA, A being the {(N-1)xN matrix
A= [Ty -8y 4]

where I, ; is the identity matrix and ey_; a vector of (N-1}1's,
In this case, too, the vectorT}i.e. the functions

ﬁ:(p,b,yx) i =1,...,N) and the matrix & can be estimated
equally well from the observed demands or the observed shares.

Apart from considerations of ease of estimation, these four

statistical models ~ normal demands, normal shares, gamma
demands/Dirichlet shares, and lognormal demands/logistic normal
shares - have different economic implications which are not
unimportant.' Both of the normal models can readily be employed
when the data contain zero values for xy and s;; the problem is
that, even if the estimated ﬁ;(‘) or si(‘l functions satisfy the
nonnegativity requirement {which is not guéranteed to happen),
these models imply that one can have negative values of Xx; or 's;
with some probability, which is a mis-specification from an
economic point of view. To be sure, this is less likely to be a
serious problem for the normal demands model since the density in
the negative orthant is likely to be negligible, as Woodland
(1979, p. 362) points out. The gamma/Dirichlet model ensures that
the estimated E?(’) and Si(') functions are positive, and it “

rules out the possibility of negative values for x; and s, It

can be applied when the data contain zero values for x; and s; but
only if O <Yi = ﬁ?(p,b,yx),s 1 - {.e., the expected demand for

the good does not exceed one unit. In this case the mode of the
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.x;acﬁwuak
the distribution oftxi = 0 and the gamma density does not possess
the standard bell shape. 1If Yi© ﬁ?(p,b,y) > 1
the density possesses a conventional shape, but the domain over
which it is defined excludes xy = 0or sy, = 0. The
lognormal/logistic normal model does not impose any a priori re-

strictions on the sign or magnitude of My o= h?(p,b,y,x), and it
rules out the possibility of negative values for x; and s;, but
its domain is restricted to Xy *0 and 0 < 55 <1 4 =1,...,N. Thus
it, too, cannot be applied to data containing zero .values for the
x;'s or si’s.ﬁa

Given the availability of observations on the demands as well
as the shares, one might wonder why anybody would bother to
estimate share systems. One reason why share systems have been
employed in these circumstances (e.g. Morey (1881, 1984)) has to
do with a factor that has not so far been mentioned and is not
incorporated into any of the statisticé] models described above:
the possibility that, since commodities may be indivisible, the

xi's may be required to be non-negative integers.

Before describing Mo rey's model, we would like to make three
observations on the general fssue of integer-valued consumption
tevels., First, the extent to which this is a factor that bught to
be accommodated in the estimation procedure is clearly a matter of
degree, and depends on the particular data involved, 1f, as
semetimes happens with recreational data, individuals consume very

few units of the goods that they do buy {(i.e., make very few
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visits to sites), consumption demand ought p?%haps to be modelied
as integers. Second, integer-valued consumption levels can be
modelled via demand systems without necessarily resorting to the
multinomial distribution, for example by assuming that the s;'s
are independent Poisson variables.” Third, aside from its impli-
cations for stochastic specification , the fact that commodities
are indivisible and may be consumed only in integer units causes
profound problems for the economic analysis of demand functions.
This is because the consumer's utility maximization becomes an
integer programming problem whose solution is very different from
the smooth demand functions in (8) that are based on the
presumption of an inferior {i.e. non-integer-valued) solution. To
assume that the x;'s are Poisson {or multinomial) variates whose
means are given by ﬁ?('),...,ﬁ;('} may invole an inconsistency

between the economic and statistical specifications of the model.

1. The Morey Model

In employing the multinomial distribution, one is treating
the x;'s as "counts" of the occurrence of discrete events. The
standard scenario underlying the multinomial distribution is'fhat
R independent trials are held and, on each trial, N mutually
exclusive outcomes may occur, with vy being the probability of
the ith cutcome where ﬂi> 0 and g ni: 1. Let t; be the number of
times that the ithoutcome occurs én R trials. The probability of

any outcome vector (Ey,....Ey) ds

N
:
(18} f(t ,...,t ) = .__,_,,B_.;..._ﬂ_ﬁ, tj
1 | K 1 J
nt, !}
where it 15 understood that 1 d




N N-1

£t, =R, i.e., t, =R - L t,. Conditional on R some of the
p 9 N 1 J ’

moments are

(19a) E{t,|R} = Rm,

(19b) var{t}.[R} = Rm (1-7,)

(19¢) cov{ti,tj]R} = -—Rninj.

Following Morey, we equate the count t; with the observed demand

for the ith good X,, m,

in (12), and R with x. = Zﬁ?(p,b,yx), and write the density of

with the share function s;{p,b,y,)

the observed demands as7
{x, )y X3
(20) f(xl,...,xn) = " : g sj(p,b,yx) .
T

This density requires that s;(p,b,y,) > 0, and hence that
ﬁ?(p,b,yx) >0, 1= 2,...,§’and its domain 1is
{x!xi: 0,1,2,...,%x. , Ix, = x.}. Thus, it can readily be applied
to data sets containing zero values of the observed xi‘s.

However, there is a conceptual problem in this application of
the multinomial distribution to consumption data which needs to be
recognized. The logic of the statistical model (18} is that the
number of trials, R, is exoéenous and, therefore, this parameter may

be ignored in maximizing (18} to obtain estimates of nl,...,ﬂNt

A TG w\mwgsHm foaL | \nn cmwuk{‘, e ?&NMM %, w&a%un&tm FATERS 7Y

N
Swaply T tohd  comsuvaphon 5 ald goeda, Thus x,= I ﬁ;(p,b,yx
1
contains information on the coefficients to be estimated, and can

hardly be ignored in maximizing the likelihood function derived fronm
(20), @,XW\ou%\-\ T conty  cdoulab o Bl W emeR ealk smh.h:hln 5 () s a
M\*ﬁ »&ur CML\M?\\‘\W\ data (Hﬁwﬁm &) v harther Cm,su\m\,{fs\'i‘bv\ Ay an 'w’\}ical)‘

vedwid ), Wais stodhanke anodad CE hove sove  wunt an o\emd%m\ apprayimal oy,
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When applying the model to recreation data, Morey uses two
different utility functions for generating the share equations.
In Morey (1981) he uses a CES subfunction

N
(21a) ulx,b) = (£ ¢ (b 1x.°)V° 5 <1, 70
1 J9 3 4 -
where wj(bj) is the overall quality index for site j, and the
parameters to be estimated are p and the coefficients of the
wj(-)’s. This utility function implies homothetic partia}
demand functions and, therefore, share functions which are

~

independent of y, - see (15) above:
- o4 cy-1 -
(21b) s;{p,b.y,} [wi(bi){PiJ {szj(b3)/Pj3 } 1= 1,.00,0

where ¢ = (1 - p)ﬂ%i 0 is the (common) elasticity of substitution
among different commodities (recreation sites}. However, beéause
of the homotheticity, this utility mode}.implies_that all
commodities have a unitary income elasticity of demand, which ts
implausible in the recreation context. Morey (1984) recognizes
this and employs instead the following version of Pollak and

Wales’ (1978} Quadratic Expenditure System indirect utility

function
{22a) v [p‘b'yx} = . .g.f_g_a.t_}.). + (p,b)
Y, Py
where
- o, 1-041/{1-0)
glp,b} z[¢j(bj) Py ]
and

f(p,b) = Zf¢jibj)apjl*0]1/(1-c)'
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mj(bj) and ¢j(b3) being different quality indices for site

J. The parameters to be estimated are now ¢ and the coefficients
of the ¢j(-)'s and the ¢j(-)'s. The resulting partial demand

functions are

p® vz Tl Gy ]

X -~
(226} hy(p.buy,) =y, o Y T [Tt - T i=1,....0

U
Z
4

from which the share equations may be obtained by direct appli-
cation of (12). Notice that these functions are no longer
independent of ¥y since the utility function is not homothetic.
The model actually estimated in Morey {1984) differs from
{22b) because the variable x,  is substituted for the variable y, -
i.e. the partial demand functions and share equation take the Fewm
5¥(p,b,x.) and s.{p,b,x ). However, as pointed out earlier (p.9-6),
this is an impreper formu]at‘ioYet, we can exp?a'in how
something like this formulation, but not exactly the same, may
arise. In forming the price variables, Morey includes both direct
moneta?y costs {cy, say) and the value of time, valued at the wage
rate. Thus, p; = ¢; + wt;, where w is the wage rate and ty is the
time spent travelling and recreating at site i. Since the partial
demand functions and share equations are each homogeneous of
degree zero in prices and income, one could normalize both prices

and income by dividing them by w, to obtain

p p y
X X 1 N X —
{(23a) ﬁi (p,b,yx) = Bi (;w,..,,;w , b, m;} i=1,...,N
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P P y
" 1 N X <.
{23b) si(p,b,yx) = si(mw "L b, ~;) i 1,...,N.

Morey, in fact, does work with the prices (pi/w) - j.e. prices

measured in pnits of time rather than money. Moreover, he also
measures recreation activity in units of time - xy; s one day of
recreation at site i, and x_ is the total number of days spent
recreating over the season. But, from this one cannot
legitimately infer that y,/w= x_and, therefore one cannot

substitute x_as an argument on the right-hand sides of (23a,b).8

Although the mulitinomial density attaches a non-zero
probabi1ity to the event ;hat t; = 0 and can, therefore, be
Appliéd in practice to consumption data containing corner
solutions, this does not necessarily make 1t=a desirable tool for
analyzing such data. 1In order for the densit& to be well-defined
it is rquted that LR 0, 1 = 1,...,N. If one identifies these
parameters with the share system § (p,b,yx},....sN(p,b,yx), as
Morey (1981, footnote 14} does, rather than interpreting them as
choice probabilities, this implies that the true demand for each
good is positive and the only reason for observing zero shares in
some particular data set is sampling variation rather than a |
structural feature of economic behavior ~ in the same way that

when one tosses a fair coin several times 1t {s possiblie through

sampling variation to obtain a run of heads and no tails.

9-15



Admittedly, the fitted Si{') functions could take very smail
values, so that the expected consumption of any particular good s
very small, but this is not a satisfactory solution to the problem
of corner phenomena from an economic point of view. Assuming that
there are corner solutions for reasons other than sampling
variation, economic theory requires that si(p,b,yx) = 0 for some
range of {p,b,y,)-space and, as we show in the next section, the
internal structure of the si{-) functions changes when this
occurs. The change in structure is not captured by (21b) or
(22b), which are based on the presumption of an interior solution

®

to the consumer's choice problem.

2. Share Mpdels Used in the Literature

An alternative approach is to retain the multinomial model
but interpret the parameters, wg,....qy, as choice probabilities
arising from some structural economic model that explicitly

incorporates the possibility of corner solutions. Thus, =u, is

9-16



the probability that a budget share is positive and, even if the ‘
observed s, =0, one can have w2 0 and the way 1is cleared for

an appiicatioﬁ of the density {18). The underlying economic

model, however, is guite different from that which has been
employed so far.

The economic model is different because, using the
terminology introduced earlier, the macro-allocations now involve
the determination of x rather than y,, and the micro-aliocation
involve thé allocation of x_among individual sites. In addition
the utility function is different in several respects, including
the fact that it is no Ionéer necessary to invoke the
separability assumption that has been employed throughout this
section. Thus, we work with the general utility function
ul{x,b,z), and (although this is not crucial) we take z as a
scalar, representing the consumption of a Hicksian composite com-
modity whose price, q, is normalized to unity. We should
emphasize that the assumption of an allocation of x_ rather than
Yy is not compatible with the conventional economic framework of
utility maximization {with two exceptions to be explained below)
and should be interpreted as'arising from a behavioral rather than
an optimizing model of consumer behavior. The micro-allocations,
however, are presumed to arise from maximizing behavior.

The micro-decision is to allocate a fixed total cohsumption,
x, among N different goods, where we recognize that the goods are
indivisible and can only be consumed one unit at a time {(e.g. one

can only visit one recreation site at a time).

§-17




This indivisibility is explicitly recognized in the
solution of the consumer's maximization problem, but in a special
manner: instead of assuming that the consumer selects his entire
portfolio of visits to the different recreation sites at a single
instant {e.g. at the start of the recreation season), as is
implied by conventional utility models, we now assume that he
makes a separate choice of which site to visit each time he
engages in the recreation activity. Given the predetermined total
number of trips (“"choice occasions"}, x , we introduce the choice
vectors d. = (djp,...,dye), r = 1,...,x , where d;,. = 1 if the itP

site is selected on the rti trip and dy,. = 0 otherwise. Thus

{24) | Ig. =1, §d1r= x;, and ?rdir = X, .

To allow for the possibility that the quality attributes or
costs of visiting the sites vary over different choice situations,

we can subscript these quality variables: by = (bj,.,...,by.},

where by, = {byy.,...,b54,), and Pr=(p]r;.,er)5150, let z,. denote

the consumption of non-recreation goods and y,. the consumer's

th

income on the r choice occasion.l0 Finally, let f{d,.,b.z.) be

th

the consumer®s utility function relevant for the r choice

occasion. Given the macro-allocation decision, the micro-decision

is to
X,
maximize I f(d ,b ,z)
(25) dl""‘dx.‘z rel ryr r r
N
subject to L p d + 2z =y
=t Jjr jr r r roE o1, ...,

9-18



This maximization problem can be decomposed into x_ separate
problems, that 1s, a separate decision problem for each choice

pccasion of the form

(26) maximize fld, b, ,z,} s.t. ?pjrd§r+ 2. =y .

In order to describe the solution, suppose that on the rth choice
cccasion the invididual has selected site 1. Conditional on this

decision, his utility is

(QQ‘BUir = f({},‘-.,o,l,g,...,o,b )

vi(bir‘yr”pir)'

Ir""’bNr’yr_pir

]

if we assume that f{°) satisfies weak complementarity. We will
refer to vl('}....,vu(') as conditional indirect utility
functions. Since the consumer selects the site which yields the
highest utility, the solution to (20) can be expressed in terms of

these conditional indirect utility_functions as

) . - 1 if v?(bir’yr'pir) 3vvj{bjr'yr'pjr) all j
0 otherwise.

For estimation purposes, it is necessary to introduce a

stochastic element into this demand model. 1In the context of

discrete choices, such as arise here, this is commonly done by

introducing & random element directly into the utility function

produc ing what {s known as a random utility maximization (RUM)

model (See Hanemann, 1984a). The idea is that, although the

consumer's utility function is deterministic for him, 1t contains

some elements which are unobservable to the econometric

investigator and are treated by the investigator as random
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variables. These elements will be denoted by the random vector
G

¢, and the utility function will be written f(dr,b e,

Z!"’

r.l
Under the RUM hypothesis, the consumer is

assumed to maximize f{d br,zr;e) subject to the budget constraint

ro
in {(26). If the RUM model satisfies the weak comp]ementai?
condition, the conditional indirect utility functions have the
general form w, = Gi(bir’yr'pir’ﬁ)’ i= 1,...,N,

However, we assume that the random elements enter the utility
functions in such a way that they, too, are affected by weak

:+
compiementa%y, and we write the conditional indirect utility

functions as a function of the scalar €4 rather than the vector
11

(29) Ujp = V(b Yy mpypiey) i=1,...,N.

The consumer's utility maximizing choice can still be expresseﬁ
in terms of these conditional indirect utility functions along
the lines of (28), except that the discrete chofce indices
dyps---»>dy, @re now random variables with a mean E{dir} = o
given by

(30) Tip © pr {vi(bir,yr~pir;q) > V‘j(bjr,yro-pjrn’sj) att jl.

In the applicatins by Hanemann (1978} and Caulkins et al.
{1984}, the random variables Elsrr-s fy aTE assumed to be inde-
pendently and identically distributed extreme value varibles, and

the conditional indirect utility functions, (29}, take the form
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{31) U. = Vv

ir i(b

- ] € i = « .. -
irYr pir) e ! 1, N

This generates the logit model of discrete choices 1z

v,
J

N
(32) n = g /.E e i=1,...,N.

In the application to be presented in Chapter 10 we employ,

instead, McFadden's (1978) Generalized Extreme Yalue Distribution

-5 -5
(33) Pr{El L5100, < SN} = expl-Gfle 1,...,e N]

where 6 is a positive, 1inear homogeneous function of N

13

variables. When combined with {31) this yields discrete choice

probabilities of the form
v v v ' v

. v v
{34) i ir = © 1Gi{e 1,....8 N)/G(e Vo..o.,e N) i=1,...,N

where Gi(') is the partial derivative of G{°*) with respect to
its ith argument. In either case, the formulas for the choice
probabilities may be substituted into the mu]tinomja1 density
(18) for maximum likelihood estimation of the paramaters in the
?i(') functions and any other parameters that may have been
introduced into the joint density of the Ei‘s.
In estimating these parameters, the total number of trips,

x_, is treated as an exogenous constant. However its deter-
mination is the subject of the macro-allocation
decfsion, to which we now turn. We are aware of only two §ets of
circumstances in which the micro-decision allocating a fixed x
among individual sites can be reconciled with conventional macro-

2allocztions derivable from utility maximization. Suppose first
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that there is some unusual type of recreation activity in which
one can participate only on 2 fixed number of occasions,

x, albeit at different sites - an exampie might be the temporary
presence cffshore of a rare species of fish or 2 heavily regu-
lated fishery where the number of days of open season is a

SuppOR , tors, That
binding constraint on all users.}rPeopTe’s preferences are such
that they either do not participate in this recreation activity
at all, or else participate x times {(the maximum possible number
of occasions). An individual may choose to visit different sites
CULAS o _

on different occasions, but for each personL Exi: 0 or Exiﬁ X.
Thus, in addition to the indivisibility in the "consumption"” of
individual sites, there is de facto an indivisibility in the
overall level of participation in the activity. In these
¢ircumstances, a conventﬂ?a} utility maximization model could
justify a micro-allocation decision of the type described above;
the macro-allocation decision would be whether or not to
partii}ate in the activity, which is a discrete choice that could
also be analyzed via a utility-theoretic logit or probit model.
Indeed, both decisions could be derived from the maximization of
a single underlying utility function based on {25). But the
total number of visits to all sites if an individual did
participate would still be an excgenous constant.

For most recreation activities this scenario is implausible
since total site visitation, x , is a freely variable choice. 1In
this case, the bn]y way to fix x_in a manner consistent with an

overall utility maximizing choice is to assume that x emerges

from a sequence of separate decisions: on each day of the
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recreation season the individual decides both whether to
participate in recreation on that day and which site to visit if he
does participate. Suppose the season has R days, and let

er represent the participation decision on the rth day, where

8.= 1 if the individual participates and 8,7 0 if he does not;

as before, dy,,..,dy, represents the choice of a site on the rth
day, conditional on a decision to participate. In addition let

U, .= vo(yr;e) = f(0,...,0, blr""’bNr’yr;E) measure the
individual's utility if he does not participate in recreation on

the rth day.14 His overall decision problem is to

(35) mzr’c;t:t;ze r}12:1[91*(dr,br,zr;e:) + (1-p)v {y 5¢)]
subject to

(362) 4= 0or 1, zd; 1,  r=1,...,R

{36b) 8.~ 0 or1l r = l’f"’R

{36¢) Ipg it 2. = ¥, r=1,...,R

1

which can be decomposed into R separate problems of the form

{37) maximize ef(dr,b

paximz r,Zr;s) + (I-B}Vofyr;e)
r ] .

r? r

subject to the constraints in (36a,b,c}. On any day the
probability that the individual participates in recreation is

given by

i

(38)“er" Pr{e$=l} " Pr{véyr;e) ixmaxEvl(blr'yr‘pl pedyen,y (bNr’yr"pRr;

r

while the probabiflity that he visits site i, conditicnal on
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deciding to participate, is given by
n, = Pr{dir = llgr=l}
(39) = Prfvilhyaympypsedav By aypyied, (= G0N
]vi(bir’yr"pir;e) 2 v-efyr;e)}
The expected number of visits to all sites over the seascn is
R
{40) E[X.] = i: Tgr

while the expected number of visits to the ith gite is

R
(41) .E{Xj] = % LIRS P
o onie ® wy @0d g, = 5, 2ll r, these become
(40") ELx 1 = n,R
(41") ' Elx.] = mimgR-

The logic of this formulation is that the participation
decision {which affects the macro-choice of how many trips to
make over the season) and the site choice (the micro-decision)
are interdependent and are made simultaneously by ihe
individual., From the view of the econometfician they can be
analyzed either simultaneously or, with some loss of efficiency
but greater computational ease, separately. By analogy with

{31 ) suppose that

{42 Uy = Yoly, )+ £y

and let the joint density of EgrE] s Ey be GEV with

Ca

i

' 1/{1-g),q1-0
(42 G(tO,t},...,tN) t, * [z (ti 3]
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where oel0,1) is, in effect, the common index of correlation for
[R1=S

EpacersEye Dropping the subscript r for simplicity, the

th

probability of selecting the i site conditional on a decision

to participate in recreation on any given day is

v,/(1-0) V./(1-o !
(43)  Tr=(e IR f = 1,...,N

which parallels (32) except for the normalizing constant

(1-0}"1. This tonstant cannot be identified from data on site
choices alones one can estimate only ?ilil-ﬁ), i=1,...,8. 1%
is recovered, instead, from the data on the intensity of

recreation participation. Define the "inclusive value“, 1, byls
N ;j/(l‘c)

(45) , I 2 In(Z e ).
‘ 1

The probability of participation in recreation on any day is

-

A
(46) mg= e (10N g0y ¢ (1-00T)

Given an estimate of I from the analysis of site choices, the
analysis of participation intensity based on (46) yields
estimates of o and V_(*). |

“This type of model haS been applied to
recreation demand by Feenberg and Mills (1980) and Caulkins et
al. (1984}, but with some differences., Substituting (46) into

(40) and taking logarithms one obtains the regression model for

total recreation activitylﬁ
30 ~{1-0)1
(47) In x = In R - Tn{l + e )
v -{1-0}1
(48) z1anR-e?
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The estimation of this regression model by nonlinear least
squares is an alternative to maximum likelihood estimation of a
binary }egit model based directly on {46). Feenberg and Mills
(1980, p. 116) follow this route, but their regression mode) is
somewhat different. For the purpose of analyzing site choices
they set © = 0 in (43} and (44) - i.e. they employ the standard
logit model (32). Accordingly, their inclusive value index is
NV
{49) 1' = 1n(fi e )

and the above regression models would become

{47) ‘ Inx, =1nR~-Tn(l +¢© )

' v -1
{48') = InR -¢e?©

Instead, they estimate two alternative regression models of the

form
(50a) x, = -30 + v Y #1
{50b) o lnox, = - 9§ +Y1' v #1,

neither of which is completely consistent with {47') or
(48').17 Caulkins et al. (1984) also set O = 0 in their
analysis of site choices, and they employ a binary logit model
estimated by maximum likelihood for intensity of recreation

participation. But, rather than originating from (46) with
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their logit model {is based on a participation probability of the

form

v -

(51) LA eI/(e ° 4 eI)

where, instead of being given by (49}, 1 is a linear function of
the average price and quality characteristics of the various
sites. Because of this difference, the site choices and the
recreation participation decisions are not mutually consistent,
in the sense of being derived from a single underlying utility

maximization.

3. Alternative Model of Recreational Demand

As noted earlier, the above approaches to modelling total
recreation activity assume that it emerges through a sequence of
separate decisions - daily decisions made throughout the year, in
the case of Caulkins et ai.lg These
decisions need not be independent, Since | the
deterministic components of utility (i.e. the ?i(-)'s) could be
made to depend on previous choices during the recreati% season
and the stochastic components (i.e. the ¢'s) might conceivably

be correlated over time.

However, the decisions are uncoordinated in the sense

that the individual never determines on any single occasion an
overall allocation of time of money to recreation activity for
the entire season. As a matter of modelling philosophy we tend
to find this unsatisfactory.

e L AN

By analogy withL!lS)LChapter 8 , we prefer to specify total

recreation activity via some function of the form
(62) x, = H{olp), tlbl),y)

or
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(53) X = H{l',y}

where ol{+) and (.} are some indices of the overall cost and
quality of the recr~ation opportunities available to the
individuals and ' 1s the inclusive value index given by (49).36“
We fntend these &s {(somewhat arbitrary) behavioral relations, and
recognize that they are not derivable from a hypothesis of over-
all utility maximization.

In estimating (52} or (53] we
recognize that some individuals do not participate in recreation
at a1} {i.e. x,= 0) and employ either Tobit analysis or
Goldberger's (1964) two-stage approximation to Tebit.

Conseguently, the expected nﬁmber of visits to all sites over the

season may be cast in the form
(54) E{x } = E{x |x_ > 0} +Prix >0},

where the second term on the right-hand size is the probability
that the individual participates at all in recreation and the

expected number of visits to the ith site s given by
(55) E{x;} = mE{x [x_ >0}-Pr{x_>o}

where . is given by (32) or (34},
Equations (54) and (55) may be contrasted with (40') and
{(41'). In particular it is important to note that the term
Pri{x >0} in {54) and (55) is different from the probability
5, defined in (38), (46) and (46'), which appears in (40°) and
(41'). The former measures the probability that the {individual
participates at all during the season, while the latter measures

the probability that he participates on any given day. They are




related by

(56) Prix, > 0} =1 - (1-z )",

It is precisely because we believe that direct estimation of
Pr{x, > 0} is a more plausible method for dealing with
individuals who, because of old age, i11 health, <te

never recreate that we prefer the modelling
approach based on the ad hoc¢ macro-allocation functions (52) or
(53). If we wanted a fully utility-theoretic model of
participation and site choice, rather than (25) we would prefer

to employ the corner solution models to be described below.

Before proceeding to these models, it is important to point
out a practical implication of both the share models such as (20)
that were discussed fn the earlier part of this section, and the
logit models such as (32) or (44) that we have just been
considering. This concernsithe application of these models to
evaluate the welfare effects of events such as the closing of a
site or the improvement of a site's quality. The details of
these welfare calculations will be given in the fiﬁa? Section of
this Chapter. Here we wish to emphasize one aspect of them. The
lugicref the share models, whether based on the Dirichlet,
logistic-normal, or multinomial distributions, s that one re-
covers the indirect {sub-Jutility function §{p,b,yx).z;:;% we
calculate compensating or equivalent variations from formulas
such as (16a,bycf Chapter 8 we obtain the compensation for the
entire season. By contrast, when we estimate logit models for
the allocetion of visits among sites such as (32) or (44) and

perform welfare calculations as indicated below,
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we obtain the compensation per choice occasion or per day of the

recreation season. These compensations must therefore be multi-

plied by the number of choice occcasions or the number of days in

the recreation season in order to be comparabie with the com-

pensation estimates derived from the share models such as (20). E

Corner Soluticn Models

In order to illuminate some of the problems which arise when
one attempts to model corner phenomena in a manner fully
consistent with utility theory, it is convenient to begin by
describing how one models a special type of corner solution which
Hanemann (1982a) has called an “extreme" corner solution. The

utility maximization problem that concerns us in this section is:

(57) maximize ulx,b,z5e} s.t.Zp x, + qz =y
X,z
’ x.>0,2>0.

1 = o

For simplicity we treat z as a scalar and set its price, q, equal
to unity. In contrast to the previous section, we are not now
concerned with the possibility that commodities may be
indivisible and we do not restrict the x;'s to non-negative
integer values. We are concerned, instead, with the non-
negativity constraints in {57) and the circumstances in which

they are binding. Extreme corner solutions arise when something
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in the structure of (57) forces a corner sclution in which all

but one of the xi's is zero - i.e. the consumer buys only one of

the quality-differentiated goods. This can occur either because
the utility function wu(-) has a special structure which treats
the x;'s as perfect substitutes - examples are (21) and (22) of
Chapter 8 - or because there is a set of additicnal constraints

in (57) of the form

(58) xixj = all 1 # 3

-i.e., for some logical or institutional reason the x;'s are
mutually exclusive in consumption. By contrast, a “general”
corner solution arises when some, but not necessarily N-1, of the
xj's are zero at the optimum. For most recreation choices one
finds evidence of a general rather than an extreme corner
solution; but, the analysis of extreme corne% solutions will set
the stage forf;ore general models.

Since the modelling of extreme corner solutions has been
discussed in some detail in Hanemann (1984a), we confine
ourselves here to an outline of the main features. Suppase, for
the moment, that the consumer has decided to consume only good i
(visit site i). Invoking the assumption of weak complementarity,

his utility conditional on this decision is
*
ui = U(G,...,O,X-,O,...,D,b,z;e) E Ui{xi,bifz;s)-

Even given his selection of this site, he still has a decision to
make - the number of times he should visit it over the recreation

seascn. This decision is made by solving:
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(59) maximize u¥(xi,biz;s) s.t. Pyxy *z =y
X:,2
The solution may involve setting x; = 0 (i.e. he won't
participate in any recreation over the season) or, less likely,
Xy = Y/ngiﬁz"sgmwﬁs all of his income on recreation). Either
of these corners may be handled by the methods to be described
below, but for the moment we ignore them and simply write the

solutions to {53) -~ the conditional ordinary demand functions- as

* -
- ; = €) Sy - pihiip.,b.,y;
X hi{p,b,y,ﬂ) and z Zi(pi‘bi’y’s) y p’h1{p},b1,y,s).

The conditional indirect utility function obtained by substituting

these functions back into u:(‘) is v:(pi,bi,y;e).

Assuming that u:(‘) is a well-behaved direct utility functioﬁ,
these three functions possess all the standard properties. In
particular v:(‘) is quasi-convex in (pi,y), decreasing in Pj and
increasing in y, and it satisfies Roy's identity

3V§(Pi,bi:Y;€1/3pi
IvHp,b.,y3el/ay

*
(68) h.l(Pi,b.isY;E) F -

Under the RUM hypothesis, the quantities x; ,z and v: are known
numbers to the consumer but, because his preferences are
incompletely observed, they are random variables from the point
of view of the econometric investigator, and their distribution
may be derived from the assumed joint density of e,fg(e).

A1l of the foregoing is conditional on the consumer's
selecting site i. The discrete choice of which site to select

{remember that only one site will be selected) can be represented

by a set of binary valued indices dy,...,dy where

di =1 if xi> 0 and di = 0 if X =0. The choice may be
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expressed in terms of the conditional indirect utility functions

as

- k4
1 if vilpy,biiyie) > Vj{i3j.b ,¥re) all

L i
(61) di(p.b,¥ie) =46 Stnerwise,

J

For the observer, the discrete choice indices are random

variables with 2 mean E[d.} =« given by

i

* * .
(62) milpubyie) = Privilpg,byyie) > vilpy,bsyie), 2l j)

Now consider the original, unconditional utility maximization
problem, which consists of (57) augmented, if necessary, by the
constraints in (58). The uncondfticna? ordinary demand functions
associated with this problem will be denoted hi{p,b,y;e),
i=1,...,N and z{p,b,y;e) =z y - Epihi{p,b,y;s), and the resulting
unconditional indirect utility function is v(p,b,¥;e). The re-
lationship between these unconditional functions and the corres-

ponding conditional ones is given by
1 *
(63) h'(p.b,yie) = dy(p.buyie) hilpo.biyse) 1= 1,....N

: * *
(64) vip.bye} = max[vl(pl,bl,y;s).---;VN(pN.bN,XEe)]f

9-33



Given a set of data on observed consumption choices, the like-
lihood function can be constructed from {62} and (63} along the
lines indicated in Hanemann {1984z)., Here we wish to make three
general points about this approach to modelling extreme corner
solutions. First, the key building blocks are the conditional
indirect utility functions, v?(‘),...,vﬁ('); Once these have
been specified, the discrete choice indices can be derived from
them via {61), the conditional demand functions can be derived via
(60), and the unconditional demand functions via (63). Thus we can

construct an extreme corner solution model directly from the

vg(')'s without having to bother with the underlying direct
utility function u(x,b,z;e}. Second, the unconditional demand
functions {63) embody an implicit switching regression model (i.e.
a generalization of Tobit models, since they can be expressed

equivalently in the form {using the case of N = 2 for simplicity):

&*
avi{py1,bys¥se)/ap;
avy (py.by.y:e)/ay

if vf(pl,bl,y;ﬁ) 1_V§(pg.b2.y;ﬂ)

(64) X =

*
av2(p2.basyse)/apg otherwise,
avz(pp,bosyie)/ay

In contrast the general {linear) single equation switching
regression model takes the form

WiBy + Vi if Zy +n >0
(65) Y

i

WoBs + vy otherwise,
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where Y is the dependent variable, Wy, Wy, and Z are exogenous
variables, By, Bp, and y are the coefficients to be estimated, and
vy, vp, and n are random error terms. The demand model {64) is
clearly a special case of (65) where, because the discrete and
continuous choices both flow from the same under]yingAutiIity
maximization problem, the variables W; and Wp are transformations
of the variables Z, the coefficients By and By are directly related
to the coefficients v, and the random terms vy and vp are derived
from the random term n. Thus, the random utility extreme corner
solution demand model can be estimated by any of the statistical
techniques developed for uge with switching regression models while
taking advantage of the additional restrictions inherent in the
random utility formulation.

Qur third point is a caveat: the practical applicﬁtion of
these models rests on the ability to devise specific functional
forms for the conditional indirect utility functions and the joint
density fs(s) which yield reasonably tractable formulas for the
discrete choice probabilities {56) and the condit%ona] demand
functions (60}, This has in fact been accomplished: Hanemann
{1984&) presents a variety of demand functions suitable for extreme
corner solutions which offer considerable flexibiiity in modelling
price, income, and quality elasticities. Several of these models
are applied to the Boston recreation data set in Hanemann {1983a)
for the subset of households - approximately one quarter of the |
sample - who visited only one site over the summer and, therefore,
displayed evidence of an extreme corner solution in their behavior.

The remaining households visited either no sites - which can also
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be handled within the framework of an extreme corner solution

model - or more than one site. However, none of the latter visited
every site and, therefore, a general corner solution is required to
model their behavior.

One approach to modelling general corner solutions is a
straightforward generalization of that adopted above for extreme
corner sclutions. Instead of making the discrete choice the
decision as to which site to visit, we can treat the decision to
visit any combination of sites as a discrete choice. Ffor example,
suppose that the consumer decides to visit sites 2 and 3, but not
sites 1 or 4,...,N. Conditional on this discrete choice, his
utility is u; 3 = u(U,xZ,XB,O,...,O,b,z;a)

- * . . N ..
= uas(xz,xs,bz,b3,z,€),and he determines how many times to visit

. * ; : .
sites 2 and 3 by maximizing u23( } subject to PpXo + PyXat 2z f Y
xpg > 0, x3 >0, and z > 0, Denote the resulting conditional demand

. . ¥
functions for these sites by hy(PysP3sbyuby,yie) and
h;{pz,pB,bz,bB,y;a) and the conditional indirect utility function
* . .

by v23(p2,p3,b2,b3,y,a), and note that these functions satisfy
Roy's Identity, (60). Proceeding similarly with all the other
possible combinations of sites, the discrete cheices can then be
expressed in terms of the conditional indirect utility functions by
a formula analoygyous to (61) and the unconditional demand functions
are given by a formula analogous to (63}. However, the problem with
this approach is that, instead of N discrete choices, one now has

to deal with 2N discrete choices. In the recreation context, where if
N i

;
i
;
i:

the approach is formally correct in the sense that any other approach;%

N can easily be 20 or 30, this becomes extremely cumbersome. While

i
5

must yield equivalent results, one needs a simpler procedure. lg
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An alternative procedure can be obtained by appealing to the
economic considerations under!ying the solution to the utility
maximization problem (57), embodied in the Kuhn Tucker conditions.
Substituting the budget constraint into the utility function, this
problem may be written

N

(66}  maximize u(x,b,y-ij;g) s.t. 0 ¢ X y/pi i= 1,.00,N
1

and the Kuhn-Tucker conditions are

’,

= 0 < 0

(67) x;¢> 0 as au(x,b,y~2pjxj;g) - piau(x,b,y~fpjxj;e) = 0
X § 8z

= ¥/ py >0

——

Suppose one observed an individual who purchases quantities E&,...,xq
of goods V,..., Q{<N), and y - gpjij of the Hicksian composite

commodity, but nothing of goods Q+1,...,N, where §;> b and

y > ipj;é, Define the N random variables n,,...,ny by

Ht
Q¥

{(68) my = nilx,p,b,y;e) ,§QX.0,b,y~2pjxj) - pigg(x,ﬂ.b.ywﬁpjxj)
1

i::],l'.,N

and let f“(nl,...,nu) be their joint density, obtained from fets)
by an appropriate change of variables. By virtue of (67), the

probability of observing this consumption event is given by

LY
T

=3
B
<
-
—
!

. {
1 = ],..-,Q : }’UOU,Q ;
(69) Pr - pr !
i = g+1,...,N i Q+1, ... N/

>
n
L]
-
]
A
Lo
-
el
it

0 3] .
zJ PR Y J fﬁ(g'.."o’nc}'{"!"..’nﬂ)dnq*l...an.
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If the consumer purchased none of the goods, so that Q = 0 and z = y, E

the probability of this event ig

0
(70) PF{Z = y} = J P f fn(nl,...,ﬂﬁ)dﬂl...dﬂu

while, if he purchased some quantity of every good (i.e. an interior E

N
solution), so that ¢ = N and y > §pJXj, the probability is

(71) Prix; = Xi, i = 1,...,N} = f 0, ..0,0).

Given an entire sample of consumers located at different corner
solutions, the Tikelihood function would be the product of
individual probability statements each having the form of (69), (70)
or {71).

This approach to the modelling of general corner solutions was
independently proposed by Hanemann (1978) and Wales and Woodland
{(1978). Two specific examples, both based on the Linear Expenditure
System utility mode\)aré

(72) ul{x,b,z;¢e) = vilbj,€5) In{xj + €5) + In 2z

{73) ul x,b,z;¢) Gjln[xj + ooy + ¢j(bj;a)] + 1n z

— ] w—r

where

9-38



and the Bj's, the Tk'S and the aj's are the coefficients to be

estimated, together with any parameters of the joint density fa(g).

Define the constants tl....,tN by

_ pi(;'i + 8‘5}
ISR LTS L T = EERLEETERL
YT IR
(74) 1 Q
R T e e

Then, in the case of the utility model (72), the probability

statement (69) becomes

t
N
“es J_ fc(ti""’tQ’EQ+l""’EN)dCQ+3"‘dEN'

oo

In particular if the ei‘s are independent extreme value variates,

this probability has a closed-form expression:

Q N
(76) exp(-1t;)expl-Texp(-t )].
1 1

In the case of the utility model (73), define t¥"“’tN by

8. Q '
- i % X. - i =
t, = - { LI 1n[5?{y - %pjxj) - Xy “i] i=1,...,Q
{(77)
. 8. g
= S - X.) - a. j= .
ti = . E kaik + ]n[pi(y }pjxj) a}] i=Q+1,...,N

The probability statement (69) beconmes

xi = Xi 'iz},....,Q

(78) Pr=

>
it
lon]
e
H
£
+
>
-
.
.
.
-
=

= j ;no ] fﬂ(t]’.-.’tg'tq+},.."EN)dEQ'{”]...dEN »
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Once ayain, a closed form expression can readily be obtained when
the ey's are independent extreme value variates. These utility
functions and stochastic specifications by no means exhaust the
possibilities, and we are currently actively exploring alternative
formulations.!®

Two general points emerge from this analysis which ar®e worth
emphasizing. First, the probability expressions such as (78)
gererally require the evaluation of aa(N-Q)-dimensional cumulative
distribution function - i.e. a mulitiple integral whose dimensional-
ity corresponds to one less than the number of commodities not
consumed. In the recreation case, where e wen be NoR20 sy

Wk ahqu\mm&wuévv“Wﬁ@“ﬂ Q=2at 3 & e,
the evaluation of these integrals

may be a daunting task, unless one invokes something like the

independence assumption used above.20 The dimensionality

(N-Q) is fundamental, in that it is rooted in the Togic of

the utility maximization problem. Moreuet—,il~
' Cint ™o Mu’\a
represents an improvement over theL§pproacm
derived from the analysis of extreme corner
e . . . .
so!utions,l_the discrete choices implied by the analog of (62) for
yeneral corner solutions involve, in principle, up to a (2N-1)

dimensional cumulative distribution function.

Second there is a basic

tradeoff between achieving simplicity in the Kuhn-Tucker conditions
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and in the demand functions. This can be seen, for example, in the
utility model (72). The marginal utility term appearing in the
Kuhn Tucker conditions involves simply ¢y{bj,e), whereas the

ith demand function has the form

‘4‘-" \ 1 Q _
(79) X{ = - 84 +<’“‘"“""g“"“}-—~— (y + ije.) i=1,...,0
1+ Lys P 194

which involves the ratio wi(l + I¢3)'1. As we observed in the
previous section, there is generally a chelta between having a
simple distribution for the random variables ¥j,...,V5 and

having a simple d%stribution for ratios formed from them. 1In order
to appreciate the significance of this tradeoff, it is necessary to
consider the distinction between estimation and prediction as
facets of the modelling activity. Both involve probability
statements ~ estimation, for the purpose of forming Yikelihood
functions; prediction, for the purpose of calculating the expected
demand for sites under different price or quality regimes. In
conventional demand analysis, including the share models described
in the previous section, estimation and prediction are both based
on essentially the same thing - the system of demand or share
equations. Therefore, generally speaking, a stochastic specifi-
cation which facilitates the process of estimation will also
facilitate that of prediction, and conversely. As the above
example illustrates, this is not true when we deal with corner
solutions, where estimation can be based on the (perhaps simple)
Kuhn-Tucker conditions, while prediction is based on the {perhaps

complex) demand functions.,
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It would be convenient, therefore, if we could express the
Kuhn-Tucker conditons not in terms of derivatives of the direct
utility function, as in (67), but rather in terms of derivatives of
the indirect utility function. Since Roy's Identity applies even
in the face of corner solutions, there is some hope that a
specification which achieves simplicity for the demand functions
would also confer simplicity on the indirect utility Kuhn-Tucker
conditijons, 1f they existed. Furthermore, as discussed in the next
section, welfare evaluation for price and quality changes are based
on indirect utility functions, so that a specification which
simplified their stochastic structure miyht also simplify the task
~of welfare evaluations. Is it possible, then, to analyze corner
solutions exclusively in terms of indirect utility functions?

That it is, in fact, possible to do this has recéntly been

proved by Lee and Pitt (1933) and Hanemann (1984d). Before

describing the implications for the specification and estimation of

random utility models, we shall summarize these theoretical
developments, following the presentation in Hanemann {1984d}. Ffor
simplicity we switch, temporarily, to a deterministic utility
setting (i.e. we omit the vector e} and we ignore the numeraire
good, z, and the quality variables, b. Thus we can consider an
indirect utility version of the Kuhn-Tucker conditions for the

maximization problem:

{80} max u(xl,...,xN) subject to Jp.x.,= y, X, >0 i = 1,...,N0
< i
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As before, we denote the resulting ordinary demand functions
by hi(p,y), i=1,...,N, and the indirect utility function by v{p,y).
We shall now refer to these as the "constrained” demand and
indirect utility functions, and we shall denote the vector of
demands by X. In order to proceed, we need to introduce several
additional maximization problems which are companions to {80). One

of these problems is (80) minus the inequality constraints:

(81) m:x u(xl,...,xu) subject to Ip.x. = y.

Ne refer to this as the “uﬁconstrained" maximization problem, and
we call the resu?ting demand functions, denoted h?(p,y), and
indirect utility function, denoted v*(p,y), the "unconstrained"
demand and indirect utility functions. As a shorthand, the
consumption vector which solves (81) will be denoted x*. The logic
of (Bl) is that the consumer is implicitly allowed to purchase
negative quantities of goods, which is meaningless economically but
serves as a useful artifact for our analysis.

The remaining utility maxi%izatien problems all involve

equality constraints, of the form

{(82) mgx u(xy,s00,Xy) Subject to rpyx; = y and x‘ = 0

or

{83) ma# u(xl,...,xn) subject to Ipyxy= ¥y, X

2 j . = 0 and Xp = 0, et;.

We refer to these as "partially constrained” problems and we denote
*

the solution vectors by 1 X orizx*, etc., the demand functions by
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*
1M

LN *, s g * *
vl( ) or 12V {*), etc. It is 1mpqrtant to note that 1%1 12%1

*
(*) or 12hi('), etc. and the indirect utility functions by

*

0 (i.e. the first element of 1% and the first two

* =
12%2
elements of 12x* are zero) and that not all of the prices appear
as arguments in these partially constrained demand and indirect

utility functions. Thus,.
* * . '3
1x'i - lhi(pZ""’pN’y)’ o= !*":N’

(84) *

*
and 1“ lv (st-'-ai”N».Y)

* *
1255 T12Mi(Pgaeeeapysy)y 123 000N,

*

*
and j,u = 1,V (ps,...,pn,y).

With this notation in hand, we can now describe Hanemann's
findings through a series of theorems whose proofs we omit. These
involve the fol]oking regularity conditivons on the direct utility
function:

(b-1) U is a continuous real-valued function defined over RN
(D~2a) u is non-decreasing in each argument, and is strictly
increasing in at least onelargUﬂent.
(D-2b) If x4 = 0 for some, but not all, indices i, u is
increasing in at least one argument xj where xj > 0.
(D~3) u is strictly quasiconcave
The purpose of the theorems is to establish various relations
WL Solukon b MR om sdviad , coantbveined, Mo syation g reblam awd

betweenL?he solutions to the unconstrained or partially constrained

probiems.
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Theorem 1. If x:> 0 i = 1,.v.,N, then ;ﬁ = x>0 0= 1,000 N,

tet v satisfy (D-1), (D-2a), and {D-3); then X;i > 0

——

f= 1,...,N implies that x5 = X4 > 0, § = V,... N

Theorem 2. Llet u satisfy {D-1), {D-2a,b), and (D-3). Suppose x1=0,

- +*- * e

x; > 01 = 2,.0 N Ther (1) xy ¢ 0, and (ii) KyoT x>
1 = 2,.04,N.
Theorem 3. let u satisfy (D-Za)} and (D~3). Suppose that x; <0
and lx; > 0, i = 2,...,N. Then (i) ik = 0 and
*

(ii) i} = g% > 0, 1 = 2,0.0,0,

*
Given some set of indices, A, let (A-i)x denote the solution to

(85) m:x u(xl,,..,xn), Ipix;= ¥, xj = 0 all jeA, 3 # i

where it is understood that the index i is a member of A.

Theorem 4. Llet u satisfy (D-1}, (D-Za,b), and (D-3). Suppose
that, for some set of indices A, X5 = 0 all i€A and

Then, (1) x? < 0 for at least one index i€A

(i) (A_i)xz < 0 for each ieA

(ii1) ax3 = Xy > 0 all igA

Theorem 5. Let u satisfy {(D-2a) and {D-3). Suppose that, for some
set of indices A, (o) x? < 0 for at least one index
* . *
Teh, (b} (p_qyxy € 0 for each ieA, and ()  ,x; > O

all 1ghA.

H

Then, (i) x5 = 0 all jeA

AXT > 0 all igA.

]

(i1) x4
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Theorem 1 says that if, at some point in {p,y)-space, the

unconstrained demand functions are all positive, h?(p,y) > 0
= 1,...,N, then the constrained maximization problem (80) has an
interior solution, and conversely. Suppose, instead, that there is
a corner solution. It turns out to make something of a difference
whether the corner solution involves zero consumption of only one
good or of several goods. If the former occurs, say only Xy = 0,
this implies that the unconstrained demand for good one is
non-positive, while the partially constrained demands for all the
other goods (i.e. the demands conditional on having x1 = 0)are
all positive: h (p,b,y) ¢ O, N (P gueeespyoy) > 0 i = 2,...,N.

' This is the content of Theorem 2, while Theorem 3 states the
converse. Similarly Theorems 4 and 5 caover the case where the
corner solution involves zero consumption of several goods.

An important implication of part (ii) of Theorem 2 and part

(ii1) of Theorem 4 is that, at corner solutions, the demands for

the goods which are being consumed are independent of the prices of

those which are not: e.g. if Yl = 0, the demand functions for
the other goods, hy{+*), i = 2,...,N, are independent of Pl

and depend only on pp,...,pN. In effect, when one takes the
non-negativity constraints in (80) seriously, the constrained

demand function is segmented, having the general form:

*

h1{p1seeespPrsy) if (p,y)eTy
o
2h1{P1:P3, e vsDNY) if {(p,y)eTy
(86) hi(p,y) = .
2311{P1,Pg, v PN, Y) if {p,y)eT3
etC&
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where the events (p,y)eTl.(p,y)eTg, {p,y)eT3 etc. correspond to
different sign patterns for the unconstrained and partially
constrained demand functions, as specified in Theoremsl-5. (The
hilpeg ) Lrewn TR wwcansraivned anald pu’riqu.t\‘ comphiodnid danonad
exact rules for deriving L functions are given in Hanemann,
1984d). This is precisely the point that we made earlijer in our
discussion of share models: the corner phenomenon raises not only
statistical issues (the piling up of a probability mass af x;y = 0},
but also economic issues since it induces structural changes in the
ordinary demand functions on wdicaled v (26). *

In order to apply these theorems, however, we need to know how
to obtain the various partially constrained demand functions. As
Hanemann {1984d) shows, all that is required is a formula for the
unconstrained indijrect utility function, V*(pl,-.-,ﬁﬁ,y).

Writing this as a function of normalized prices, p? z Pi/y, thé
regularity conditions on v*(pz,...,pﬁ) are that it be a

continuous real-valued, quasi-convex function of N arguments and.
satisfy monotonicity conditions analegous to (D-2a,b). Everything
else - both the constrained and partially consta{ned'indirect
utility functions and the constrained and partially constrained
demand functions - can be derived from this function. The key is
the observation that Roy's Identity applies to the unconstréined

and all the partially constrained indirect utility functions, just

as to the constrained indirect utility function. Thus

av*{p,y)/3p;

* . L
(87) T e (pLy) fay P deeeeoll
> a1V (Poyee PR /0P
lx-i - I }’OIQ’N

31V*(?2’ -"spﬁ)/ay
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etc. This  Wwag two consequences. First, given v*, lv*, etc. the}
corresponding demand functions can be constructed via Roy's Identity
w the usual manner. Second, since it can be shown that av*/ay > 0,

qV*/By > U, etc. it folliows that

sign (x?) = -sign(&v*/api), sign(1x§) = -sign(alv*f apit, etc.

Therefore, the conditions stated in Theorems 1-5 on the signs of

x%, 1X}, etc. can be translated into equivalent conditions on

the signs of the price derivatives of the indirect utility

functions v*, v, etc. For this reason, these theorems may he

regarded as providing a set of indirect Kuhn-Tucker conditions,

fully comparable to the conventional Xuhn-Tucker conditions, {&3).
Finally, there are some simple rules for deriving the various

partially constrained indirect utility functions from v*(p,y). For

example, to obtain 1V*(pé,...,pN,y) one solves

(88a) 3V (pyseeeabpoy)/apy = O

for p; = ¢1(pps+-.,pN»>y) and substitutes ¢; into v¥ to obtain
(88b) 1V Pz, ce DY) = VL1 (P2s e eaPNsY) sP2s e u PNy ]

Similtarly, to obtain 12v*(p3,...,pN,y) one solves

(88¢) 51V (ppsevesPysy)/app = O

for py = ¢p{p3,+-.,pyN.¥} and substitutes ¢, into 1v" to obtain

9-48



:
|

(886) 12"*(93--'-,{31‘{,}/) = IV*[¢2(p3r vy p?{#Y)sPS!"*:pRz‘-ﬂ]

Proceeding in this manner we obtain the full set of 2N-1 partially
constrained indirect utility functions., The constrained indirect
utility functions can then be constructed in the same manner as the

constrained ordinary demand functions, (86):

+*
[V (P1seessPNsY) if (p,y)eT
-« ’ .
ZV{PLsP3recesPNsY) if (p,yleTp
(89) v(p,y) = .
23V{P1sPhseeesPNsY) if (p,y)eTs
kY etc.

At this point we can switch back to the random utility
framework employed earlier. Thus, we start with an unconstrained
indirect utility function v*(pl,...,pN,bi,...,bN,y;e) and defive
the various partially constrained indirect utility functions as
shown in {88) noting that, if the underlying direct utility model
is assumed to satisfy weak complementarity, the bj's will drop
out along with the p;'s as we pass from jv* to 32v" to 33V’
etc.— ftor example, lv* takes the form 1v*(pz,...,pN,bz,...,bN,y;s).
Next, we apply Roy's Identity to obtain the corresponding partially
constrained demand functions. Finally we invoke Theorems 1-5 to

obtain the requisite probability statements for the observed
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consumption outcomes. For example, if we observe an individual
consuming positive quantities, x,, of every good, where Xj > 0,
N
y > Zpixi, from Theorem 1 the probability of this event is
1

(90) Prixj=xj, all il = P.[hi{p,b,yse) = %5, all il.

Simitarly, if we observe an individual consuming nothing of good 1

but positive quantities, X;, of every other good, where ?i > 0,
N

i = 2,...,N, ¥y > )pjXj, from Theorems 2 and 3 the probability of
2

this event is

! x7 =0
(91) Pr _
Xi = X‘i’ 1'7“2,--.,N

h1(p.b,yse) £ 0
= Pr

1

* o .
lhi(pZ"'"pN’bZ""’bN’y;s) = X, i = 2,.40,N

When we come to the probability statements for more complex
corner solutions there is an extra complication which has not so
far been discussed. Theorems 4 and 5 state an equivalence between
the event that x5 = 0 % = 1,...,Q, x5 = ?1 >0, i= Q+1,..;,N
and the following three sets of events

(a) x: < 0 at least one index ieA 2{1,2,...,0Q1}
“* s
(b)‘(Aui)xi < 0 for each ieA

(c) Ax5 = X i= Q+l, ..., N,



. W mee cemcsemamcias ek s Ny TR MY LD A TD TP UMULEY dUUVE

essentially the same as the corresponding theorems in Lee and

(1983),22 the Jatter's versions of Theorem 4-% omit conditions

s are

Pitt

(a) and contain only conditions (b) and (c¢). 1 comdiBon Ce) redundand>

Hoawewaooan prowis ek it s wels, We shows that the following condition

{(b"} (A-i)*
implies {a) and would make it redundant; examples of this

condition include

[ * .
{(p'*) (A-})xi < 0 for each €A

or

[N * = * : .
But it is condition (b}, not (b'), that is required in the
proof of Theorems 4 and 5, In this respect, therefore,
Hanemann's results differ from those of Lee and Pitt. Howpv er

the context of a random utility model, since the two probabili

Pr { (A_i)x; < 0Yand Pr{ (A-isz < 0} are the same except on
the space of measure zero, it follows that for all practical

purposes we can dispense with condition (a) and write the

—

probability of observing x5 = 0, i = 1,...,0 and x5 = X3, i =

Q+l,...,N, where 1 < Q < N, X0, and y > ?piij, as
1

; < U0 for each ieA with at most one strict equality

in

ties

X-i = 0 ’i:],-c-,Q
(92) Pr
X_i = ?ii'—‘Q“"},-a.,ﬂ
. b. b b ) <0 =)
(A_i)hi(pi:pQ+13'°'spN» i Q+is"'a N,Yaﬁ. 5 1= s"°:Q
.= Pr

* : -
AR IPQay s s PpoPgayene s bayie) = Xy 17041, L

N
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(92) are logically equivalent to those based on the direct Kuhn-

Tucker conditions, such as (69), since they refer to the same

event. Moreover, they are susceptible to the same problem of
dimensionality since {92}, Vike (69), requires in principle the
evaluation of an {(N-Q) dimensional cumulative distributicn
function. However there are cases where the indirect utility
function v*(p,b,y;s) does not have a closed-form representation
as a direct utiltity function and thereforééigwmt be employed,

whereas {92) is still available. There is also a direct link

between this approach to the estimation of corner solutions and the

approach that we mentioned earlier involving a discrete choice

among 2N alternatives (see page 36 J. It should be evident,

for example, that the conditional demand and indirect utility
functions introduced there correspond to the partially constrained. E
demand and indirect utility functions associated with (82) and

23
(83). However, the probability statements such as (92) provide a

simpler approach to estimation than those based on the 2N

discrete choice probabilities.

Whatever the approach to estimation, we cannot escape the

%

combinatonts implicit in the 2N discrete choices when we come to

construct the marginal probability distributions of the demands for

iz

individual sites, which would be needed to predict, say, the change
in the expected demand for a site resulting from a change in its
price or quality. Llet fxl(xl) be the marginal density of hl(p,b,y)el

Heuristically, from (86) this density will have the general form

y/p y/p Xy=X _ _
(33) f (x)=j ZJ Nopp ('] dx,, . .. dx

LS o o X fi, i=2,...,N 2 R

it

where the probability statement inside the integral is given by

expressions like (90), (91) and (92), depending on the region of



i

(xp4eee,xy)-space. The evaluation of this maryinal density and

its mean, E{x;] = f&f {x)dx, may require numerical techniques.

X
But, as we mentioned eir?ier, there is an important distinction
between complexity in the evaluation of an expression required for
estimation and complexity in the evaluation of an expréssion
required for prediction?! because of the iterative nature of the
estimation process, we can generally be far more tolerant of the
latter than the former.

We are currently exploring various indirect utility models
which may lend themselves to estimation on the basis of the
indirect Xuhn-Tucker condifions, as an alternative to estimation
based on the direct Kuhn-Tucker conditions. These include
generalizations of the utility models employed in Hanemann (1983a,
1984a). .However, dimensionality problems will always be a
significant constraint, and in order to mitigate them we propose to

_ 2quakion
employ utility models with a structure like that 0f1}23) wn Chapter
8. These models combine features of both extreme and general
corner solutions since some goods {sites) are perfect substitutes
for each other - therefore the consumer will select at most one of
them - while other sites are not perfect substitutes and,
therefore, may be consumed in any combination.

As a concrete example, suppose there are 15 sites which can be
arranged into three groups: group A consists of sites 1,...,5;
group B consists of sites 6,...,10§ and group C consists of sites
11,...,15. ¥We assume that the sites within each group are perfect

substitutes, but that sites in different groups are imperfect

substitutes. For this purpose, we employ the utility function (23)
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of Chapter 8, although other formulations are certainly possible:

5 10 15 15
(94} u{x,b,z;e) = u[Exj, L Xy I X., 2+ X ai(bi)xi;e]
1 6 11 1

where a(xA,xB,xa,z;e) is some existing four-argument utility
function. Suppose we observe an individual who makes X visits
to site 2, Xp visits to site 9, and Xp visits to site 11. The

probability of observing this event is

x,| site 2 chosen out of group A

¥27 *p» *97%p 1 L %™ Xp
Pr xllzib 1 = Pr xB=ié site 9 chosen out of group B
x.=0, i¥2,9,11/ xcz“t site 11 chosen out of group €,
{95) site 2 chosen out of group A

X Pr <site 9 chosen out of group B .

site 11 chosen out of group €

The second probability on the right-hand side of (9%) takes the
form of (62) and may have a relatively simple structure if we use
some of the models in Hanemann (1984a)J. The first probability
takes the form of {90), namely

A~y ] 2, 9 and 11 1
{96) Pr X,=X,1 selected out of
B 78 j

xcﬁxc A, B, C

* —
hA(pz’pQ’pll’bZ’bg’bli’y;a) - XA]
* _ o
= Pr hﬁ(pZ’pg’pll’E}Z’bg’bll"Y’E} xg

* . .=
NelPasPgsPyysPpsbg Dy sy ) = X!



*
where h, ( }, h (') and hc(-) are the unconstrained demand
functions associated with G(xA,xB,xc,z;s}. Similarily, if ;E = 0,
i.e. the individual does not visit any site from group £, while

Xp > 0 and Xg > 0, the probability of this event is

—-—

x2 A? X Y
(97) pPr }
x;=0, 142,9

=Y a] site 2 chosen out of yroup A

—Am
i!
|

Zu
>

site 9 chosen out of group B

IE
Lo}

site 2 chosen out of group A

site 9 chosen out of group B .

The first probability on the right-hand side is given by

15 Xp=Xp | site Z chosen out of group A
(98) ] Pr xB#EB site 9 chosen out of group B},
(%x;=0 | site i chosen out of group C

i

each individual term in (98) having the followinyg form (see 91)):

- . . X -
Xp=X,| sites 2, 9, i _E ChA(pz,pg,bz,bg,y;c)=xA
— LY iy
(99) PrﬁxB=xB selected ocut of} = Pr chB(pz,pg,bz,bg,y:e)~xB -
- X .
lx{_"g A, B' C hc(pZ’pgspi9b23b9’b1rys€-)£0/

Thus, the use of (94) reduces the effective dimensionality of the
general corner solutions from N=15 to N=3, and hence to a discrete
choice between 23 rather than 215 alternative combinations of
consumption activities. We expect the gain in computational

tractability to be very significant.
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Welfare Evaluations

In this section we discuss some issues arising when the fitted
multiple site demand models are used to derive money measures of
the effect on an individual's welfare of a change in the prices or
gualities of the available recreation sites, or of the closing of
some site. We assume that the demand functions are compatible with
the hypothesis of uytility maximization-——either at the micro-
allocation level or at both the micro- and macro~allocation levels-—
50 that the underlying indirect utility function can be recovered
from them, and we are concerned with exact welfare measures rather
than Marshallian approximations.

The basic theory of welfare measurement for quality changes
was developed by Maler (1971, 1974) in the context bf a
deterministic {(i.e. non random) utility function which ignored the
possibility of corner-solutions. Given an indirect utility
function, v{p,b,y}, and some change in the set of pricés and
gualities facing an individual consumer from (p*,b"') to {p'',b'"},
w0 polsed measures of the effect of this change on his welfare
are the compensating and equivalent variations, C and E, defined

respectively by

vip'',b',y-C) = v(p',b',y)
(100)

vip'',b't,y) = vip' b’ ,y+E),

C and E measure not only the direction of the change in welfare,

i.e.,

sign(C) = sign(E} = signlv(p'’,b"",y) - v(p' ,b',y}], Ef



but also the magnitude of the change. The link between the C énd E
measures for pure quality changes and the conventional compensating
and equivalent variations for pure price changes is explored in
Hanemann (1980}, where it is shown that standard results on the
sign of (C-E) and the re?a;ion between C or E and the usual
Marshallian measure of consumer's surplus carry over from-Pprice to
quality changes. That paper also gives formulas, which are
summarized in Hanemann (1982a), for calculating C and E for o
quality change by setting up an equivalent price change and then
calculating the conventional compensating or equivalent variations
for this price change. This procedure can be applied when the
underlying utility function, u(x,b,z), is obtained by the method of
transformations, as described in Chapter 7.

The task of performing welfare evaluations is more complex
when one works in a random utility setting. The theory of welfare
measurement.in this context has been developed by Hanemann (1982c),
and revised and extended in Hanemann {(1984c). We will provide a
sketch of this theory here, leaving the reader to refer to these
papers for a more detailed presentation. Both deal with extreme,
rather than generél, corner solutions but these can involve either
purely discrete choices as in the logit models (32}, (34), or mixed

o) O W dincrrlaed ot ‘n-&g;;v\m:\i&& 3 ATR, preasitud Rl cHoi.
discrete continuous choicestﬁ After summarizing the methodology for
these extreme corner solution models we will indicate how it can be

extended to cover general corner solution models of the type

discussed on pagea 31..¢%.
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The starting point for this welfare analysis, as for demand
analysis, is the set of N conditional indirect utility functions,
Vl(pi’bl’y;E)""’VN(PN’bN’y;E)' from which the unconditional
indirect utility function v{p,b,y;e) may be obtained via (64).
This gives the utility attained by the individual maximizing
consumer when confronted with the choice set (p,b,y), which is a
known number for him but a random variable for the econometric
investigator. The cumulative distribution function F,(w)=
Priv(p,b,y;e) < wlmay be derived from the assumed distribution of
the e's, FE(E), by a suitable change of variable. In particular,
when the v;(+)'s have the form given in (31) - i.e. additive

stochastic terms,
(101) Fv(W) = Fg(W”Vl’oto,w"VN)y

By analogy with (100), the compensations required by the individual

to offset the change from {p',b") to (p'',b'") are given by

vip'',b'",y-Csie) = v{p',b",y;¢c)
(102)
vip'',b'',y;e) = v{p',b',y+E;€)

The problem in the random utility context is that C and E are now
random variables, since they depend implicitly on . How, then, do
we obtain a single number representing the compensating or
equivalent variation for the price/quality change?

Hanemann (1984c¢) presents three different approaches to

welfare evaluations in the random utility context, only one of




which has previously been recoynized. That approach is based on
the expectation of the individual’'s unconditional indirect utility

function,
Vip,b,y) = E[v{p,b,y;e)].

In terms of this function, the measure of compensating variation is

the quantity C' defined by?4
(103) V{p'*,b'',y-C') = V(p',b',y)

This measure has been‘employed by Hanemann (1978, 1982c, 1983a),
McFadden {1981), and Small and Rosen (1982). The formulas needed
to calculate V(+) for some common 1o§it and probit additive-
error random utility models are summarized in Hanemann (1982c).

For example, in the GEV logit model (34),
v v
(104) Vip,b,y) = 1n Gle *,...,e N} + 0.57722...,
which is simply the inclusive value index (apart from Euler's
constant, 0.57722...).

Another possible welfare measure is

+{10

b ’3)” C+ E E[C]
“ﬂé;’ % g ~'»_
-

j.e. the mean of the individual's true {but random) compensation.

The distinction between Ct and C' is subtle, but important. C7

§-5%



H

is the observers expectation of the maximum amount of money that the
individual could pay after the change and still be as well off as
he was before it. By contrast, C' is the maximum amount of money
that the individual could pay after the change and still be as well
off, in terms of the cobserver's expectation of his utility, as he
was before it. A third possible welfare measure is derived as
follows. One might want to know the amount of money such that the
individual is just at the point of indifference between paying the
money and securiny the. change or paying nothing and foregoinyg the
change. For the observer, this could be taken as the quantity C*

such that
(106) Prlv(p'',b' ' ,y-C*;¢e) 2 v(p',b',y;e)] = 0.5

i.e. there is no more than a 50:50 chance that the individual would
be willing to pay C* for the change. It can readily be shown thai,
while C* is the mean of the distribution of the true

compensation C, C* is the median of this distribution.

The procedures for calculating C* and C* are described in

Hanemann {(1984c). Here we wish to emphasize that the three welfare

measures, C', C* and C*, are in principle different, and the
choice between them requires a value judgment on the part of the
analyst. However, there are some circumstances in which some or
all of them coincide. For example, in additive-error GEV models
(which includes the standard logit model as a special case)
Hanemann (1984c) proves that C' = C*, Similarly, in cases where

the conditional indirect utility functions have the special form
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(107) vilpisbioyse) = ¢5(piobyse) + vy i = 1,...,N

where Y > U 15 a constant that does not vary with i, he shows that
C' = C*. Thus, when ¢3(+) in (107) involves an additive
stochastic term that is a GEV variate, C* = C' = €*. However,
{(107) is & highly restrictive assumption since it impligs that both
the discrete choices and the continuous choices (i.e. the
conditional demand functions) are independent of the individual's
income .25

If{a) there are income effects or{b) there are no income
effects but the conditional indirect utility functions do not
involve additive GEV variates, the difference between C* and C*
can be substantial because the distribution of C, the true but
random compensation, tends to be rather skewed, being bounded by
zero at the low end but by income or -« at the high end,

Thus its mean, C*, may substantially exceed its median, C*..

Hanemann (1983b, 1984c¢) also compares these welfare measures
with an alternative calculation that was performed by Feenberg and
Mills (1980) and Meta Systems (1983) using a logit model of
recreation site choice. These authors were concerned with
evaluating the benefits from an jmprovement in quality at an
individual site - say, site 1. Thus, by changes from b! to bi‘

1

while bg,...,b and Pyse=e2Py remain constant, Using the

N
nonstochastic component of the conditional indirect utility

function for this site, they calculated the qguantity C defined by
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(108) Vi (pyab]tay-C) = ¥ (pyubyuy) e

By contrast, Hanemann shows that

(109) C'= n'y¢C
and
{(110) Lt = H‘lﬁ + other terms.

where Hi is the probabflity that the individual selects site 1
when faced with (pl,bi,y).

The point is this: 1if we know for sure that the individual
would select site 1, then E’wouid indeed be the appropriate welfare
measure. But, we can never be sure in the random utility context:

¥
there are only probabilities of site selection (i.e. Iy < 1), and

we must weight the benefit E’by the probability that the individual
would have selected this site in the first place. In the data set
used by Feenberg and Mills and Meta Systems; this probability was
on the order of 0.05 to D.2 for most sites. Equation {110) says
that to the quantity H}E we must add some other terms which

measure the expected benefit to the individual if he originally
selected some site other than 1 but switched to site 1 as a
consequence of the improvement in its quality. In principig, the
net effect of the two corrections to C implied by {(110) gii? could
be Yarger or smaller than C*. From some numerical simulations

reported in Hanemann (1984c), it appears more likely that C

overstates C*t as well as (C'.
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To this point our discussion has focused on welfare
measurement in random utility models of extreme corner solutions.
The theory of welfare measurement in general corner solution models
157;:?29 developed, but the general out}{nes are clear. The
distinction between the three welfare measures C*, ¢*, and ('
will carry over to general corner solutions, and it will still be
true that Ct = €' only if there are no income effects. Because
these random utility models typically involve something more
complicated than the additive random structure, it is unclear
whether the result that C* = C' can be obtained even when the
random terms have a GEV diétribution, as in the case of (77).
However, the main difference between general and extreme corner
splution models will be the greater complexity of the calculatiaons,
because the probability distribution of v{p,b,y,e) - and hence of C
- that is implied by (83) i winkwﬂﬁ

cumbersome compared to lol).
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FOOTNOTES TO CHAPTER 9

1. In part of this modsd - epquation (3 ) - Sutherland treats each
individual in his sample as the consumer; 1in the rest he
treats the population of each “"centroid” {a county, usually)
as "the consumer", Furthermore he estimates separate demand
systems for each of four recreation activities. Thus, there
are four sets of x4y¢'s in the utility function, and four
sets of demand functions corresponding to (2 ). These demand
systems are independent, in the sense that the demand by
consumer t to visit site i for recreation activity 1 is
independent of his demand to visit the same site for
recreation activity 2. Moreover, each of the demand systems
is modelled in a similar manner. For simplicity, therefore,
we focus on the demand system for & single activity and Oﬂit‘
activity-specific subscripts.

2. One qualification should be noted: the partial demand system
implied by a given share systgm is unique up to multiplication
by an arbitrary positive constant. Thus, for any.fixed x> 0,
F?(-) and Aﬁ?(-), = 1,...,N, both imply the same share

system.

3., Barten {1969) shows that the maximum likelihood estimates of
¢ and the coefficients of F?(p,b,yx),...,ﬁg(p,b,yx) are
invariant with respect to which demand equation is treated as
the residual,

4. Various assumptions may be made about the structure of g: we

2

could set & = ¢°1 {i.e. demands are independent and homo-

N-1



skedastic across sites), or o = diag(of,...,ag_}) {i.e.
independent but heteroskedastic demands for sites).
Alternatively, we might assume that g is non-diagonal and
employ Zef?ner's SUR estimation method. Finally, instead of
assuming that o is constant across the individuals in the
sample (i.e. different consumers' demands are independent), we

might wish to parametrize o in some simple way so that it

varies across the sample.

A

\)Je, alk ortd _\6*" [+ 0 d-t{xmd\hmm ow\mﬂ s‘,..) SN mu}.hnﬂ &M\A v, CU\AMN‘&‘;V‘\L
N
- b . TWoa- G N R 50
Ras =2g- 4 4 pokalakng I o. wjmi& g\ Yo ‘ @
(N -0 -dimembionad mubRvariale weewnal | LLMW\&W N.muiww\es shae o
Lo daberalivad  freww [ rlaban Sy: ‘"S:;--—ns'\,_,‘.
5e.. This stochastic specification implies that, for each consumer,
- . TX _ - P
ELx;] = varlx,1 = hi(p,b,y ) and cov(xi,xj) 0, i¥ i

hence the covariance matrix of the xi's, 0, varies across

- consumers, It also implies that E[s;] = si(p,b,y,}, and

N_x -1
var(s;) = s.(p,b,y J[T - s.(p,b,y )10 + %j'ﬁj(p,b,yx)l
and

cov(si

s ) = = s.(pab,y )s.(pub,y JL1 + SE%(p.b,y )17}

’j ipssyxjpl’x ]kp"y)i -

6. With this stochastic specificiation, unlike the gamma/Dirichlet
model, a consumer's demands for different sites need not be

independent, but the covariance matrix is constant across

individuals in the sample. Thus E[1n x3] = Wi(p,b,y ),
var(ln x3) = wijy, and cov(in x;4,1In xj) = Wijs

where @ zﬂwij}. Because of the‘off~diagon31 terms in @
compared to the covariance matrix for the gamma/Dirichlet
model, the logistic normal distribution is likely to be more

flexible for modelling shares, although, as Aitchison and Shen
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{1983) show, any Dirichlet distribution can be closely
approximated by a suitably parametrized logistic normal. The
moments of the logistic normal exist and are finite but they
do not have any simple form; however the moments of ratio
{sj/sj) or In(s;/sj) can be expressed simply and are

given by Aitchison and Shen. In the present context they tak

the form
ECVn{s./s.)] = hi(p,b,y,) - hilp,b,y.)
Y73 i T x J L {
CUV[]n(Si/Sj)’ ln(sh/sk)] = o4y + Ok T %k T %p

where } = ( ). Assuming that F?(-),...,Fﬁ(-) satisfy (9),

O. .,
13
there is an additional complication with the lognormal/log-
jstic normal model that does not arise with the
gamma/Dirichlet model. For the latter, E[Zpixi] = zpiEfxi]=

Ipigi(') = ¥,» whereas for the former
E[Tp,x,] = Zp E[s.] + gﬁpipjcov[xixj].‘

Even if cov[xi,xj] *-U, all 1,j, the right-hand side does
not sum to y, because E{xi] = exp{g?(-) + %wii]. Thus

the lognormal/logistic normal specification violates thg
summability condition on the demands, although it still
satisfies the summability condition on the shares that

Zsy = 1. This could be dealt with either by
reparameterizing the normal distribution of the xj's or by
dropping the assumption of weak separability and working withg
incomplete demand functions hé{p,b,q.y), which are not bound

by (q).

L]
¥
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“as ma LoV LL1Y¥8E, Pp. LIbb~/y p. 173) suggests some ad hoc
devices for handiing zero shares within the logistic normail
distribution, but concludes that one may have to model thenm
by introducing a probability mass at X3 = 0 and using the
logistic normal as the conditional distribution of the non-
zero shares, conditional on the others being zero. This is
somewhat analogous to the approach employed in the utility-
theoretic models of corner solutions to be discussed in the
next section, where the probability mass at the boundary
derives frdm economic. considerations (i.e. the Kuhn-Tucker

conditions holding as inequalities).

Ch  The Potsson dinkieukon wan comniclied by Hanamamn (1418) fov tha
 Roten tecrtabon dak and W—\A&té bicowm e toauved dishibubions 3 o

WL;_‘S hod Lelh ‘oo lmhﬂ o ﬁ&kbw‘ﬂ&s’\.& sl ant bee mmb\ﬁ\ o vAlnD o&-gm‘

7. It follows from {i1qa,b,c) that E[xi]x‘] = F?(p,b,yx), var(x.|x )
= x.si(p,b,yx){? - s.{p.b.y )], and cov(xilex‘)=
- x.si(p,b,yx)sj(p,b,yx) < 0. This may be compared with the
implications of the gamma/Dirichlet and lognormal/logistic
normal models. Like the gamma, but not the lognormal models,
the multinomial implies that the variance-covariance matrix
of the xiy's varies across the sample of individuals.

However, it implies that, for any individual consumer, his

demands (as opposed to shares) for different sites are
negatively correlated, while the gamma implies that they are
independent and the lognormal places no particular
restriction on them. The negative covariance between Xy

and xj arises from the conditioning on the total x_, a

feature which is absent from the gamma and lognormal models.
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8. A simple numerical example may help to illustrate the point.
Suppose there are two sites (N = 2}, with prices p; = $15
and.pz = $10, which include 2 time component valued at w = $8.
Suppose, also, that x;3 = 4 and xp = 2. Thus, x_ = 6

(the individual spends six days on recreation), and y, = $80

But y,/w = 10 # x . ' B
Tednd
9, [Ehe CES utility model (21) precludes corner solutions since

it implies that all goods are essential; hence the

51(') functions in {Zlb) always satisfy Si{') > 0. For

thig reason the CES model seems unsuited to recreation

behavior: it is hard to believe that individual recreation sites

are all essential goods. The QES utility model (22a) does not

force any good to be essential and the demand function in (ZZb1},

which is based on the presumption of an interior solution, can in
Hon il |

fact return negative or zero values for x; and s;. (&% explained

in the next section, this is not the correct formula for the

demand function in its full generality. Teohould ko wohed Wraf-

b T matiamatcd aedad Prevapposa e T ro, W @HW\Q}‘%\

s\ (20) WAl A foik foreq TRA ic&{d S0 dunihon to by paiRne o
raak & Th :aw?kn_ d ato. {M}W\h-,



10. Although we treat z,. as the numeraire, the specification of
these two variables flcr practical purposes is somewhat
troublesome. Although it might seem natural to require that
LZp = Z and gy, = y, it may not be desirable to assume
that z,. = z/x_ and y. = y/x_ because this implies

a\sn Twis twplaen ek
that, if x_ changes, y. and z.jchange. Lr,he effective
budget constraint facing the individual changes with x ,
which introduces an income-change component into wel fare
evaluations for price/quality changes, bbb explained
holsw . | It would be more convenient to assume that y,
is, say, monthly or weekly income (i.e. y, = y/12, etc.)

and/éorespondingly for z..

o . e et impb‘\u% mumwﬂ.ﬁ frat The diakdbubion B e wn
dfjoont- cholu o ccanionn, T priviciple ons coaddh suba oiph T mndom
domta by T wdine v awd ollewd Toe dakdbubon g, vary uih
a. Howouar, m mak a?pkicahms w, el no \uxllatmodfim on TUR,
lompeved daquima &) Maralion dictus  onh T seasov . Threfos |
oy wewd be gaingd by WA gumbiolizakion ST Rum wedd

11. This simplication is not crucial; it is omitted, for example
in random coefficients versions of the discrete choice model

on the lines of Hausman and Wise (1978},
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|

12.

13.

Morey (1981) also estimated this type of logit model in
addition to his share model consisting of (20) and (21b). He
compared each model's goodness of fit and concluded that the
performance of the logit model was inferior. However, his
logit model was based on conditional indirect utility
functions of the form
4
Vilbi,y-p1) = ely-pi) + ] vkbig

while the qualities indices ¢;(+) in his CES model, (21b),

took the form

4 4
= 1/2 | 1 1/2.1/2
vilby) = kg}ﬁkbik - E:17khbfk Pih

‘where Yyn = Yhge Thus, there were 5 parameters to be

estimated in his logit model, but 15 parameters in his CES
model (o plus the 14 separate parameters in the yi's). The
respective values of the maximized log~-likelihood were
-3528.001 and -3410.214. The comparison of the two models is
complicated by the fact that they are not nested and, more
importantly, by the difference in the number of parameters,
which was not taken into account by Morey. Thus, we caonsider
his conclusion to be somewhat premature,

One could also assume that the g4,...,ey have a multivariate
normal distribution, which produces a probit model of
discrete choice. However, the choice probability formulas
corresponding to (33) involve an (N-1) dimensional multi-

variate normal integral. In the application below where
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N = 30U this 1s computationally infeasible. In this
application, as in Hanemann (1978) and Caulkins et al. (1984)

it is assumed that Pip = P and bir = b,, for all r,

i i
but as demonstrated here that assumption is not essential.
14. In this context it would be natural to set Yp = y/R and
z, = z/R. Hote that we have assumed weak complementarity
by making vo(-) independent of b_. However, vo(-) and,
for that matter, f(-) and vi(-) can contain characteristics

of the individual such as age, sex, previous recreation

experience, etc.

M. Ong courd ivapne émer s on € > S, qum\mﬁ tha oshachonbe tems
aph o chaketl IR &LX}-&NM%— qrsups 5\33!& b hosas MM conrthalon iwdiug

Agpan—

15, It can be shown that I = E[max[?& + Ei""’VN + EN]]"

16, If m, > 0.5, it follows from (46) that exp[?e - (1-0)1]'< 1,
which would justify the approximation In{(1 + a) # a.
Otherwise one could use some approximation such as in{l +Aa)x
a - a2/2.

17. 0One can regard R or In R as being implicit in the intercept
in (50a,b); the key differences between these equations and
{47') or (48') lie in the functional form and the fact that
y 1.

18. That is, their R appears to be 365. As pointed out in the

preceeding footnote the variable R does not appear explicitly

in Feenberg and Mills' analysis, so one cannot tell whether

they intend the recreation participation decisions to be made

on a daily basis.

1Ra Tinls  approstn b adeprd W RNavomainw (1413 ),



19.

20.

21.

22.

For example, the approach adopted by Wales and Woodland (1978,
1983) is to assume that u{x,b,z;e) = u(x,b,z) +KZngj + 7
where u{+) is a nonstochastic function. Hence the

nj{x,p,b,y;e) functions take the form
LER = ¢1(;fp»b1y) + (E'l - pieﬁ) 1= }""’N

where ¢4,...,6y are nonstochastic fﬁnctions. In this case

it is convenient to assume that €4,...,ey are multivariate
normal. Observe that it simplifies the modelling task if one
assumes that, unlike Bu/8X7,...,3U/3Xy, the term 3u/3z

does not contain a stochastic element, a simplification which
was not exploited by Hanemann (1978) or Wales and.Hoodland.

I1f one assumed that fz(e) were GEV, it might be possible to
relax the independence assumption while retaining a closed
form expression for (69). B

The statistical feature, the piling up of a probability mass
at x3=0 is automatically incorporated in the

utility-theoretic probabiiitj statements such as (70) or {92)
Hanemann offers a simplified proof of these theorems,
employing a less restrictive set of regularity conditions on u
than those of Lee and Pitt who require, in place of (D-2a,b),
that u be strictly increasing in each argument. He also shows
how the analogs of Theorems 1-5 apply to the dual problem of
deriving the direct utility function from a given indirect
utility function satisfyinyg the regularity conditions

mentioned earlier.
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24. At this point, the discussion will be conducted in terms of

25,

compensating variation. The analysis of equivalent variation
measures is entirely analogous, and may be derived from that
presented here by observing that the equivalent variation
measure for a change from (p',b') to (p'',b''} is equal to the
negative of the corresponding compensating variation measure
for the change from (p'',b'"') to (p',b").

This assumption of no income effects is employed by both

McFadden (1981} and Small and Rosen (1982).
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