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1. Introduction

This report presents a vehicle reidentification algorithm for consecutive detector stations on a

freeway, whereby a vehicle measurement made at a downstream detector station is matched with

the vehicle's corresponding measurement at an upstream station.  The algorithm should improve

freeway surveillance by measuring the actual vehicle travel times; these are simply the differences

in the times that each (matched) vehicle arrives to the upstream and downstream stations.  Thus, it

will be possible to quantify conditions between widely spaced detector stations rather than

assuming that the local conditions measured at a single station are representative of an extended

link between stations.

The method is developed using effective vehicle length1 measured at dual loop speed traps.

These detectors are quite common, often placed at half mile spacings or less on urban freeways.

The proposed approach is a milestone in highway research because no previous work uses the

existing detector infrastructure to match vehicle measurements between detector stations.  The

work is also transferable to other detector technologies capable of extracting a reproducible vehicle

measurement, i.e., a vehicle signature, such as video image processing.

Because the proposed algorithm was developed with conventional loop detectors in mind, it

uses the (effective) length measurements to distinguish vehicles.  Notably, a length measurement

may be accurate to only 2 feet due to resolution limitations, making difficult the task of matching

pair-wise measurements at upstream and downstream detector stations.  However, if the difference

between two measurements exceed this measurement resolution, then the pair of measurements

probably did     not    come from the same vehicle.  After applying this resolution test to each pair of

upstream and downstream measurements (for some specified group of vehicles), the remaining

pair-wise comparisons that can not be eliminated are considered possible matches.  For example,

the upstream and downstream length measurements from the same vehicle should pass the

resolution test and the pair will be labeled a possible match.  Frequently however, one vehicle's

measurement downstream will be a possible match to a different vehicle's measurement upstream

because this pair of measurements likewise passes the resolution test.  Clearly, these possible, but

incorrect, matches are false positives.

Toward eliminating these false positives, the algorithm uses a simple trick: it matches

platoons whenever the vehicles pass both detectors in the same relative order.  The sequence of

measured lengths in a platoon provides more information than do the individual measurements.

For each vehicle in the platoon, the resolution test applied to the correct (but unknown) pair of

                                                
1 The effective vehicle length is the length as "seen" by the detectors; i.e., the physical length and the length of the

detection zone.
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upstream/downstream measurements should yield a possible match and the entire platoon should

produce a contiguous sequence of possible matches in the space of pair-wise length comparisons.

The problem is complicated in that the false positives can form spurious sequences of possible

matches in the pair-wise comparison space.  However, as a sequence of possible matches increases

in number, the probability that it is due to false positives decreases.  The vehicle reidentification

problem becomes a matter of searching the pair-wise comparison space for contiguous sequences

of possible matches that are long enough so that they are probably not caused by false positives.

The research presented in this document has investigated three different approaches to

searching the pair-wise comparison space.  The results suggest that it is possible to extract a

sufficient number of platoons for traffic surveillance applications, while accepting few, if any,

false positives.

1.1 Overview

Before addressing the vehicle reidentification algorithms, the motivation for this work is presented

in chapter 2 and other surveillance methods that are relevant to travel time measurement are

described in chapter 3.  Chapter 4 presents the vehicle reidentification algorithms in detail using a

pilot study to illustrate the steps.  Chapter 5 examines three large examples to quantify the

algorithms' performance.  Chapter 6 discusses extensions and future research projects based on

this work.  Following the conclusions in 7 and a list of references, there are three appendices that

explain in a step-by-step fashion how to implement the algorithms.

2. Motivation

This work could facilitate travel time measurement using existing detector infrastructure on

freeways and would require minimal communications compared to other vehicle reidentification

systems.  Although the benefits of travel time measurement may be inflated in some of the

literature, it still is a promising surveillance tool for traffic engineers.  Travel time data could

improve existing surveillance applications such as incident detection, control at ramp meters, and

traveler information via existing technologies (e.g., changeable message signs and highway

advisory radio).  The travel time data could also serve as input to emerging technologies such as

dynamic traffic assignment (DTA).  More importantly, the data could be used to quantify the

benefits from these emerging technologies using real traffic data, off-line, before making

significant infrastructure investments.  Such analysis will allow for quantifying the necessary level

of accuracy for a given application.  As accuracy increases, the marginal costs for further

improvements will likely increase.  Thus, a municipality can deploy the least expensive detection

system that meets these specified requirements.
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Finally, there are applications which might benefit from the vehicle reidentification or travel

time data, although on their own, probably do not justify the deployment of a vehicle

reidentification system.  For example, the travel time data could be useful for planning applications

and the reidentification algorithms could be used to study individual driver dynamics over time and

space.  The remainder of this section will examine four applications: incident detection, DTA, delay

measurement for planning purposes, and for studying driver dynamics.

2.1 Incident detection

A recent report from Caltrans [1] stated that, "Incidents are, by definition, perturbations in the

normal operating characteristics of a transportation system, chief of which is travel time."  The

potential benefits of incident detection have been known for years [2-6].  Faster response to an

incident can reduce the number of drivers affected and reduce the average delay for those who are

affected.  By reducing total delay, other costs associated with the incident, such as wasted fuel and

increased emissions, will also decrease.

Countless automated incident detection strategies have been proposed, but most of these

systems suffer from high false alarm rates and/or long detection times.  A reliable incident detection

system using speed traps has been demonstrated by Lin and Daganzo [7].  The system uses two

widely spaced detector stations to detect two "signals" that propagate through the traffic stream.

The two signals, a backward moving shock wave and a forward moving drop in flow, are

indicative of an incident between the stations.  As noted in [7], "Detection of an incident can

happen only when both signals have been received...."  Although the drop in flow travels at the

prevailing traffic speed, this earlier work estimated the shock wave speed to be on the order of 8

mph.

Fortunately, the drop in flow reflects the fact that vehicles are being delayed behind the

incident.  All vehicles that arrive at the station after the drop should experience increased travel

times over the segment.  Thus, an incident detection system based on travel time may not have to

wait for the slow moving shock wave to reach the upstream station before detecting the incident.

When using travel time to detect incidents, it is necessary to localize the source of delay.  It

could either be caused by an incident within the link2, or by queues backing up from some event

downstream of the link.  In the former case, the downstream detector station will be downstream

of the bottleneck and should observe free flow vehicle velocities; while in the latter case, the

downstream detector station will be observing congested traffic with lower vehicle velocities.

                                                
2 Assuming that there are no recurring bottlenecks within the link
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2.2 Dynamic Trip Assignment

Many researchers are investigating DTA as a means to reduce traveler delay.  As proposed, a DTA

system would observe current [8-16] and historical traffic conditions [8-15, 17-18], estimate travel

times over the network and then route vehicles with the goal of reducing traveler delay.

Typically, the travel time forecasts are based on traditional traffic parameters (such as flow,

velocity, and occupancy) measured at discrete point detectors [8-16].  Usually, the point

measurements are averaged over fixed time periods (20 seconds-15 minutes) to smooth out

transients and then generalized to a link of significant length (0.5-5 miles long).  However, the

fixed time periods generally do not correspond to a single steady state condition.  Instead, a sample

may include multiple traffic states and the fixed time average may not reflect any conditions that

actually occurred at the detector [19].

Unfortunately, there is not a one-to-one relationship between travel time over an extended

link and traffic parameters measured at a discrete point within that link.  The DTA literature does

not appear to consider the option of measuring travel time directly, but the use of direct travel time

measurements should improve the performance of a travel time forecasting algorithm both through

real time data, and by providing a set of historical data.

Although the promoters of DTA systems forecast significant benefits, the systems have

only been tested in simulation or in very limited field studies [20].  The proposed travel time

measurement system could be used for much-needed evaluation under real-world conditions.

2.3 Planning applications

If a travel time measurement system is deployed for ATIS (Advanced Traveler Information

Systems) applications or incident detection, the system could prove beneficial to planning

applications as well.  Three such applications are considered below, quantifying congestion, model

validation and calibration, and tracking freight movements.

2.3.1  Quantifying congestion

Congestion and the associated costs from delay, wasted fuel and increased pollution, have become

significant problems for transportation users and non-users alike.  Tracking congestion trends can

help planners assess how fast problems are growing.  The trends can also be used to quantify the

benefits of congestion countermeasures.

The state of the practice for quantifying delay and congestion on the metropolitan area level

is to use average daily "volume/capacity" measured at discrete points to estimate delay over

extended links [21].  As noted in subsection 2.2, there are many problems with using point

measurements to estimate travel time or in this case, delay.  It would be better to measure delay

directly, i.e., (actual travel time) - (travel time at posted speed limit)
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2.3.2  Model validation and calibration

Model validation and calibration is an important task for the traditional four step planning process

as well as the on-going Travel Model Improvement Program which seeks to replace this process

with microsimulation models.  For example, the TRANSIMS designers at Los Alamos National

Labs note that "The most important result of a transportation microsimulation in [the planning]

context should be the delays..." [22].  It will be important to verify and calibrate these models to

real networks, a task that is well suited to the travel time measurement system.

2.3.3  Tracking freight movements

Finally, because the vehicle reidentification method works particularly well with trucks, it should

allow for generating origin-destination (O/D) data on freight movements, and thus, track these

movements through the urban freeway network.  This point is significant since researchers

estimate that freight movement accounts for nearly 1/2 of all transportation costs, but these

movements are virtually excluded from the Urban Transportation Planning Process [23].  Because

trucks are a primary factor for pavement degradation, the O/D data on freight movements should

prove to be significant when forecasting future pavement needs.

2.4 Driver dynamics

Using traditional surveillance methods, it is difficult to examine individual driver dynamics over

extended distances.  Usually, driver dynamics studies rely on aggregate traffic parameters at

multiple sites or restrict the scope to a small number of drivers to overcome the difficulties

associated with following vehicles over large distances.  The proposed vehicle reidentification

system could be used to match observations from the same driver at multiple sites along an

extended highway segment.  Thus, it will be possible to study behavioral trends over time and

space by examining the driver parameters (headway and velocity) at multiple locations.

3. Other Surveillance Methods

This chapter discusses preceding research related to vehicle reidentification or travel time

measurement systems.  First, complementary detector technologies are presented in section 3.1,

the competing vehicle reidentification systems are presented in section 3.2.

3.1 Complementary technologies

Although this report focuses on measured vehicle lengths from speed traps, the proposed

reidentification algorithms could be applied to other signature based detector systems.  There are

four emerging detector systems under Caltrans sponsorship that promise to yield more robust

vehicle signatures while being compatible with the reidentification algorithm:
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1.  Inductive Vehicle Signatures from Loop Detectors: Stephen Ritchie, University of California,

Irvine [24].

2. Vehicle Dimensions and Velocity From Scanning Laser Radar: Harry Cheng, University of

California, Davis [25].

3. Vehicle Dimensions and Velocity From Overhead Video Detectors: Art MacCarley, Cal Poly,

San Luis Obispo [26].

4. Visual Vehicle Signatures from Wayside Cameras: Jitendra Malik, University of California,

Berkeley, [27, 35].

For example, item 2 above is designed to measure vehicle length with an error of 1 inch at

free flow traffic speeds (versus 24 inches with the speed traps).

3.2 Competing technologies

Several systems have been proposed for measuring travel time directly using vehicle signatures

[24, 28-38].  These emerging technologies use specialized hardware to extract vehicle signatures

that are more descriptive than effective length.  In most cases, the systems have only been installed

on small test sites.  Some of the systems use automatic vehicle identification (AVI), e.g., machine

readable "license plates", [28-34] that make vehicle reidentification trivial, but the systems may

compromise personal privacy.  Furthermore, the AVI systems do not measure local velocities at the

detectors, so, an incident detection system based on AVI technology would require three stations to

localize the source of delay (see section 2.1 for more information).

Other surveillance systems have been proposed for estimating travel time from aggregate

traffic parameters [39-40].  Although these systems appear promising for free flow and lightly

congested conditions, they currently do not perform well under heavy congestion.

Another approach for measuring travel time is to match vehicles simply based on the

cumulative arrivals at successive detector stations [41-42], i.e., the n-th vehicle at one station is

matched to the n-th vehicle at the next station.  To counter detector drift between stations, these

systems use aggregate measurements to recalibrate during free flow conditions.  Unfortunately,

congestion can last several hours, leading to significant measurement drift between recalibrations.

Tables 3-1 and 3-2 compare the various travel time measurement systems.  The

reidentification rate based upon vehicle length measurements at speed traps is not as high as the

emerging signature extraction technologies.  But, because the former can be implemented using the

existing detection hardware, the benefits of travel time measurement can be quantified     before   a

jurisdiction commits to purchasing a travel time measurement system.
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Mode Primary Correlation Feature(s) Wayside Detectors Wayside Control Hardware

Vehicle mounted transponders / 
license plate readers

vehicle new new

Visual signature vehicle new new

Magnetic signature vehicle and platoon existing single loops new

Inferred from aggregate, point 
based measurements

features in aggregate measurements existing single loops existing

Cumulative arrivals aggregate measurements existing single loops existing

Measured length signature platoon existing paired loops existing

TABLE 3-1: Comparison of the infrastructure requirements for various travel 
                  time measurement systems
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TABLE 3-2: Projected performance of various travel time measurement systems

Mode Accuracy
Proportion of Vehicles 
Reidentified

Communications 
Bandwidth Privacy Cost References

Vehicle mounted transponders 5 5 4 1 1 [28-31]

Video image processing license 
plate readers

3-4 2-4 4 1 1 [32-34]

Visual signature 1-4 2-3 2 4 2 [35]

Magnetic signature 4 3-4 2 4 3 [24, 36-38]

Inferred from aggregate, point 
based measurements

2-3 n/a 5 5 5 [39-40]

Cumulative arrivals, without 
recalibration.

1 n/a 5 5 5 [43]

Cumulative arrivals, recalibrated 
under free flow conditions

1-3 n/a 5 5 5 [41-42]

Measured length signature 3 3 4 4 4
This 
dissertation

a: Almost 100% of the vehicles equipped with transponders can be reidentified; however, to effectively measure travel time,  
       the system requires significant portion of the vehicles be equipped with transponders.

b: Requires public participation to install and maintain transponders

c: Accuracy depends on lighting conditions, occlusion, camera angle, correctly segmenting vehicles from background, etc..
       Nighttime and darkness appear to be a significant problem.

d: These systems are computationally intensive, cost should reduce with lower cost of computing power.

e: Bandwidth and accuracy are inversely related

f: The analysis did not provide ground truth verification against measured travel times

g: The system only requires single loops and has the lowest hardware requirement

h: Cumulative arrivals at successive sites tend to "drift" due to detection errors.  Without recalibration, this method 
       rapidly breaks down.

i: Unfortunately, congestion can last several hours, leading to significant measurement drift even with recalibration during 
       free flow conditions

c

e

f

h

h,i

a

e

b b

d

g

g

g

(1=least desirable, 5=most desirable)



9

Although this section presents competing technologies for measuring travel time, it is not

intended to give the reader the impression that any one of the technologies is better than the others

under all conditions.  In fact, a hybrid between two or more systems will likely yield better

performance than any one of the systems operating independently.

4. Vehicle Reidentification Algorithms

This chapter presents three closely related algorithms for matching vehicles at widely spaced

detector stations using the measured values of effective vehicle length (i.e., the length "seen" by

the detectors).  A vehicle's measured length is not unique, it is subject to resolution constraints and

it may be affected by measurement errors.  However, a sequence of measured lengths rapidly

becomes distinct and the sequence can potentially be reidentified at successive detectors.  The three

algorithms look for short sequences of measured vehicle lengths that exhibit a strong correlation

between two stations.  Lane changes and measurement errors disrupt the sequences, so the

algorithms are specifically designed to match vehicles between these disruptions.

This chapter begins with an example of manual vehicle reidentification in section 4.1,

where a human observer matched vehicles using visual comparisons between measured lengths at

two successive detector stations.  The example presents the basic strategies used by each algorithm

to match vehicles and introduces notation used throughout the remainder of the chapter.  The

remainder of the chapter, section 4.2, describes each algorithm in detail3 and compares them.

4.1 An example of manual vehicle reidentification

The following example uses data collected at two successive detector stations on March 10, 1993

[44].  Both stations have dual loop speed traps in each lane and the example uses the two speed

traps shown in Figure 4-1.

Figure 4-2 shows just over two minutes of time series vehicle length data extracted at the

two stations4.  The upstream and downstream series were observed at different times to account

for the vehicle trip times between stations.  These length measurements are subject to resolution

constraints that are a function of the loop separation within the given speed trap, the controller

sampling rate and the vehicle velocity.  Because the loop separation and sampling rate are fixed,

vehicle length resolution ranges from 0.5 ft at 20 mph to 2 ft at 80 mph and this relation is shown

in Figure 4-3.  In addition to the resolution constraint, measurements are subject to external noise

caused by misdetections and vehicles changing lanes over the detector station.

                                                
3 See Appendix A for an explicit step by step description of each algorithm.

4 The reader can refer to Appendix C for details on how these lengths were calculated.
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Indexing these vehicles by arrival number5 rather than time, Figure 4-4A shows the two

vehicle length sequences superimposed on the same plot while Figure 4-4B shows the

corresponding velocities for reference.  To simplify later steps in the discussion, the upstream

sequence starts with vehicle number 50.  In this example, subscripts have been added to the vehicle

numbers to differentiate between the two stations: "u" for upstream and "d" for downstream.  For

each match the human observer found, the upstream and downstream measurements are plotted at

the same horizontal position, e.g., downstream vehicle number 35d is matched with upstream

vehicle number 81u.  As part of the matching process, the observer inserted four breaks in the

upstream sequence, where a break is simply a horizontal shift in one of the sequences.  A break in

one sequence is analogous to deleting a vehicle that does not have a match from the other sequence;

i.e., breaks represent lane changes that occurred between the detector stations and/or detector

errors at the stations.  The breaks were inserted strictly on the basis of improving the match

between the upstream and downstream length measurements.  The difference between the upstream

and downstream length measurements is less than 1/2 foot for approximately 75 percent of the

matches in this figure.  The strong similarity between the two sequences, in conjunction with the

correlation of the two long vehicles (labeled A and B in the figure), point to the feasibility of

reidentifying vehicles from sequences of measured vehicle lengths.

Replotting the matches from Figure 4-4A with respect to the arrival number at each station

yields Figure 4-5.  The vertical axis is increasing downward in this figure because it was plotted

using matrix notation.  The matches tend to fall into diagonal sequences at -45 degrees6, with

occasional deviations due to lane changes.  Thus, for all of the vehicles in a platoon between two

successive deviations, the upstream arrival number differs from the downstream arrival number by

a fixed offset.

4.2 Algorithm description

The three approaches to reidentifying vehicles automatically are presented in this section.  First,

subsection 4.2.1 presents the Basic Algorithm, which attempts to find an upstream match for every

vehicle that passes the downstream station.  Under free flow traffic conditions, the vehicle length

measurement resolution degrades, making difficult the task of differentiating between vehicles.

                                                
5 These numbers simply reflect the order that vehicles pass the given detector station and the arrival numbers at one

station are not directly related to the arrival numbers recorded at any other station.

6 In other words, a match will usually be to the right one column and down one row from a preceding match in this

figure.
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FIGURE 4-4B: The corresponding measured vehicle velocities
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FIGURE 4-5: This figure shows the matches from Figure 4-4A plotted with respect to the arrival 
                   number at each station.  Note that the vertical axis is increasing downward in this
                   figure because it was plotted using matrix notation.

49u 54u 59u 64u 69u 74u 79u 84u 89u 94u

0d

5d

10d

15d

20d

25d

30d

35d

40d

45d

50d

upstream vehicle number

do
w

ns
tr

ea
m

 v
eh

ic
le

 n
um

be
r



16

The Subsampling Algorithm, which only matches distinct vehicles, was developed in response to

these deficiencies and is presented in subsection 4.2.2.  The Approximation Algorithm presented in

subsection 4.2.3 provides a second approach to overcome the same deficiencies.  This final

approach tries to find the best fixed offset for a group of n vehicles, the group offset is used as an

approximation for each individual vehicle's offset within the group.  After presenting the three

algorithms, this section concludes with a brief summary contrasting the different approaches.

4.2.1  Basic Algorithm

The basic reidentification algorithm attempts to match each vehicle's length measurement at the

downstream station with its corresponding upstream measurement.  Of the three algorithms

examined, this approach could yield the most information about the traffic stream because it

attempts to make an exact match for a large number of vehicles.

The algorithm starts by comparing individual length measurements between the two

stations using a resolution test described below.  If the difference between the upstream and the

downstream measurements exceed the measurement uncertainty (which is a function of velocity, as

shown in Figure 4-3) then the observations probably did    not   come from the same vehicle.  The pair

of vehicles can then be marked as an unlikely match.  Otherwise, the pair of measurements can not

be eliminated by this test and the pair is marked as a possible match.

The algorithm applies the resolution test to each pair of upstream and downstream

measurements from some specified group of vehicles.  In practice, the group is selected to ensure

that the true, but unknown, match for a downstream vehicle will fall somewhere in the upstream

set (see Appendix A for more details).  The results of these resolution tests can be summarized in a

vehicle match matrix.  The matrix is indexed by arrival number at each station (upstream and

downstream) and each element of the matrix is the outcome of a single pair-wise resolution test.

Figure 4-6 shows an example of the notation used in the vehicle match matrix.

The fixed set of vehicles from Figure 4-4 yield the vehicle match matrix shown in Figure

4-7.  The horizontal axis is indexed by upstream arrival number and the vertical axis is indexed by

downstream arrival number.  In this figure, "O" indicates a possible match because the two length

measurements are within the measurement uncertainty, while all other elements are left empty to

indicate that a match is unlikely between the given pair of vehicles.  The manually generated

reidentifications from section 4.1 are shown for reference with the solid line, but they are unknown

by the algorithm.

Many false positives are clearly evident in Figure 4-7 since each vehicle can only have, at

most, one true match, yet most rows have more than one possible match for the given downstream
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vehicle.  Assuming that any two successive length measurements at a detector station are

independent of each other, the false positives are manifest as random noise in the vehicle match

matrix.  If a false positive occurs with probability less than 0.5, a false positive should usually be

preceded (moving up one row and shifting left one column in the matrix) by an unlikely element.

Whereas,    if vehicles maintained their order between the two stations   and the probability of a false

negative7 is less than 0.5, a true match should usually be preceded by a possible match element.

Relaxing the order constraint somewhat, the work of John Windover on driver memory [45] has

shown that long sequences of drivers often maintain their headway, and thus, their order for

extended distances.  So, if vehicles     usually    maintain their order between stations, the true (but

unknown) matches should manifest themselves as sequences (diagonal lines at -45 degrees) of

possible matches in the vehicle match matrix.  In other words, false positives will typically form

short sequences while the true matches will usually form longer sequences in the vehicle match

matrix.  To exploit this property, the algorithm looks for sequences of possible matches in the

vehicle match matrix and tallies how many sequential vehicles matched at both stations.  These

totals are stored in the sequence matrix; in which each element contains an integer totaling the

cumulative number of possible matches in a sequence up to and including the given element8.

Figure 4-8 shows a simple example of the conversion to the sequence matrix.  The sequence matrix

for the on-going example is shown in Figure 4-9, where elements of length one have been omitted

for clarity.

Next the algorithm allows for lane changes and/or misdetections in the sequences.  Figure

4-10A-C shows the three lane change maneuvers searched for by the algorithm:

(A) one vehicle exits the lane between stations or a vehicle is not detected at the downstream

station, (upstream vehicle n-1 in the example),

(B) one vehicle enters the lane between stations or a vehicle is not detected at the upstream

station, (downstream vehicle m-1 in the example),

(C) one vehicle enters and one vehicle leaves the lane between stations or there is a false

negative in the data, (vehicles m-1, n-1 in the example).

For each sequence of vehicles in the sequence matrix, the algorithm checks the first element to see

if it can be linked to an earlier sequence (i.e., a sequence starting with a lower vehicle number) via

a lane change maneuver.  The procedure is demonstrated using the sequence starting with element

                                                
7 Where a false negative is a matrix element marked as unlikely even though the two measurements actually came

from the same vehicle.

8 Thus, unlikely matches are represented by zeros, or for clarity of display, blanks in the graphical format.
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FIGURE 4-10: A simple example illustrating the possible lane change maneuvers recognized by 
the Basic Algorithm:  (A) One vehicle exits the lane between stations, (B) One 
vehicle enters the lane between stations, (C) One vehicle enters and one vehicle 
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element (m,n), (E) a hypothetical sequence matrix with (F) the resulting lane 
change matrix with a modified-sequence starting at element (m,n) shown in black.
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(m,n) in Figure 4-10D, the algorithm checks the sequence matrix to see if there are any earlier

sequences passing through one of the three shaded elements, where each element corresponds to

one of the lane change maneuvers shown in Figures 4-10A-C.  If so, the algorithm increments all

elements in the sequence starting at (m,n) by the highest value from the shaded elements   in the

sequence matrix    , less a penalty of one vehicle for the lane change, and places the modified-

sequence9 in the lane change matrix.  The penalty gives contiguous sequences a slight advantage in

the final step of the algorithm.  Otherwise, if there are no preceding sequences in the shaded

elements, then the algorithm simply copies the entire sequence unchanged from the sequence

matrix to the lane change matrix.

For example, Figure 4-10E shows a hypothetical sequence matrix with three sequences,

two of which start before downstream vehicle m-3 and are not shown in their entirety.  When the

algorithm reaches the sequence starting at (m,n), it finds that there are two earlier sequences that

pass through the search area (shown in gray).  It takes the highest value in the search area, 7,

subtracts 1, adds the result to all of the elements in the current sequence and then places the

modified-sequence in the lane change matrix, shown in Figure 4-10F.  Figure 4-11 shows the lane

change matrix for the on-going example, again, all elements of length one are omitted for clarity.

Finally, the algorithm identifies final matches by extracting all sequences from the lane

change matrix longer than a pre-specified threshold.  Entire sequences (and modified-sequences)

are selected from the lane change matrix, successively from longest to shortest10 and are copied to

the final matrix, called the threshold matrix.  Once a given match has been identified, the

corresponding row and column of the lane change matrix are removed from further considerations.

In the on-going example, a threshold level of five matches for a sequence yields the two platoons

shown in Figure 4-12.  Note that both platoons fall on the manually calibrated data and almost half

of the vehicles that passed the detector stations were reidentified (i.e., matched).

Travel time for a reidentified vehicle can then be measured by taking the difference in

known arrival times at the two stations.  To estimate travel time during the short periods with no

reidentified vehicles, the reidentification process can be approximated by pairing vehicles based on

the cumulative number to pass each station after the last correlated sequence, i.e., progress through

the matrix at -45 degrees from the last match until a new match has been identified.

                                                
9 "modified-sequence" implies that the sequence was modified because of a lane change.

10 Note that a modified sequence starts after a lane change from an earlier sequence.  The algorithm will identify the

earlier sequence and it will treat the union of the two sequences as if it were a single sequence.
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FIGURE 4-12: Threshold matrix, retaining only those sequences longer than a threshold length

"-"= manual reidentification data

"o"= output from the basic algorithm
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4.2.2  Subsampling Algorithm

The Basic Algorithm works well under congested traffic conditions.  But as previously mentioned,

the vehicle length measurement resolution degrades at free flow velocities, causing the number of

possible matches to increase in the Basic Algorithm.  Furthermore, vehicles may be less likely to

maintain their order between detector stations in free flow conditions due to frequent opportunities

to overtake one another.  Subsampling a distinct segment of the total sample can overcome these

problems.

Most vehicles on the highway (e.g., sedans, pickup trucks, etc.) are small and have

effective lengths on the order of 16-22 ft.  The range of these effective lengths is only 6 ft, but the

vehicle length measurement uncertainty may be as poor as 2 ft at free flow velocities, making

difficult the task of differentiating one small vehicle from another.  Consider the observed

distribution of vehicle lengths at one detector station, as shown in Figure 4-13A, approximately 80

percent of the measurements fall into the 16-22 ft range.  The effective length for long vehicles, on

the other hand, can range from 22 ft to over 80 ft, e.g., Figure 4-13B.  By restricting the Basic

Algorithm exclusively to long vehicles, the large range of lengths can offset the degraded

measurement resolution.  Because the long vehicles make up a small portion of the population,

there will frequently be large headways between two successive observations.  The large headways

reduce the opportunity for overtaking and increase the probability of maintaining the vehicle

sequence between detector stations.

Before comparing measurements from two stations, the algorithm "subsamples" all

vehicles longer than some pre-specified minimum length at each station and assigns sequential

integers according to their arrival.  Using the data in Figure 4-2 and a minimum length of 21 ft, the

algorithm subsamples about 20 percent of the vehicles at each station.  The Subsampling Algorithm

applies the Basic Algorithm only to the subsamples, i.e., it attempts to match all long vehicles by

following the steps previously described.  First, the algorithm generates a vehicle match matrix

(Figure 4-14A); second, it identifies sequences of potential matches (Figure 4-14B); third, it allows

for lane change maneuvers (Figure 4-14C); fourth, it keeps only those sequences over a given

threshold (Figure 4-14D).  Finally, the matches from Figure 4-14D are transposed back to the

original sample as shown in Figure 4-15.  Note that the Subsampling Algorithm has correctly

reidentified two vehicles, downstream numbers 15d and 46d, that were not matched using the Basic

Algorithm in Figure 4-12.  These vehicles fall into short sequences using the Basic Algorithm and

they are eliminated, but within the subsample, they fall into longer sequences and they are correctly

matched by the Subsampling Algorithm.

Naturally, travel time for long vehicles, i.e., trucks, may not be representative of the entire

vehicle population.  So, this algorithm is intended for free flow conditions, when local velocity
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FIGURE 4-15: Transpose the subsample matches back to the original vehicle indices
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"o"= output from the subsampling reidentification algorithm
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measurements at the detector stations should be representative of the entire link.  The trucks serve

as a good     diagnostic   for the onset of congestion and thus, signal the need to switch back to the

Basic Algorithm using the entire population.

Finally, with more advanced vehicle detection systems, it should be possible to subsample

vehicles based on other features, such as vehicle color measured from a video image processing

system.  It is a simple extension of the algorithm to process multiple subsamples in parallel, such

as one subsample containing all of the red vehicles and another subsample containing all of the

green vehicles11.

4.2.3  Approximation Algorithm

The Approximation Algorithm provides a second approach to overcome degraded measurement

resolution as well as addressing the possibility that vehicles may overtake one another.  It attempts

to find an approximate match for every vehicle, but it does not provide an exact match.  Like the

Basic Algorithm, each downstream vehicle is compared to a large number of upstream vehicles

using the resolution test to identify all possible matches.  As previously noted, a given vehicle can

have, at most, one true match, with all other possible matches being false positives.  To reduce the

influence from vehicles with many false positives, those vehicles with an uncommon length and

thus, few possible matches, are assigned greater weight by the algorithm; for a vehicle with n

possible matches, each possible match is assigned the weight 1/n.

The algorithm generates a vehicle match matrix to summarize the comparisons of

successive downstream vehicles with numerous upstream ones.  Figure 4-16 shows a vehicle

match matrix  for a larger set of upstream vehicles than was used in the earlier examples.  The

larger matrix is necessary because the algorithm calculates the average weight on each diagonal.

Columns 50-93 are the same data shown in Figure 4-7.  The lower left and upper right hand

corners of this larger matrix are blank, indicating that no comparisons were made in these regions.

These sections were excluded by design: each row contains the same number of pair-wise

comparisons (i.e., 94), but the set of upstream vehicles is shifted to the right by one vehicle in each

new row.  Because it is easier to write computer code to calculate the average weight by column

than by diagonals, vehicles will be indexed by upstream offset rather than upstream vehicle

number, where,

upstream offset = upstream vehicle number - downstream vehicle number.

                                                
11 Note that the subsamples do not have to be mutually exclusive, the sampling criteria could be selected so that

some vehicles will be included in several different subsamples.



  

FIGURE 4-16:  A larger vehicle match matrix, this time illustrating a moving window search

"o"= possible match,  "-"= manual reidentification data
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Replotting the data from Figure 4-16 using the upstream offset rather than upstream arrival number

yields the offset match matrix, as shown in Figure 4-1712.  In other words, by shifting all rows to

the left this step has simply removed the blank space in the lower left hand corner of Figure 4-16.

Note that in this new coordinate system, if there were no misdetections or lane changes between

the stations, all of the true matches would all fall in the same column.  Any lane change or

misdetection, however, will cause a column shift in the true matches, as demonstrated by the

manually matched data (the solid line in Figure 4-17).

Following the same logic presented in subsection 4.2.1, for any downstream vehicle, a true

positive is more likely to be preceded (moving up one row in this case) or followed (moving down

one row in this case) by a possible match as compared with the false positives for that vehicle.  To

eliminate most of the false positives, the algorithm searches for short sequences of possible

matches (e.g., only one or two vehicles) and eliminates them from further consideration.  The

remaining data are stored in the filtered offset match matrix.  Figure 4-18 shows a simple example

of this elimination or "filtering" process while Figure 4-19A shows the data from Figure 4-17 after

all sequences shorter than three vehicles have been eliminated.

The algorithm calculates the average weights on each column, this is illustrated at the

bottom of Figure 4-18B, while the resulting averages for the on-going example are shown by the

"X"'s in Figure 4-19B.  The larger averages occur in those columns that include a possible match

for vehicles of uncommon lengths.  Since the algorithm has already shed the false positives for the

uncommon vehicles, these high averages indicate that the true matches likely resided in that column

for some collection of downstream vehicles; because of lane changing (and detector errors), the

true matches will tend to shift columns of the filtered offset match matrix as the downstream

vehicle number increases.  But the column shifts due to lane changes will typically be small relative

to the number of upstream vehicles under consideration and the high averages should fall in a small

region, e.g., the averages in Figure 4-19B.  A moving sum is used to find the center of this region

and the group offset is defined as the upstream offset corresponding to the maximum value of the

moving sum, e.g., the group offset is 49uo for Figure 4-19B.  The group offset should be close to

the true upstream offset for each vehicle within the group (within +/- 2 vehicles for the preceding

example).

This approximation should be sufficient for many applications, e.g., for stations spaced at

one mile, free flow travel time will be approximately 60 seconds while the error due to missing the

true match by two or three vehicles will only be a few seconds.  To find exact matches, the

Approximation Algorithm can be used to estimate a   small    range of possible matches for a vehicle.

Then, the Basic Algorithm can be applied to this small range to find the exact match.

                                                
12 Continuing the use of subscripts in this example, the upstream offset is denoted by "uo".
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FIGURE 4-17:  Offset match matrix
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"o"= possible match

FIGURE 4-18:  An example of notation and weight assignment (A) each row in the offset match
   matrix receives a total weight of 1; (B) all vertical sequences with only one vehicle are 
   removed, yielding the filtered offset match matrix, however, the weights from the 
   original match matrix are retained

After filtering, there is only 1 possible match, but the weight of 1/3 from part (A) is retained
After filtering, both matches remain, the weight of 1/2 from part (A) is retained
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"o" = possible match and element is in a sequence of three or more possible matches
"-" = manual reidentification data

FIGURE 4-19:  (A) Filtered offset match matrix, retaining all platoons of three or more 
vehicles, (B) Localizing the offset between the upstream and downstream by 
calculating the column average weights from filtered offset match matrix
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4.2.4  Summary

The Basic Algorithm attempts to find an exact match for every vehicle.  This property is

particularly desirable during congestion, when travel times are likely to change rapidly due to

disturbances propagating through the traffic.  Using 60 Hz speed trap data, the algorithm works

well for freeway traffic moving slower than 40 mph.  At higher detector sampling frequencies, it

should be feasible to apply this algorithm during free flow traffic conditions as well because the

length measurement resolution will be improved.

The Subsampling Algorithm works well under all traffic conditions, but it only attempts to

match the trucks (up to 20 percent of all vehicles).  As previously noted, this algorithm is intended

for free flow conditions, when local velocity measurements at the detector stations should be

representative of the entire link.  The trucks serve as a good     diagnostic    for the onset of congestion

and thus, signal the need to switch to the Basic Algorithm.

The Approximation Algorithm also works well under all traffic conditions.  It attempts to

find an approximate match for every vehicle, but it does not provide an exact match.  Compared to

the Subsampling Algorithm, this algorithm can provide more frequent information during

transitions from free flow to congestion (or vice versa) because it incorporates information from all

vehicles.  To find exact matches during these transitions, the Approximation Algorithm can be used

to estimate a   small    range of possible matches for a vehicle.  Then, the Basic Algorithm can be

applied to this small range to find the exact match.  When there are no transitions between the

detector stations, the Basic or Subsampling Algorithm should be favored over the Approximation

Algorithm because theses provide exact matches; but the Approximation Algorithm could be run in

parallel to corroborate the other algorithm(s).

5. Testing and Verification

The examples presented in section 4.2 suggest that automated vehicle reidentification is possible.

But proving that the algorithms work requires sufficient ground truth data to verify matches

between two detector stations.  Generating ground truth data is complicated by the simple fact that

vehicle reidentification over extended distances is inherently difficult, both for an automated system

and for a human.  It is prohibitively time consuming for a human observer to generate exact

matches for a large number of vehicles.

Fortunately, it is not necessary to match every vehicle manually to verify a vehicle

reidentification algorithm.  If the given algorithm is correctly matching vehicles, it will also yield

the true travel times for those vehicles.  Although travel time over a segment can change

dramatically in a short period of time, the travel times for two successive vehicles will be very

similar.  Thus, the human observer must manually match a sufficient number of vehicles to capture
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changes in segment travel time, but this can be accomplished using a small fraction of the passing

vehicles.  Manual verification is still a labor intensive process, but now it becomes feasible to

generate ground truth for significant samples.

This study used video data, recorded concurrently with the speed trap data, for manual

verification.  Two approaches were used to collect the video data.  The first approach placed a

camera at each detector station and the human observer matched vehicles between the two cameras.

The second approach used a single camera view to capture both detector stations and thus, replaced

the problem of matching vehicles between two video tapes with an easier task, tracking vehicles on

a single tape.  The single camera approach required a suitable location for camera placement and

was limited to detector stations less than half a mile apart.  Above this separation, it was impossible

to view both stations while being able to discriminate between vehicles at the distant station.

In either case, it was necessary to synchronize the video and detector clocks before

comparing travel times from an algorithm against the ground truth.  Coordinating a camera's clock

and a detector station's clock is fairly straightforward.  Just as a sequence of vehicle lengths

rapidly becomes unique when the number of vehicles increases, the sequence of vehicle headways

also becomes unique.  Because the video includes the same headways recorded by the detector

station, the user had to note vehicle arrival times from the video relative to some arbitrary reference

vehicle and then find the matching sequence of headways in the detector station data.

Using the preceding steps to generate ground truth matches and coordinate the video data

with the detector data, the remainder of this chapter presents each algorithm's performance over a

large set of vehicles.  The first section examines free flow traffic using the Subsampling

Algorithm.  The next section examines congested traffic using the Basic Algorithm, while the final

section considers the transition from free flow to congestion using the Approximation Algorithm.

5.1 Subsampling Algorithm verification

The Subsampling Algorithm was tested during free flow conditions over a two mile segment of

State Highway 99 in Sacramento, as shown in Figure 5-1.  The algorithm attempts to match trucks

in the right hand lane.  Although it may seem counterintuitive, these conditions are very

challenging for feature based vehicle reidentification for several reasons.  First, vehicles are free to

overtake one another, decreasing the probability that platoons will persist over the two miles that

span the detector stations.  Second, entering and exiting vehicles from the three intervening ramps

disrupt the sequence even more.  Finally, the high velocities reduce the measurement resolution to

approximately 2 feet, further complicating the task of reidentifying vehicles.

The algorithm matched 46 trucks, or approximately 60 percent of the trucks that passed the

downstream station during the 25 minute study period; the travel time for these matches are shown

with "O"'s in Figure 5-2.  Travel times ranged between 100 seconds and 135 seconds, i.e., the
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FIGURE 5-1: The segment of State Highway 99 in Sacramento, California used to verify the 
                      Subsampling Algorithm.
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FIGURE 5-2: Travel times for matched trucks using the Subsampling Algorithm.
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segment velocity  ranged between 53 mph and 72 mph.  Using concurrent video, the human

observer matched vehicles between the two stations and measured ground truth travel times;

yielding the "X"'s in Figure 5-313.  Comparing the travel times as measured by the algorithm

against the ground truth, we see a good performance by the algorithm.  The average measurement

error was 0.69 percent, corresponding to an average segment velocity error of 0.5 mph.

5.2 Basic Algorithm verification

The Basic Algorithm was tested during congested conditions over a 0.35 mile segment of Interstate

80 in Berkeley.  The algorithm attempts to match all vehicles in lane two, as shown in Figure 5-4.

The study period was approximately 70 minutes.  Velocities at the detector stations ranged between

0 mph and 40 mph for this example while twenty five disturbances passed through the segment

(the average increase or decrease in travel time due to these disturbances was 28 seconds).

The solid line in Figure 5-5 shows the travel times measured by the algorithm.  Travel

times ranged between 50 seconds and 130 seconds, i.e., the segment velocity  ranged between 9

mph and 25 mph.  The algorithm matched 907 vehicles, approximately 60 percent of the vehicles

that passed through the segment.  The time between successive matches is typically on the order of

a few seconds, with 1.5 minutes being the longest period without a reidentification in this example.

Figure 5-6 compares the ground truth matches, the "X"'s, against the matches generated by the

algorithm.  Again, the algorithm matches the ground truth quite well; note how the algorithm

follows the increasing and decreasing travel time as disturbances pass through the link.  The

average measurement error was 2.4 percent, corresponding to an average segment velocity error of

0.4 mph.

5.3 Approximation Algorithm verification

The Approximation Algorithm was tested during the transition from free flow to congestion over a

1.5 mile segment of Interstate 80 in Berkeley.  In this test, the algorithm attempts to find an

approximate match for every vehicle in lane two, as shown in Figure 5-7.  Initially, velocities were

on the order of 60 mph, they drop to 20 mph as a downstream queue overruns the segment and

then, towards the end of the two hour sample, the velocities drop further to about 15 mph.

The algorithm found an "approximate" match for almost all of the vehicles that passed

during the study period.  Travel times for these matches ranged between 70 seconds and 260

seconds, as shown in Figure 5-8, i.e., the segment velocity ranged between 18 mph and 67 mph.

Comparing the algorithm against ground truth travel times, indicated with "X"'s in Figure 5-9, the

                                                
13 Note that the set of vehicles used for ground truth is not identical with the set of vehicles matched by the

algorithm because the two processes were independent.
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FIGURE 5-3: Comparing travel times for matched trucks using the Subsampling 
                       Algorithm against ground truth matches.
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FIGURE 5-4: The segment of Interstate-80 in Berkeley, California used to verify the 
                      Basic Algorithm.
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FIGURE 5-5: Travel times for matched vehicles using the Basic Algorithm.
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= travel time from the Basic Algorithm

= ground truth travel time from video



 

University AveAshby Ave.

1.3 miles

Upstream Speed Trap Downstream Speed Trap

FIGURE 5-7: The segment of Interstate-80 in Berkeley, California used to verify the 
                      Approximation Algorithm.
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FIGURE 5-8: Travel times for matched vehicles using the Approximation Algorithm.
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average measurement error was 4.8 percent, corresponding to an average segment velocity error of

1.5 mph.

6. Extensions and Future Work

This chapter presents several extensions that could be realized through future research projects

based on this research.  Section 6.1 discusses the Berkeley Highway Laboratory, which will

transmit high resolution speed trap data in real-time to the University of California, Berkeley, and

from campus, on to Caltrans.  Section 6.2 presents three emerging detector technologies that, in

conjunction with the vehicle reidentification algorithms, should improve performance beyond what

is possible with speed traps.  Finally, section 6.3 discusses a number of applications of the new

vehicle reidentification system.

6.1 Berkeley Highway Laboratory

All of the analysis in this report was conducted off-line, that is, the data were collected and then the

algorithms were run several hours or several days later.  Although the algorithms run faster than

real time, Caltrans does not currently have the communications infrastructure to transmit event

data14 in real time.  As an extension to this research, work is underway to develop an inexpensive

means to transmit these data using wireless modems.

The new communications infrastructure will be deployed at the Berkeley Highway

Laboratory, which consists of eight detector stations along a 2.2 mile segment of Interstate 80 in

Berkeley and Emeryville, as shown in Figure 6-1.  The communications hardware are currently

operational at two stations and should be up and running at all of the stations by early 1999.

The event data will be used as real-time input to the vehicle reidentification algorithms and

the measured travel times will be available over the internet in real-time.  Travel times over one

segment (i.e., between two successive stations) should be on-line before the end of 1998, with the

other segments following shortly thereafter.  A related project will provide video surveillance,

which will be useful for generating ground truth manually and perhaps enabling automated routines

for generating ground truth using video image processing to track vehicles [27, 35].

Because the vehicle reidentification algorithms will run 24 hours a day, the Berkeley

Highway Laboratory will provide extensive verification of this work.  In addition to manually

matching vehicles to verify the algorithms, it is possible to conduct rudimentary tests using the

local velocity measurements.  During free flow, a vehicle's velocity as measured by its trip time

over a segment should be close to its velocities measured by detectors at the upstream and

                                                
14 The event data is simple the individual loop detector "events" used as input to the algorithms and discussed in

Appendix B.
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downstream ends of the segment.  The segment travel time will increase above the free flow travel

time under two conditions: when a disturbance enters the segment by passing over one of the

detector stations, or when a bottleneck forms within the segment.  In either case, the associated

disturbance(s) should eventually be observable in the local conditions at one or both of the detector

stations.

6.2 Emerging detector technologies

Through collaboration with controller suppliers, state DOT's, and other researchers, this

work could be used to improve vehicle reidentification beyond what is possible with speed traps.

As noted earlier, the vehicle reidentification algorithms are compatible with several vehicle

detectors.  Briefly examining three emerging technologies that should be compatible with this

work, first, controller suppliers are producing new hardware to extract a detailed magnetic vehicle

signature.  So, rather than having two detector states, "on" or "off", the controller reports a

continuous response as a vehicle passes over the loop detector(s).

Next, using a video image processing system, it should be possible to extract vehicle

lengths using pseudo-loops in a speed trap configuration.  More importantly, the image processing

system could be used to extract a multidimensional feature vector, say, color and length.  The

additional information could be used to make the existing routines more robust, as well as enabling

new strategies such as subsampling by color and processing each color group in parallel.  For

example, the algorithm could process all of the green vehicles in one group, and all of the red

vehicles in another.

Finally, other researchers are working to reduce vehicle length measurement uncertainty.

Cheng's [25] scanning laser radar is one example.  It is designed to measure vehicle length with an

error of one inch at free flow traffic speeds, compared to nearly two feet using existing speed trap

hardware.

6.3 Applications

After completing this vehicle reidentification and travel time measurement research, the work will

be used to investigate several applications, including those described below.

•  Incident detection strategies that include travel time measurements between detector stations

might be able to decrease the time to detection without sacrificing reliability.

•  Conventional volume/capacity estimates of congestion fail to account for the temporal and

spatial distribution of travel.  By comparing traditional congestion measures against actual

delay (travel time - travel time at posted speed limit), it will be possible to quantify the
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performance of the old metrics and perhaps develop new metrics that are more informative

measures of congestion.

•  By matching individual truck measurements between many detector stations, it should be

possible to generate O/D data on freight movements.

•  The proponents of ATIS and DTA believe these technologies will provide significant operating

improvements on the freeway network, but providing better information does not necessarily

reduce congestion.  Using measured travel times, it should be possible to quantify the benefits

to drivers if they were aware of the most recent travel time measurements, had a perfect

prediction of future travel times (i.e., if the current travel times were predicted some time

earlier), or had an imperfect prediction of future travel times.

•  Examine traffic dynamics in the context of the additional information available from vehicle

reidentifications.

The vehicle reidentification algorithms would be used to acquire the vehicle reidentification data

from speed traps, but the applications would be designed to be source independent.  There are

several sources of speed trap data to work with, including the forthcoming Berkeley Highway

Laboratory mentioned above and the large pre-existing Freeway Service Patrol (FSP) database

[44].  The FSP database contains speed trap data from 20 detector stations, as well as incident data

and probe vehicle travel times over 7 miles of Interstate-880 south of Oakland, CA for 50 days.

7. Conclusions

This report has presented the development of three closely related algorithms to match a vehicle's

length measurement at a downstream detector station with the vehicle's corresponding

measurement at an upstream station.  The algorithms rule out unlikely matches and look for

sequences of possible matches between measurements at the two stations.  Each algorithm uses a

different strategy to eliminate spurious sequences due to false positives.  The algorithms were used

to measure travel times on a large data set and the average measurement error for the different

algorithms ranged between 0.7 percent and 4.5 percent, corresponding to an average segment

velocity error between 0.4 mph and 1.5 mph.

The beauty of the approach is in its simplicity.  Matching vehicles between detector stations

is a difficult task and some of the best minds have tried to tackle the problem with varying degrees

of success.  Preceding work emphasized computationally intensive strategies and/or hardware

intensive strategies.  By creating the solution space of possible matches, this research has enabled

vehicle reidentification using existing detector hardware and inexpensive computers.
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The contribution to the field of traffic surveillance should prove to be significant since the

vehicle reidentification algorithms will allow the study of travel time applications without deploying

an expensive detection system and thereby enable cost-benefit analysis before investing in a new

detection system.  If travel time measurement proves to be beneficial, the system could be deployed

using speed traps, or the algorithms could be transferred to emerging detector technologies with

better measurement resolution.  The methodology should prove beneficial for research purposes as

well; yielding better insight into vehicle dynamics between widely spaced detector stations without

the host of assumptions necessary with simulation.
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9. Appendix A

9.1 Implementation

This section details the steps used to realize each algorithm.  The initial steps are the same for all of

the algorithms.  First, each vehicle is processed as it passes a single detector station.  Second, for a

given vehicle at the downstream detector station, a range of feasible upstream matches is

established; i.e., all of the upstream measurements that may have come from the same vehicle are

identified.  These steps are presented in subsections 9.1.1 - 9.1.2.  Next, each algorithm uses a

slightly different strategy to go through the feasible upstream matches and identify the final

matches.  The algorithm specific steps are detailed in subsections 9.1.3 - 9.1.5, where each

subsection corresponds to the Basic, Subsampling and Approximation Algorithm, respectively.

Although the different algorithms are presented separately, the common steps make it simple to run

two or more algorithms in parallel with the same input data.

9.1.1  Common steps for each vehicle at a single detector station:

This subsection details the analysis applied to each vehicle that passes a detector station,

independent of any other station.  Each detector station used in this study has a speed trap in each

lane, where the speed trap consists of two loop detectors spaced 20 ft apart.

1) Vehicles are assigned successive arrival numbers as they pass a detector station.  The numbers

in one lane are assigned independently from the other lanes and the numbers are not directly related

to the arrival numbers recorded at any other station.  If a vehicle only activates a single loop of a

dual loop speed trap, it is not included in the numbering sequence and the vehicle is excluded from
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further analysis.  These discarded detections typically account for less than one percent of all

vehicles.  Appendix B provides more information on how unmatched and erroneous pulses are

detected.

2) A vehicle's arrival time, velocity, effective length and length uncertainty, as defined in Appendix

C, are recorded as it passes a speed trap.  The effective length ± half of the length uncertainty

bound the length range for the vehicle.

9.1.2  Common steps for each vehicle at the downstream detector station:

The preceding steps are applied independently at two consecutive detector stations.  Starting from

step 3, the algorithms use data from the same lane at both stations.

3) The last feasible upstream match is identified for a downstream vehicle using the distance

between the detector stations, vehicle arrival times at the two successive detector stations and an

assumed maximum possible speed of 100 mph.  To illustrate this process, consider two stations

1470 feet apart.  A vehicle arriving at the downstream station traveling less that 100 mph (147

ft/sec) must have passed the upstream station at least 10 seconds earlier.  So, the last vehicle to

pass the upstream station in the same lane, at least 10 seconds earlier is considered the last feasible

upstream match for the given downstream vehicle.

4) A set of reasonable upstream matches is identified for each downstream vehicle; where this set is

the last n successive upstream vehicles in the same lane ending with the last feasible upstream

match,  The constant, n, should be set large enough to ensure that the true match will always fall

within in the set of reasonable upstream matches, while being small enough to allow the computer

to process the data.  For the examples presented in chapter 5, n was set arbitrarily to 100 vehicles;

then, after running the algorithms, it was verified that the true matches were always within 100

vehicles of the last feasible upstream match.  In practice, a conservative value of n could be set

from estimated jam density and the distance between stations.

9.1.3  Basic Algorithm

The following steps are used to implement the Basic Algorithm and they are specific to this

algorithm.  To emphasize this algorithm specificity, the steps are indicated with a "b" for "Basic".

To implement the algorithm, steps 5b-12b are repeated for each vehicle as it passes the downstream

station.
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5b) The downstream vehicle's length range  is compared against the length range for each vehicle

in the set of reasonable upstream matches.  For each pair-wise comparison, if the two ranges

intersect, the pair is a possible match, otherwise, a match is unlikely.  The results are stored in a

row vector with "1" indicating a possible match and "0" indicating that a match was unlikely.

Finally, the upstream offset (as defined in subsection 4.2.3) is calculated for each vehicle in the set

of reasonable upstream matches.

6b) The row vector is placed in a sequence matrix where each row is indexed by the downstream

vehicle number and the columns are indexed by the upstream offset15.  For each possible match,

the value from the corresponding column in the previous row is added (if it exists).  Thus, the row

stores the total number of consecutive possible matches in a sequence up to and including the given

downstream vehicle for each upstream offset.

7b) The same row vector is placed in the lane change matrix using the indices from step 6b.

Again, for each possible match, the value from the corresponding column in the previous row is

added (if it exists).  Each new sequence in the current row of the    lane change matrix     (i.e., those of

value 1) is examined to see if it can be joined to an earlier sequence in the    sequence matrix     by a

simple lane change maneuver, as shown in Figure 9-1A-C16.  To demonstrate this process using

the sequence starting at (m,n) in Figure 9-1D, the three shaded elements of the sequence matrix are

searched for earlier sequences.  If any of these elements contain a value greater than one, the

largest value is copied to element (m,n) in the lane change matrix.  Thus, the row indicates the total

number of consecutive possible matches for each upstream offset up to and including the given

downstream vehicle after allowing for individual lane change maneuvers.

Note that by using values from the sequence matrix for the pre-lane change data, the totals

in the lane change matrix include, at most, one lane change maneuver.  For sequences that include

a lane change maneuver, the sequence matrix contains the portion of the sequence before the lane

change and the lane change matrix contains the portion of the sequence after the lane change.  In

this fashion, one possible match can be included in several different sequences in the lane change

matrix.  Finally, in the event a sequence does not include a lane change maneuver, both matrices

will store the same values for the sequence.

                                                
15 This step deviates from the notation used in subsection 4.2.1.  As previously noted, sequences will fall into

columns in this coordinate system and thus, it is easier to write computer code to manipulate the matrices compared

to working with the non-shifted matrices.  This shift has the added benefit of decreasing matrix width.

16  This figure simply shows the lane change maneuvers from Figure 4-10 transposed to the new coordinate system.
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8b) Any sequences that end in the previous row are identified, as exemplified in Figure 9-2A.  For

each possible match in the previous row, r-1 in this example, the current row, r, is checked to see

of there is a possible match in the same column.  If there is no corresponding match in the current

row, the sequence has ended.  In the example, the sequence in column s has ended at (r-1,s)

because (r,s) does not contain a possible match.  However, at this point in the analysis, it is

impossible to determine if the sequence in column s-2 has ended at row r since we do not know if

there will be a possible match in (r+1,s-2) until vehicle r+1 arrives at the downstream station.

9b) All of the sequences that ended in the previous row and contained a lane change maneuver are

identified.  Figure 9-2B shows a simple example illustrating this process with a sequence matrix on

the left and the corresponding lane change matrix on the right.  If a given sequence includes a lane

change maneuver, the final value in the lane change matrix will be higher than the corresponding

position in the sequence matrix, otherwise the two values will be equal17.  In the example, two

sequences end in row r-1.  Examining the lane change matrix, the first sequence includes a lane

change and ends with element (r-1,s).  Comparing the value in (r-1,s) between the two matrices,

we see that the lane change matrix has a higher value.  The second sequence, ending at (r-1,s+2),

does not include a lane change and thus, the values in (r-1,s+2) are identical for both matrices.

10b) Once a sequence ends, all of the elements in that sequence are set equal to the sequence

length, as illustrated in Figure 9-3.  Part A shows a sequence matrix after the b-th vehicle passes

the downstream station.  Allowing for individual lane change maneuvers, three overlapping

sequences would be recorded in the lane change matrix.  Each of these sequences are shown one at

a time in parts B-D.  Note that the second sequence (part C) overlaps a portion of the first sequence

(part B) and the third sequence (part D) overlaps a portion of the second sequence.

By definition, the last element of a sequence contains the sequence length, while the earlier

elements will contain lower values.  After a sequence ends, the algorithm searches the lane change

matrix and finds all of the elements in the sequence.  For a sequence with t matches and no lane

change maneuver, the sequence will simply be the preceding t elements in the lane change matrix

and all of these elements are set equal to t.  This situation is demonstrated in part E, where the end

of the first sequence has been detected and all of its elements have been set equal to its length of 3.

If the sequence contains a lane change, the algorithm finds the post-lane change portion by

successively stepping back one row at a time in the same column until it finds an element with a

value of zero (note that all elements with value zero are left blank in the figures).  All of the non-

                                                
17 The reader should note that if a sequence ends in the lane change matrix, by definition, it must end in the sequence

matrix as well.



 

FIGURE 9-2: (A) The end of the sequence in column s can only be detected after the first 
unlikely element has been observed in the column.  In this case once vehicle r 
passes the downstream station. (B) This figure shows a simple example of how to 
differentiate between sequences in the lane change matrix that do not contain a 
lane change from those that do.  If the sequence does not contain a lane change, 
the ending value will be identical to the sequence matrix (e.g., element (r-1,s+2)), 
otherwise, it will be greater (e.g., element (r-1,s)).

= possible match

(A)

s-
2

s-
1

s s+
1

upstream
offset

do
w

ns
tr

ea
m

ve
hi

cl
e 

#

s+
2

r-3
r-2
r-1

r

r-4

(B) upstream
offset

do
w

ns
tr

ea
m

ve
hi

cl
e 

#

s-
2

s-
1

s s+
1

s+
2

r-3
r-2
r-1

r

r-4 1
2 1

21
2 3

upstream
offset

do
w

ns
tr

ea
m

ve
hi

cl
e 

#

s-
2

s-
1

s s+
1

s+
2

r-3
r-2
r-1

r

r-4 1
2 1

22
3 3

Sequence Matrix Lane Change Matrix



 

(B)

c-
2

c-
1

c c+
1

upstream
offset

do
w

ns
tr

ea
m

 v
eh

ic
le

 #

c+
2

1
2
3

(F)

b-8
b-7
b-6
b-5
b-4
b-3
b-2
b-1

b

b-9

(C)

c-
2

c-
1

c c+
1

upstream
offset

do
w

ns
tr

ea
m

 v
eh

ic
le

 #

c+
2

(G)

b-8
b-7
b-6
b-5
b-4
b-3
b-2
b-1

b

b-9

(D)

c-
2

c-
1

c c+
1

upstream
offset

do
w

ns
tr

ea
m

 v
eh

ic
le

 #

c+
2

2
3

1

3
4
5

b-8
b-7
b-6
b-5
b-4
b-3
b-2
b-1

b

b-9
1
2
3

2
3

1

4
5

1
2
3

(E)

c-
2

c-
1

c c+
1

upstream
offset

do
w

ns
tr

ea
m

 v
eh

ic
le

 #

c+
2

3
3
3

(A)

c-
2

c-
1

c c+
1

upstream
offset

do
w

ns
tr

ea
m

 v
eh

ic
le

 #

c+
2

b-8
b-7
b-6
b-5
b-4
b-3
b-2
b-1

b

b-8
b-7
b-6
b-5
b-4
b-3
b-2
b-1

b

b-9

b-9

? ? ? ? ?
? ? ? ? ?

? ?

? ? ? ? ?

1
2

2
3
4
5
6

2
3

c-
2

c-
1

c c+
1

upstream
offset

do
w

ns
tr

ea
m

 v
eh

ic
le

 #

c+
2

6
6
3

3
4

b-8
b-7
b-6
b-5
b-4
b-3
b-2
b-1

b

b-9

5
? ? ? ? ?

(H)
c-

2
c-

1
c c+

1

upstream
offset

do
w

ns
tr

ea
m

 v
eh

ic
le

 #

c+
2

6
6
3

b-8
b-7
b-6
b-5
b-4
b-3
b-2
b-1

b

b-9

c-
2

c-
1

c c+
1

upstream
offset

do
w

ns
tr

ea
m

 v
eh

ic
le

 #

c+
2

3
3
3

3

b-8
b-7
b-6
b-5
b-4
b-3
b-2
b-1

b

b-9

? ? ? ? ?
4

? ? ? ? ?

2
3
4
5
6

6
6
6
6
6

6
6
6
6
6

5
5
5

? ? ? ? ?
? ? ?

FIGURE 9-3: (A) A simple sequence matrix containing three sequences. After allowing for individual 
lane change maneuvers, three sequences emerge, as shown in (B)-(D). In practice, the 
lane change matrix would evolve as vehicles pass the downstream station, as shown in 
(E)-(H).  (E) This is the lane change matrix immediately after vehicle b-5 passes.  The 
end of the first sequence has been detected and all of its elements have been set equal 
to its length of 3.  (F) The same matrix after vehicle b-2 passes, two sequences were 
extended by this vehicle.  Note how the pre-lane change portion of the third sequence 
(from part D) is obscured by the second sequence (from part C). (G)  After vehicle b-1 
passes, the end of the second sequence is detected. All appropriate elements are set 
equal to the sequence length of 6. (G) Finally, after vehicle b passes, the end of the third 
sequence is detected and again, the sequence length is passed back to earlier elements 
in the sequence.  This time, however, the pre-lane change matches are not changed 
because they have already been assigned to a sequence of greater weight in part G.
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zero elements are set equal to the sequence length, e.g., in part H, all of the post-lane change

elements in the third sequence (column c+1) have all been set to 5.  Using the same logic from step

7b, the algorithm identifies the pre-lane change portion of the sequence by examining three

preceding elements in the sequence matrix, as illustrated in Figure 9-1D18.  Any pre-lane change

elements in the lane change matrix with values lower than the current sequence length are set equal

to this new value, as illustrated by elements (b-7,c-1) and (b-8,c-1) of the second sequence in part

G (compare the values of these elements to what they held in part F).  However, the pre-lane

change elements may already have a higher value, in which case, they will not be changed, as

illustrated by elements (b-4,c) to (b-6,c) of the third sequence in part H.

11b) The active rows of the lane change matrix are selected, i.e., all rows containing a sequence

that could be extended by subsequent vehicle arrivals are identified.  To this end, the algorithm

only needs to find the longest sequence that may be modified by subsequent vehicle arrivals.

Figure 9-4 is used to illustrate this process.  The longest sequence will usually correspond to the

highest value in the current row of the lane change matrix, as shown in row d of part A.  However,

there may be a lane change maneuver that skips the current row of the lane change matrix (e.g.,

Figure 9-1B-C) and a sequence ending in the preceding row, d-1, of the sequence matrix could be

joined to a new sequence starting in row d+1.  In the former example, if the next downstream

vehicle yields a possible match in element (d+1,e), then the entire sequence will be extended and all

rows from d-3 onward will be affected.  This figure shows the worst case, where the sequence

contains a lane change that skips a row, thus, the highest value in row d is two less than the

number of active rows.  In the latter example, since vehicle d+1 has not arrived yet, the algorithm

must consider the largest value in the preceding row of the sequence matrix as well.  In this case,

the value will always be one less than the number of active rows since the sequence matrix can not

contain a lane change at this point and the value does not include the d-th vehicle.  In either case,

row d-4 can not be affected by vehicle d+1 or any subsequent vehicles.  Thus, row d-4 is inactive.

In summary, given:

x = the largest value in the current row of the lane change matrix

y = the largest value in the preceding row of the sequence matrix

z = max(x+2,y+1)

the active rows are the z most recent rows and all preceding rows are inactive.

                                                
18  In the event there are two or three possible lane change maneuvers with the maximum value, the algorithm will

follow all of the maneuvers that correspond to the highest value.



 

FIGURE 9-4: (A) A simple lane change matrix. (B) A simple sequence matrix
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12b) Final matches are extracted from any inactive row in the lane change matrix on a row by row

basis, as follows: first, the element with the largest value in the given row is found.  If two or

more elements contain the largest value, the row is deleted without a match19.  Next, if the value is

less than the pre-specified minimum final sequence length, the row is deleted without a match.

Otherwise, the downstream vehicle number and the upstream offset of the element are saved as a

final match, then the row is deleted.  After deleting a row in the lane change matrix, the

corresponding row is deleted from the sequence matrix.  Note that by deleting rows after they have

been processed, the matrices are kept small.

9.1.4  Subsampling Algorithm

The Subsampling Algorithm explicitly identifies distinct vehicles that are easier to identify, i.e., the

long vehicles.  All other vehicles are excluded from the analysis.  Then, this algorithm applies the

Basic Algorithm to the long vehicles.  Continuing the emphasis on algorithm specificity, the steps

are indicated with a "s" for "Subsampling".  To implement the algorithm, steps 5s, 7s-8s are

repeated for each vehicle as it passes the downstream station, while step 6s is repeated for each

vehicle as it passes the upstream station.

5s) All downstream vehicles longer than a threshold length are identified or subsampled.  This

threshold was set to 23 feet for the example shown in section 5.1.  These vehicles are assigned a

new set of sequential arrival numbers based on their order in the subsample.  The algorithm does

not attempt to find matches for any vehicles shorter than the threshold length; thus, steps 3-4 may

be omitted for the vehicles excluded from the subsample.

6s) All upstream vehicles that are longer than the threshold length or that have a length range that

includes the threshold length are subsampled.  Similar to step 5s, these vehicles are assigned a new

set of sequential arrival numbers based on their order in the subsample.

7s) All upstream vehicles that were not subsampled are removed from the set of reasonable

upstream matches.  Using the resolution test, these removed vehicles would not yield any possible

matches with the subsampled downstream vehicles.

8s) Indexing rows and columns by the subsample arrival numbers, rather than the arrival numbers

for the entire population, the algorithm applies the Basic Algorithm (steps 5b-12b) to the

                                                
19 When deleting a row, the indices for all other rows are preserved.
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subsamples.  Note that the upstream offset in step 6b is calculated with respect to the subsample

arrival numbers.

9.1.5  Approximation Algorithm

The Approximation Algorithm is implemented in two parts.  First, steps 5a-10a are repeated as

each vehicle passes the downstream detector station; note that the suffix "a" is used to denote the

steps specific to the Approximation Algorithm.  After a fixed number of vehicles pass the

downstream station, steps 11a-15a are applied to a large number of downstream vehicles and the

downstream vehicle count is reset to zero.

5a) Identical to step 5b of the Basic Algorithm.

6a) Identical to step 6b of the Basic Algorithm.

7a) The Approximation Algorithm counts the number of possible matches, n, in the set of

reasonable upstream matches.  The results are stored in a second row vector with 1/n indicating a

possible match and "0" indicating that a match was unlikely.  Thus, the fewer possible matches,

the greater the weight assigned to each match.  Finally, the new row vector is placed in an offset

match matrix where each row is indexed by the downstream vehicle number and the columns are

indexed by the upstream offset.

8a) Identical to step 8b of the Basic Algorithm.

9a) Out of the sequences that ended in the previous row of the sequence matrix, any sequence that

is shorter than a threshold number of vehicles20 is eliminated from the offset match matrix.  In

other words, the elements of the offset match matrix corresponding to the short sequences are set

equal to zero.

10a) Using R to denote the threshold number of vehicles from the last step, the sequence matrix

must contain enough downstream vehicles to differentiate between sequences shorter than R and

those that are not.  So, the sequence matrix only needs to store the most recent R rows.  All

preceding rows are inactive and they are discarded from the sequence matrix (note that the inactive

rows are not eliminated from the offset match matrix in this step).

                                                
20 This threshold number was set to 3 for the example in section 5.3.
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11a) After M vehicles pass the downstream station, the algorithm calculates the average value over

the most recent 2*M inactive rows21 for each column in the offset match matrix.  These averages

are placed in a row vector indexed by upstream offset, and the oldest M inactive rows are discarded

from the offset match matrix.

12a) As previously noted in subsection 4.2.3, a large average indicate that the true matches likely

resided in the given column for some portion of the 2*M downstream vehicles; because of lane

changing and detector errors, several adjacent columns will typically have large averages.  A

moving sum of three elements is used to find the center of this region.

13a) The group offset for the 2*M downstream vehicles is defined as the upstream offset

corresponding to the maximum value of the moving sum.

14a) If the group offset is measured correctly, it should be similar from one group to the next.  In

the extreme case where there were no lane changes or misdetections, the true group offset would

be constant across groups.

Unfortunately, for uncommon vehicles, step 7a may yield false positives with large

weights and occasionally these false positives are not eliminated in step 9a.  These false positives

may be large enough to disrupt step 13a and the algorithm will calculate a false group offset for the

2*M vehicles.  These errors will be random, the false group offset has an equal probability of

occurring at any upstream offset within the row vector of average weights.

To eliminate these errors, the current group offset is compared to the group offset for the

four preceding, non-overlapping groups22 as follows.  If the current group is number 0 and the

preceding groups are numbered 1 through 4, where group 1 is most recent and group 4 is the

oldest; the algorithm calculates the following four parameters, i.e., the t si' :

t
G G i M p

i
i=

− ≤ × ×( ) ×



1 2

0
0,

, otherwise

Where,

                                                
21 For the example in section 5.3, M was set to 20.

22 Note that the groups contain 2*M downstream vehicles, but a new group offset is measured every M vehicles and

two successive groups overlap by M vehicles.
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i  = group number

Gi  = the group offset for the i-th group

p  = assumed maximum percentage of vehicles that may change lanes between detector

stations, set to 30 percent for the example in section 5.3

2 ×( ) ×M p  = maximum allowable difference between two successive group offsets.

Then, the current group offset is accepted if,

ti
i=
∑ ≥

1

4

3

and rejected otherwise.  Thus, the current measure must be similar to three out of the four

preceding, non-overlapping values of group offset to be accepted.

15a) The algorithm calculates the final matches for each downstream vehicle.  As noted in step 14a,

each set of M vehicles contribute to two overlapping groups of 2*M vehicles, where each group

has its own group offset.  For a given set of M vehicles, both group offsets will usually be

accepted by step 14a.  So in this case, the offset for each vehicle is set equal to the average of the

two group offsets for the overlapping groups.

A false positive with large weight may disrupt two overlapping groups, but the vehicles

that only fall into one of the two groups will have a second measured group offset that does not

include the false positive.  So, for a given set of M vehicles, if one group offset is accepted and the

other rejected by the previous step, the offset for each of the M vehicles is set equal to the group

offset for the accepted group.  On the other hand, if both group offsets are rejected, then the M

downstream vehicles are not matched.  This redundancy increases the number of vehicles matched

in the presence of false positives.

10. Appendix B

10.1 Speed trap data from one detector station

The following section provides a brief review of speed trap operation.  A given speed trap records

vehicle arrival and departure times from each loop, as shown in Figure 10-1.  Typically, these data

are aggregated to calculate flow, occupancy and average velocity over a fixed observation period.

For this study, however, each vehicle was treated independently.  From the four events indicated

in Figure 10-1B, tRISE_up , tFALL_up , tRISE_down , tFALL_down , the following parameters were calculated:
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travel time via the rising edges (TTr), travel time via the falling edges (TTf), total time the upstream

detector is on (OTu) and total time the downstream detector is on (OTd).  Specifically:

TT t tr RISE down RISE up= −_ _

TT f = tFALL_down − tFALL_up

OTu = tFALL_up − tRISE_up

OTd = tFALL_down − tRISE_down

10.2 Loop errors at an individual speed trap

Loop detectors are prone to frequent errors.  Two common errors prevent simple vehicle length

estimation, as described below.  First, an unmatched event at one loop (e.g., two consecutive

rising edges when the events should alternate between rising and falling).  This error is illustrated

in Figure 10-2 and occurred approximately once for every 10,000 vehicles in the data set.  To

address this error, if n consecutive rising edges were recorded from a given loop, the first n-1

rising edges were discarded (n=2 in the example).  Likewise, if m consecutive falling edges were

recorded from a given loop, the last m-1 falling edges were discarded.

The second, more common error, occurred when two pulses were observed at one

detector, but only one pulse was observed at the other detector.  These unmatched pulses occur

when a vehicle is only detected at a single loop, as illustrated in Figures 10-3A and 10-4A, or

when a vehicle activates one loop more than once, as illustrated in Figures 10-3B and 10-4B.

Rather than attempting to discriminate between the two sources of error, all questionable pulses

were removed, (i.e., all pulses within the dashed circles in Figures 10-3 and 10-4).  Following this

removal, the modified data would suggest a vehicle changed lanes when in fact it did not.

Provided these phantom lane changes were relatively infrequent, they will not disrupt the vehicle

reidentification algorithms.  This latter type of error occurred approximately once in every 100

vehicles for this study, which is sufficiently low that they did not interfere with the algorithms.

After eliminating these errors, it is possible to establish a one-to-one match between events

at the upstream and downstream loops, and thus, match pulses directly.  There are other loop

errors that are less significant for vehicle reidentification, e.g., missing a vehicle altogether or

simultaneously observing a vehicle in two adjacent lanes.  These errors do not preclude vehicle

length estimation but they will create noise when attempting to match vehicles between stations.
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FIGURE 10-2: An example of an unmatched event at one detector, in this case, a rising edge at 
the upstream detector.
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FIGURE 10-3: Two examples of unmatched pulses at the upstream loop, (A) four vehicles 
activate the upstream loop, but only three activate the downstream loop, (B) a 
vehicle activates the upstream loop twice but it only activates the downstream 
loop once.
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FIGURE 10-4: Two examples of unmatched pulses at the downstream loop, (A) four vehicles 
activate the downstream loop, but only three activate the upstream loop, (B) a 
vehicle activates the downstream loop twice but it only activates the upstream 
loop once.
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11. Appendix C

11.1 Vehicle parameter measurement

Once the individual speed trap data were cleaned up by matching upstream and downstream pulses,

as per Appendix B, it was possible to measure a vehicle's effective length, L, and the associated

measurement uncertainty, Lerr.  Effective length is simply the measured velocity multiplied by the

time the detector was on, i.e., the on-time.  In practice, for each vehicle that passes the speed trap,

there are two measurements of on-time, one from each loop, and two measurements of velocity ,

one for the front bumper (using the difference between the time each loop is activated) and one for

the rear (using the difference between the time each loop clears).

velocity from rising edge: V
TTr

r

= 





20 ft

sec
;

velocity from falling edge: V
TTf

f

= 





20 ft

sec
;

where 20 (ft) represents the loop separation, i.e., the spacing between corresponding points on the

two loops.

These measurements are used to calculate two estimates of vehicle length: the first uses the

front bumper velocity and the upstream loop on-time, while the second uses the rear bumper

velocity and the downstream loop on-time.

length measurement #1: L V OTr u1 = ⋅ [ ]ft ;

length measurement #2: L V OTf d2 = ⋅ [ ]ft ;

The logic for pairing the given on-time with the given velocity measurement is as follows: for a

short vehicle, such as a sedan, the effective length is on the order of the spacing between the two

loops in a speed trap.  Thus, the period that the upstream loop is occupied is roughly concurrent

with the time that the front bumper velocity is measured over the speed trap.  Similarly, the period

that the downstream loop is occupied is roughly concurrent with the time that the rear bumper

velocity is measured over the speed trap.  For longer vehicles, the period a loop is occupied

includes the time of the respective velocity measurement, but exceeds the duration.
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The average of the two length measurements is recorded as the effective vehicle length.

effective length: L
L L= +1 2

2
;

Next, three constraints are used to estimate the length uncertainty for the vehicle.  First, the

difference between the two length measurements yields a length based constraint.

constraint #1: C L L L L1 1 2 1 2= ( ) − ( ) [ ]max , min , ;ft

Second, the controller samples at 60 Hz, so time measurements are accurate to 1/60th of a second

at the detector station.  Thus, as discussed in section 4.1, the length resolution degrades as velocity

increases.  The algorithm generates a velocity based length resolution constraint from the larger

velocity measurement

constraint #2: C mL V Vr f2 = ⋅ ( ) [ ]max , ;ft

where,

mL Lerr= minimum allowable  per 1 ft/sec; currently set to 0.017 sec.

Third, at low speeds, the constraint #2 is too restrictive.  To counter this problem, a prespecified

minimum measurement uncertainty provides the final constraint:

constraint #3: C dL
L dL dL

dL dL3 20
80 20

20 80

20

60
=

−( ) ⋅ −( ) +












[ ]min max , , ;ft

where,

dL L

dL L
err

err

20

80

= total minimum allowable  for a vehicle under 20 ft; currently set to 1 ft,

total minimum allowable  for a vehicle over 80 ft; currently set to 10 ft.=

Note that the minimum measurement uncertainty increases linearly with vehicle length for vehicles

between 20 ft and 80 ft.  This increase is to account for two factors; first, the fact that longer

vehicles tend to have higher suspensions, increasing the separation between the vehicle underframe
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and the roadway or loop detectors.  The larger separation increases the chance that a loop will

"clear" prematurely for these long vehicles.  Second, the preceding analysis assumes the vehicle

travels at a constant velocity as it passes over the speed trap.  By ignoring the possibility of

acceleration, there will be some errors in the length measurement.  The magnitude of this error

increases as vehicle length increases because the time the vehicle occupies the detector increases.

The largest of the three constraints on the length resolution was used as the length

uncertainty for the given vehicle, i.e.,

length uncertainty: L C C Cerr = ( ) [ ]max , ,1 2 3 ft .

Finally, the length range was bounded by:

maximum reasonable length: L L Lerrmax .= + ⋅0 5

minimum reasonable length:  L L Lerrmin .= − ⋅0 5 .




