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ABSTRACT 

In this paper we calculate the small-amplitude periodic sloshing 

modes of a liquid in a vertical right circular cylinder with a concave 

spheroidal bottom, for the case in which there iB nGt s-ufficient liquid 

to cover the bottom entirely. Equilibrium free surfaces of the liquid 

were calculated by the program CAPIL for the case in which the ratio 

of the minor and major semi-axes of the spheroidal bottom was 0.724. 

Perturbations about these surfaces were calculate.d by the program 

SLOSH. For the fill heights that were studied, and to the accuracy 

of these calculations, we found the same critical Bond number, B . , 
crlt 

for instability of the free surface as was found in the static analysis 

of P. Concus and I. Karasalo for the same test problem. Furthermore, in 

agreement with their calculation we also found no equilibrium surfaces 

for this problem for fill heights greater than 0.503 and for Bond num-

bers B < B . < o. For fill heights ranging from 0.20 to 0.45 we 
crlt 

found unstable equilibrium surfaces for a range of Bond numbers, 

B ~ B < B 
conv crit Frequencies or growth rates were calculated for 

numerous equilibrium surfaces. Growth rates of the maximally unstable 

modes were calculated for fill height 0.30 and various Bond numbers. 

v 





1. Introduction 

In this paper we calculate the small-amplitude, periodic sloshing 

modes of a liquid in a rotationally symmetric cylindrical container 

under the effect of surface and gravitational forces. We consider 

a right circular cylinder, oriented vertically. with a concave spher­

oidal bottom, for the case in which there is not sufficient liquid to 

cover the bottom entirely. This is the same configuration for which 

a stability study was carried out in [1]. Numerical results are 

obtained for a container currently used for the Btorage of liquid fuels 

in National Aeronautics and Space Administration Centaur space vehicles, 

for which the axial ratio of the bottom is b/a"" 0.724 • A vertical 

cross section of the cylinder and liquid is shown in Figure 1. 

Equations describing the sloshing motion of liquids in rotation­

ally symmetric containers are derived in [2] using a surface-normal 

polar coordinate system particularly suited to such problems. It is 

assumed there that the fluid flow is irrotational and incompressible and 

the free-surface boundary conditions are obtained from the time­

dependent Bernoulli equation and the kinematic equation. The dif­

ference in pressure across the free surface at any point, due to the 

interfacial surface tension, is proportional to the mean curvature at 

that point. The edges of the surface satisfy time-independent contact 

angle conditions with the container bottom and the cylinder wall. We 

follow the derivation in [2] for obtaining the equations of motion for 

the case studied here, but we use a different technique for obtaining 

the numerical solution. 

1 
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2. ScaledVariables 

We consider a circular cylindrical coordinate system with the z 

axis along the cylinder's axis of symmetry. It is convenient to 

define scaled length and time variables. Let symbols with a bar over 

them denote the corresponding physical, unscaled variables. Let 

r = ria 

z = -;'/a 

-
H H a 

B Ka
2 = pga

2/a 

2H = (p -p ) a/a 
o g 0 

where a, the cylinder's radius, is the characteristic length used for 

scaling, t is the time, p is the difference in densities between the 

liquid and gas phases, g is the acceleration due to gravity, consid-

ered positive when directed vertically downward, a is the gas-liquid 

surface tension, K is the capillary constant, B is the Bond number, 

H is the mean curvature at a point on the free surface, considered 

negative when the surface is concave upward, Pg is the gas pressure, 

and is the liquid static pressure at the height z = 0 . 

The difference in pressure across the free surface satisfies the 

equation 

p - p = - 2H a/a . 
g 

The liquid static pressure is given by 

p - p = - pgza 
o 

From these equations it follows that the curvature H at any point on 

the equilibrium free :surface is related to H 
o 

2H = 2H + Bz . 
o 

3 
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3. Equilibrium Free Surface 

We consider the vertical cross section through the axis of the 

cylinder shown in Figure 2. The cross section of the liquid is 

bounded by three curves: the meridians along the free surface, the 

cylinder wall, and the container bottom. Let s be the arc length 

along this boundary, increasing clockwise. Let s = 0 be the inter-

section of the meridians on the free surface and the bottom, and let 

s = S be the intersection of the meridians on the free surface and the 

cylinder wall. 

The equilibrium free surface is rotationally symmetric about the 

axis of the cylinder. Its height is a function of r only and not of 

8. Thus the equilibrium surface can be described parametrically by 

the equations 

r = R(s) and z = Z(s) 

for 0 ~ s ~ Sand 0 ~ 8 < 2n Let ljJ be the angle in the cross-

sectional plane between the tangent at a point on the free surface and 

the horizontal. Let ljJ be positive when the surface slopes upward in 

the direction of increasing s. Then 

tan ljJ = Z /R , 
s s 

where the subscript s denotes d/ds. Let the spheroidal bottom be 

described by 

z= ZB(r) 

for R(O) ~ r ~ I and o ~ 8 ~ 2n. Let X denote the angle in the 

cross-sectional plane between the tangent at a point on the bottom and 

the horizontal. Let X be negative when the bottom slopes downward in 

4 
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the direction of increasing r, as it does in our case. Then 

The equilibrium free surface is the solution of the time indepen-

dent Bernoulli equation, 

with 

~ = 2H + BZ - (sin ~)/R , 
s 0 

R 
s 

Z 
s 

cos ~ 

sin ~, 

subject to the contact conditions, 

Z (s) ZB(R(s» at s = 0 

R(s) = 1 at s = S 

(3.1) 

0·2) 

(3.3) 

(3.4) 

(3.5) 

(the scaled radius of the cylinder is 1), and subject to the contact 

angle conditions, 

~ - X 

n/2 - ~ 

y at s = 0 

y at s S , 

where y is the contact angle. The volume of the liquid in the 

cylinder is 

v 2n 
J

s 
[Z(s) - ZB(R(S»]R(S) cos ~(s) ds. 

o 

(3.6) 

(3.7) 

(3.8) 

This last equation determines implicitly the value of H of V is given. 
o 

Equations (3.1) - (3.8) are the equations for the equilibrium free 

surface. The solution of these equations varies 1Nith the volume, the 

Bond number, the contact angle, and the shape 'of the bottom of the 

container. Depending on the values of these parameters, there may be 

6 



no, one, or more solutions of these equations [lJ. If the equilibrium 

surface exists, it may be stable or unstable to small perturbations. 

These equations are solved by the program CAPIL [3J. This program 

uses PASVA2 [4J, a general-purpose finite difference solver for non­

linear first-order systems of differential equations subject to two­

point boundary conditions. PASVA2 solves these equations by iterating 

from an initial approximation to the surface. Either the user can 

supply the initial approximation, or the subroutine CYLCUR can generate 

it. When making calculations with the same fill for a sequence of Bond 

numbers, we let CYLCUR generate the initial approximation for the first 

case and use the output· of each case as the initial approximation for 

the next case. 

7 



4. Small-Amplitude Periodic Sloshing Modes of the Liquid 

The sloshing motion is treated as potential flow in an incompres-

sible fluid. The fluid velocity v at any point is the gradient of 

a potential function ¢ 

v = v¢ 

Since the fluid is incompressible, V'v o , so ¢ satisfies Laplace's 

equation 

M=O. (4.1) 
~ 

The boundary condition on ¢ along the cylinder wall and the bottom 

is 

o , (4.2) 

where the subscript n denotes the outward normal derivative. 

The displacement of the free surface from its equilibrium will be 

described in surface polar normal coordinates s, 8 and n. The 

coordinate s is the arc length along the equilibrium surface, and 

the coordinate n is the displacement normal to this surface [1]. The 

perturbed surface is described by 
~ 

II = H(s,8, t) 

The time-dependent Bernoulli equation is linearized in the perturbation 

H. Since H
t 

is the component of fluid velocity normal to the equi-
~ 

librium surface, Hand ¢ are related by the kinematic equation on 

the eqiulibrium surface 
~ 

th = H 
'l'n t 

(4.3) 

~ 

This is the boundary condition on ¢ along the free surface; it depends 

on the unknown function H. 

8 



The sloshing motion will be analyzed in terms of normal modes 

¢ ¢(r,z) cos(m8) cos(wt) 

R R(s) cos(m8) sin(wt) 

Equation (4.3) can be used to eliminate the function R from the 

linearized time-dependent Bernoulli equation. The result is 

- (R¢ ) + RQ(s)¢ = W
2

(1+IBI)R¢ (4.4) ns s n 

where 

Q(s) = BR + (m/R)2 - [W 2 + (Z /R)2] 
s s s 

(4.5) 

The solution of differential equation (4.3) gives the boundary 

condition on ¢ along the equilibrium surface. The boundary condition 

is specified by the contact angle conditions at s = 0 and s = S , 

which are assumed to be time independent. The perturbed surface and 

the equilibrium surface must have the same contact angle with the 

cylinder wall and the bottom. 

These conditions relate R Ws , and Xr at s = 0 and 
s 

s = S . In terms of the function ¢ these conditions are 

¢ns sin y - ¢n (Ws cos y - X cos 
r X) = 0 at s = 0 (4.6) 

¢ns sin y + ¢nWs cos y = 0 at s = S . (4.7) 

Equations (4.1), (4.2), and (4.4) - (4.7) determine the eigenfunctions 

¢ and the corresponding eigenvalues w. 

It will be convenient to let 80 81 82 , .... denote normal 

modes having cos(m8) dependence with the values m = 0, 1, 2, ... , 

respectively. We also shall let RO, Rl, R2, ... denote normal modes 

having 0, 1, 2, ... radial nodes in the interval 0 < s < S (not 

counting the nodes, if any, at the endpoints of the interval). 

9 



5. Dis(.:!et_~~eprcsentation and the Solution of Laplace's Equation 

The functions <p . arid <!> n OR ~he b~undary of the vertical cross 

section of the liquid will be represented by their values at N + M 

points 

and similarly for <P These points are shown in Figure 3. The first 
n 

N of these points will be along the meridian of the free surface in the 

cross-sectional plane. The remaining M will be on the meridians of the 

cylinder wall and the bottom in the cross-section.al plane. None of the 

s. are corner points of the boundary. 
] 

We shall partition the vectors <P and <P into two parts: 
n 

includes values of ¢ at points on the free surface, and <P2 includes 

those on the cylinder wall and the bottom 

<P = (<PI' <P 2 ) 

<PI (¢(sl),¢(s2),oo.,¢(sN» 

<P2 (¢(sN+l)"'" ¢(sN+M» • 

The boundary condition on ¢ along the cylinder wall and the bottom, 

Equation (4.2), becomes 

(5.1) 

Because ¢ satisfies Laplace's equation, Green's formula yields 

an integral equation that relates ¢ and ~ on the boundary of the 'f'n 

vertical cross section of the liquid. This can be approximated by a 

matrix equation of the form: 

W<P = C<P 
n 

The calculation of the matrices Wand C is described in [5J. 

10 
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6. Discrete Representation of the Boundary Condition on the Free 

Surface 

Using Equation (4.4) and the contact angle conditions (4.6) and 

(4.7), we will derive a discrete set of equations relating ¢ and 

¢n at the points sl,s2,··.sN along the meridian of the free surface 

in the cross-sectional plane. Let this meridian be divided into N 

. 1 Th' th . 1 h lnterva s. e J lnterva as 

t . .;;; s .;;; t 
J j+l ' 

where t = 0 
1 

and S • Let s. 
J 

be the midpoint of the jth 

interval. 

We integrate Equation (4.4) over the jth interval 

f
tj+l 

R(t.)¢ (t.) - R(t.+l )¢ (t.+l ) + Q(s)R(s)¢n(s) ds 
J ns J J. ns J 

tj 

r

tj+1 

R(s)¢(s) ds • 
J 
t. 

J 

The integrals are approximated by 

and 

¢ (s.) 
J 

Q(s) Res) 

Res) ds 

ds 

12 
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If t. is not an endpoint of the meridian, we approximate ¢ (t.) by 
J ns J 

¢ (t.) 
¢ (s.) - <p (s. 1) 

"'" _~ n J-
n8 J s. - s. 1 

J J-

Substituting these approximations into Equation (6.1) gives 

2 
T. 1 . ¢ (s. 1) + T .. ¢ (s.) + T. '+1¢ (s'+l) = w A .. ¢(s.), (6.2) 
J-,J n J- JJ n J J.J n J JJ J 

where 

and 

P. 
] 

T. '+1 J,] 

(l+IBI) 
!"j+1 

R(s) ds 

t. 
J 

J'j+1 
Q(s)R(s) ds , 

t. 
J 

For tl = 0 , the inner endpoint of the meridian, we approximate 

To eliminate the unknown ¢n(t
1

) , we use the contact angle 

condition (4.6) 

'" (t l ) siny =L 1 "'n(t1 ) , 'Pns 'P 

where 

These give 

13 



where 

Substituting this approximation into Equation (6.1) gives 

(6.3) 

where 

For t
N
+

1 
= S , the outer endpoint of the meridian, we approxi-

mate 

To eliminate the unknown ¢n(t
N
+

1
) , we use the contact angle condition 

(4.7) 

where 

These give 

where 

Substituting this approximation into Equation (6.1) gives 

(6.4) 

where 

14 



Equations (6.2) - (6.4) can be written in matrix form as 

(6.5) 

This is the boundary condition on ~ along the meridian on the free 

. surface. A is diagonal, and the diagonal elements are positive. T is 

tridiagonal and symmetric, and the off-diagonal elements are negative. 

The set of Equations (5.1), (5.3), and (6.5) is the discrete version 

of the eigenvalue problem for the small~amplitude, periodic sloshing 

modes of a liquid in a vertical, rotationally symlnetric cylinder. 

15 



7. Numerical Solution of the Discretized Eigenvalue Problem 

We write the matrices Wand C of equation (5.3) in block form: 

W
11

, W
12

, W
21

, W
22

, and similarly for C. Subscript 1 denotes the rows 

and columns corresponding to the N points along the free surface, and 

subscript 2 denotes those corresponding to the M points along the 

cylinder wall and bottom. Since <P 2n is zero, Equation (5.3) can be 

written 

(7.1) 

The matrix A is diagonal, so Equation (6.5) is easy to solve for <P
1

, 

which we can eliminate from Equations (7.1). 

Define 

Then 

F11 W
11 

A -1 T 

-1 
F21 = W21 A T 

Equations (7.1) give 

Fll <P1n 
2 

W (C
ll 

<P
1n 

F21 <P1n = 
2 

W (C
21

<P
1n 

(7.2) 

W1l 2) , 

- W
22

<P
2

) (7.3) 

Equations (7.3) can be written as single matrix equation for the 

(7.4) 

Equation 7.4 could be solved for the eigenvalues w2 however, M 0 f 

the eigenvectors have the eigenvalue w2 
= O. A linearly independent 

16 



set of these eigenvectors is 

o j=1,2, ..• M, 

h . th t . th . h . th .. d 1 were e. 1S e vec or W1 a one 1n t e J POs:Lt1on an zeros e se-
J 

where. These eigenvectors correspond to no motion of the free surface, 

since <PIn is zero. A computer program that calculates all the eigen­

values of a matrix, such as the IMSL routine EIGZF, will waste some time 

computing these unwanted eigenvalues. 

We can avoid calculating the zero eigenvalues by eliminating <P2 

from the pair of Equations (7.3). Define 

D = Cll -Wll 
-1 C2l W22 

, 

-1 (W
ll 

- W12 
-1 -1 

E = Fll -W12 
W

22 F2l = W22 W2l )A T (7.5) 

Then Equations (7.3) combine to give 

E<P = W 
2 D<P

ln In 
(7.6) 

Equation (7.6) can be solved for its eigenvalue by the IMSL routine 

EIGZF, which uses a QZ algorithm to reduce E to upper Hessenberg form 

and D to upper triangular form. 

The solution of Equation (7.6) is performed by the program SLOSH. 

The input to SLOSH is the set of points describing the equilibrium 

free surface calculated by CAPIL and parameters that define the 

cylinder wall and spheroidal bottom. SLOSH then calculates the 

matrices A, T, W, and C; uses the IMSL routine LINVlF to calculate 

W22 inverse; calculates the matrices D and E; and uses EIGZF to 

calculate the eigenvalues. This method of solving the eigenvalue 

equation is not the most computationally efficient, but by using 

17 



the existing and reliable IMSL routines it requires the least amount 

of programming effort. 

For comparison, the routine EIGZF was used to solve both Equation 

(7.6) and Equation (7.4) for a few cases. The numerical values of 

corresponding eigenvalues for these two methods were identical to the 

four figures that were printed out in each case. 

18 



8. Small-Amplitude Periodic Sloshing Modes of the Liquid between Two 

In this section we solve the eigenvalue problem for the small-

amplitude, periodic sloshing modes of the liquid contained between 

two concentric, vertically oriented, right circular cylinders of radii 

and A cross section is shown in Figure 4. The equilibrium 

surface is a horizontal plane when the contact angle is 900
• The nor-

mal mode problem for this case has an analytic solution. We can use 

this solution to test the accuracy of the program SLOSH. 

Let V be the rectangular domain and 

Laplace's Equation for ¢ in the domain V is 

+ 1: ¢' 
2 

¢rr + ¢ -
m 

¢ 0 
2 

. r r zz 
r 

The boundary conditions are 

¢r 0 at r rO and r
l 

¢r = 0 at z = 0 . 

Equation (4.4) for ¢ on the free surface, z = Zo ' is 

where 

Q(r) 2 B + (m/r) 

The contact angle conditions, Equations (4.6) and (4.7), become 

¢ = 0 rz 

We solve these equations by separation of variables. Let 

¢(r,z) = X(r) U(z) 

19 
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then (8.1) gives the pair of equations 

U" = k2 U 

x" + 1:. X' + (k2 _ m2/r2 )X 0 , r 

with boundary conditions 

U' = 0 at z = 0 , 

X' 0 at r = rO and r l 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

The contact angle conditions will be automatically satisfied if Equation 

(8.6) is satisfied. 

Equation (8.2) gives an equation for the eigenvalue 

The solution of (8.3) and (8.5) is 

U = cosh (kz) 

Thus the eigenvalue is 

2 
w 

k(k2 + S) 
(1 + lSI) tanh (kz

O
) 

The solution of (8.4) is 

X(r) = c J (kr) + d Y (kr) m m 

(8.7) 

where J and Yare Bessel functions of the first: and second kind of 
m m 

order m. Equation (8.6) requires 

c J '(kr ) + d Y '(kr) 0 
mOm 0 

These will have a nontrivial solution for c and d. if 

(8.8) 

21 



Equation (8.8) gives the values of. k for the normal modes. The first 

few values for the case rO = 0.5 and r 1 - 1.0 are listed in Table 

1 to the accuracy indicated. 

Table 1. k values for m 0, 1, and 2. 

m = a m = 1 m = 2 

0.0 1~3547 2.6812 

6.3932 6~5649 7.0626 

12.6247 12.7064 12.9494 

18.8889 18.9427 19.1032 

25.1624 25.2045 25.3224 

The solution m = 0, k = 0.0 corresponds to no movement of the 

equilibrium surface or of the liquid. 

22 



9. CQmparison of the Analytically and Numerically Calculated Solutions 

for the Normal Modes of the Li..1.l:Iid between Two Cylinders 

Figure 4 shows the cross section of a liquid contained between two 

concentric right circular cylinders, oriented vertically. Each of 

the four sides of the cross section (the free surface, the bottom, and 

the two cylinder walls) was divided into n intl~rvals of equal length. 

The velocity potential ¢ on the perimeter of the cross section was 

represented by its values at the midpoints of these 4n intervals. 

These 4n values of ¢ are related by EquationB (5.1), (5.3), and 

(6.5). Numerical solutions of these equations were computed for the 

a case rO = 0.5, r 1 = 1.0, Zo = 0.9 , contact angle 90 , and Bond 

number 0 using the program SLOSH. 

Numerically calculated squares of the frequencies for the modes 

e1RO, elR1, and elR2 using n = 5, 10, and 20 points are shown in Table 

2. The corresponding analytic values for the squares of the frequen-

cies, calculated from Equation (8.7) and the k values of Table 1, are 

also shown. 

Table 2. Squares of frequencies for various normal modes 

e1RO elR1 e1R2 

5 points 2.157 292.1 1965. 

10 points 2.127 284.8 2080. 

20 points 2.118 280.7 2072 • 

analytic 2.087 282.9 2052. 

23 



The relative errors of the numerically calculated squares of the fre­

qucn~ies [oo2 (n points) - oo2 (analytic)]1 00
2 (analytic), are shown in 

Table 3. 

Table 3. Relative errors of the squares of frequencies. 

5 points 

10 points 

20 points 

elRO 

0.(;)34 

0.019 

0.015 

elRl 

0.033 

0.007 

-0.008 

GIR2 

-0.042 

0.014 

0.010 

Note that the relative errors of the Jrequencies are approximately half 

these values. The error decreases substantially between n = 5 and 

n = 10, but less so between n = 10 and n = 20. Even the errors for 

n = 5 are quite small, considering that only five radial modes can be 

represented by a 5-point approximation to the meridian on the free 

surface. 

Numerically calculated squares of the frequencies for the modes 

eORO, eORl, eOR2, e2RO, e2Rl, and e2R2 using n = 10 points are shown 

in Table 4. Corresponding analytic values are shown also. 

Table 4. Squares of frequencies for various normal modes. 

10 points 

analytic 

10 points 

analytic 

eORO 

0.7 

0.0 

e2RO 

19.99 

18.97 

eORl eOR2 

10-12 265.4 2038. 

261.3 2012. 

82Rl e2R2 

346.6 2201. 

352.3 2171. 
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The relative errors of these squares of frequencies are shown in Table 

5. 

Table 5. Relative Errors of the squares of frequencies. 

80 modes 

82 modes 

RO 

0.054 

Rl 

0.016 

-0.016 

R2 

0.013 

0.014 

The relative errors of the squares of frequencies for n = 10 points, 

as shown in Tables 3 and 5, are typically from 0.,01 to 0.02. These 

results show the program SLOSH calculates with satisfactory accuracy 

for our purposes the frequencies of the normal modes of a liquid con­

tained between two concentric right circular cylinders. 
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10. Equilibrium Free Surfaces of a Liquid in a Vertical Right Circular 

~linder with a Concave Spheroidal Bottom 

With a given volume of liquid in the cylindrical container we 

associate a dimensionless fill height defined as follows: let the 

given volume V equal the volume bounded by the container wall and 

bottom and the horizontal plane z = z 
v 

is z divided by the container radius a. 
v 

h z /a 
v v 

Then the fill height 

The axial ratio of the spheroidal bottom is b/a = 0.724 . 

h 
v 

Equilibrium free surfaces, approximated by 21 points on the meri-

dian, were calculated by the program CAPIL for contact angle a y = 0 

and for the fill heights: 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 

0.60, and 0.70. For each fill height equilibrium surfaces were 

calculated for a sequence of increasingly negative Bond numbers. The 

first surface for each fill height was calculated for Bond number 

B = O. The initial approximation to this surface was generated by the 

subroutine CYLCUR. The equilibrium surface for each Bond number was 

used as the initial approximation to the surface for the next Bond 

number in that sequence. 

The equilibrium surfaces that we have calculated are members of a 

family with two parameters Band h 
v 

Let B 
e<; 

denote the critical 

value of the Bond number for the nonexistence of equilibrium surfaces 

of this family for a given fill height. Let B . crlt denote the criti-

cal value of the Bond number for the stability of equilibrium surfaces 

of this family for a given fill height. Stable equilibrium surfaces 
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exist for B . .;;; B , unstable equilibrium surfaces exist for 
crlt 

B .;;; B < B < 0 if B f: B 't' and no equilibrium surfaces of eq crit eq crl 

this family exist for B < B 
eq 

(Other equilibrium surfaces might 

exist, such as multiple-valued surfaces or surfaces with shapes very 

different from those of this family.) Concus and Karasalo showed that 

unstable equilibrium surfaces exist for B infinitesimally lower than 

B . and h < h"~ 
crlt v v 0.503 but that no equilibrium surfaces of this 

;;;. 
;t~ 

[IJ. family exist for B < B and h h Their result may be 
crit v v 

i'< ,'e 
restated as B < B for h < h but B = B for h ;;;. h· 

crit crit eq 

Our calculations 

B 
eq 

v 

agree with their 

v eq v 

result and provide an estimate of 

For each fill height we found a Bond number B
d

. ,depending on 
lV 

h for which the iteration for the equilibrium surface diverged. 
v 

v 

The iteration using B
d

. was approached by a sequence of calculations 
lV 

using small decreases in B. Let B denote the Bond number imme-

diately preceding 

conv 

B
d

. in that sequence, 
lV 

B < B < 0 div conv . For 

B ;;;. B the equilibrium surface changed only slowly with B. The 
conv 

equilibrium surface for each value of B was an excellent approximation 

to that for the next value of B in the sequenCE!. This indicates that 

the divergence for the case B
d

. was caused not by the initial 
lV 

approximation but by the nonexistence of an equilibrium surface for 

this family. Thus Bd · is an approximation to B Table 6 shows 
lV eq 

B and Bd · as a function of h It alsc· shows B 
crit 

calcu-conv lV v 

lated to four decimal places by Concus and Karasalo [1J. 
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Table 6. B conv' B d" , and B crit for various fill heights. 
lV 

h -B -Bd " -B crit v conv lV 

0.20 1310. 1320. 480.4283 

0.25 488. 492. 238.6539 

0.30 216. 218. 132.9638 

0.35 107. 108. 79.6741 

0.40 58.0 58.2 49.9096 

0.45 33.4 33.6 31. 9190 

0.50 20.2759 20.2760 20.2759 

0.60 8.42 8.43 8.4411 

0.70 3.98 3.99 4.0020 

The data of Table 6 are shown in Figure 5. The solid line is the 

graph of B " crlt and the dashed line is that of Bd " • lV These lines 

divide the Bond-number, fill-height parameter space into three regions: 

one for which stable equilibrium surfaces exist, one for which unstable 

equilibrium surfaces exist, and one for which no equilibrium surfaces 

exist. (Growth rates for perturbations of the unstable equilibrium 

surfaces were calculated by the program SLOSH for various values of B 

and h 
v 

These will be discussed in the next section of this report.) 

Figure 5 also shows data points from stability experiments carried 

out at the NASA Lewis Zero Gravity Facility for the container shown in 

Figure 1 [6]. The experiments used three containers with radii 7 cm , 

5.5 cm ,and 2 cm ,respectively. In the experiment the cont~iner had 
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approximately 2.5 sec of free fall followed by approximately 2.5 sec 

of negative low-g fall. During the first 2.5 sec the liquid surface 

adjusts from one g to zero g During the next 2.5 sec instabil-

ities may be observed if they grow sufficiently rapidly. Solid data 

points correspond to experimental parameter values for which the 

surface was observed to be unstable. Open data points correspond to 

parameter values for which the surface did not develop a noticeable 

instability within the 2.5-sec time interval. The experimental data 

and the numerically calculated curves agree quite well. All the 

experiments in which the surface was observed to be unstable have Bond 

numbers B < B , < 0 . 
crlt 

Bd , is an approximation to B 
lV eq The aceuracy of this approxi-

mation can be investigated by considering the cases h = 0.60 and 
v 

0.70. For h = 0.60 CAPlL diverges for some Bond number in the range 
v 

(-8.42, -8.43) and B = -8.4411 • eq The relative error in this case is 

less than 0.003. For h = 0.70 CAPlL diverges for some Bond number 

in the range (-3.98, -3.99) and B eq 

this latter case is less than 0.005. 

-4.0020. The relative error in 

From this we infer that the correct value of B for h = 0.50 
eq v 

is slightly less than the value found here for the 21 point surfaces, 

and that there is a small range of Bond numbers between B , 
crlt 

and 

B for this value of h 
eq v This is supported by a calculation of 

the frequencies of individual normal modes, which is discussed in the 

next two sections, Based on an approximate calculation of the fre-

quencies, the ROel mode becomes marginally stahle at B = -20.243 

while all the other modes approach instability as B approaches -20.276. 
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11. Frequencies of the Normal Modes of a Liquid in a Vertical Right 

Circular Cylinder with a Concave Spheroidal Bottom 

The frequencies of the small-amplitude periodic sloshing modes of 

a liquid in a vertical right circular cylinder with a concave spheroidal 

bottom were calculated by the program SLOSH for contact angle y = 0° 

The axial ratio of the spheroidal bottom is b/a = 0.724. The equi-

librium free surfaces were approximated by 21 points of the meridian, 

as described in Section 10. These 21 points were the endpoints and 

midpoints of 10 intervals on the meridian. The velocity potential 

~ for perturbations to these surfaces was represented by its value at 

the 10 midpoints of these intervals, by its value at 10 points on the 

meridian on the cylinder wall, and at 10 points on the meridian on 

the bottom. We shall refer to this as the 10-point approximation to 

~ . 
used. 

Surfaces corresponding to numerous values of h and 
v 

B were 

A few surfaces approximated by 41 points on the meridian were 

used to check the accuracy of the frequencies calculated using the 21 

point surfaces. For these cases ~ was represented by its value at 

20 points each on the meridians on the free surface, the cylinder 

wall, and the bottom. We shall refer to this as the 20-point approxi-

mation to ~. 

The squares of frequencies for various normal modes and for vari-

ous values of hand B calculated by SLOSH using the 10-point 
v 

approximation are shown in Tables A 1 through A 11. Typically the 

values of w2 
in these tables have a relative error of 1-2% for 

2 
values of w that are not too small and for Bond numbers that are not 
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too near B
d

. . This will be discussed in more detail in Section 12. 
lV 

These squares of frequencies are plotted as functions of B in 

Figures 6-12 for h = 0.20,0.30, ... 0.70 . 
v 

Note that in Figures 

10-12 (h = 0.50 - 0.70 ) a different scale for w2 is used for each 
v 

mode that is plotted. The purpose is to show that all these modes have 

a similar dependence of 
2 

w on B However, in Figures 6-9 ( h 
v 

0.20 - 0.40 ) all the RO modes ( R081, R082, R083, ..• ) that are 

plotted in a given figure use the same scale for w2 This is to show 

for each value of B which mode is most negative. 

He shall first describe the general features of these figures, 

and then consider numerical details for particular cases and discuss 

the accuracy of the calculations. 

Figure 6 shows graphs of W
2 (B) for the modes R081, R082, R083, 

R084, R086, and R180 for h 
v 

0.20 . The mode R180 is plotted with 

a scale 1000 times that of the other modes. (An accuracy check shows 

the values for the R180 mode are about 10% too large. However, we 

include it in Figure 6 for a rough comparison with the RO modes.) Note 

that the Bond numbers for which the various RO modes become marginally 

stable [for which 2 
W (B) = OJ lie in a small range. 

Figure 7 shows this more clearly. The order in which the modes 

become unstable is as one would expect: First R08l, then R082 , 

R083 R084 , and R086 • (R08S was not calculated for h = 0.20 .) 
v 

Note also that because the higher 8 modes have steeper slopes 

(dw2/dB ), each mode, in turn, becomes the dominant unstable mode 

(most negative value of 2 w ) for a short range of Bond numbers. 

32 



0,8 

0,6 

0,4 

0,2 

C\l 
3 0,0 

-0,2 

-0,4 

-0,6 

-0,8 

w
2 

( B) for RO rnodes 

w 2 
( B) /1000 for R180 

mQde 
hv=O,20 

R180 

R08l 

R082 

R083 

1~084 

-I. 0 L--_..L---L......L.....L--l-.L---L-..J~L....-.I..-.l.-...l-...I.-..lIL.-'---'-_H._0_8_6_----' 
-200 -400 -600 -800 -1000 

Bond number 

of various modes for h= 0.20 . 
v 

33 

XBl781-95 



0,15 

0,10 

0,05 

0,05 

-0,15 

-0,20 

w 2 (B) for ROmodes 

hv = 0.20 

----,:r---=~_ R 0 fJ 1 

RD fJ2 

RD fJ3 

RO 84 
RO 86 

-400 -450 -500 -550 -600 

Bond number 
Figure 7. (} (B) of RO modes for h '" 0.20 . v 

XBL 781-101 

34 



This same pattern for the RO modes is shown in Figure 8 for 

h = 0.30 . v A new feature appears in this figure. It is that 
2 

w 

for the Rl80 mode passes through a point of inflection and begins to 

curve downward. The rate at which it approaches zero, the magnitude of 

dw
2

/d(B) , increases as B approaches Bd · • 
~v 

The functions W
2

(B) 

for the other RI modes, Rl81 to R186 , have similar shapes and 

differ from that of R180 by only a few percent, as shown in Table 

A 3. The functions W
2

(B) for the modes R280 to R286 have shapes 

similar to those for the Rl modes but magnitudes about five times 

larger. All the Rl and R2 modes curve downward as B approaches 

B
d

, 
~v 

Figure 9 shows that for h = 0.40 
v 

B , and B only for four modes: 
cr~t conv 

2 
W becomes negative between 

R08l, R082 , R083 , and 

R084. Furthermore, only the first three modes become dominant insta-

bilities in this range. The rate at which the R180 mode approaches 

zero, !dw
2

/dB! , becomes very great as B approaches Bd' . 
~v 

Note 

also that w
2

(B) for each of the RO modes passes through an inflec-

tion point and curves downward as B approaches Bd' . 
~v 

Figures 10, 11, and 12 are for the cases h = 0.50 , 
v 

0.60 , and 

0.70 ,respectively. In each case the functions w
2

(B) for the vari-

ous modes have similar shapes. They all curve downward for B near 

B , ,and the rate at which they approach zero becomes very great 
cr~t 

as B approaches B • • 
cr~t 

All modes apparently go to zero at or near 

B , 
crlt This behavior of w2 (B) is consistent with the nonexistence 

of an equilibrium free surface nearby the critical one for 
~.~ 

h ~h v v 

and B < B , < 0 
cr~t 

It is in sharp contrast to the behavior seen in 
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the cases h = 0.20-0.40 , in which only a few RO modes were un­
v 

stable for a range of Bond numbers beyond B . cr1t 

For the case h = 0.50 the R08l mode becomes marginally stable 
v 

at a slightly higher Bond number than the other lnodes. In the 10-

point approximation it becomes marginally stable at B = -20.243 , 

while all the other modes approach instability as B approaches 

-20.276. It appears that for this case there exists a very small 

range of Bond numbers between B . crlt 

41 
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12. Frequencies of the Normal Modes Continued -- Accuracy 

The bulk of our data are values of 2 
W calculated by the lO-point 

approximation, Tables A 1 - A 11. Throughout this section we shall 

investigate the accuracy of these data. The few values of 2 
W calcu-

lated by the 20-point approximation are used solely to estimate the 

accuracy of these data and how they can be improved. We shall refer 

to these values as and 2 
w20 ' respectively. 

'~ 

We are most interested in the accuracy of W'Lo for the growing 

RO modes. These negative values of 
2 

(JJ are small numbers, so a 

small (absolute) error in them can be significant. We shall show that 

the error in 2 
wlO(B) is approximately -(dW2/dB)~B* , where 

a function of h but not of the mode number, that is, 
v 

2 2 2 
W (B) ~ WlO(B) + (dw /dB)~B* , 

or, equivalently, 

w2 (B-~B1c) ~ 2 
(~)lO (B) 

~B* is 

(12.1) 

(12.2) 

Thus, a value of 2 wlO (B) from Tahles A 1, A 2, or A 4 actually corres-

ponds to the Bond number 

Five comparisons of calculated quantities support this description 

of the approximate dependence of the error in on the parameters 

h B , and mode number. The first comparison is between the values v 

of B . crlt 

denote by 

calculated by the lO-point approximation, which we shall 

B and those calculated to. four decimal places from crit,lO ' 

a static analysis [1]. ~B* is defined as the difference in these 

values. 
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LlB* = B - B . • crit,lO crlt 

These quantities are shown in Table 7. LlB* is approximately 1 - 2% 

of B . crlt 

Table 7. B . ,B 10' and LlB~'c for three fill heights crlt crit, 

h 
v 

0.20 

0.30 

0.40 

-B crit 

480.43 

132.96 

49.91 

-B crit,lO 

468.2 

130.73 

49.35 

The second comparison is between the values of 

b.B* 

12.2 

2.23 

0.56 

2 
w (B . t) crl for the 

Roel mode calculated by the 10-point and 20-point approximations. 

Since the correct value of 2 
w is zero in this case, these values 

are errors. They show that the error in the calculated values of w2 

depends as 1/N2 on the number of points used to approximate ¢ . 

These values are shown in Table 8. Note that 

1/4 of 

Table 8. 

h 
v 

0.20 

0.30 

0.40 

and at B . crlt 

0.00180 

0.00183 

0.00209 
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is approximately 

Roel mode. 

0.00045 

0.00046 

0.00053 



The third comparison is between and for various RO 

modes, fill heights, nnd Bond numbers. Define as 

Since the error in w;O is approximately 1/4 of the error in 

it follows that 6W2 is approximately -3/4 of the error in 

The values of 6WZ are shown in Table 9. They vary greatly with 

mode number. 

Table 9. 6W2 for various RO modes, fill heights, and Bond numbers. 

h 
v 

0.30 

0.40 

-B 

130. 

13Z.96 

140. 

45. 

49.91 

50. 

Define 6B as 

2 2 6B = 6W (dB/dw ) 

Roei 

0.00141 

0.00137 

0.001Z7 

0.00193 

0.00156 

Roez 

0.0055 

0.0050 

0.0070 

0.0059 

Roe3 

0.0120 

0.0108 

The values of dw2/dB can be calculated approximately by central 

differences of the data in Tables A 2 and A 4. The resulting values of 

6B are shown in Table 10. Note that for a given fill height, while 

6W
Z 

varies greatly with mode number, 6B does not. Our fourth com-

parison is between the values of 6B and 6B*. Table 10 shows that 

the values of 6B are approximately 3/4 of the corresponding values 
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of L',B*. Since L',u/ is approximately -3/4 of the error in wio ' 

this implies that the error in wio is approximately -(dw2/dB)L',B* 

for some range of Bond numbers containing B . crlt 

Table 10. L',B for various RO modes, fill heigbts, and Bond numbers. 

h 
v 

0.30 

0.40 

-B 

130. 

132.96 

140. 

45. 

49.91 

50. 

ROel R082 R083 

1. 68 1. 65 1.59 

1. 71 

1. 74 1. 71 1.66 

0.47 0.43 

0.44 

0.42 

For a given fill heights, let Ben denote the Bond number for 

which the ROen mode becomes neutrally stable, that is, for which 

W
2

(Ben) O. Table 11 shows the values of the Bond numbers for the 

neutral stability of various modes as calculated by the 10-point 

approximation to ¢, which we shall denote by BSn,lO' As B 

increases the various modes become unstable in order of increasing 

S mode number, 

accurate values 

that is, with 

so Bel 

of B crit 

BSl ,10 . 

is B . crlt 
We have already compared the 

with the corresponding values of B 
crit,lO ' 
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Table 11. -B 8n,10 
for various modes and 

h R08l R082 R083 R084 v 

0.20 468.25 471.42 475.42 480.89 

0.30 130.73 133.22 137.11 142.49 

0.40 49.35 51.28 54.19 57.19 

Our last comparison is between the values of 

B8n ,20' Define ~B8n as 

~B = B - B 
8n 8n,10 8n,20 

fill heights. 

R085 

149.28 

Band 
8n,10 

R086 

495.85 

157.60 

Table 12 shows values of ~B8n for various modes and fill heights. It 

shows that the values of ~B8n are approximately 3/4 of the correspond-

ing values of ~B*. For a given fill height 

the same for each mode. This implies that the 

~B8 is approximately 
n 

. 2 . error 1n w
lO 

1S 

approximately -(dw2/dB)~B* for some range of Bond numbers containing 

these 

Table 12. ~B8n for various modes and fill heights. 

h 
v 

0.30 

R08l R082 

1.68 1.69 

0.40 0.42 0.42 

R083 

1.59 

When the values of B8n given in Table 11 are adjusted by adding 

~B~': , the values shown in Table 13 are obtained. 

46 



Table 13: Adjusted values of -B 
en for various modes and fill heights. 

h ROe1 ROS2 ROe3 Roe4 ROSS Roe6 
v 

0.20 480.43 483.6 487.6 493.1 508.0 

0.30 132.96 135.5 139.3 144.7 151.5 159.8 

0.40 49.91 51. 8 54.8 57.8 

We consider finally the R1 modes. Table 14 shows the relative 

difference in w2 calculated with the 10-point and 20-point approxi-

mations, that is, The value of w2 differed by 10% 

for the RIel mode with h = 0.20. It differed by 2.6 - 2.7% for the 
v 

R1e1 and R1e2 modes with h = 0.40 for Bond number 55, which is 
v 

near Bd" . 
lV 

The value of 2 
w differed by only 1 - 2% for all the 

R1 modes with h = 0.30 or 0.40 and Bond numbers not near Bd " 
v lV 

Table 14. Range of f'....w2/w2 for various modes and fill heights. 

h range of -B 
v 

0.20 

0.30 

0.40 

0.40 

450.-500. 

130.-140. 

45.- 50. 

55. 

R1e1 

0.100 

0.015-0.016 

0.015-0.019 

0.026 

47 

R1e2 

0.015-0.016 

0.014-0.019 

0.02;' 
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0.015-0.016 



13. Growth Rates and Accuracy for Fill Height = 0.30 

Figure 8 and Table A 2 show w
2 (B) of the various RO modes for 

h 0.30 They show which is the maximally unstable mode for each 
v 

value of B The information for the maximally unstable mode is 

displayed in Table 15. The values of B listed in this table have 

been adjusted by ~B* 

For example, the ROe 1 mode is the maximaLly unstable one for 

-134.04 < B < -132.96 , the ROe2 mode for -140.27 < B < -134.04 ,. 

etc. The value of is an estimate of the accuracy of 2 w 

before adjustment by ~B* . W f 1 h ... 2 e ee t e error remalnlng ln W after 

this adjustment is less than (dw2/dBMB*. In particular, we feel 

the errors remaining in 2 
w for the 

are 1/10 to 1/4 of (dw2/dB)~B*. 

Roel , ROEl2 , and Roe3 modes 

Table 15. of the maximally unstable mode for h 
v 

0.30. 

-B 2 
w 

132.96 0.0 

134.04 0.0025 

140.27 0.0218 

149.99 0.0808 

163.48 0.204 

179.76 0.407 

202.23 0.701 
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maximally 
unstable 

Roel 

Roe2 

Roe3 

R084 

Roes 

Roe6 

(dW
2 /dB)~B* 

0.0017 

0.007 

0.014 

0.021 

0.028 

0.032 



The dimensionless growth rate r of the maximally unstable mode 

is shown in Table 16. The corresponding growth period in seconds is 

This is calculated for a cylinder of radius 7 Cllt for the three 

liquids ethanol, freon, and FC78. The values of p/o used for these 

2 3 were 0.03538, 0.08489, and 0.131 sec /cm ,respectively. Ethanol has 

the fastest growth rates and FC78 has the slowest. B . is -132.96 crlt 

for this case. At Bond number B = -150 the growth periods range ' 

from 1.0 to 1.9 sec. At B = -202 , which is 50% beyond B . , they crlt 

range from 0.29 to 0.56 sec. It is not likely that growth would be 

observed in these cases in an experiment with a negative-B phase of 

only 2.5 sec, since only 2-8 growth periods would elapse. 

Table 16. Maximal growth rates and growth periods for h 0.30 
v 

dimensionless values growth period 

-B r ethanol freon 
~--~.----

132.96 0.0 00 co 

134.04 0.050 5.9 9.2 

140.27 0.148 1. 99 3.1 

149.99 0.284 1.00 1.5,~ 

163.48 0.451 0.60 0.93 

179.76 0.638 0.41 0.63 

202.23 0.837 0.29 0.45 

-.--.----

The errors in 2 
w for the smaller values of 

(sec) 

FC78 

00 

11.4 

3.8 

1. 92 

1.16 

0.78 

0.56 

2 
w (the Roe1 , 

R082 , and ROe3 modes) have a greater percentage reduction from the 

~B* adjustment than those for larger values of 
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2 
w However, these 



errors were initially larger fractions of their values of 
2 w than 

those for the larger values of 
2 

(ll As a result of these two effects, 

the errors in 
2 

w remaining after this adjustment probably lie in the 

range 5 - 20%, the larger values of 2 
w being more accurate. The 

corresponding errors in the growth rate probably lie in the range 

2 - 10%. However, these are only the computational errors in r 

they represent the accuracy with which the growth rates were calculated 

from the assumed model of the liquid motion. The accuracy with which 

they describe experimentally observed growth rates depends also on 

the accuracy of that model. In this model the fluid motion was assumed 

to be nonviscous and irrotational, and the contact angle was assumed to 

be time independent. These assumptions could be tested by computing 

the fluid motion with a complete hydrodynamics code that includes all 

the relevant effects. 
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14. Summary 

In this paper we calculate the small-amplitude periodic sloshing 

modes of a liquid in a vertical right circular cylinder with a concave 

spheroidal bottom, for the case in which there is not sufficient liquid 

to cover the bottom entirely. Numerical results are obtained for a con-

tainer currently used for the storage of liquid fuels in the Centaur 

space vehicles, for which the axial ratio of the bottom is b/a = 

0.724 

We follow the derivation in [2] for obtaining the equations of 

motion for the case studied here, but we use a different technique for 

obtaining the numerical solution. The liquid is subject to surface 

and gravitational forces. The equilibrium surface is the solution of 

the time-independent Bernoulli equation subject to a contact-angle 

condition. 

It is assumed for the dynamical equations that the fluid flow is 

irrotational and incompressible. The fluid velocity is the gradient of 

a potential function that satisfies Laplace's equation. The velocity 

potential and its gradient on the free surface an~ related by the 

linearized time-dependent Bernoulli equation and the contact-angle 

condition. The sloshing motion is analyzed in terms of normal modes. 

The discrete form of these equations yields a generalized eigenvalue 

problem for 2 
W ,the square of the normal-mode frequency. This 

problem was solved numerically using the IMSL routine EIGZF. 

The accuracy of this numerical procedure was tested by calculating 

the eigenvalues and eigenvectors for the small-amplitude periodic 

sloshing modes of a liquid contained between two concentric vertical 
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circular cylinders for contact angle y = 90° and comparing with the 

known analytic solution for this case. The numerical values of 
2 

w 

were correct typically to about 1 or 2%, a satisfactory accuracy for 

our purposes. 

Equilibrium surfaces of a liquid in a vertical circular cylinder 

with a concave spheroidal bottom were calculated for contact angle 

y = 0° , axial ratio of the spheroidal bottom b/a = 0.724 , fill 

heights h ranging from 0.20 to 0.70, and many values of the Bond 
v 

number. These equilibrium surfaces are members of a family with 

parameters Band h 
v 

B . was defined above as the critical 
crlt 

value of the Bond number for the stability of surfaces of this family 

for a given fill height. B was defined as the critical value of 
eq 

the Bond number for the nonexistence of equilibrium surfaces of this 

family. Stable equilibrium surfaces exist for B . < B , unstable 
crlt 

equilibrium surfaces exist for B < B < B . < 0 
eq crlt 

and no equilibrium surfaces exist for B < B 
eq 

For all the values of the fill height that were studied, stable 

equilibrium surfaces were found for a range of Bond numbers, 

B . <B<O 
crlt 

To the accuracy of these calculations, we found the 

same value for B , as was found in the static analysis of the same 
crlt 

problem [lJ. 

For fill heights ranging from 0.20 to 0.45, we found unstable 

equilibrium surfaces for a range of Bond numbers B < B < B 
conv crit ' 

but no equilibrium surfaces of this family were found for 

B < B
d

. < B 
lV conv 

B and Ed' are approKimations to B .) 
conv lV eq 
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For h = 0.50 unstable equilibrium surfaces were found for a very 
v 

small range of Bond numbers. For h 
v 

0.60 and 0.70 no equilibrium 

surfaces of this family were found for B < B . crlt: To the accuracy 

of these calculations, these results are consistent with [lJ, which 

found that B eq B . crlt for h ~ h* 0.503 , but that B < B . 
eq crlt . v. v 

for h < h* 
v v 

The qualitative nature of the stability of the individual normal 

modes differs for the two cases h < h* and h ~ h* 

heights 

v v v v 

h = 0.20, 0.30, and 0.40 , the normal modes 
v 

For fill 

Roel, R082 , 

ROe3, .•. become marginally stable at a sequence of Bond numbers 

... Be3 < Be2 < Bel = Bcrit < O. Each RO mode is the fastest 

growing mode for a small range of Bond numbers. For fill heights 

h = 0.60 and 0.70 all the modes that were studied approach 
v 

instability as the Bond number approaches B . • crlt For each mode the 

function {J} (B) curves toward the 
2 

w = 0 axis, approaching zero 

with increasing rapidity as B approaches B crit For h = 0.50 v 

which is near the critical fill height h* , the ROel mode becomes 
v 

marginally stable at a slightly higher Bond number than the other 

modes. The instability of all modes for h ~ h* and B < B crit v v 

is consistent with the nonexistence of equilibrium surfaces nearby 

the critical one for this range of parameters. 

Most of the calculations of 2 
w were made by approximating the 

velocity potential on a meridian along the free surface by its value 

at 10 points. It was possible to correct partially these calculated 

values of 

errors. 

2 
w by applying an adjustment based on a study of the 
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Growth rates of the maximally unstable mode were calculated for 

the case h = 0.30 
v 

using the adjusted values of 2 
w Each of the 

modes R08l, R082, ... R086 , in. succession, was the maximally unstable 

one for a small range of Bond numbers. The corresponding growth periods 

in seconds were calculated for a cylinder of radius 7 cm for the 

three liquids ethanol, freon, and PC78. Ethanol has the fastest 

growth rates and PC78 has the slowest. B . is -132.96 for this crlt 

case. At Bond number B = -150 the growth periods range from 1.0 to 

1. 9 sec. At B = ··202 , which is 50% beyond B . ,they range from crlt 

0.29 to 0.56 sec. It is not likely that growth would be observed in 

these cases in an experiment with a negative-B phase of only 2.5 sec, 

since only 2 to 8 growth periods would elapse. 
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a 

A 

b 

B 

B . crlt 

B 
eq 

B ,B
d

. 
conv lV 

c,d 

C 

LIST OF SYMBOLS 

Radius of cylindrical container and horizontal 

semiaxis of spheroidal bottom. 

Diagonal -matrix in the discretized:time-dependent 

Bernoulli equation. 

Vertical semiaxis of spheroidal bottom. 

2 
Bond number- Ka 

Critical Bond number for stability of equilibrium 

surfaces. 

Critical Bond number for the nonexistence of 

equilibrium surfaces of the family considered 

in this report. 

Approximations to B 
eq 

Critical Bond number for stability of the ROem 

mode. 

Constants in a linear combination of Bessel 

functions. 

Matrix in the discrete solution of the Laplace 

equation. 
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D, E, F 

v 

e, 
J 

g 

h 
v 

h* 
v 

H 

i'i(s,e,t) 

R(s) 

J 
m 

Matrices. 

A rectangular domain. 

V 'th 'the J,th 't' d ector Wl a one ln POSl lon an zeros 

elsewhere. 

Acceleration due to gravity, considered positive 

when directed vertically downward. 

Dimensionless fill height. 

Critical h for existence of unstable equilibrium 
v 

surfaces of the family considered in this report. 

These exist for h < h* and B < B < B , 
v v eq crlt 

Mean curvature at a point on the free surface, 

considered negative when the surface is concave 

upward. 

Scaled mean curvature Ra 

A constant = (pg-PO)a/2o , interpreted as the 

extrapolated value of R at the height z = 0 

Displacement n of the free :3Urface. 

A factor in the normal mode expression of the 

displacement of the free surface. 

Bessel function of the first kind of order m. 
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k The argument of the Bessel function is kr. 

K, L Terms representing the contact-angle conditions. 

., m Number of angular nodes in the normal mode. 

M The meridians of the cylinder wall and spheroidal 

bottom in the cross-sectional plane are divided 

into M intervals. 

n Each of the meridians of the free surface, cylinder 

walls, and flat bottom in the cross-sectional plane 

of two concentric cylinders is divided into n 

intervals. 

subscript n Outward normal derivative. 

N The meridian of the free surface in the cross-

sectional plane is divided into N intervals. 

Gas pressure. 

Liquid static pressure at the height z = 0 . 

p. 
J 

The integral of Q(s) R(s) over the jth interval. 

Q(s), Q(r) A functional. of the free surface appearing in the 

linearized Bernoulli equation. 

r Radial coordinate. 

r Scaled radial coordinate 

subscript r dldr . 
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R(s) 

RO, Rl, R2, ... 

s' 

subscript s 

s, e, n 

t 

t 

subscript t 

T 

Radii of two concentric right: circular cylinders. 

Radius of the equilibrium free surface as a 

function of the arc length along the meridian. 

Normal modes with 0, 1, 2, ... radial nodes in ¢ . 

Arc length along the meridians of the free surface, 

cylinder wall, and spheroidal bottom in the cross­

sectional plane: 0 ~ s ~ S on the free surface. 

dlds . 

Surface polar normal coordinates. 

Midpoints of the N intervals on the meridian of 

the free surface in the cross·-sectional plane. 

Time coordinate. 

Scaled time coordinate 

dldt . 

Endpoints of the N intervals on the meridian of 

the free surface,in the cross-sectional plane. 

Tridiagonal matrix in the discretized time­

dependent Bernoulli equation. 

60 



U(z) 

v 

v 

w 

X(y) 

y 
m 

z 

z 

Z(s) 

y 

r 

L'lB 

A factor of the velocity potential in the liquid 

contained between two concentric cylinders. 

Fluid velocity. 

Volume of the liquid in the cylinder. 

Matrix in the discrete solution of the Laplace 

equation. 

A factor of the velocity potential in the liquid 

contained between two concentric cylinders. 

Bessel function of the second kind of order m. 

Vertical coordinate. 

Scaled vertical coordinate z/a 

Height of liquid contained between two concentric 

cylinders. 

Height of the equilibrium surface as a function of 

the radius. 

Height of the spheroidal bottom as a function of the 

radius. 

Contact angle. 

Dimensionless growth rate of rnaximally growing mode. 

2 2 
L'lw I(dw IdB) . 
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6B* 

n 

8 

80,81,82, .•. 

K 

p 

o 

cjJ(r,z,8,t) 

cjJ(r,z) 

= B - B , where B is the value 
crit,lO crit crit,lO 

of B . calculated by the lO-point approximation. 
crlt 

B 
8n,10 

2 
wlO ' where and are the values 

calculated by the 20-· and 10-point approxi-

mations, respectively. 

Displacement normal to the equilibrium surface. 

Angle around the cylinder axis. 

Normal modes with 0, 1, 2, ... angular nodes. 

Capillary constant pg/0 . 

Difference in densities between the liquid and 

gas phases. 

Gas-liquid surface tension. 

Potential function for the fluid velocity. 

A factor in the normal mode eKpression of velocity 

potential. 

Vector of values of cjJ at N points on the 

meridian on the free surface. 

6? 



<P2 

,J 

x 

w 

Vector of values of q> at H points on the 

meridians on the cylinder wall and bott.om. 

Vector (<P
I

,<P
2

) 

Angle in the cross-sectional plane between the 

horizontal and the tangent to the meridian on the 

bottom. 

Angle in the cross-sectional plane between the 

horizontal and the tangent to the meridian on the 

free surface. 

Frequency of the normal mode. 
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Table A 1. 
2 

W (B) for various 8 modes; fill height 0.20; 

radial mode = RO. 

-Bond 81 82 83 84 86 

200. 0.0910 0.363 0.817 1.46 3.30 

400. 0.0116 0.0473 0.111 0.208 0.535 

450. 0.0027 0.0121 0.032 0.069 0.226 

500. -0.0044 -0.0161 -0.031 -0.043 -0.020 

550. -0.0101 -0.0392 -0.083 -O.13il -0.223 

600. -0.0151 -0.0585 -0.126 -0.210 -0.392 

700. -0.0227 -0.0889 -0.194 -0.330 -0.657 

800. -0.0285 -0.112 -0.245 -0.420 -0.856 

900. -0.0330 -0.130 -0.285 -0.491 -1.01 

1000. -0.0366 -0.144 -0.317 -0.54} -1.14 

~~-~~~-.~----
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Table A 2. W
2

(B) for various 8 modes; fill height = 0.30; 

radial mode = RO. 

-Bond 81 82 83 84 85 

50. 0.170 0.686 1.57 2.86 4.60 

100. 0.0328 0.139 0.339 0.666 1.16 

110. 0.0202 0.0883 0.226 0.4M 0.841 

120. 0.0096 0.0460 0.131 0.295 0.576 

130. 0.0006 0.0100 0.050 0.151 0.351 

140. -0.0072 -0.0210 -0.020 0.027 0.157 

150. -0.0140 -0.0481 -0.081 -0.081 -0.012 

160. -0.0200 -0.0720 -0.135 -0.176 -0.160 

180. -0.0302 -0.113 -0.225 -0.336 -0.410 

200. -0.0389 -0.147 -0.301 -0.468 -0.612 

210. -0.0431 -0.163 -0.336 -0.527 -0.701 

216. -0.0462 -0.175 -0.358 -0.562 -0.750 

--------
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86 

6.84 

1.86 

1.40 

1.01 

0.688 

0.407 

0.163 

-0.051 

-0.411 

-0.701 

-0.826 

-0.892 



Table A 3. 2 weB) for various 8 modes; fill height = 0.30; 

radial mode = Rl. 

-Bond 80 82 84 86 

._._--_. 

50. 350. 352. 359. 370. 

100. 153. 154. 158. 163. 

110. 135. 136. 139. 144. 

120. 119. 120. 123. 127. 

130. 105. 106. 109. 113. 

140. 93.5 94.4 96.8 101. 

150. 82.9 83.7 86.1 89.8 

160. 73.3 74.1 76.3 79.8 

180. 56.1 56.9 58.9 62.1 

200. 39.6 40.3 42.2 45.1 

210. 30.1 30.7 32.5 35.2 

216. 21.1 21. 7 23.4 25.8 

.. -----.----.--.~-~--~------
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Table A 4. W
2

(B) for various 8 modes; fill height = 0.40; 

radial mode = RO. 

-Bond 81 82 83 84 86 

20. 0.225 0.936 2.24 4.28 11.3 

40. 0.0384 0.182 0.503 1.10 3.52 

45. 0.0161 0.0920 0.298 O.72tl 2.59 

50. -0.0024 0.0172 0.127 0.411 1. 81 

55. -0.0193 -0.0498 -0.025 0.133 1.09 

56. -0.0229 -0.0635 -0.055 0.017 0.938 

57. -0.0268 -0.0784 -0.088 0.017 0.768 

58. -0.0329 -0.100 -0.134 -0.069 0.497 
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Table A 5. W
2(B) for various 8 modes; fill height 0.40; 

radial mode = R1. 

-Bond 80 82 84 86 

-----~---------------

20. 132. 135. 144. 158. 

40. 49.2 50.8 55.4 62.8 

45. 38.2 39.7 43.8 50.2 

50. 28.3 29.6 33.2 38.9 

55. 18.1 19.3 22.3 27.0 

56. 15.8 16.8 19.7 24.2 

57. 13.0 14.0 16.7 20.7 

58. 8.07 8.89 11.1 14.3 

-----~-----~-------------
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Table A 6. W
2

(B) for various 8 modes; fill height = 0.50; 

radial mode = RO. 

-Bond 81 82 83 84 86 

8. 0.359 1.56 3.93 7.88 22.1 

16. 0.0821 0.407 1.15 2.51 7.62 

18. 0.0455 0.254 0.782 1. 78 5.53 

19. 0.0281 0.181 0.604 1.42 4.46 

20. 0.0082 0.0993 0.398 0.989 3.09 

20.1 0.0055 0.0882 0.369 0.926 2.88 

20.2 0.0021 0.0743 0.333 0.845 2.61 

20.25 -0.0003 0.0645 0.306 0.785 2.40 

20.2759 -0.0027 0.0549 0.280 0.722 2.18 
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Table A 7. (i(B) for various 8 modes; fill height 0.50; 

radial mode = R1. 

-Bond 80 82 84 86 

8. 7l.1 75.8 89.6 113. 

16. 23.3 25.8 32.7 44.6 

18. 16.1 18.1 24.0 34.1 

19. 12.4 14.2 19.4 28.4 

20. 7.75 9.24 13.4 20.9 

20.1 7.06 8.49 12.5 19.7 

20.2 6.17 7.53 11.3 18.0 

20.25 5.52 6.80 10.4 16.8 

20.2759 4.85 6.06 9.41 15.5 
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Table A 8. W
2

(B) for various 8 modes; fill height = 0.60; 

radial mode = RO. 

-Bond 81 82 83 84 86 

3.S 0.S31 2.47 6.62 13.8 39.0 

7.0 0.lS2 0.790 2.26 4.81 13.4 

8.0 0.0849 0.487 1.44 3.06 8.16 

8.2 0.0697 0.41S 1.24 2.61 6.81 

8.4 0.0483 0.308 0.917 1.88 4.S9 

8.41 0.0466 0.299 0.889 1.81 4.40 

8.42 0.0443 0.286 0.847 1.72 4.11 
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Table A 9. 2 w (B) for various 8 modes; fill height 0.60; 

radial mode = Rl. 

-Bond 80 82 84. 86 

3.5 44.3 51.5 73.7 117. 

7.0 14.2 17.8 28.9 51.3 

8.0 7.98 10.7 19.0 35.8 

8.2 6.39 8.82 16.2 31.0 

8.4 3.83 5.70 11.3 22.4 

8.41 3.61 5.43 10.8 21.6 

8.42 3.30 5.04 10.2 20.6 

------
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Table A 10. u}(B) for various 8 modes; fill he:lght 0.70; 

radial mode = RD. 

-Bond 81 82 83 84 86 

1.5 0.771 3.94 11.1 23.5 65.1 

3.0 0.306 1.67 4.79 9.99 26.6 

3.2 0.266 1.47 4.20 8.72 23.0 

3.4 0.227 1.27 3.63 7.49 19.5 

3.6 0.188 1.07 3.06 6.22 15.9 

3.8 0.148 0.855 2.40 4.78 11.8 

3.9 0.124 0.719 1. 98 3.86 9.26 

3.94 0.111 0.647 1. 75 3.36 7.93 

3.98 0.0945 0.543 1.42 2.65 6.07 

------
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Table A 11. 2 w (B) for various 8 modes; fill height 0.70; 

radial mode = R1. 

-Bond. 80 82 84 86 

1.5 30.7 41.5 78.5 162. 

3.0 12.2 18.1 38.6 85.7 

3.2 10.4 15.8 34.5 77 .6 

3.4 8.67 l3.6 30.5 69.2 

3.6 6.91 11.2 26.2 59.8 

3.8 4.96 8.59 21.1 48.3 

3.9 3.75 6.89 17.7 40.7 

3.94 3.14 6.02 15.9 36.6 

3.98 2.30 4.79 13.3 30.9 

----------
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