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An empirical test of pricing kernel monotonicity

Brendan K. Beare and Lawrence Schmidt∗

Department of Economics, University of California, San Diego

July 21, 2011

Abstract

A recent literature in finance concerns a curious recurring feature of estimated pricing
kernels. Classical theory dictates that the pricing kernel – defined loosely as the ratio
of Arrow security prices to an objective probability measure – should be a decreasing
function of aggregate resources. Yet a large number of recent empirical studies appear
to contradict this prediction. The nonmonotonicity of empirical pricing kernel estimates
has become known as the pricing kernel puzzle. In this paper we propose and apply
a formal statistical test of pricing kernel monotonicity. The test involves assessing the
concavity of the ordinal dominance curve associated with the risk neutral and physical
return distributions. We apply the test using thirteen years of data from the market for
European put and call options written on the S&P 500 index. Statistically significant
violations of pricing kernel monotonicity occur in a substantial proportion of months.

∗We thank seminar participants at UC Riverside, UC San Diego and the University of Chicago for
helpful comments. We also thank Peter Hansen for providing the realized volatility data and related
advice, Ana Monteiro for providing MatLab code for implementing the risk neutral density estimation
procedure, and Allan Timmermann for helpful discussions.
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1 Introduction

A recent literature in finance concerns a curious recurring feature of estimated pricing

kernels. Classical theory dictates that the pricing kernel – defined loosely as the ratio

of Arrow security prices to an objective probability measure – should be a decreasing

function of aggregate resources. Yet a large number of recent empirical studies appear to

contradict this prediction. The nonmonotonicity of empirical pricing kernel estimates has

become known as the pricing kernel puzzle.

Jackwerth (2000) is the seminal paper in the pricing kernel puzzle literature. Jackwerth

constructed nonparametric estimates of the physical and risk neutral distributions of

monthly returns on the S&P 500 index using historical return data and option prices. He

found that the pricing kernel – the ratio of the risk neutral and physical distributions –

appeared to be monotone decreasing immediately prior to the 1987 stock market crash,

but nonmonotone afterwards. In particular, the pricing kernel appeared to be increasing

in the middle of the return distribution, and decreasing elsewhere. Other early studies

identifying similar behavior in pricing kernels include Aı̈t-Sahalia and Lo (2000) and

Rosenberg and Engle (2002).

The bulk of the literature on the pricing kernel puzzle has been empirical. A recent

working paper by Hens and Reichlin (2010) provides a useful discussion of the puzzle

from a theoretical perspective. Hens and Reichlin identify three core assumptions under

which the pricing kernel should be a decreasing function of aggregate resources. These

are (1) risk averse investors, (2) complete markets, and (3) common and true beliefs.

The violation of any of these conditions may lead to pricing kernel nonmonotonicity.

As discussed by Constantinides et al. (2009), Beare (2011) and others, a nonmonotone

pricing kernel may imply the existence of derivative securities that stochastically dominate

the market portfolio. The subject is therefore of considerable interest from a practical

perspective.

A crude theoretical explanation for pricing kernel monotonicity runs as follows. Consider

a one period model with uncertainty in which a representative agent chooses a portfolio

of Arrow securities to maximize the expected utility derived from the consumption of a

single good. Normalizing the state space to the unit interval, and assuming an increasing,
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concave and differentiable utility function u, the agent’s decision problem is to choose a

consumption profile c that maximizes

E(u(c)) =

∫ 1

0

u(c(x))g(x)dx

subject to the budget constraint ∫ 1

0

c(x)f(x)dx = w.

Here, w is the agent’s wealth, f assigns Arrow prices to securities yielding a payoff of one

unit of consumption in a given state, and g is the probability density function (pdf) over

the state space. The first-order condition for a maximum in this problem is

u′(c(x))g(x) = λf(x),

with λ a nonnegative Lagrange multiplier. Rearranging terms, we find that the pricing

kernel, defined as the ratio f(x)/g(x), is proportional to u′(c(x)), the marginal utility

from consumption. Concavity of u therefore implies that the pricing kernel should be

monotone decreasing in c(x). If c(x) is interpreted as the aggregate resource level in state

x, we find that the pricing kernel should be a decreasing function of aggregate resources.

This observation may be traced back to a fundamental contribution of Dybvig (1988).

Hens and Reichlin (2010) consider the extent to which pricing kernel monotonicity is

preserved in more general models of price determination. They find that the assumption

of prices being determined by a representative agent may be relaxed without affecting the

monotonicity property. Risk seeking behavior, incomplete markets, and heterogeneous

beliefs may all lead to violations of monotonicity. Hens and Reichlin dismiss the first

of these explanations, noting that it depends critically on the state space being atomic,

and argue that the latter two explanations are more plausible. Ziegler (2007) previously

explored the possibility of heterogenous beliefs generating nonmonotone pricing kernels.

Detlefsen et al. (2007), Chabi-Yo et al. (2008) and Härdle et al. (2009) have considered

state-dependent preferences as an explanation for pricing kernel nonmonotonicity.
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Recent empirical studies of pricing kernel monotonicity have led to mixed results. Bakshi

et al. (2010) find that average returns on call options written on the S&P 500 are decreas-

ing in the strike price. This suggests that the pricing kernel may in fact be U-shaped.

Constantinides et al. (2009) develop a discretized model of monthly S&P 500 returns in

which the existence of a monotone decreasing pricing kernel implies the solubility of a

system of linear equations based on the return distribution and observed prices of stocks,

bonds and options. Using a number of estimated models of market returns, they find that

the system of equations is insoluble in a high proportion of months over a twenty year

period. Barone-Adesi et al. (2008) and Barone-Adesi and Dall’O (2010) use an asymmet-

ric GARCH model to obtain pricing kernel estimates for the S&P 500 index at a variety

of dates and return horizons. The overall shape of their estimates is generally decreas-

ing, though many of them are locally increasing over certain regions. No formal test of

monotonicity is undertaken.

Perhaps the two papers that are closest in spirit to the present paper are Golubev et

al. (2008) and Härdle et al. (2010). In both of these papers, an attempt is made to

conduct formal statistical inference about the shape of the pricing kernel. Golubev et al.

(2008) set up a likelihood ratio test in which the pricing kernel is nonincreasing under

the null. They assume that the risk neutral distribution is known, while allowing the

physical distribution to vary as a parameter. Applying their test to the German DAX in

the years 2000, 2002 and 2004, they reject the null hypothesis of monotonicity in 2002

at the 5% significance level and in 2000 and 2002 at the 10% significance level. Härdle

et al. (2010) provide a method for constructing uniform confidence bands for the pricing

kernel, allowing for uncertainty about both the risk neutral and physical distributions.

They report 95% confidence bands for the pricing kernel for DAX returns in 2006 at a

variety of time horizons and specific dates. In four of the six cases considered, one can see

that a decreasing pricing kernel is consistent with the reported confidence bands. In the

other two cases, the confidence bands imply that the pricing kernel must be increasing in

a range of negative returns.

In this paper we propose and apply a new test of pricing kernel kernel monotonicity. Our

procedure is an extension of a method proposed by Carolan and Tebbs (2005) for testing

the monotonicity of a density ratio when we observe two independent samples drawn

from the two distributions under consideration. Carolan and Tebbs’ approach relies on
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the insight that a ratio of densities is monotone if and only if the corresponding ordinal

dominance curve – defined in the following section – is concave. Suitable statistics for

testing the null hypothesis of a monotone density ratio may therefore be constructed

from a measure of the distance between the estimated ordinal dominance curve and its

least concave majorant. We generalize the procedure of Carolan and Tebbs so that it

may be applied when one or both distributions is estimated in a nonstandard fashion,

as must be the case for the risk neutral distribution in the present context. In fact, we

estimate the risk neutral density using a method proposed recently by Monteiro et al.

(2008), which involves approximating the density using a smooth cubic spline. Under

appropriate regularity conditions, the null asymptotic distributions of our test statistics

are shown to be continuous functionals of a suitably defined continuous Gaussian process.

We apply our testing procedure using data on the prices of options written on the S&P

500 index between 1997 and 2008. Test statistics were calculated at a total of 128 dates

during this period. In each case the return horizon considered was approximately 20

trading days. Using a test statistic based on the area between the estimated ordinal dom-

inance curve and its least concave majorant, we reject the null hypothesis of monotonicity

16% of the time at the 5% significance level. Using another test statistic based on the

maximum vertical distance between the two curves, the rejection rate rises to 30% at the

5% significance level. More detailed information about precisely when our tests detect

violations of monotonicity, at a range of significance levels, may be found in Section 4.3.

A key difference between the results reported here, and previous empirical studies of pric-

ing kernel monotonicity, is the way in which we deal with time variation in the volatility of

the physical distribution. Golubev et al. (2008) and Härdle et al. (2010) do not account for

time variation in volatility, instead treating the historical market returns as independent

draws from the time invariant physical distribution. This changes the interpretation of

their results – we must interpret the pricing kernel as the ratio of the risk neutral density,

and the unconditional physical return density. In fact, it is the ratio of the risk neutral

density to the physical density conditional on current information which classical theory

posits to be monotone. In particular, we should condition on the present level of volatil-

ity. To this end, we employ the Realized GARCH model of Hansen et al. (2011), which

combines the forward-looking GARCH structure with ex-post volatility measurements ob-

tained from high-frequency intraday data using the realized kernel method developed by
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Barndorff-Nielsen et al. (2008, 2009). We deflate excess market returns using the realized

volatilities before estimating the physical return distribution, and then rescale the esti-

mated physical distribution to the present level of volatility before calculating the pricing

kernel.

The remainder of the paper is structured as follows. In Section 2 we introduce the

statistical framework of our testing procedure, showing how the approach of Carolan

and Tebbs (2005) may be applied when nonstandard estimators of the two distributions

are employed. The null asymptotic distributions of our test statistics are obtained under

high level conditions on the two estimated distribution functions. In Section 3 we explain

precisely how we estimate the risk neutral and physical distributions in our application,

and verify that these estimators satisfy the high level conditions given in Section 2. We also

explain how critical values for our tests are calculated. Section 4 contains our empirical

results. Detailed results are provided for the most recent date at which our tests are

implemented, and a summary of the results obtained at all 128 dates in the sample

period. In Section 5 we give some final thoughts and conclude. Appendix A.1 contains

regularity conditions under which our estimator of the risk neutral density is well behaved,

and Appendix A.2 contains proofs of mathematical results stated in the main part of the

paper.

2 Statistical framework

The pricing kernel puzzle concerns the shape of the ratio of the risk neutral and physical

densities governing the payoff of some base asset – typically, a market index – at a given

future date. Let F and G be two cumulative distribution functions (cdfs) on the real line

with F (x) = G(x) = 0 for all x ≤ 0. The cdf G, referred to as the physical distribution,

describes the value after one period of a $1 investment in the base asset. It should be

interpreted as being conditional on all information available at the time of investment.

The cdf F , referred to as the risk neutral distribution, determines the price of derivative

contracts delivering a payoff after one period that is determined by the value of the base

asset at that time. Such contracts have price equal to their discounted expected payoff

under F . For instance, a European call option written on the base asset at strike s,
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expiring after one period, will have price equal to (1 + r)−1
∫

max{x− s, 0}dF (x), with r

the risk-free interest rate.

The following condition ensures that F and G admit suitably well behaved probability

density functions (pdfs) f and g.

Assumption 2.1. The following statements are true.

(a) F and G have continuous derivatives f and g on R.

(b) g is strictly positive on some interval (a, b) with 0 ≤ a < b ≤ ∞, and zero elsewhere.

(c) f(x) = 0 for all x such that g(x) = 0.

Under Assumption 2.1 we may define the ratio π(x) = f(x)/g(x) for each x ∈ (a, b). The

function π : (a, b)→ [0,∞) is referred to as the pricing kernel.

We wish to test whether π is nonincreasing over its domain, (a, b). Patton and Timmer-

mann (2010) discuss a variety of ways to set up the null and alternative hypotheses in

tests of monotonicity. We shall adopt the following formulation.

H0 : π is nonincreasing; H1 : π is not nonincreasing.

The null hypothesis H0 is composite, meaning that it admits multiple pricing kernels

π. Consistent with Carolan and Tebbs (2005) and Golubev et al. (2008), we shall choose

critical values for our test statistics that deliver the correct asymptotic size at a particular

choice of nonincreasing pricing kernel: π = 1. This is the only choice of π that is constant,

since f and g must integrate to one. When π is constant it is, in an intuitive sense, as

close to violating H0 as possible. Suitably constructed tests that deliver the correct size

when π = 1 may be conservative for other choices of π in H0.

The approach to monotonicity testing proposed by Carolan and Tebbs (2005) is based on

an equivalence between the monotonicity of π and the concavity of a function called the

ordinal dominance curve, or odc. Given our cdfs F and G, the corresponding odc is the

map φ : [0, 1]→ [0, 1] given by

φ(u) = F
(
G−1(u)

)
, u ∈ [0, 1].
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Here, G−1 is the quantile function for G, given by the usual expression

G−1(u) = inf{x : G(x) ≥ u}, u ∈ (0, 1],

or G−1(0) = limu↓0G
−1(u). Under Assumption 2.1, φ is continuous and nondecreasing on

[0, 1] with φ(0) = 0 and φ(1) = 1. It is known (see e.g. Hseih and Turnbull, 1996) that

the density ratio π is nonincreasing if and only if the odc φ is concave. In fact, the second

derivative of φ and first derivative of π are of the same sign at any point where they both

exist. One may therefore consider testing H0 against H1 by constructing a test statistic

that is in some sense an empirical measure of the apparent nonconcavity of φ.

In Figure 2.1 we provide three examples of pairs of pdfs, their ratios, and the corresponding

odcs. It may be helpful to think of the green pdfs as risk neutral densities and the blue

pdfs as physical densities. In the first row, the two pdfs are normal with different means

and the same variance, with the physical density shifted to the right of the risk neutral

density. In this case, the pricing kernel is monotone decreasing, and the odc is concave.

In the second row the two pdfs are normal with equal means, but the variance of the

risk neutral density is greater than the variance of the physical density. In this case the

pricing kernel is U-shaped, broadly consistent with the empirical findings of Bakshi et al.

(2010), and the odc is not concave. In the third row the two pdfs are the risk neutral

and physical pdfs estimated by Jackwerth (2000) for monthly S&P 500 returns on April

15, 1992. In this case the pricing kernel is decreasing at the extremes but nondecreasing

around the center of the return distribution, and the odc again fails to be concave.

In our empirical application we shall estimate F using a cross-section of current option

prices, and G using a time series of excess returns and realized volatilities. Let m denote

the number of observed option prices, and let n denote the length of the time series. It

will be convenient to treat m as a function of n, so that implicitly m = m(n), and for

the purposes of obtaining asymptotic approximations we shall assume that m → ∞ as

n → ∞, with n/m → λ for some λ ∈ [0,∞). We shall index quantities depending on

either sample size by n, not m. Let Fn and Gn denote our estimates of F and G. Carolan

and Tebbs (2005) take Fn and Gn to be the empirical distribution functions (edfs) of

independent and identically distributed (iid) samples of size m and n drawn from F and

G. Here we allow for more general estimators. Details about the specific estimators used
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Figure 2.1: Density ratios and ordinal dominance curves.

in our application are provided in Section 3.

From Fn and Gn we may construct the estimated odc φn(u) = Fn(G−1
n (u)). The least

concave majorant, or lcm of φn, denoted Mφn, is the pointwise infimum of all concave

functions on [0, 1] that lie above φn. Figure 2.2 provides an example of an estimated odc

and its lcm. The estimated odc, in blue, was constructed using the edfs of two iid samples

from the standard normal distribution, each with 50 observations. The green line is the

lcm of the estimated odc.
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Figure 2.2: The least concave majorant of an estimated ordinal dominance curve.

The difference between φn and its lcm is a nonnegative function on [0, 1], and shall be

denotedDφn =Mφn−φn. Carolan and Tebbs (2005) propose using the following statistics

Tn and T ′n for testing H0 against H1:

Tn =
√
n

∫ 1

0

Dφn(u)du (2.1)

T ′n =
√
n sup
u∈[0,1]

Dφn(u). (2.2)

In Figure 2.1, Tn is
√
n times the area between the blue and green lines, while T ′n is

√
n

times the maximum vertical distance between the blue and green lines.

Before we can say anything about the statistical properties of Tn and T ′n, we must intro-

duce conditions on the behavior of Fn and Gn. We shall impose the following high level

condition. The symbol  denotes weak convergence (see e.g. Definition 1.3.3 in van der

Vaart and Wellner, 1996), while ◦ denotes composition. Given an arbitrary set D, `∞(D)

denotes the space of uniformly bounded real valued functions on D equipped with the

topology of uniform convergence.
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Assumption 2.2. For each n ∈ N, Fn and Gn are random cdfs on R. As n → ∞ they

satisfy ( √
n(Fn − F )
√
n(Gn −G)

)
 

(
ξ ◦ F
ζ ◦G

)
in the product topology on `∞(R)2, where ξ and ζ are independent continuous random

elements of `∞[0, 1].

If Fn and Gn are the edfs of independent iid samples of size m and n drawn from F and G,

as they are in the case considered by Carolan and Tebbs (2005), then Assumption 2.2 is

a simple consequence of Donsker’s theorem. In this case we have ξ = λ1/2B1 and ζ = B2,

where B1 and B2 are independent standard Brownian bridges on [0, 1]. Conditions under

which Assumption 2.2 is satisfied by the estimators used in our application are provided

in Section 3.

Under Assumptions 2.1 and 2.2, we are able to establish the following result, Theorem

2.1. Part (a) of Theorem 2.1 provides the limiting distributions of Tn and T ′n when π is

constant, which we treat as the “least favorable point” in H0. Part (b) of Theorem 2.1

shows that tests formed by comparing Tn and T ′n to critical values taken from the limiting

distributions in part (a) are consistent against all points in H1.

Theorem 2.1. Suppose Assumptions 2.1 and 2.2 are true, and let Tn and T ′n be given as

in (2.1) and (2.2) above.

(a) If π is constant, then as n→∞ we have

Tn →d

∫ 1

0

DG (u)du and T ′n →d sup
u∈[0,1]

DG (u),

where G (u) = ξ(u)− ζ(u).

(b) If π is not nonincreasing, then for any c ∈ R we have Tn > c and T ′n > c with

probability approaching one as n→∞.

The proof of Theorem 2.1 may be found in Appendix A.2. As noted earlier, in the

framework considered by Carolan and Tebbs (2005) we have ξ = λB1 and ζ = B2. When

11



π is constant, we therefore have G = λ1/2B1−B2. The linear combination of independent

Brownian bridges λ1/2B1−B2 has the same distribution as (1+λ)1/2B, where B is another

standard Brownian bridge. Thus we obtain the null limiting distributions given by Carolan

and Tebbs (2005) as a special case of Theorem 2.1. There, the random process G does not

depend on any nuisance parameters other than the limiting sample size ratio λ. This turns

out not to be the case in general, and in the application in this paper we will find that

G depends on unknown nuisance parameters. Consequently, the limiting distributions in

Theorem 2.1(a) are unknown. We obtain critical values by computing the desired tail

quantiles of uniformly consistent estimates of the relevant limiting distributions. This

will be discussed in more detail in Section 3.

3 Construction of test statistics and critical values

In Section 2 we outlined the statistical framework we shall use for testing pricing kernel

monotonicity. Assumption 2.2 provided high level conditions that our estimators Fn and

Gn of the risk neutral and physical distributions must satisfy in order for the limiting

distributions given in Theorem 2.1 to be valid. We have yet to explain how Fn and Gn

are constructed from data. This will be done in Sections 3.1 and 3.2. We give sufficient

conditions under which Fn and Gn satisfy Assumption 2.2. In a Section 3.3, we explain

how critical values are calculated for our tests.

3.1 Risk neutral distribution estimation

Nonparametric methods for estimating the risk neutral density governing the prices of

state contingent claims were first introduced by Jackwerth and Rubinstein (1996) and Aı̈t-

Sahalia and Lo (1998). In this paper we shall apply a method proposed more recently by

Monteiro et al. (2008) which involves approximating the risk neutral density with a cubic

spline. The data used for estimating f at a single point in time consist of m quadruplets

(di, si, pi, vi), i = 1, . . . ,m, describing the observed characteristics of European put and

call options written on our base asset, expiring after one period. di is equal to zero if the

ith option is a call and one if the ith option is a put, si is the strike at which the ith
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option is written, pi is the price of the ith option, and vi is the trading volume of options

with strike si and of type di on the date in question. Additionally, we assume that we

observe the one period risk-free interest rate r that applies at the present date. Further

details about how our data are constructed are provided in Section 4.1.

Following Monteiro et al. (2008), we assume that f is a cubic spline (i.e., a smooth

piecewise cubic polynomial) with fixed knots x0 < · · · < xk. The choice of knots is

arbitrary; in our application we employ an ad hoc data dependent method to choose the

knot locations. Given the knots, f is specified up to a vector of parameters θ ∈ R4k:

f(x; θ) =

{
θ4j−3 + θ4j−2x+ θ4j−1x

2 + θ4jx
3 if x ∈ (xj−1, xj]

0 if x /∈ (x0, xk] .
(3.1)

The parameter vector θ is restricted in such a way that f integrates to one, is twice

continuously differentiable on (x0, xk), and is continuous and equal to zero at x0 and xk.

These requirements amount to 3k linear equality restrictions on θ, which we write as

Rθ = 0 using a suitably chosen 3k × 4k matrix R. In addition to these linear equality

restrictions, we require that f is nonnegative. This condition imposes a family of linear

inequality restrictions on θ. We require

θ4j−3 + θ4j−2x+ θ4j−1x
2 + θ4jx

3 ≥ 0 (3.2)

for all x ∈ (xj−1, xj] and all j = 1, . . . , k. Let Θ denote the collection of θ ∈ R4k satisfying

Rθ = 0 and the inequality restrictions in (3.2).

Monteiro et al. (2008) propose choosing θ ∈ Θ to minimize a weighted sum of squared

differences between the observed prices pi and the prices implied by f(·, θ). The trading

volumes vi are used to weight the different squared pricing errors. This approach is

consistent with the idea that highly traded assets are more likely to be accurately priced.

The estimator for the “true” value of θ, which we denote θ∗, can be written as

θn = argmin
θ∈Θ

m∑
i=1

vi (pi − h(di, si; θ))
2 ,
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where

h(d, s; θ) =
1

1 + r

∫ ∞
0

max{(−1)d(x− s), 0}f(x; θ)dx.

Note that, in view of the spline model (3.1), h(d, s; θ) is a linear function of θ for each (d, s).

For each i, we may therefore write h(di, si; θ) = z′iθ for all θ, with zi an element of R4k

determined by si, di, r, and the spline knots x0, . . . , xk. Estimation of θ∗ thus amounts to

weighted linear regression subject to linear equality and inequality restrictions. Monteiro

et al. (2008) provide a fast algorithm to compute θn based on the method of semidefinite

programming. We shall not repeat the details here.

Given the estimated risk neutral density f(·; θn), our estimate for the risk neutral dis-

tribution Fn is simply Fn(x) =
∫ x

0
f(y; θn)dy. We can deduce a uniform limit theory for

√
n(Fn − F ) consistent with Assumption 2.2 by considering the limiting distribution of

the scaled parameter estimation error
√
n(θn−θ∗). Monteiro et al. (2008) do not consider

the stochastic properties of θn. Nevertheless, under suitable regularity conditions, we can

obtain the limiting distribution of
√
n(θn−θ∗) using standard fixed regressor asymptotics

for weighted linear regression subject to linear restrictions. The regularity conditions we

employ, though fairly standard, are technical. We relegate them to Appendix A.1, where

they are given as Assumption A.1.

Under Assumption A.1, it is straightforward to obtain the following result, which provides

the limiting distributions of
√
n(θn − θ∗) and

√
n(Fn − F ). Let I denote the 4k × 4k

identity matrix, and let M = I−Ξ−1R′ (RΞ−1R′)
−1
R. The matrices Ξ and Σ are defined

in Assumption A.1.

Theorem 3.1. Suppose Assumptions 2.1 and A.1 are satisfied. Suppose also that m→∞
as n → ∞, with n/m → λ ∈ [0,∞). Let N denote a vector of 4k independent standard

normal random variables. Then, as n→∞, the following limiting statements are valid.

(a)
√
n (θn − θ∗)→d Ψ1/2N , where Ψ = λMΞ−1ΣΞ−1M ′.

(b)
√
n (Fn − F ) ξ ◦ F in `∞(R), where ξ(u) =

(
∂
∂θ
F (F−1(u; θ∗); θ)

∣∣
θ=θ∗

)′
Ψ1/2N .

Theorem 3.1(b) gives the form of the limiting process ξ that appears in Assumption 2.2

when Fn is constructed as discussed in this subsection. ξ is a finite dimensional continuous
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Gaussian process, having dimension of at most k. Finite dimensionality is a consequence

of the parametric nature of the cubic spline model for f .

3.2 Physical distribution estimation

The data we use to estimate the physical distribution G consist of n triples (qt, rt, σt),

t = 1, . . . , n. qt is the rate of return on an investment in the base asset – in our case, the

S&P 500 index – from time t − 1 to time t. It is calculated as the natural logarithm of

the price ratio between the two dates. rt is the risk-free rate of interest from time t − 1

to time t. σ2
t is a measure of the conditional volatility of excess returns on the base asset

from time t − 1 to time t. It is based on a realized volatility estimate constructed from

high frequency intraday return data. Additional details are provided in Section 4.1.

The physical distribution G we seek to estimate describes the distribution of the dollar

value at time τ of an investment of $1 in the market index at time τ − 1, conditional

on rτ and στ . Here, τ is an arbitrary integer between 1 and n. The option prices used

to estimate the observed risk neutral distribution F are quoted at time τ − 1, with the

options expiring at time τ . In our application, we implement our test separately for each

of 128 dates between 1997 and 2008. Taking τ as fixed, our estimator Gn of G is given by

Gn(x) =
1

n

n∑
t=1

1

(
στ
σt

(qt − rt) + rτ ≤ lnx

)

if x > 0, or Gn(x) = 0 if x ≤ 0. We shall obtain a uniform limit theory for
√
n(Gn −G)

under the following technical conditions.

Assumption 3.1. The following statements are true.

(a) (qt − rt)/σt, t ∈ N, is an iid sequence of random variables.

(b) G is the cdf of exp(qτ ), treating rτ and στ as known.

Assumption 3.1 states that market returns qt are iid once we subtract the risk-free rate of

interest rt and deflate by our realized volatility measure σt. Clearly, this is an imperfect
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approximation to reality, but some form of stationarity condition must be employed in

order to estimate G from historical data. The recent empirical studies of pricing kernel

monotonicity by Golubev et al. (2008) and Härdle et al. (2010) treat the sequence of

market returns qt as iid.

We are now in a position to state the following result, which gives the form of the limiting

process ζ that appears in Assumption 2.2 when Gn is constructed in the manner just

described.

Theorem 3.2. Suppose Assumptions 2.1 and 3.1 are satisfied. Then, as n → ∞, we

have
√
n (Gn −G) ζ ◦G in `∞(R), where ζ = B, a standard Brownian bridge on [0, 1].

The proof of Theorem 3.2 is a simple application of Donsker’s theorem.

3.3 Calculating critical values

In Theorem 2.1(a), we expressed the limiting distributions of our test statistics Tn and

T ′n when π is constant as functionals of the random process G , where G (u) = ξ(u)− ζ(u),

and ξ and ζ are random processes characterizing the estimation uncertainty associated

with Fn and Gn. Theorems 3.1 and 3.2 deliver us, under suitable regularity conditions,

explicit characterizations of ξ and ζ: we have

ξ(u) =

(
∂

∂θ
F (F−1(u; θ∗); θ)

∣∣∣∣
θ=θ∗

)′
Ψ1/2N and ζ(u) = B(u), (3.3)

where N is a 4k-vector of independent standard normal random variables and B is a

standard Brownian bridge. In Assumption 2.2, we required that ξ and ζ are independent

random processes. With ξ and ζ given by (3.3), this amounts to assuming that N and

B are mutually independent. A sufficient condition for independence of ξ and ζ is that

our estimated distributions Fn and Gn are independent of one another. This seems a

reasonable supposition, at least as an approximation. Variation in Fn is driven by the

random pricing errors occurring at a particular date, while variation in Gn is driven by

the history of volatility-adjusted excess returns.

As explained in Section 2, we follow Carolan and Tebbs (2005) by choosing the critical
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values for our test statistics to deliver the correct asymptotic size when π is constant.

Under this condition, the distribution of the random process G may be parametrized in

terms of the unknown quantities θ∗ and Ψ. We shall write

G (u; θ∗,Ψ) =

(
∂

∂θ
F
(
F−1(u; θ∗); θ

)∣∣∣∣
θ=θ∗

)′
Ψ1/2N −B(u). (3.4)

Though the distribution of G (·; θ∗,Ψ) is unknown, we may approximate it by substitut-

ing consistent estimators (θn,Ψn) for (θ∗,Ψ) in (3.4), and then simulating the process

G (·; θn,Ψn) by drawing a large number of realizations of (N,B). The estimator θn intro-

duced in Section 3.1 is known to be consistent from Theorem 3.1(a). We may estimate Ψ

using

Ψn =
n

m
MnΞ−1

n ΣnΞ−1
n M ′

n,

where the sample analogues to Σ, Ξ and M are given by

Σn =
1

m

m∑
i=1

v2
i ziz

′
i (pi − z′iθn)

2
, Ξn =

1

m

m∑
i=1

viziz
′
i, Mn = I − Ξ−1

n R′
(
RΞ−1

n R′
)−1

R.

Under Assumption A.1 it is straightforward to show that Ψn provides a consistent estimate

of Ψ. We obtain critical values for Tn and T ′n with an asymptotic rejection rate of α when

π is constant by drawing a large number of independent realizations of N and B, and

using them to compute the 1− α quantiles of the distributions of∫ 1

0

DG (u; θn,Ψn)du and sup
u∈[0,1]

DG (u; θn,Ψn).

One may show that this approach generates consistent estimates of the 1−α quantiles of∫ 1

0
DG(u)du and supu∈[0,1]DG (u). We omit the details in the interests of brevity.

It is clear from (3.3) and (3.4) that the dependence of the limiting distributions of Tn

and T ′n on θ∗ and Ψ is due entirely to the estimation uncertainty associated with the

risk neutral distribution F . Uncertainty about the physical distribution G contributes

the term B appearing in (3.4), which is free of nuisance parameters. If the risk neutral

distribution were known with certainty, we would have ξ = 0 and therefore G = −B,

and asymptotic critical values for Tn and T ′n could be obtained from the quantiles of
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∫ 1

0
DB(u)du and supu∈[0,1]DB(u). Carolan and Tebbs (2005) report that these critical

values are 0.66 and 1.474 at the 5% significance level. In the robustness checks for our

empirical application reported in Section 4.4, we find that the results of our monotonicity

tests change very little when pivotal critical values obtained under the assumption ξ = 0

are used in place of simulated critical values accounting for uncertainty about F . This is

because the estimated covariance matrix Ψn is usually very close to zero, reflecting the

fact that the pricing errors associated with the fitted risk neutral density are small.

4 Empirical results

The presentation of our empirical results is divided into four subsections. In Section 4.1

we describe our data set, summarizing some of the key features. In Section 4.2 we provide

a detailed description of our results for December 16, 2009 – the most recent date at which

we apply our test. In Section 4.3 we summarize our results for the full sample. In Section

4.4 we report the outcome of a number of robustness checks used to confirm the validity

of our results.

4.1 Data

Our primary dataset consists of prices for European call and put options written on the

S&P 500 from January 1997 to December 2009. Daily option price data were purchased

from DeltaNeutral1, which collects prices for options reported by the Options Price Re-

porting Authority2 (OPRA). OPRA compiles information from a number of different

exchanges in order to find a national option price. Our dataset consists of bid-ask aver-

ages of OPRA’s reported prices for different options at the close of the market on each

trading day, along with the corresponding trading volumes.

We exclude all options that do not have between 18 and 22 trading days to maturity, and

nonzero trading volume. Tables 4.1 and 4.2 summarize some key features of the remaining

prices. In Table 4.1 we report the maximum, minimum and average number of put and call

1http://www.deltaneutral.com.
2http://www.opradata.com.
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Number of calls Number of puts
Year Avg Min Max Avg Min Max
1997 29 24 34 35 26 52
1998 27 21 38 36 27 43
1999 26 21 37 33 24 47
2000 25 15 38 28 19 42
2001 19 12 25 28 20 43
2002 22 16 39 29 18 42
2003 25 19 31 31 24 40
2004 30 27 35 36 31 49
2005 32 28 40 40 35 46
2006 37 28 45 54 43 67
2007 48 34 80 73 56 93
2008 81 58 133 85 64 111
2009 71 60 85 98 79 114

Table 4.1: Option count statistics.

option prices observed in the different months of each year. The average number of option

prices increased from 64 in 1997 to 169 in 2009. Most prices were roughly at-the-money or

out-of-the-money. Towards the end of our sample, a larger percentage of observed option

prices were far out-of-the-money, particularly for puts. In Table 4.2 we report average

implied volatilities by option moneyness, computed using the Black-Scholes formula. For

all moneyness categories, we find that implied volatilities vary substantially over time.

Implied volatilities were moderately high during the the late 1990s and early 2000s, at

their lowest in the mid-2000s, and reached their highest levels during the financial crisis

years at the end of our sample. Average implied volatilies exhibit the familiar volatility

smile, where at-the-money options tend to have lower implied volatilities than their very

in-the-money or out-of-the-money counterparts. Moreover, we observe some asymmetry

in the smile, in that options with moneyness lower than -10% tend to have higher implied

volatilities than options with moneyness greater than 10%. This difference appears larger

in periods with generally higher implied volatilities.

For the benchmark results reported in Sections 4.2 and 4.3, we exclude options with

moneyness outside ±15% from the risk neutral estimation procedure. In the robustness
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Average implied volatility by moneyness category
Year <-15 -15:-10 -10:-6 -6:-3 -3:0 0:3 3:6 6:10 10:15 >15
1997 46 30 25 22 21 20 19 21 25 36
1998 54 32 28 23 21 19 18 18 21 28
1999 47 32 28 24 22 21 19 17 19 25
2000 43 30 26 23 21 20 19 20 22 35
2001 45 35 29 25 24 23 22 22 24 44
2002 45 35 31 27 24 23 23 23 27 47
2003 38 28 25 21 20 18 19 21 23 40
2004 35 24 19 16 14 13 13 15 19 41
2005 34 22 17 14 11 10 10 12 17 29
2006 35 23 18 14 12 10 10 12 17 23
2007 36 26 22 18 16 14 13 14 17 23
2008 62 39 35 31 30 28 27 27 27 42
2009 55 36 31 29 27 26 25 25 25 33

Table 4.2: Option implied volatilities.

checks reported in Section 4.4, we find that including these far away-from-the-money

options leads to a small increase in the rejection rate of our tests. The effect is minimal

because of the volume weighting incorporated in the estimation procedure.

Our physical volatility measure is derived from a daily series of realized volatilities kindly

provided by Peter R. Hansen. These realized volatilities were constructed using high

frequency intraday data on the SPY, an exchange traded fund which tracks the S&P 500

index, using the realized kernel method described by Barndorff-Nielsen et al. (2008, 2009).

Following Hansen et al. (2011), we used a log-linear RealGARCH(1,1) model to produce

forward-looking volatilities from the historical SPY returns and realized volatilities.3 In

Figure 4.1 we graph the realized volatility forecasts alongside implied volatilities extracted

from options with moneyness in the range ±3% using the Black-Scholes formula. The level

of aggregation is 20 days. We can see that the realized volatility forecasts track the implied

volatilities fairly closely.

3Code for estimating the RealGARCH(1,1) model is available at http://qed.econ.queensu.ca/

jae/datasets/hansen003.
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Figure 4.1: Forward looking realized and implied volatilities.

Data for the risk-free interest rate were obtained from Kenneth French’s website4, which

reports the daily return on the one-month Treasury bill rate (from Ibbotson Associates).

4.2 Representative example

In this subsection we present detailed results for the date December 16, 2009. This is

the most recent date at which we apply our tests. In Figure 4.2 we graph the estimated

risk neutral and physical densities for this date, as well as their ratio, the implied pricing

kernel. The physical density was obtained by applying a standard kernel smoother to our

estimated physical cdf; this is purely for graphical purposes, and not used in our testing

procedure. We can see that the physical density has a sharper peak than the risk neutral

density, while the risk neutral density has fatter tails than the physical density. This

results in a U-shaped pricing kernel, similar to the findings of Bakshi et al. (2010). Care

should be exercised when judging the shape of the pricing kernel, as sampling uncertainty

4http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Figure 4.2: Estimated densities and pricing kernel for December 16, 2009.

may be large in the tails of either distribution.

We used k = 11 spline knots in the risk neutral estimation procedure. Their locations

are represented by red dots in Figure 4.2; 3 of the 11 knots lie outside the range of

the horizontal axis. The knot locations were chosen using a fairly complicated ad hoc

procedure exploiting information about strike prices, trading volumes, and the estimated

physical distribution, in order to achieve a sensible distribution of knots. It appears to

work well in practice. Details are available on request. We use the same knot selection

procedure for all 128 dates at which we apply our tests.
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Figure 4.3: Monotonicity test results for December 16, 2009. T = 0.576 (p-value: 0.105)
and T ′ = 1.301 (p-value: 0.108).

Figure 4.3 presents our test results for December 16, 2009. The top panel plots the

estimated odc and its lcm. The estimated odc appears to be roughly convex to the right

of the center of the physical distribution, consistent with a U-shaped pricing kernel. This

shape for the odc was fairly common in the months where we rejected the null hypothesis.

The test statistics T and T ′ are equal to 0.576 and 1.301 respectively. To calculate critical

values and p-values, we simulated 50,000 observations from the estimated null asymptotic

distribution of each test statistic, as described in Section 3.3. The simulated densities are

23



Number of Discounted mean Annualized volatility
Year months Avg Min Max Avg Min Max
1997 12 1.002 0.998 1.005 0.208 0.170 0.292
1998 11 1.003 1.000 1.005 0.223 0.161 0.381
1999 11 1.003 0.999 1.005 0.220 0.176 0.279
2000 9 1.004 0.998 1.007 0.211 0.153 0.301
2001 2 1.002 1.002 1.002 0.293 0.261 0.326
2002 4 1.000 0.999 1.002 0.239 0.188 0.286
2003 11 1.000 0.999 1.000 0.196 0.150 0.294
2004 12 0.999 0.997 1.003 0.145 0.115 0.187
2005 12 1.001 0.998 1.003 0.124 0.098 0.140
2006 12 1.002 1.000 1.003 0.123 0.106 0.167
2007 12 1.002 1.001 1.004 0.164 0.104 0.259
2008 8 1.000 0.996 1.005 0.231 0.181 0.292
2009 12 0.998 0.996 1.002 0.293 0.201 0.447

Table 4.3: Moments of estimated risk neutral distributions.

plotted in the lower panel of Figure 4.3. The p-values associated with the statistics T and

T ′ are 0.105 and 0.108 respectively. We conclude that there is weak evidence against the

null hypothesis of a nonincreasing pricing kernel at this date.

4.3 Full sample results

For each month in the sample period, we select the date with the largest number of option

prices with a single time-to-maturity, and test the monotonicity of the pricing kernel at

that date, with that time-to-maturity. Recall that we only include options with time-to-

maturity between 18 and 22 days in our sample. We exclude 24 months in which there

are no days with prices for at least 40 options with a common time-to-maturity, and the

last four months of 2008 due to the extremely high realized volatility levels associated

with the financial crisis. This leaves us with 128 dates at which we apply our tests.

Table 4.3 presents summary statistics for the moments of the estimated risk neutral

densities by year. The mean of the estimated risk neutral distribution, discounted by

the risk-free rate, acts as a simple specification check on our cubic spline model. It should
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Number of T statistic T ′ statistic
Year months 10% 5% 1% 0.1% 10% 5% 1% 0.1%
1997 12 25 17 8 0 17 8 8 8
1998 11 36 36 18 0 45 27 0 0
1999 11 45 18 9 0 36 27 9 0
2000 9 22 11 0 0 33 0 0 0
2001 2 50 50 50 0 50 50 50 0
2002 4 0 0 0 0 0 0 0 0
2003 11 18 18 9 0 18 18 9 9
2004 12 0 0 0 0 25 8 0 0
2005 12 25 17 0 0 67 67 58 25
2006 12 42 17 0 0 67 67 50 8
2007 12 33 8 0 0 67 58 42 25
2008 8 25 12 12 0 25 25 12 0
2009 12 25 17 8 8 25 25 8 8
All Years 128 27 16 6 1 38 30 19 8

Table 4.4: Rejection rates (%) for monotonicity tests.

equal one if a direct investment in the S&P 500 index is correctly priced. We can see

that the discounted mean is in all cases very close to one. Table 4.3 also summarizes

the annualized volatilities associated with our estimated risk neutral distributions. As we

would expect, the overall pattern of the volatilities roughly matches that of the option

implied volatilities, plotted in Figure 4.1.

Table 4.4 and Figure 4.4 present the results of our monotonicity tests. In Table 4.4 we

report the rejection frequency obtained with our two test statistics in each year, at 10%,

5%, 1% and 0.1% significance levels. We find that our test statistics, particularly the T ′

statistics, exceed their asymptotic critical values more frequently than we would expect

under the null hypothesis of monotonicity. The null hypothesis is rejected 16% and 30%

of the time at the 5% significance level with the T and T ′ statistics respectively. The T ′

statistic generates rejections at the 5% significance level in half of the months during the

years 2005-2009. In Figure 4.4 we plot the p-values using the two test statistics over time.

As we would expect, the two series track each other fairly closely, having a correlation of

0.90. Some p-values are very close to zero, indicating that we may confidently reject the

null hypothesis of monotonicity at certain dates.
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Figure 4.4: p-values for monotonicity tests.

4.4 Robustness checks

In Table 4.5 we report the overall rejection rates obtained using our two test statistics

when a number of changes are made to our use of data and estimation of the risk neutral

distribution. Here we consider four variations on the risk neutral estimator.

1. The risk neutral distribution is assumed known. In this case we use the same risk

neutral estimator, but compare our statistics to critical values obtained under the

assumption ξ = 0, as discussed at the end of Section 3.3.
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Panel A: -15% ≤ option moneyness ≤ 15%

Number of T statistic T ′ statistic
Specification months 10% 5% 1% 0.1% 10% 5% 1% 0.1%
Benchmark 128 27 16 6 1 38 30 19 8

Risk neutral known 128 28 18 6 2 38 33 19 8
Bid-ask weights 128 36 22 8 1 43 34 22 9
Equal weights 128 29 21 6 1 40 30 20 9
9 knots 128 26 13 5 1 38 28 15 9

Panel B: No moneyness restrictions

Number of T statistic T ′ statistic
Specification months 10% 5% 1% 0.1% 10% 5% 1% 0.1%
Benchmark 142 27 17 6 1 35 28 18 6

Risk neutral known 142 28 18 6 1 37 29 18 8
Bid-ask weights 142 30 23 7 1 39 32 17 6
Equal weights 142 30 20 6 1 39 28 16 9
9 knots 142 25 14 5 1 33 25 13 6

Table 4.5: Overall rejection rates (%) under alternative specifications of the risk neutral
distribution estimator, with and without moneyness restrictions.

2. Bid-ask spreads are used in place of trading volumes to weight the squared pricing

errors when estimating the parameters of the cubic spline.

3. Equal weights are applied to the squared pricing errors when estimating the param-

eters of the cubic spline.

4. A total of 9 spline knots are used, rather than 11.

The empirical results reported in Sections 4.2 and 4.3 excluded options with moneyness

outside the range ±15% from the sample. We consider the four variations on the risk

neutral estimator with this moneyness restriction in place, and also with options of all

moneyness included in the sample.
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Table 4.5 reveals that the effects of making these changes are modest. Treating the risk

neutral distribution as known, which amounts to using smaller critical values for our tests,

leads to a very small increase in the rejection rate. This reflects the fact, noted also by

Golubev et al. (2008), that sampling uncertainty about the risk neutral distribution is

minor compared to sampling uncertainty about the physical distribution. Using equal

weights or bisk-ask spreads in place of trading volumes to estimate the parameters of the

cubic spline appears to increase the rejection rate by a modest amount. Reducing the

number of spline knots from 11 to 9, or removing the moneyness restrictions on options,

leads to a small overall reduction in rejection rates.

5 Final remarks

We have proposed a new test of pricing kernel monotonicity, and applied it to a sample

of thirteen years of options market data for the S&P 500 index. Statistically significant

violations of monotonicity are detected at a substantial proportion of the dates considered.

Our results provide empirical support for the growing literature on the so-called “pricing

kernel puzzle”, indicating that well documented nonmonotonicities in estimated pricing

kernels cannot always be attributed to sampling uncertainty.

The robustness checks reported in Table 4.5, and further checks that are unreported,

reveal that our results are relatively insensitive to the way in which the risk neutral

distribution is specified. Uncertainty about the physical distribution plays a dominant role

in determining the outcome of our monotonicity tests. In particular, a sensible approach

to modeling time variation in volatility is required to obtain meaningful results. We saw in

Figure 4.1 that our realized volatility forecasts track the option-implied volatilities quite

closely. When the two volatilities part company, we are much more likely to see rejections

of pricing kernel monotonicity, with the ratio of densities potentially adopting a U- or

inverted U-shape as one density becomes much more concentrated or disperse than the

other. Any empirical study of the shape of the pricing kernel must be closely informed

by the much larger literature on volatility modeling. Our adoption of realized volatility

methods based on high frequency data represents our best attempt to keep astride of

current developments in this area.
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A Mathematical appendix

A.1 Technical conditions for risk neutral distribution estimation

Assumption A.1. The following statements are true.

(a) f is a cubic spline of the form (3.1), with θ∗ ∈ Θ.

(b) {(di, si, vi) : i ∈ N} is a collection of nonrandom elements of {0, 1}×(0,∞)×(0,∞),

while {pi : i ∈ N} is a collection of real valued random variables.

(c) For each i ∈ N, pi = h(di, si; θ) + ei, with {ei : i ∈ N} a mutually independent

collection of real valued random variables, each with E(ei) = 0.

(d) limm→∞
1
m

∑m
i=1 viziz

′
i = Ξ for some positive definite matrix Ξ.

(e) limm→∞
1
m

∑m
i=1 v

2
i ziz

′
iE(e2

i ) = Σ for some positive semidefinite matrix Σ.

(f) supi∈NE|vizi,jei|2+δ <∞ for each j = 1, . . . , 4k and some δ > 0.

(g) f is strictly positive on (x0, xk), with strictly positive right-derivative at x0 and

strictly negative left-derivative at xk.

Part (a) of Assumption A.1 ensures that f is a smooth cubic spline. Parts (b)-(f) are

standard regularity conditions for weighted linear regression with fixed regressors. Part (g)

ensures that the inequality restrictions in (3.2) have an asymptotically negligible impact

upon the distribution of
√
n(θn − θ∗).

A.2 Mathematical proofs

Proof of Theorem 2.1. To prove part (a), we begin by showing that

√
n(φn − φ) G in `∞[0, 1] (A.1)
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when F = G. Let I denote the identity function on [0, 1]. Observe that

√
n (φn − φ) =

√
n (Fn − F ) ◦G−1

n +
√
n
(
F ◦G−1

n − F ◦G−1
)
. (A.2)

Focusing first on the second term in (A.2), we use the assumption F = G to obtain

√
n
(
F ◦G−1

n − F ◦G−1
)

=
√
n
(
(Gn ◦G−1)−1 − I

)
. (A.3)

Under Assumption 2.2, we have
√
n(Gn ◦G−1 −I) ζ in `∞[0, 1]. Using the Hadamard

differentiability of the inverse operator at the identity function (Lemma 3.9.23(ii) in van

der Vaart and Wellner, 1996) – which holds since ζ is continuous under Assumption 2.2 –

we may apply the functional delta method (Theorem 3.9.4 in van der Vaart and Wellner,

1996) to obtain
√
n((Gn ◦G−1)−1 − I) −ζ in `∞[0, 1]. (A.4)

This takes care of the second term on the right-hand side of (A.2). The first term on the

right-hand side of (A.2) may be written as

√
n (Fn − F ) ◦G−1

n =
(√

n(Fn ◦ F−1 − I)
)
◦
(
F ◦G−1

n

)
.

Under Assumption 2.2, we have
√
n(Fn ◦ F−1 − I) ξ in `∞[0, 1]. Also, from (A.3) and

(A.4) we have F ◦G−1
n  F ◦G−1 in `∞[0, 1]. Therefore, applying the continuous mapping

theorem to the operation of composition – which is justified by the uniform continuity of

ξ under Assumption 2.2 – we find that

(√
n(Fn ◦ F−1 − I)

)
◦
(
F ◦G−1

n

)
 ξ in `∞[0, 1].

This takes care of the second term on the right-hand side of (A.2), and proves (A.1).

We complete the proof of (a) with another application of the continuous mapping theorem.

One may show without difficulty that the lcm operatorM : `∞[0, 1]→ `∞[0, 1] and related

operator D : `∞[0, 1] → `∞[0, 1] are positive homogenous of degree one. One may also

show that M(γ1 + γ2) =Mγ1 + γ2 and D(γ1 + γ2) = Dγ1 whenever γ1, γ2 ∈ `∞[0, 1] and

γ2 is affine; see p. 168 in Carolan and Tebbs (2005). Since φ is affine when F = G, we
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may therefore write

Tn =

∫ 1

0

D
(√

n(φn − φ)
)

(u)du and T ′n = sup
u∈[0,1]

D
(√

n(φn − φ)
)

(u).

In view of (A.1) and the continuity of the integral and supremum operations, part (a) of

our theorem now follows from the continuous mapping theorem if we can show that D is

continuous. In fact, continuity follows immediately from Marshall’s Lemma (Robertson

et al., 1988, ch. 7), which states that ‖Mγ1−Mγ2‖ ≤ ‖γ1− γ2‖ for any γ1, γ2 ∈ `∞[0, 1].

Next we briefly sketch a proof of part (b). If φ is not concave, then we have Dφ(u) > 0

for all u in some open interval A with endpoints in (0, 1). Under Assumption 2.2, an

application of the continuous mapping theorem yields φn →p φ uniformly on A. It follows

that
∫
A
Dφn(u)du →p

∫
A
Dφ(u)du > 0 and supADφn →p supADφ > 0. Our desired

result follows easily.

Proof of Theorem 3.1. First we shall prove part (a). The main inconvenience here is the

presence of the inequality restrictions (3.2), which we temporarily dispose of. Let Θ̃ be

the collection of θ ∈ R4k for which Rθ = 0, and let

θ̃n = argmin
θ∈Θ̃

m∑
i=1

vi (pi − h(di, si; θ))
2 = argmin

θ∈Θ̃

m∑
i=1

vi (pi − z′iθ)
2
.

θ̃n is simply a weighted least squares estimator subject to linear equality restrictions.

With some elementary algebra we may show that

√
n
(
θ̃n − θ∗

)
=

√
n

m
MnΞ−1

n

1√
m

m∑
i=1

viziei,

where Ξn is invertible for n sufficiently large under Assumption A.1(d). This condition

also ensures that Ξn → Ξ and Mn → M as n → ∞. An application of the Liapounov

central limit theorem gives m−1/2
∑m

i=1 viziei →d N(0,Σ) under Assumption A.1(b,c,e,f).

Since n/m→ λ, we conclude that
√
n(θ̃n − θ∗)→d Ψ1/2N .

If the probability of the inequality restrictions (3.2) binding vanishes in the limit, so that

P (θ̃n = θn)→ 1, then we will have
√
n(θn − θ∗) =

√
n(θ̃n − θ∗) + op(1), and the proof of
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(a) will be complete. Under Assumption A.1(a,g) we may choose ε > 0 and δ > 0 such

that f ′(·; θ∗) ≥ δ on (x0, x0 + ε), f(·; θ∗) ≥ δ on [x0 + ε, xk − ε], and f ′(·; θ∗) ≤ −δ on

(xk− ε, xk). If f(·; θ̃n)→p f(·; θ∗) and f ′(·; θ̃n)→p f
′(·; θ∗) uniformly on (x0, xk), then the

three quantities

P

(
inf

x∈(x0,x0+ε)
f ′(x; θ̃n) > 0

)
, P

(
inf

x∈[x0+ε,xk−ε]
f(x; θ̃n) > 0

)
, P

(
inf

x∈(xk−ε,xk)
f ′(x; θ̃n) < 0

)
will all converge to one as n→∞. But then we must also have f(·; θ̃n) ≥ 0 on (x0, xk) with

probability approaching one, so that P (θ̃n = θn) → 1. To prove uniform convergence in

probability of f(·; θ̃n) to f(·; θ∗) and of f ′(·; θ̃n) to f ′(·; θ∗), we note that f(x; θ) and f ′(x; θ)

are linear in θ for each x ∈ R under Assumption A.1(a). Thus we may write f(x; θ̃n) =

f(x; θ∗) +
(
∂
∂θ
f(x; θ)|θ=θ∗

)′
(θ̃n − θ∗) and f ′(x; θ̃n) = f ′(x; θ∗) +

(
∂
∂θ
f ′(x; θ)|θ=θ∗

)′
(θ̃n −

θ∗). Uniform convergence in probability now follows from the uniform boundedness of
∂
∂θ
f(x; θ)|θ=θ∗ and ∂

∂θ
f ′(x; θ)|θ=θ∗ and the fact that θ̃n →p θ

∗. This proves (a).

To prove (b) we note that, under Assumption A.1(a), F (x; θ) is linear in θ for each x ∈ R.

Thus we may write

√
n(Fn(x)− F (x)) =

√
n(F (x; θn)− F (x; θ∗)) =

(
∂

∂θ
F (x; θ)

∣∣∣∣
θ=θ∗

)′√
n(θn − θ∗)

for each x ∈ R and n ∈ N. Our desired result now follows from part (a) and the fact that
∂
∂θ
F (x; θ)|θ=θ∗ is uniformly bounded in x.

Proof of Theorem 3.2. This result is merely an application of Donsker’s theorem to the

sequence of random variables {exp(στ
σt

(qt − rt) + rτ ) : t ∈ N}, which are iid with cdf G

under Assumption 3.1.
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