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ABSTRACT 

There are two issues that are of central importance in term structure 
analysis. One is the modeling and estimation of the current term structure of spot 
rates. The second is the modeling and estimation of the dynamics of the term 
structure.  These two issues have been addressed independently in the literature.  The 
methods that have been proposed assume a sufficiently complete price data set and 
are generally implemented separately. However, when the methods are applied to 
markets with sparse bond price, results are unsatisfactory. 

We develop a method for jointly estimating the current term structure 
and its dynamics for markets with low-frequency transactions. We propose solving 
both issues by using a dynamic term structure model estimated from incomplete 
panel data. To achieve this, we modify the standard Kalman filter approach to deal 
with the missing-observation problem. In this way, we can use historic price data in a 
dynamic model to estimate the current term structure.  With this approach we are 
able to obtain an estimate of the current term structure even for days with an 
arbitrary low number of price observations. 

The proposed methodology can be applied to a broad class of 
continuous-time term-structure models with any number of stochastic factors. To 
show the implementation of the approach, we estimate a three-factor generalized-
Vasicek model using Chilean government bond price data. The approach, however, 
may be used in any market with low-frequency transactions, a common characteristic 
of many emerging markets. 
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1. Introduction 

There are two issues that are of central importance in term structure 
analysis. One is the modeling and estimation of the current term structure of spot 
rates, which is essential for valuing and hedging cash flows that are linearly related 
to the discount function. The second is the modeling and estimation of the dynamics 
of the term structure, which is indispensable for valuing and hedging cash flows that 
are non-linear functions of the term structure (all types of options). These two issues 
have been addressed independently in the literature. 

On one hand, for current term-structure estimation, most authors have 
proposed parametric and nonparametric methods for fitting curves to current bond 
prices (or yields) without regard to past prices. McCulloch (1971, 1975), Vasicek 
and Fong (1982), and Fisher, Nychka and Zervos (1994), among others, use spline 
curve-fitting methods to estimate the current term structure. Nelson and Siegel 
(1987), and Svensson (1994) use parsimonious representations of the yield curve, 
limiting the number of parameters and giving more stability to the term structure. 

On the other hand, in the modeling of the term structure dynamics the 
main concern is the movement of the term structure across time. To address this 
issue one alternative is to model the stochastic movement of the spot rate and then to 
use no-arbitrage arguments to infer the dynamics of the term structure.  Examples of 
this approach include one-factor mean-reverting models [Vasicek (1977)], two-factor 
models [Brennan and Schwartz (1979)], multifactor extensions of the Vasicek model 
[Langetieg (1980)], single-factor general equilibrium models [Cox, Ingersoll and 
Ross (1985)] and multi-factor extensions of the CIR model [Duffie and Kan (1996)], 
among many others.  

An alternative approach to model the dynamics of the term-structure is to 
use the whole current term structure as the input of the model and no-arbitrage 
arguments to infer its stochastic movement [Ho and Lee (1986), Heath, Jarrow and 
Morton (1992)].   These type of models use all the information contained in the 
current term structure, but are more difficult to implement than the previous ones.  

Once a dynamic model of interest rates is proposed, the estimation 
method that will be used must be chosen. One possibility is to estimate the model 
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using a time-series of bond prices [Chan, Karolyi, Longstaff, and Sanders (1992), 
Broze, Scaillet, and Zakoian (1995), Brenner, Harjes, and Kroner (1996), Nowman 
(1997, 1998), Andersen and Lund (1997)].  Alternatively, state variables and 
parameters may be estimated from a panel of bond prices with different maturities 
[Chen and Scott (1993), Pearson and Sun (1994), and Duffie and Singleton (1997)]. 

Even though there are obvious benefits of calibrating a model using a 
panel with a large number of price observations, the richer the data set, the larger the 
estimated measurement errors.  These errors arise from the inability of a model with 
a limited number of factors to perfectly explain a large number of contemporaneous 
prices.  A powerful and widely used methodology to optimally estimate 
unobservable state variables from a noisy panel-data is the Kalman filter.  Recent 
applications of this methodology to dynamic models of interest rates include Lund 
(1994, 1997), Duan and Simonato (1995), Ball and Torous (1996), Geyer and Pichler 
(1998), Babbs and Nowman (2001), and Chen and Scott (2003). The advantage of 
using the Kalman filter on a panel-data is that it jointly uses all present and past price 
information to estimate the current term structure.  Maximum likelihood methods can 
then be used to estimate the parameters of the model. 

Both type of methods proposed in the literature, curve-fitting for 
estimating the current term structure and Kalman filtering for dynamic models, have 
been successfully applied to markets for which there is a sufficiently complete price 
data-set.  However, when these methods are used in markets with sparse bond price 
data, results become unsatisfactory.  For example, traditional curve-fitting methods 
render unreliable estimates of the current term structure for days without a sufficient 
number of observations or without short or long-term bond prices.  In addition, a 
typical Kalman filter implementation assumes a complete panel of bond prices (or 
yields), which becomes problematic if there is a substantial number of missing 
observations as is the case in many emerging markets.  

In this work, we develop a method to jointly estimate the current term 
structure and its dynamics for markets with low-frequency transactions. We propose 
solving both issues by using a dynamic term structure model estimated from 
incomplete panel data. To achieve this, we modify the standard Kalman filter 
approach to deal with the missing-observation problem. We can then use historical 
price data and a dynamic model to estimate the current term structure. With this 
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approach, we are able to obtain an estimate of the current term structure even for 
days with an arbitrary low number of price observations. 

The proposed methodology can be applied to a broad class of 
continuous-time term-structure models with any number of stochastic factors. To 
show the implementation of the approach, we estimate a three-factor generalized-
Vasicek model using Chilean government bond price data. The approach, however, 
may be used in any market with low-frequency transactions, a common characteristic 
of many emerging markets. 

The next section explains the shortcomings of static term-structure 
estimation methods when there are sparse data. In Section 3 we present the  
generalized Vasicek model that will be used for illustrating our methodology.  
Section 4 presents the standard Kalman filter method and shows how it can be used 
in an incomplete panel-data setting. Section 5 presents empirical results of applying 
the methodology to the Chilean government bond market and Section 6 concludes. 

2. Shortcomings of Static Term-Structure Estimation in Low-
Frequency Transaction Markets 

Term structure estimation has been traditionally implemented with static 
models that only use current bond prices (or yields), without regard to past 
information. Some methods, like Nelson and Siegel (1987) and Svensson (1994), 
assume a parametric functional form for the forward rates1. Other methods, for 
example McCulloch (1971, 1975), and Fisher, Nychka and Zervos (1994), use non-
parametric spline-based interpolation methods to calculate the term structure.  
Empirical evidence shows that in well developed markets, where numerous bonds 
are traded every day for different maturities, these static methods generate yield 
curves that accurately fit current bond transactions [Bliss (1996)]. 

There are, however, other features besides goodness-of-fit to observed 
prices that are desirable in a term-structure model, such as the time-series stability of 

                                                 

1 See Appendix A for details on these methods. 
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the term-structure curves obtained.  This stability can be analyzed by observing the 
sequence of daily term-structure estimations implied by the model. It might well be 
the case that the model fits very well existing bond prices (or yields), but it implies 
large daily movements of yields for maturities that are not traded. This is not an issue 
for liquid markets, but as we shall see, is a mayor problem for thin markets.  To 
assess the stability of the term-structure curves obtained, we can compare the term 
structure of volatilities from the model with actual volatility from the data.2 

In markets with a complete cross-section of prices for each date, 
volatility of interest rates computed from the estimated term structures will perfectly 
match historical data and the stability of the model is not an issue. However, for 
sparse data sets in which at each date there are only a few different bond maturities 
traded, stability will become an important criteria for judging the reliability of the 
term structure estimation.  In what follows we show that term-structure models that 
use only current bond prices may be unreliable judged on the basis of the instability 
of the term-structure estimates.  

One cause for the instability of curve-fitting estimates of the term-
structure in low-frequency transactions markets is the reduced number of daily 
transactions, which makes it difficult to have robust estimations. When the number 
of prices for a particular date is close to the number of parameters to be estimated, 
any measurement error crucially affects the shape of the curve.  Figure 1 illustrates 
an extreme (but not uncommon in emerging markets) case of a date with fewer prices 
than model parameters by plotting two of the infinite term-structures that perfectly 
explain observed prices.  This case is taken from one of the many dates in the 
Chilean government bond market with extremely thin trading.  Curve-fitting methods 
clearly cannot be applied to dates with very low number of transactions. 

A second cause of instability of these static curve-fitting methods when 
used in low-frequency transactions markets is the unavailability of prices for short or 
for long-term bonds.   Curve-fitting methods provide reasonable estimates within the 
time range spanned by the shortest and the longest maturity bond, but provide much 
less reliable estimates for extrapolations outside this time frame.  

                                                 

2 In section 5 we will detail how to make this comparison. 
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In many emerging markets it is common that for some dates long-term 
bonds are not traded; but the need for a complete term-structure estimation for 
valuation and hedging purposes remains.  Figure 2 illustrates a 20-year term-
structure estimate of the coupon-bond-yield in Chile for a date in which the longest-
maturity bond traded was only 6 years.   Given the low number of transactions of 
Chilean government inflation-protected bonds3 on 10/06/1999, we use all pure-
discount and coupon bonds traded on that date to compute the implied pure-discount 
yield curve using the Svensson (1994) method.  Once this curve is obtained we infer 
the yields of coupon bonds with maturities from 0.5 to 20 years priced using the 
implied pure-discount yield curve estimated earlier.  This coupon-yield curve is then 
plotted in Figure 2 together with the yields of all market transactions on 10/06/1999 
and on the day before.   

From Figure 2 we can see that prices of traded bonds with similar 
maturities did not change much between both dates and that long-term bonds were 
traded only on the first day.  Even though observed prices indicate that markets seem 
to have behaved similarly on both dates, the model estimates a difference of almost 
1% in the yield of a 19-year coupon-bond. This is difficult to justify.  Curve-fitting 
methods seem to provide unstable estimates of long rates when no long-term bonds 
are traded. 

Instability of term-structure estimates can be measured by comparing the 
model’s volatility term-structure with the empirical behavior of interest rates.  It is a 
well-known fact that the term structure of interest rates exhibits mean reversion, 
which implies a downward-slopping volatility term-structure. This means that the 
volatility of long rates should be lower than the volatility of short rates. 

Figure 3 plots the volatility of interest rates calculated from daily 
estimations of the term-structure in Chile between 1997 and 2001 using the Svensson 
(1994) method.  It can be seen that this term-structure of volatilities is not consistent 
with mean reversion in interest rates: it implies very high volatilities for long-rates.  
Moreover, the Svensson volatility estimates are much higher than the empirical 

                                                 

3 The coupon bonds considered here are amortizing bonds paying semi-annually equal 

coupons. These instruments are described in more detail in Section 5. 
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estimates obtained directly from bond prices suggesting that missing observations 
induce unreliable rate estimates.  Similar results are obtained when using other 
curve-fitting methods like Nelson and Siegel (1987).    This is confirmed by 
Molinare (2002), who finds that these static curve-fitting methods are reliable only 
with relatively complete cross-sections of data. 
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Fig. 1. Two different estimations of yield curves from Chilean government inflation-
protected discount and coupon bond data using the Nelson & Siegel method for 

12/22/2000. 
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estimated from Chilean government inflation-protected discount and coupon bond 

data using the Svensson (1994) method.  
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Fig. 3. Empirical volatilities of interest rates in Chile and volatilities obtained from 
daily estimations of the term-structure between 1997 and 2001 using the Svensson 

(1994) method. 
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3. The Generalized Vasicek Dynamic Term-Structure Model 

As was shown in the previous section, traditional static term structure 
estimation only incorporates current bond price (or yield) observations, without 
regard to past information. When long-term bond prices are not available, the 
estimation of long-term interest rates becomes unreliable. Also, in the absence of a 
sufficient number of transactions, an over-parameterization of traditional models can 
occur. 

We propose to solve the problems of term-structure estimation in low-
frequency transaction markets, by using also past price information to infer the 
current  term structure.  This requires a dynamic model of the stochastic behavior of 
interest rates to be able to mix current and past prices in a meaningful way. 

Some dynamic models, in particular multifactor ones, use a limited 
number of unobservable factors to summarize the stochastic behavior of the whole 
yield curve in a way that is sufficiently accurate, but also tractable. These 
unobservable state variables, together with the model parameters, must be estimated 
using observable bond price information.  In the following sections we present an 
estimation methodology, based in the Kalman filter, that may be successfully used to 
estimate the term structure in low-frequency transaction markets.  To illustrate our 
estimation methodology we will assume a generalized Vacisek model for the 
instantaneous risk free interest rate. Our methodology may be used, however, with 
other interest rate models such as a one factor CIR model [Cox, Ingersoll and Ross 
(1985)], a multifactor CIR model [Duffie and Kan (1996)] or general exponential-
affine models [Dai and Singleton (2001)], among others. 

A generalized Vasicek model is a multifactor mean-reverting Gaussian 
model of the instantaneous spot interest rate which extends the classic Vasicek 
(1977).  In Vasicek (1977) the interest rate follows an Ornstein-Uhlembeck process 
and therefore is assumed to revert to a long term rate.  

The generalized Vasicek formulation goes back to Langetieg (1980), and 
is also analyzed in Babbs and Nowman (1999). It considers  stochastic mean-
reverting factors represented by the vector x , of dimension , that define the 
instantaneous interest rate : 

n
n×t 1

tr
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t tr δ′= +1 x  (1) 

The vector of state variables  is governed by the following stochastic 

differential equation: 
tx

t td dt= − +x Kx Σ wtd

dt

 (2) 

where  and  are n  diagonal matrices with entries that 
are strictly positives constants and different.  Also,  is a  vector of 

correlated Brownian motion increments such that: 

( )idiag k=K ( )idiag σ=Σ n×

tdw 1n×

( ) ( )t td d′ =w w Ω  (3) 

where the ( ,  element of Ω  is )i j [1, 1]ijρ ∈ − , the instantaneous correlation of state 

variables  and i j . Under this specification, the state variables have the multivariate 

normal distribution and each of them reverts to 0, at a mean reversion rate4 given by 
. Thus, according to equation (1) the instantaneous interest rate reverts to a long 

term value given by the constant . Note that this is a canonical model in the sense 
that it contains the minimum number of parameters that can be econometrically 
identified (see Dai and Singleton, 2001)

ik

δ

5. 

By assuming a constant market price of risk6 , the risk-adjusted process 
for the vector of the state variables is:  

λ

( )t td dt= − + +x λ Kx Σ wtd

                                                

 (4) 

 

4 In a mean reverting model, every perturbation is on average reduced by half in 
 units of time. log(2) / ik

5 The canonical form proposed by Dai and Singleton (2001) for Gaussian interest rates 

allows for the possibility of common eigenvalues in matrix K. To obtain simpler analytical formulas 

for the prices of pure discount bonds, we impose the condition that all eigenvalues are different, but  

this restriction may easily be relaxed. 

6 We assume for simplicity that the market price of risk is constant, but this could be 

extended to any linear function of the state variables. 
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where λ  is a  vector of constants. 1n×

Applying standard no-arbitrage arguments, we obtain the value of a pure-
discount bond : ( , )tP r t

(( , ) exp ( ) ( )t tP τ τ ′= +x u x )v τ  (5) 

where 

1 exp( )( ) i
i

i

ku
k

ττ − −= −  (6) 

1

1 1

1 exp( )( )

1 exp( ) 1 exp( ( ) )1 exp( )1
2

N
i i

i i i

N N
i j ij j i ji

i j i j i j i j

kv
k k

k kk
k k k k k k

λ ττ τ δ τ

σ σ kρ τ τττ

=

= =

 − −= − − ⋅ 
 

 − − − − +− −+ − − +  + 

∑

∑∑

 (7) 

Sometimes it is convenient to work with the equivalent annualized spot 
rate. From equation (5) we obtain: 

(1 1( , ) log ( , ) ( ) ( )t t tR Pτ τ τ
τ τ

′= − = − +x x u x )v τ  (8) 

which is a linear function of the state variables. Therefore, under the generalized 
Vasicek model, spot rates also have the Gaussian distribution. 

The value of a coupon-bond ( , )tB tx  with maturity  and  
coupons  paying at times  can therefore be computed as: 

Nτ τ= N

iC iτ

1
( , ) ( , )

N

t i
i

B C Pτ
=

=∑x t iτx

i

 (9) 

The implied yield to maturity, , of a coupon-bond maturing at  

is obtained solving the following equation: 

( , )ty τx τ

1
( , ) exp( )

N

t i
i

B C yτ
=

= −∑x τ  (10) 
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Note that if C i , the relationship between  and 
 is one-to-one and continuous in the state variables.  However, unlike spot 

rates,  is not a linear function of the state variables and will not distribute 

Normal. 

0, [1, ]i ≥ ∀ ∈ N

                                                

( , )tB τx
( , )ty τx

(y , )t τx

4. Kalman Filter Estimation with Incomplete Panel-Data 

The Kalman filter is a widely used methodology which recursively 
calculates optimal estimates of unobservable state variables, given all the 
information available up to some moment in time. Using Maximum Likelihood 
methods, we can also obtain consistent estimates of model parameters. In finance, 
the Kalman filter has been used to estimate and implement stochastic models of 
interest rates7, commodities8 and other relevant economic variables9. 

In spite of its extensive use, the literature has not stressed the Kalman 
filter’s ability to use historical information when there are missing observations. 
Most previous work have used complete panel-data, even at the cost of throwing 
away data on contracts not traded frequently or of aggregating data with close to, but 
not identical, maturities, with evident loss of information10.  This problem is 
particularly acute in low-frequency transaction markets where contracts with specific 
maturities do not trade every day.  

Some authors, however, have applied Kalman filter for incomplete panel-
data in commodity markets [Cortazar and Naranjo (2003), Naranjo (2002) and 

 

7 For example see Lund (1994, 1997), Duan and Simonato (1995), Geyer and Pichler 

(1998), Babbs and Nowman (1999), de Jong and Santa-Clara (1999), and de Jong (2000). 

8 For example see Schwartz (1997), Schwartz and Smith (2000), and Sørensen (2002) 

9 See for example Pennacchi (1991), and Dewachter and Maes (2001). 

10 Cortazar and Schwartz (2003) discuss this issue and propose an alternative approach 

that does not use the Kalman Filter to deal with this problem of missing observations and apply it to 

commodity futures. 
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Sørensen (2002)]. We will show that a natural extension of the standard Kalman 
filter may be applied to jointly estimate the current term structure and its dynamics 
when working in low-frequency transaction markets. 

4.1 Standard Kalman Filter 

In this section we present a very general description of the Kalman filter. 
For a detailed explanation, see for example Harvey (1989), Chapter 3 or Hamilton 
(1994), Chapter 13. 

The Kalman filter may be applied to dynamic models that are in a state-
space representation, which include measurement and transition equations. At each 
point in time, the measurement equation relates a vector of observable variables  
with a vector of state variables , which in general is not observable: 

tz

tx

                   ( , )t t t t t t tN= + +z H x d v v 0 R∼  (11) 

where  is a  vector,  is a  matrix, x  is a  vector, d  is a  
vector and  is a  vector of serially uncorrelated Gaussian disturbances with 
mean  and covariance matrix R . Even though we have implicitly assumed that 
vector  of observable variables is of a fixed size, we will later relax this 

assumption to allow for missing observations. Also, note that the measurement 
equation contains a disturbance term to allow for measurement errors in the observed 
data. Measurement equation (11) also assumes the existence of a linear relation 
between observed variables and state variables, assumption that later will also be 
relaxed. 

tz

0

tz

1m× tH m n× t 1n× t 1m×

tv 1m×

t

The transition equation describes the dynamics of the state variables: 

1                    ( , )t t t t t t N−= + +x A x c ε ε 0 Q∼ t  (12) 

where  is a  matrix,  is an  vector and  is an  vector of serially 
uncorrelated Gaussian disturbances with mean 0  and covariance matrix Q .Under 

this representation, the state variables have a multivariate Normal distribution. This 
assumption can also be relaxed to include non-Gaussian models for the state 

tA n n× tc 1n× tε 1n×

t
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variables. Equations (11) and (12) define what is called the state space 
representation11. 

The Kalman filter provides optimal estimates x  of the state variables 
given all the information up to time t . Let  be the covariance matrix of the 

estimation errors: 

ˆ t

tP

ˆ ˆE( )( )T
t t t t t= − −P x x x x  (13) 

Then, given  and P , which include all the information up to time 

, the estimator of the state variables and the covariance matrix of the estimation 
errors at time t are: 

1ˆ t−x 1t−

1t −

11ˆ ˆt t tt t −− = +x A x c  (14) 

11 t t t tt t −− ′=P A P A +Q  (15) 

Equations (14) and (15) are usually called  the prediction step. 

When new information (represented by ) is available, it is used to 

obtain an optimal estimate of the state variables and of the error covariance matrix: 
tz

1
1 1ˆ ˆt t t t t

−
− − ′= +x x P H F νt t t  (16) 

1
1 1t t tt t t t t t

−
− − ′= −P P P H F H P 1t −  (17) 

where 

1t t tt t− ′=F H P H R t+  (18) 

1ˆ(t t t tt t−= − +ν z H x d )

                                                

 (19) 

Equations (16) and (17) correspond to what is usually called the update step. 

 

11 The state space representation of the generalized Vasicek model is described in detail 

in Appendix B. 
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Intuitively, the update step is just the calculation of the conditional 
expectation of state variables , given all the history of observations { } , and the 

new information , i.e. 
tx 1

1

t
t t

−

=
z

tz 1ˆ ( )t t− x=Et tx . It can be shownz 12 that this conditional 

expectation is in fact an optimal estimation, in a mean square error sense, and 
corresponds to Equation (16). The Kalman filter is thus a particular type of Bayesian 
estimation. 

Another useful characteristic of the Kalman filter is that it provides 
consistent model parameters estimates , when maximizing the log-likelihood 

function of error innovations: 

ψ̂

11 1log ( ) log '
2 2t t t

t t
L −= − −∑ ∑ψ F ν F νt  (20) 

where ψ  represents a vector containing the unknown parameters.  

Moreover, the covariance matrix of the estimation errors, I , may be 
obtained from the information matrix : 

1ˆ( )−ψ
( )I ψ

2 log ( )( )
'

L∂=
∂ ∂

ψI ψ
ψ ψ

 (21) 

4.2 Kalman Filter Applied to Incomplete Panel-Data 

As already stated, existent literature stresses the use of the Kalman filter 
methodology with complete panel-data sets, which may induce information loss.  
However, it is not necessary to assume a fixed number of observable variables at 
each time in order to apply the Kalman filter.  

Let  be the number of observations available at time , which needs 

not to be equal to the number of observations available at any other date. This means 
that the number of observations available at any date is time dependent. The 
measurement equation is again: 

tm t

                                                 

12 See for example Øksendal (1998). 
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                   ( , )t t t t t t tN= + +z H x d v v 0 R∼  (22) 

but now  is a  vector, H  is a  matrix,  is a  vector, d  is a 
 vector and  is a  vector of serially uncorrelated Gaussian disturbances 

with mean  and covariance matrix  with dimension is . Under this 

assumptions, { }  will be considered an incomplete panel-data set. 

tz 1tm ×

tv

1
NT

t=

t tm n×

tR

tx 1n×

tm ×

t

1tm × 1tm ×
0 tm

tz

To see why the Kalman filter still may be used with incomplete panel-
data sets, note that given a vector of state variables x  and a covariance matrix  

of the estimation errors, the filter first calculates a prediction of the state variables 
1ˆ t− 1t−P

1ˆ t t−x  and of the covariance matrix 1t t−P  of the errors using equations (14) and (15). 

For this calculations only the dynamic properties of the state variables are used 
which do not depend on the number of observable variables. 

The filter then incorporates the new information given by the vector of 
observable variables . The same equations (16) and (17) can then be used to 
calculate optimal estimates of the state vector  and of the covariance matrix .  

As mentioned before, since the Kalman filter computes at every date the conditional 
expectation 

tz
ˆ tx tP

1ˆ =E ( )t t t−x tx z , the estimates can still be computed, even if the number 

of observations vary with time. Of course, the greater the number of observations 
available to update the filter, the better the accuracy of the estimation. This is 
reflected in a lower variance of the estimation error. 

When a reduced number of observations is available at some date, the 
estimation error and its variance will be greater, reflecting more uncertainty on the 
true value of the state variables. In any case, the estimation of the state variables 
takes into account the whole variance-covariance structure among observations. 

4.3 Kalman Filter with a Nonlinear Measurement Equation 

When applying the Kalman filter to coupon-bond yields (or prices), we 
usually obtain a nonlinear measurement equation.  In this case the extended Kalman 
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filter, which applies to nonlinear measurement and/or transition equations, must be 
used. We will briefly13 describe the mathematics of the extended Kalman filter.  

Since under the generalized Vasicek model, which is been used to 
illustrate the methodology, the transition equation is a linear function of the state 
variables, we are going to restrict the analysis to the case where only the 
measurement equation is a nonlinear function of the state variables14. 

Let the measurement equation be a nonlinear function of state variables: 

( )                     ( , )t t t t t tN= +z f x v v 0 R∼  (23) 

with f  a continuous and differentiable function: tmn
t →\ \ 15. 

The extended Kalman filter, when only the measurement equation is 
nonlinear, is obtained by linearizing f x  around the conditional mean ( )t t 1ˆ t t−x : 

1ˆ( ) ( ) ( )t t t t tt t t t−= + −f x f x H x x 1ˆ −  (24) 

where 
1ˆ

( )
t t t

t t t
t

−=

∂=
′∂

x x

x
x

H f . 

The prediction step equations are the same as before. The update step 
equation under the extended Kalman filter is then: 

1
1 1ˆ ˆt t t t t

−
− − ′= +x x P H F νt t t  (25) 

1
1 1t t tt t t t t t

−
− − ′= −P P P H F H P 1t −

                                                

 (26) 

 

13 Additional information can be found in Harvey (1989). 

14 For example, under a CIR model, the resulting transition equation is also nonlinear. 

See Lund (1994, 1997), Duan and Simonato (1995), and Geyer and Pichler (1998). 

15 In this analysis we assume the general case of an incomplete panel-data setting, hence 

the dimension of the function range depends on the number of observations available at time t . In a 

complete panel-data setting, this time dependence disappears. 
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where 

1t t tt t− ′=F H P H Rt+  (27) 

1ˆ(t t t t t−= −ν z f x )

                                                

 (28) 

A detailed explanation on how to apply the extended Kalman filter to 
coupon-bond yields can be found in Appendix B. 

5. EMPIRICAL RESULTS 

To illustrate our methodology, we estimate a 3-factor generalized 
Vasicek model using Chilean government bond data16. The data used consists of 
inflation-protected bonds, the most liquid fixed-income instrument traded in Chile. 
Thus, we are modeling the behavior of real, as opposed to nominal, interest rates.  
The choice of the Vasicek model seems appropriate for modeling real rates which 
may become negative whenever the rate of inflation exceeds the nominal interest 
rate.  

Given that most of the outstanding bonds trade only sporadically, the 
Chilean government bond market can be characterized as a low-frequency 
transaction market and may be used to test our term-structure estimation 
methodology.   

In the next sections we analyze the estimation results based on in-sample 
and out-of-sample yield errors and on the ability of the model to fit the observed 
term-structure of volatilities. 

 

16These instruments are actually issued by the Chilean Central Bank, an institution 

equivalent to the Federal Reserve in the U.S. 
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5.1 Data description 

The data consists of all transactions at the Santiago Stock Exchange from 
January 1997 to December 2001 (1243 days) of pure-discount bonds and semi-
annual amortizing coupon bonds issued by the Chilean government.  Pure-discount 
bonds are usually denominated PRBC (“Pagare Reajustable Banco Central”) bonds, 
and semi-annual amortizing coupon bonds are called PRC (“Pagare Reajustable con 
Cupones”) bonds. Both type of bonds are inflation-protected with payments brought 
to real terms using monthly inflation17. 

Table 1 summarizes the data. It can be noted that pure-discount bonds 
have maturities of less than 1 year while coupon bonds have maturities ranging from 
1 to 20 years.  Trading frequency is defined as the number of days for which we have 
at least one transaction of a bond of a specific maturity over all available trading 
days. A trading frequency of 20% means that at least one bond with that maturity 
was traded an average of 50 days per year. From Table 1 we see that for most 
maturities, the trading frequency ranges from 30% to 45%. Standard deviation of 
observed yields generally decreases as bond maturity increases, which is consistent 
with mean reversion in interest rates. 

Figure 4 illustrates the sparseness or low frequency of daily bond 
transactions in Chile by showing for each day during the second semester of 2001 
when a bond was traded or not. The panel-data shown is clearly incomplete, a 
condition that is essential to consider when choosing the estimation methodology.18 

 

                                                 

17 In practice this is done by expressing payments in another unit, the UF (“Unidad de 

Fomento”), which is updated every month using the previous month inflation. 

18 Curiously, the figure resembles a DNA pattern. 
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Table 1. Description of the data: Daily transactions of Chilean government inflation-
protected pure discount and coupon bonds from January 1997 to December 2001. 

Maturity 
Range
(Years)

Number of
Observations

Average 
Trading

Frequency*

Average
Yield**

Yield Standard
Deviation**

0 - 1 1115 89.70% 5.81% 2.04%

1 - 1.5 377 30.33% 6.46% 1.83%
1.5 - 2.5 426 34.27% 6.29% 1.45%
2.5 - 3.5 443 35.64% 6.20% 1.17%
3.5 - 4.5 642 51.65% 6.15% 1.17%
4.5 - 5.5 519 41.75% 6.36% 1.12%
5.5 - 6.5 550 44.25% 6.36% 0.87%
6.5 - 7.5 766 61.63% 6.33% 0.91%
7.5 - 8.5 921 74.09% 6.22% 0.81%
8.5 - 9.5 451 36.28% 6.31% 0.80%

9.5 - 10.5 584 46.98% 6.31% 0.65%
10.5 - 11.5 268 21.56% 6.30% 0.72%
11.5 - 12.5 458 36.85% 6.21% 0.67%
12.5 - 13.5 262 21.08% 6.20% 0.64%
13.5 - 14.5 507 40.79% 6.14% 0.60%
14.5 - 15.5 269 21.64% 6.10% 0.71%
15.5 - 16.5 311 25.02% 6.13% 0.61%
16.5 - 17.5 269 21.64% 6.18% 0.60%
17.5 - 18.5 309 24.86% 6.32% 0.53%
18.5 - 19.5 404 32.50% 6.32% 0.53%
19.5 - 20 533 42.88% 6.26% 0.60%

Total 10384

**Continuous Compounding

Pure Discount Bonds

Coupon Bonds

*Trading frequency is defined as the number of days for which there is a
transaction of a given bond over all available trading days.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.03224256 0.05012399 0.05012261
0.03314705 0.0463109 0.0463109 0.04955178 0.05019394 0.05145328 0.0550562 0.0550562 0.05524547 0.05528227
0.03267019 0.04993237 0.04997993 0.05083569 0.05310465 0.05467756 0.05477224 0.05451975 0.05515085 0.05515085
0.02740139 0.04478214 0.04439959 0.04654956 0.04859967 0.0491635 0.05145328 0.05174215 0.05259245 0.05368294 0.05363555 0.05430738 0.05398301
0.03219057 0.04814234 0.04838192 0.04926624 0.05107327 0.05093073 0.05195974 0.05207445 0.05268732 0.05337092 0.05345651
0.03286377 0.04592893 0.04891714 0.04896533 0.05088321 0.05164323 0.05274424 0.05306672 0.05349337
0.03256219 0.04305949 0.04174956 0.04821857 0.05002749 0.05000768 0.0517382 0.05176193 0.05306672 0.05292446 0.05382509 0.05429877 0.05448818
0.03495657 0.05012411 0.05249757 0.05306672 0.05312994 0.05354077 0.05418432 0.05485056 0.05543471
0.03378013 0.04538756 0.04592893 0.05001704
0.03383304 0.05026527 0.05025998 0.05107327 0.05444084 0.05448818
0.03454163 0.04315527 0.04964694 0.04975139
0.03440825 0.0459926 0.04945661 0.04990587 0.05088321 0.05158444 0.05230778 0.05290414 0.05304775 0.05467756 0.05448818
0.0356514 0.04683588 0.04736057 0.05021772 0.05018602 0.05363555 0.05467756
0.0334695 0.04305949 0.04497336 0.04554681 0.04592893 0.04917104 0.04993638 0.05211795 0.05429877 0.05401459 0.05463022 0.05465389

0.03479536 0.04978966 0.04978015 0.05358816 0.05448818 0.05448818 0.05467756
0.03439727 0.05021486 0.0512633 0.05308252 0.05373032 0.0538014 0.05453553 0.05453553 0.05477224 0.05439349
0.03518736 0.046979 0.05021772
0.03507643 0.04497336 0.04583342 0.0475513 0.04736057 0.05021772 0.05172633 0.0553401 0.05526913 0.05543471 0.0553401
0.05165274 0.05306672 0.05515085 0.05515085 0.05496156
0.05693881 0.04831386 0.0504079 0.05064558 0.05401459 0.05420406 0.05571849 0.05548876
0.05477315 0.04955178 0.05095924 0.05548201 0.05586035 0.05600219
0.05675661 0.05354077 0.04688359 0.05182049 0.05171446 0.05647485
0.06059129 0.0480518 0.04997993 0.05145328 0.05173819 0.05396722 0.05496156 0.05567908 0.05559369 0.0553401 0.05534009
0.06929286 0.046979 0.0475513 0.04760579 0.04869492 0.05097824 0.05107327 0.05325636 0.05422774 0.05420406 0.05481957 0.05496156 0.05496156
0.06854219 0.04592893 0.04585464 0.04736057 0.04783733 0.05107327 0.05145328 0.05325636 0.05429877 0.05439349 0.05583671 0.0556239
0.06963685 0.04583342 0.04545126 0.04592893 0.05325636 0.05619128 0.05619128
0.05828173 0.04545126 0.04592893 0.04688359 0.05164323
0.06665192 0.04807562 0.05145328 0.05145328 0.05590763 0.05638034 0.05638034 0.05638034

0.04926624 0.05156093 0.05448818 0.05675834
0.06253141 0.04629181 0.04805974 0.05164323 0.05723063
0.0701727 0.04678816 0.04688359 0.04783733 0.05335118 0.05467756 0.05539529 0.05805662

0.06496817 0.04859967 0.04891714 0.05164323 0.05373032 0.05429877 0.05543471 0.05543471 0.0586462 0.05910582 0.05878764 0.05874049 0.05826891
0.0569815 0.05078817 0.05311413 0.05320896 0.05526322 0.05534956 0.05760831 0.05902334 0.05890886 0.05883479

0.06401926 0.046979 0.0475513 0.05344597 0.05410933 0.05656935 0.05647485 0.05915295 0.05902334
0.05858555 0.04955178 0.05344597 0.05798585 0.05958879 0.0597772
0.06168579 0.04974209 0.04736057 0.05439349 0.05444084 0.05515085 0.05892907
0.0503442 0.04914724 0.05420406 0.05420406 0.05537163 0.0566166 0.05817456 0.05845757

0.04783733 0.05429877 0.05496426 0.05699451 0.05823746 0.05824532
0.05354077 0.05543471 0.05836325 0.05817456

0.04821857 0.04845677 0.05306672 0.05293124 0.05543471 0.05534009 0.05666385
0.04350927 0.04592893 0.04736057 0.04736057 0.05102576 0.0512633 0.05172764 0.05240268 0.05410933 0.0548669 0.05496156 0.05600219 0.05704174
0.0409509 0.04401689 0.04688359 0.04945661 0.04974209 0.05026527 0.05106535 0.05128467 0.05344597 0.0551193 0.05552931

0.03437574 0.04688359 0.05112078 0.05135829 0.05179517 0.0553401 0.05571849
0.02982381 0.04611993 0.0510416 0.05183315 0.05216818 0.05259245 0.0564951 0.05656935 0.05656935 0.05656935
0.03334086 0.04545126 0.05207049 0.05205467 0.05249757 0.05638033 0.057026
0.00548295 0.0415857 0.05164323 0.05249283 0.05425142 0.05638034 0.05713619 0.05713619

-0.01501203 0.05248319 0.05590763 0.05628581 0.05621019 0.05685281 0.05675834
-0.02102432 0.02858746 0.04152574 0.04305949 0.04425609 0.04524739 0.05237658 0.05645122 0.05638034 0.05671109
-0.01421161 0.05723063
0.00351594 0.04401689 0.04551496 0.05195974 0.05675834

-0.02389384 0.0428679 0.04569013 0.0488854 0.05128623 0.05249757 0.05543471 0.05609674 0.05604454 0.05586035 0.05606522
-0.0261132 0.04401689 0.04580953 0.05135829 0.05168988 0.05581306 0.05581306 0.05623855 0.05628581 0.05621491
0.03685438 0.03913658 0.05122107 0.05182366 0.0553401

-0.02071134 0.0390925 0.05077366 0.05123954 0.05382509 0.05448818 0.0553401 0.0549584 0.05499753
-0.01824861 0.02849027 0.03854741 0.03922071 0.04046993 0.04993237 0.04992345 0.05401459 0.05396722 0.05453553 0.05456935

0.03700673 0.03915661 0.04938622 0.05069311 0.05396722 0.05420406 0.05428825
0.03405773 0.04774199 0.04856395 0.0494445 0.05002749 0.05249757 0.05259245 0.05458288 0.0547249 0.05444084
0.0324666 0.04545126 0.04858776 0.04899845 0.05019394 0.04993237 0.05259245 0.05410933 0.05415669 0.05401459 0.05382509

0.03420817 0.03527061 0.0394803 0.04130188 0.048393 0.05116829 0.05297189 0.05401459 0.05382509 0.05354077
0.03156205 0.03912455 0.04834562 0.05306672 0.05346967 0.05388826 0.05391984
0.03244159 0.04793265 0.05021772 0.05211795 0.05306672 0.05292446 0.05316155 0.05335118 0.05354077 0.05354077

0.03419437 0.03917264 0.04545126 0.0479962 0.04802797 0.04964694 0.05059805 0.05228066 0.05287704 0.05320896
0.03200525 0.03507753 0.03792179 0.04497336 0.04277209 0.04435176 0.04821857 0.05211795 0.05365924 0.05382509 0.05420406

0.04449524 0.04879016 0.05316155 0.05316155
0.02664193 0.03355566 0.03944505 0.03912455 0.04736057 0.05287704 0.05287704
0.03436922 0.03681397 0.03970137 0.04042191 0.04564236 0.04736057 0.04936143 0.04974209 0.05448818 0.05477224

0.04764665 0.04879016 0.04917104 0.04974209 0.05439349
0.04396904 0.04807562 0.04833292 0.05230778 0.05240268 0.05287704 0.0527229

0.03893221 0.04106996 0.04162167 0.04808992 0.04821857 0.05230778 0.05259245 0.05259245 0.05306672
0.03349115 0.04740826 0.04859967 0.05211795

0.03902839 0.04104597 0.05159575 0.05207049 0.05226033 0.05230778
0.03541804 0.03825871 0.04018179 0.04114194 0.04974209 0.05164323 0.05145328 0.05183315 0.05150077
0.03541974 0.03575317 0.03902839 0.04487776 0.04688359 0.05202303 0.05183315 0.05240268
0.03636592 0.04015777 0.04018179 0.05240268 0.05230778

0.04640637 0.04707441 0.04731288 0.05107327 0.05135829 0.05211795 0.05221287 0.05240268
0.04659729 0.04659729 0.04688359 0.05192809 0.05183315 0.05183315 0.05211795
0.04583342 0.04687166 0.05164323 0.05169072 0.0518859

0.04726519 0.04726519 0.05221287 0.05213377
0.0429637 0.03922071 0.04699808 0.04783733

0.03797516 0.04688359 0.046979 0.05059805 0.05211795 0.05221287
0.03690133 0.03825871 0.04123791 0.04688359 0.0504079 0.05088321 0.05145328
0.03625274 0.03832287 0.03888412 0.04114194 0.03912455 0.0459926 0.0504079 0.05202303 0.05188062 0.05202303 0.05211795

0.04027785 0.04487776 0.05059805 0.05202303
0.03726029 0.03869173 0.03825871 0.0463109 0.04688359 0.05135829 0.05164323 0.05164323
0.0368868 0.04210118 0.04152574 0.03931686 0.04018179 0.04497336 0.04991334 0.05088321 0.05097824 0.05132663 0.05173819

0.03833414 0.04037389 0.04037389 0.04397435 0.04592893 0.04640637 0.04745594 0.05050298 0.05154826 0.05078817 0.0512633
0.03962759 0.04611993 0.05064558
0.04025162 0.03517407 0.04147778 0.04611993 0.05097824 0.05088321 0.05145328

0.04592893
0.04128963 0.04569013 0.04640637 0.0482821 0.05069311
0.0436218 0.04123791 0.04545126 0.04592893 0.04773246 0.0504079
0.0423335 0.04392118 0.04305949 0.04640637 0.04983724 0.04983724 0.0504396 0.05083569 0.05097824 0.05097824

0.04344256 0.04315527 0.04497336 0.04645411 0.04831386 0.05021772 0.05097824 0.05123954
0.04392119 0.04358617 0.04372976 0.04596077 0.04650184 0.04831386 0.05002749
0.04678816 0.04745594 0.04793265 0.04783733 0.04974209

0.04347447 0.04439959 0.04545126 0.04774199 0.05116829 0.0512633 0.05211795
0.04765619 0.05240268

0.04764665 0.04793265
0.04593661 0.04850441 0.04859967 0.05225013 0.05164323

0.04745594 0.05354077
0.04583342 0.04778966 0.04821857 0.04917104 0.04917104 0.05344597

0.04821857 0.04926624 0.04944736 0.04952799 0.05188379 0.05228774 0.05344597
0.04736057 0.05069311

0.04650183 0.04936143 0.04936143 0.05202303 0.05287704 0.05306672
0.04526013 0.04850441 0.05230778
0.04525249 0.04669273 0.04707441 0.04774199 0.05202303 0.05164323 0.05211795 0.05221287 0.05233941

0.04472477 0.04500922 0.046979 0.04812327 0.04812327
0.0435383 0.04409939 0.04478214 0.04812327 0.04831386 0.05202303 0.05234574

0.04564236 0.04452393 0.04473433
0.0435383 0.04592893 0.0471698 0.05021772 0.05173819 0.05202303 0.05211795 0.05205467

0.0439722 0.04305949 0.0433468 0.04526013 0.04533295 0.04669273 0.04654956 0.04793265 0.05050298 0.05116829 0.05159575 0.05155776 0.05192809
0.03762985 0.04305949 0.04385738 0.04468652 0.04573789 0.04683588 0.04669273 0.05200721 0.05192809
0.04072528 0.04200529 0.0436819 0.04358617 0.04688359 0.04688359 0.05154826 0.05161949 0.05197556

0.04392118 0.04449524 0.04564236 0.04659729 0.04664501 0.05112078 0.05135829
0.0418135 0.04347447 0.0433468 0.04650184 0.05069311 0.05097824 0.05097824

0.04248461 0.04602444 0.04614381 0.05002749 0.05070896 0.05083569
0.04219705 0.0435383 0.04635864 0.04669273 0.05078817

0.0429637 0.04666887 0.05116829 0.05107327 0.05107327
0.03936837 0.04162167 0.04305949 0.0463109 0.05050298 0.05085945 0.05097824
0.04379884 0.04066198 0.04955178
0.04194804 0.04114194
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Fig. 4. Graphical description of available Chilean government inflation-protected 
discount and coupon bond daily data for the second semester of 2001. A black cell 

indicates that data was available for the corresponding maturity at a given day. 
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5.2 Estimation results 

We estimate the generalized Vasicek model parameters using bond price 
transactions data from January 1997 to December 2001. Since we are interested in 
extracting the term structure of interest rates, we use bond yields instead of bond 
prices. 

As noted in section 4, the Kalman filter considers measurement errors in 
the observations. For simplicity we assume that the error variance-covariance matrix 

 is diagonal. Also, we aggregate bonds into 5 groups depending on their 

maturities: the first group includes the discount bonds with maturities up to 1 year, 
and the next 4 groups include coupon bonds with maturities from 1 to 5 years, from 6 
to 10 years, from 11 to 15 years and from 16 to 20 years, respectively. Bonds within 
each group are assumed to have measurement errors with the same standard 
deviation: 

tR

dξ , 1
cξ , 2

cξ , 3
cξ  and 4

cξ , respectively. With these assumptions 18 different 

parameters must be estimated19. Table 2 presents parameter estimates and their 
respective estimation errors. Note that all the parameters are statistically significant, 
though the mean reversion coefficient of the first factor is very small suggesting that 
this factor follows a process which is close to a random walk. 

 

                                                 

19 Implementation issues of the model can be found in Appendix B. 
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Table 2. Parameter estimates and standard errors from daily transactions of Chilean 
government inflation-protected pure discount and coupon bonds from January 1997 

to December 2001.   

1κ  0.00050 0.00012 

2κ  1.11455 0.01681 

3κ  2.16431 0.05362 

1σ  0.01747 0.00019 

2σ  0.29298 0.00466 

3σ  0.32780 0.00647 

21ρ  0.91042 0.01258 

31ρ  0.84189 0.02376 

32ρ  0.97121 0.00246 

1λ  0.00056 0.00002 

2λ  0.01599 0.00418 

3λ  0.05213 0.01836 

δ  0.05614 0.02654 

dξ  0.00225 0.00014 

1
cξ  0.00225 0.00004 

2
cξ  0.00079 0.00001 

3
cξ  0.00027 0.00001 

4
cξ  0.00038 0.00001 
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One important measure of performance is the ability of the model to 
accurately fit observed prices, in particular for days with large number of 
transactions. Figure 5 shows the yield curve derived from the model for 01/09/1997. 
We see that the model is able to fit very well observed yields.  

Another measure of performance is whether the model renders stable 
yield curves, in particular when there are missing observations. Figure 6 shows the 
yield curve obtained for 10/06/1999,  the same day used in Figure 2 to illustrate the 
instability of the curve-fitting methods. We see that the estimated yield curve not 
only correctly fits observed yields for that day, but also is consistent with previous 
day observations. Note that the yield curve shown has been constructed using only 
prices for that particular day, and the dynamics of the interest rate process. We have 
not included the previous day curve in Figure 6 because it is very close to the curve 
shown. The model long-term yields for the current day, for which there are no data, 
are very close to the observed previous day long-term yields. This example 
illustrates that, for the same date shown in Figure 2, our method provides much more 
stable curves than those obtained by curve fitting methods. 

Table 3 presents in-sample and out-of-sample error measures by 
maturity. Out-of-sample error measures were calculated by re-estimating the model 
using data from 1997-2000, and then comparing yield curves to observed yields for 
the year 2001, which  was not used in the parameter estimation. It can be seen that all 
errors are reasonably low, while errors for short term bonds are larger than for long 
term bonds. Out-of-sample errors are similar to in-sample errors, showing the 
stability of the model and its ability to be used in real world applications. 
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Fig. 5. Estimated and observed coupon bond yields on 01/09/1997. 
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Fig. 6. Estimated and observed coupon bond yields on 10/06/1999. 
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Table 3. In-Sample and Out-of-Sample RMSE for the Year 2001. 

2001 2001

0 - 1 0.14% 0.12%

1 - 1.5 0.25% 0.33%
1.5 - 2.5 0.16% 0.23%
2.5 - 3.5 0.17% 0.21%
3.5 - 4.5 0.13% 0.15%
4.5 - 5.5 0.16% 0.16%
5.5 - 6.5 0.06% 0.06%
6.5 - 7.5 0.05% 0.06%
7.5 - 8.5 0.06% 0.09%
8.5 - 9.5 0.06% 0.08%
9.5 - 10.5 0.05% 0.06%
10.5 - 11.5 0.04% 0.04%
11.5 - 12.5 0.03% 0.03%
12.5 - 13.5 0.03% 0.03%
13.5 - 14.5 0.03% 0.02%
14.5 - 15.5 0.02% 0.02%
15.5 - 16.5 0.03% 0.03%
16.5 - 17.5 0.03% 0.03%
17.5 - 18.5 0.03% 0.03%
18.5 - 19.5 0.03% 0.04%
19.5 - 20 0.03% 0.04%

0 - 20 0.10% 0.11%
Total

RMSE
Out-of-
Sample

Discount Bonds

Coupon Bonds

Maturity 
Range
(Years)

RMSE
In-Sample
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As a last measure of performance, we analyze the volatility structure of 
interest rates and compare it to volatilities obtained directly from bond yields. The 
theoretical volatility structure of interest rates, which is independent of the state 
variables, is obtained by applying Ito’s lemma to Equation (8). 

1/ 2

1 1

( ) ( ) ( )
N N

R i j i j
i j

u uσ τ τ τ σ σ ρ
= =

 
= 
 
∑∑ ij   (29) 

where 

1 exp( )( ) i
i

i

ku
k

ττ − −= −  (30) 

There are two difficulties in computing empirical estimates of the interest 
rate volatilities.  First, most of the data consists of amortizing coupon bonds and we 
are interested in the volatility of spot rates. Second, the panel data contains many 
missing observations.  To address these problems we aggregate the data in groups 
according to their maturity. The first group contains bonds with one to two years of 
maturity, and so on. Then, for each date we take the average yield of all the bonds in 
a given group and we compute the volatility of daily changes of these yields. In 
addition, we compute the average duration of the bonds in each group. To compare 
this empirical volatility to model spot volatilities, we assume that the volatility of 
each group represents the volatility of a discount bond with maturity equal to the 
average duration in the group.  

Figure 7 shows the term structure of spot volatilities from the model and 
from the empirical estimates.  Comparing this figure with Figure 3, we observe that 
our model volatilities are much closer to the empirical volatilities than those obtained 
using the curve fitting methods.  
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Volatility Structure of Interest Rates (1997-2001)
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Fig. 7. Volatility Structure of Interest Rates 1997-2001. 

 

6. Conclusion 

The estimation of the term structure of interest rates is a critical issue, not 
only from a theoretical point of view, but also for all market participants including 
banks, regulators and financial institutions.   It is an essential ingredient in the 
valuation and hedging of all fixed income securities. It is also necessary for financial 
planning and for implementing monetary policy. In economies with well developed 
and liquid financial markets, the existence of bond prices for a wide range of 
different maturities makes it easy to extract a term structure of spot rates that 
explains observed prices. Moreover, in some countries, such as the United States, 
zero-coupon bonds (Strips) of different maturities are individually traded. In many 
emerging markets, however, bonds trade infrequently so that for every particular day 
there are bond prices for only a few maturities. This missing-observation problem 
makes it difficult, and sometimes impossible, to estimate the term structure using 
only current data. 

In this article we develop a methodology for using an incomplete panel-
data of bond price observations to estimate the current term structure. We use an 
extended Kalman filter approach to estimate a dynamic multi-factor model of interest 
rates using the panel-data with missing observations. The Kalman filter estimation 
provides not only the parameters of the model but also the time series of the factors. 
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The approach jointly estimates the current term structure and its 
dynamics.  The model can be used to value and hedge all types of interest rate 
derivatives, including bonds with embedded options.  This methodology also allows 
us to estimate the term structure for days with an arbitrary small number of traded 
bonds.  

We implement the approach using a three factor generalized Vasicek 
(1977) model and Chilean government bond data. The methodology, however, can 
be implemented with a broad class of dynamic interest rate models and in any market 
with low frequency transactions, a very common situation in many emerging 
markets. 

Our approach is currently being used by a consortium of financial and 
academic institutions in Chile to estimate the Chilean term structure of interest rates. 
The results are updated daily at the website RiskAmerica.com. 
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APPENDIX A 

The Nelson and Siegel (1987) approach assumes that the forward rate 
curve is of the following form: 

1
0 1 2

1

( )
T TT

1f T e τβ β β
τ

− −
= + + e τ  (31) 

where T  is the time to maturity, and 0β , 1β , 2β  and  are parameters. 1 0τ >

The spot rates can then be calculated as the integral of forward rates: 

0 1 2
0

1( ) ( ) (1 ) ((1 ) )
T T T T
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Svensson (1994) proposes a generalization of Nelson and Siegel (1987) 
introducing a new term in the forward rate curve: 

1 1
0 1 2 3

1 2

( )
T TT T

2

T

f T e eτ τβ β β β
τ τ

− −
= + + + e τ

−
 (33) 

where the new parameters are 3β  and . 2 0τ >

In both cases, coupon bond prices are calculated discounting each 
coupon at the corresponding spot rate. The parameters of the models can then be 
estimated by minimizing the quadratic errors in bond prices or yields. 

APPENDIX B 

In this appendix we describe in detail how to apply the methodology 
developed in Section 4 to the generalized Vasicek model introduced in Section 3, 
with an incomplete panel-data set of discount and coupon bond yields.  

The transition equation of the state variables under a generalized Vasicek 
model is independent of the observations, and the associated terms appearing in 
equation (12) are: 
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where  stands for a diagonal  matrix whose (  element is ( )n idiag x n n× , )i i ix ,  is 

the time interval at which yields are observed, and other parameters are the ones 
appearing in equation (4). 
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where  and  are  and m  vectors containing the observed yields of 
discount and coupon bonds respectively. Of course, either m  or m  can be zero, but 

not both at the same time. 
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The parameters of the measurement equation are: 
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The gradient of the yield with respect state variables can be computed by 
differentiating implicitly equation (10) with respect the state variables: 
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so that: 
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The remaining parameters to be specified belong to the covariance 
matrix of measurement errors. For this paper, we assume that this covariance matrix 
is diagonal and can only have 5 different parameters: dξ , 1

cξ , 2
cξ , 3

cξ  and 4
cξ . The 

first of them corresponds to the variance of measurement errors of discount bonds. 
The other 4 parameters correspond to the variance of coupon bonds for maturities 
ranging between 1 to 5 years, 6 to 10 years, 11 to 15 years and 16 to 20 years 
respectively. 
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