
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
A Representation-Based Methodology for Developing High-Value Knowledge Engineering
Systems: Theory and Applications

Permalink
https://escholarship.org/uc/item/56m8w81h

Author
Munger, Tyler Rey

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56m8w81h
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

A Representation-Based Methodology for Developing High-Value
Knowledge Engineering Systems: Theory and Applications

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

TECHNOLOGY AND INFORMATION MANAGEMENT

by

Tyler Munger

June 2012

The Thesis of Tyler Munger
is approved:

————————————————–
Subhas Desa, Chair

————————————————–
Patrick Mantey

————————————————–
Arnav Jhala

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c� by

Tyler Munger

2012

Table of Contents

List of Figures vii

List of Tables ix

Abstract x

Dedication xi

Acknowledgements xii

1 Introduction 1

1.1 Background . 1

1.2 Research Issues . 2

1.3 Research Contributions . 4

1.3.1 Integrated Meta-Representational Model 5

1.3.2 Integrated Representation-Based Process Methodology 7

1.4 Organization of the Work . 10

2 Problem Description 11

2.1 Knowledge Engineering System Development: Motivation 11

2.2 Knowledge Engineering System Development: An Example 13

2.3 Knowledge Engineering System Development: Issues 16

iii

2.4 The Need for an Integrated Multidisciplinary Approach 16

3 Related Work 18

3.1 Taxonomy of Related Work . 18

3.2 Work Related to Developing the Thesis Methodology 18

3.2.1 Knowledge Engineering . 20

3.2.2 Product Design . 21

3.2.3 Software Engineering . 22

3.3 Work Related to the Problems and Issues Addressed in this Thesis . . . 23

3.3.1 Software Engineering . 24

3.3.2 Decision Support Systems . 26

4 Approach 29

4.1 Integrated Meta-Representational Model 29

4.2 Applying the Integrated Meta-Representational Model 31

4.3 Applying the IMRM to Create a Process Methodology for Knowledge

Engineering system Development . 32

5 Integrated Representation-Based Process Methodology 36

5.1 Overview of the IRPM . 36

5.2 Level 1: External Representation . 38

5.2.1 CommonKADS Organization Model 39

iv

5.2.2 CommonKADS Agent/Task Model 42

5.3 Level 2: Outside-In Representation . 46

5.3.1 House of Quality . 48

5.3.2 UML Use Case Diagram . 52

5.3.3 Iterative Refinement . 54

5.4 Level 3: Internal Representation . 56

5.4.1 Function Structure . 58

5.4.2 Morphological Matrix . 61

5.4.3 Utility Function . 63

5.5 Level 4: Inside-Out Representation . 66

5.5.1 UML Component Diagram . 68

5.5.2 UML Class Diagrams . 71

5.6 Level 5: Outside Representation . 73

5.6.1 Software Development Plan . 75

5.6.2 Build and Test Cycles . 76

6 Results 79

6.1 Service Request Portal . 79

6.2 User Value of the Service Request Portal 79

6.3 Organizational Value of the Service Request Portal 81

v

7 Discussion 85

7.1 Impact of Each Domain . 85

7.1.1 Knowledge Engineering . 85

7.1.2 Product Design . 86

7.1.3 Software Engineering . 87

7.2 Comparison to Analytics for Knowledge Engineering Approach 87

7.3 Simplifications to the IRPM . 88

8 Conclusions and Future Work 91

References 93

Appendices 95

A The Service Request Portal 95

A.1 Service Request Portal Features . 95

A.2 System Architecture . 95

A.2.1 User Input . 96

A.2.2 Data Retrieval . 96

A.2.3 Data Processing . 98

A.2.4 Display Results . 98

A.3 Technology Stack . 99

vi

List of Figures

1.1 Integrated Meta-Representational Model 6

1.2 Integrated Representational Process Methodology 8

2.1 Manual knowledge extraction process . 12

2.2 Network knowledge engineer work process 14

3.1 Taxonomy of related work in Knowledge Engineering, Product Design,

Software Engineering . 19

3.2 Perspectives and models in the CommonKADS methodology [Schreiber,

1994] . 21

3.3 Four phases of the Unified Process [Schach, 2008] 23

4.1 Integrated Meta-Representational Model 30

5.1 The five levels and associated methods of the Integrated Representation-

Based Process Methodology for Knowledge Engineering system develop-

ment . 37

5.2 Methods and techniques at the External level of representation 38

5.3 CommonKADS Organizational model for the technical support organi-

zation . 40

5.4 CommonKADS Agent/Task model of the network Knowledge engineer

work process . 43

5.5 Methods and techniques at the Outside-In level of representation 47

5.6 House of Quality of the user needs for the Service Request Portal 49

vii

5.7 Use Case diagram for locating relevant service requests 53

5.8 Methods and tools at the Internal level of representation 57

5.9 Function Structure for the Service Request Portal 59

5.10 Morphological Matrix and three alternative design concepts for the Ser-

vice Request Portal . 62

5.11 Utility Function for assessing the three Service Request Portal design

concepts . 64

5.12 Methods and tools at the Inside-Out level of representation 67

5.13 Component diagram of the Service Request Portal software architecture 68

5.14 Class diagram for the Service Request Portal ContentFilter component . 72

5.15 Methods and techniques at the Outside level of representation 74

5.16 Software development plan for the Service Request Portal 75

6.1 Service Request Portal Graphical User Interface 80

6.2 Average number of pages read to assess relevance of a service request . . 82

6.3 Average time to assess the relevance of a service request 83

6.4 Average time to extract problem-solution pair from a service request . . 83

A.1 Service Request Portal User Interface . 96

viii

List of Tables

1.1 Comparison of modern Knowledge Engineering systems, classical Knowl-

edge Engineering systems, and Decision Support Systems 2

4.1 Methods and techniques for Knowledge Engineering system development 34

6.1 User feedback for the Service Request Portal 81

7.1 Simplifications to the Integrated Representation-Based Process Method-

ology . 90

ix

Abstract

A Representation-Based Methodology for Developing High-Value Knowledge

Engineering Systems: Theory and Applications

by

Tyler Munger

Nearly all enterprises are routinely collecting data and information and attempting to

transform it into knowledge that can be applied to core business activities, e.g. product

development, customer support, and marketing. In this work we develop and apply

a representation-based methodology for building Knowledge Engineering systems to

support the rapid and effective extraction of knowledge from unstructured data. The

proposed methodology draws upon methods and techniques from Knowledge Engineer-

ing, Product Design, and Software Engineering in order to maximize the overall value

of the system with respect to the needs of the users and organization. The domain of

Product Design provides formal tools for identifying user needs, exploring different func-

tion realizations, and managing trade-offs between quality and cost. Application of the

methodology at a large computer networking company produced a ”Service Request

Portal” tool that was well received by end-users and resulted in a 30% productivity

improvement compared to previous tools.

x

DEDICATION

This thesis is dedicated to my parents, Don and Rebecca Munger. Without their love

and support, this thesis would never have been possible.

xi

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Subhas Desa for giving me the

opportunity to work on this thesis. I have had the privilege of working with Subhas as

both an undergraduate and graduate student, and I could not have asked for a better

mentor. I am very grateful for the knowledge and wisdom he has shared with me and

I am looking forward to many more years of collaboration. Subhas is also responsible

for one of the core ideas in this thesis, the Integrated Meta-Representational Model,

which provided the theoretical framework for formalizing the integration of Knowledge

Engineering, Product Design, and Software Engineering.

I would like to thank the Smart Call Home group at Cisco Systems for providing

me the opportunity to develop and test the ideas in this thesis within the context of a

real-world Knowledge Engineering problem. In particular, I owe special thanks to Sri

Ramachandran for his support and collaboration. I would also like to thank Danny

Core who helped develop several key components of the Knowledge Engineering system

described in this thesis including the Graphical User Interface.

None of this work would have been possible without the support of the Network

Management Operations Lab. In particular, I would like to thank Patrick Mantey

and Brad Smith who have been invaluable sources of knowledge, encouragement, and

support over the last four years. I would also like to thank Chris Wong at Cisco for his

patience and understanding while I finished this thesis.

I would also like to thank Patrick Mantey and Arnav Jhala for serving as members

of my thesis committee. I greatly appreciate the time they have spent reading drafts

and providing feedback.

Finally, I would like to thank to my friends and family for bearing with me through

the last couple of months; I know that I haven’t been easy to be around. Karla, I am

especially grateful for your patience, love, and support.

xii

1 Introduction

1.1 Background

Nearly all enterprises, technology and otherwise, are routinely collecting data and infor-

mation and attempting to transform it into knowledge that can be used to influence core

business activities, e.g. product development, customer support, and marketing. De-

spite advances in text and data mining, the process of extracting useful knowledge from

complex unstructured data almost always requires human domain experts (knowledge

workers). The development of software-based Knowledge Engineering (KE) systems to

support these knowledge workers with the rapid and effective extraction of knowledge

from this massive ongoing collection of data would be a key source of competitive advan-

tage, in particular enabling these enterprises to develop smarter, more customer-centric,

products and services.

This thesis addresses how enterprises can develop high-value software-based KE sys-

tems for supporting the knowledge extraction process. It is important to differentiate

the ”modern” KE systems addressed in this thesis from ”classical” KE systems such

as expert systems. Classical KE systems primarily address the problem of codifying

human knowledge so that can be reused throughout the organization. We are inter-

ested in ”modern” KE system that provide software automation to support existing

work process and enable knowledge workers to efficiently work with massive amounts

of data. Because modern KE systems involve integrating software systems into exist-

ing work processes, they share a number of similarities with Decision Support Systems

(DSSs). However, DSSs generally operate with structured data, while modern KE sys-

tems support processes involving unstructured data. Table 1.1 highlights some of the

key differences between classical KE systems, modern KE systems, and DSSs.

1

Table 1.1: Comparison of modern Knowledge Engineering systems, classical Knowledge
Engineering systems, and Decision Support Systems

Modern Knowl-
edge Engineering
System

Classical Knowl-
edge Engineering
system

Decision Support
System

Knowledge source Unstructured data Domain experts Structured data
Type of problems Unstructured Structured Semi-structured

Users Domain experts Non-experts Managers
Level of interactivity High Low High

Computational requirements Medium - high Low - medium Medium - high
Development challenges Work-process inte-

gration (usability,
adoption, etc.)

Knowledge capture
and representation

Data integration

1.2 Research Issues

The development of modern Knowledge Engineering (KE) systems can be separated

into two distinct but related research areas:

1. Software Infrastructure for Knowledge Engineering: developing KE sys-

tems that are high-quality software products which generate value to the end-users

and organization with respect to impact and cost.

2. Analytics for Knowledge Engineering: layering analytics, based on Data

Mining and Information Retrieval tools and techniques, on top of the software

infrastructure in order to extract useful knowledge from large quantities of un-

structured data.

The emphasis of this thesis is on research area (1): the development of software

infrastructure for Knowledge Engineering systems.

Modern KE systems are interactive software products for helping knowledge workers

efficiently extract knowledge from data and information. Three important requirements

for successful Knowledge Engineering (KE) system development are as follows: First,

the KE system must be tightly integrated into the existing work processes in order

2

to maximize the overall productivity of the end-users. Second, the KE system must

be a high-quality product—reliable, easy to use, attractive—in order to be adopted

by the end-users (knowledge workers). Third, the KE system must be high-impact

and low-cost in order to a good investment for the organizations. Addressing of these

three requirements requires a multi-disciplinary approach based on the following three

domains:

• Knowledge Engineering: provides tools for modelling end-users work processes

in order to tightly integrate the system into existing work processes.

• Product Design: provides formal tools for explicitly identifying end-user needs

for the system, exploring different function realizations, and managing the in-

evitable trade-off between quality and cost.

• Software Engineering: provides tools and techniques for efficiently developing

robust and reliable software systems.

While there are a number good methodology for classical KE system development,

such as CommonKADS [Schreiber, 1994] and MIKE [Angele et al., 1992], there is a

lack of mature methodologies for developing modern Knowledge Engineering systems.

Consequently, the selection and application of methods from these three domains is

often ad-hoc, and, being ad-hoc, suffers from a number of issues including: insufficient

capture the end-users’ existing work-process, focus on the technical aspects of the system

rather than users’ needs, and lack of user involvement during system development.

The combination of these factors, in particular the lack of attention to the user and

organizational needs for the system, frequently results in the deployment of these system

not yielding useful results.

The objective of this thesis is to create an end-to-end process methodology, based

on integrating the appropriate KE, PD, and SE tools, for developing high-value modern

3

KE systems. To this end, the following research issues will be addressed:

1. What is a rational model for organizing the different activities—defining require-

ments, system design, software development, testing, etc.—involved in KE system

development?

2. What methods and techniques from KE, PD, and SE are necessary when develop-

ing KE systems in a high-technology context, e.g. computer networking products

and technologies?

3. How should the necessary methods and techniques be integrated into an process

methodology for KE system development?

4. What are the benefits of an integrated process methodology when developing KE

systems? What are the critical set(s) of methods for scenarios when it is either

beneficial or necessary to simplify the application of these methods?

1.3 Research Contributions

This thesis makes two key research contributions to the theory and practice of Knowl-

edge Engineering (KE) system development:

1. An Integrated Meta-Representation Model (IMRM) for structuring the

KE system development process into five levels of representation. (Theory)

2. An Integrated Representation-Based Process Methodology (IRPM), based

on the IMRM, that integrates methods and techniques from the domains of Knowl-

edge Engineering, Product Design, and Software Engineering into a unified frame-

work for KE system development. (Practice)

The IMRM is based on the following fundamental notions in cognitive neuroscience:

the human brain is representational system; the human-brain solves problems by devel-

4

oping representations appropriate for solving the problem ([Metzinger, 2003], [Revonsuo,

2009]). By formalizing these notions, the IMRM provides an integrated representational

framework that enables the use and integration of representational tools from different

domains intro a comprehensive process methodology (IRPM) for end-to-end develop-

ment of Knowledge Engineering systems.

1.3.1 Integrated Meta-Representational Model

The Integrated Meta-Representational Model consists of five interconnected levels of

representation (shown in Figure 1.1). The first level of representation, the External,

models the current organizational environment where the system will deployed and de-

fines the initial state for the development process. The next level of representation,

the Outside-In determines the user needs (requirements) for a Knowledge Engineering

(KE) system and defines the goal state for the development process. The Internal level

of representation takes us inside the system and addresses the conceptual design issues

related to how the system will satisfy the user needs subject to the organizational con-

straints (cost, development time, etc.). The Inside-Out level of representation takes us

outside the Internal and addresses the translation of the conceptual design into a soft-

ware design. Finally, the Outside level of representation is the software implementation

of the KE system that realizes the goal state. Together, the five levels of representation

take us through the entire KE system development process; from user requirements to

robust end-product.

The integrated representational structure of the IMRM allowed us to answer research

questions (1) and (2):

1. What methods and techniques are necessary when developing Knowl-

edge Engineering systems? IMRM provides the selection criteria that allows

us to identify the necessary representational from the domains of Knowledge Engi-

5

External! Outside!Outside-In! Internal! Inside-Out!
Need!

(Initial State)!

Satisfied !

Need!

(Goal State)!

Figure 1.1: Integrated Meta-Representational Model

neering, Product Design, and Software Engineering. A description of the methods

and techniques that were selected from each domain is provided in Section 4.

2. How should the necessary methods and techniques be integrated? Multi-

disciplinary development is notably difficult because different domains tend to

conceptualize and represent knowledge differently. The IMRM provides the com-

mon representational language necessary for integrating methods across multiple

domains into unified development process. A description of this integration is

discussed in Section 5.

The development of software-based Knowledge Engineering systems naturally in-

volves work in the Knowledge Engineering (KE) and Software Engineering (KE) do-

mains. However, existing approaches to KE system development, such as the Com-

monKADS methodology [Schreiber, 1994], do not sufficiently address the interface be-

tween these two domains. The IMRM provides a consistent representational framework

for the entire development process and, thereby, enables a more seamless transition

between the KE and SE domains. Smoothing the transition between these domains

minimizes rework, reduces development time, and generally increases the probability

that the end-product will match the original requirements.

The IMRM also exposed an important gap in the KE and SE tools for representing

6

the system at the Internal level of representation. Without the appropriate tools for

Internal representation, the creative process of translating user needs into functional

specifications, exploring the space of possible solution-principles, and selecting the best

mix of solution-principles is largely dependent on the individual effort, skill, and ex-

perience of the designer. The integration of conceptual design tools from the domain

of Product Design, such as Function Structures, Morphological Matrices, and Utility

Functions, formalizes this process and moves it away from intuitive (”ad-hoc”) methods

to robust, repeatable methods that allow a wide range of designs to be quickly gen-

erated and evaluated. Systematic generation of the design will, in general, produce a

higher-quality design with respect to the user and organizational needs.

1.3.2 Integrated Representation-Based Process Methodology

The Integrated Representation-Based Process Methodology (IRPM) brings together rep-

resentational tools from Knowledge Engineering (KE), Software Engineering (SE), and

Product Design (PD) into an end-to-end framework for developing Knowledge Engi-

neering systems. The KE domain provides the modelling tools for understanding the

organizational context of system and work process of the end-users. The PD domain

provides formal tools for explicitly identifying user needs for the system, exploring differ-

ent function realizations, and managing the inevitable trade-offs between a high-quality

system that satisfies the end-user needs and minimizing development costs (time and

money). Lastly, the SE domain provides the tools and techniques necessary for rapidly

developing robust and reliable software systems. Figure 1.2 shows a high-level view of

the how the different KE, SE, and PD methods are integrated in the IRPM.

7

O
u

ts
id

e-
In
!

Le
ve

l
o

f
R

ep
re

se
n

ta
ti

o
n
!

In
te

rn
al
!

Le
ve

l
o

f
R

ep
re

se
n

ta
ti

o
n
!

U
se

 C
as

e!
 d

ia
gr

am
s!

H
o

u
se

 o
f!

 Q
u

al
it

y!

Fu
n

ct
io

n
 !

St
ru

ct
u

re
!

M
o

rp
h

o
lo

gi
ca

l!
M

at
ri

x!

U
ti

li
ty

 !
Fu

n
ct

io
n
!

Ex
te

rn
al
!

Le
ve

l
o

f
R

ep
re

se
n

ta
ti

o
n
!

In
si

d
e-

O
u

t!
Le

ve
l

o
f

R
ep

re
se

n
ta

ti
o

n
!

O
u

ts
id

e!
Le

ve
l

o
f

R
ep

re
se

n
ta

ti
o

n
!

A
ge

n
t/

Ta
sk
!

M
o

d
el
!

C
o

m
p

o
n

en
t!

D
ia

gr
am

!

C
la

ss
!

D
ia

gr
am

!

In
cr

em
en

ta
l!

D
ev

el
o

p
m

en
t!

O
rg

an
iz

at
io

n
al
!

M
o

d
el
!

D
ev

el
o

p
m

en
t!

P
la

n
!

In
it

ia
l!

St
at

e!
G

o
al
!

F
ig
u
re

1.
2:

In
te
gr
at
ed

R
ep

re
se
nt
at
io
n
al

P
ro
ce
ss

M
et
h
od

ol
og

y

8

We have used the IRPM to develop a simple but non-trivial KE system for working

with service request (support case) data in the computer networking domain. The

resulting system improved productivity by over 30% compared to the previously used

tools, was well received by the users, and was developed within the organizations budget

and schedule constraints. Reflecting on the development process allowed us to answer

research question (3): What are the benefits of an integrated process methodology when

developing Knowledge Engineering systems?

• Requirements Analysis: The IRPM allows for a more efficient Requirements

Analysis work flow by combining UML Use Cases [Schach, 2008] with a Product

Design technique known as the House of Quality [Hauser and Clausing, 1988].

The House of Quality provides a prioritized set of user needs for guiding the

process of creating Use Case and ensured that each Use Case was directly related

to an important user needs. By focusing Use Cases on user needs the IRPM

minimizes the number of iterations necessary to produce a minimal, complete,

and unambiguous set of requirements that accurately reflect the user needs for

the system. (See section 5.3).

• System Design: The IRPM allows for value (ratio of function-to-cost) to be

explicitly addressed during the system design work flow by supplementing stan-

dard Software Engineering methods with a conceptual design ”front-end”. This

conceptual design ”front-end” uses Product Design techniques— such as Func-

tion Structures [Pahl and Beitz, 1996], Morphological Matrices [Pahl and Beitz,

1996], and Utility Functions [Cross, 1998]—to efficiently explore the design space

defined by the user needs. Systematic exploration enables a wide range of design

approaches to be generated and evaluated before transitioning to the Software

Engineering methods. As a result, the IRPM maximizes the probability of finding

the best design, with respect to the user and organizational needs for the system.

(See section 5.5).

9

• System Development: The IRPM allows for more effective user participation

during system development work flow because the House of Quality enables clear

targets to be set for what is expected of the system during the system develop-

ment. These targets provide a framework for guiding how users tested the system,

interpreting the feedback, and using it to drive the prototyping process. (See sec-

tion 5.6).

Comparison of the developed system with an Analytics for Knowledge Engineer-

ing based approach [Wang et al., 2010] to a similar Knowledge Engineering problem

in the computer networking domain, shows that a Software Infrastructure for Analyt-

ics approach allowed us to achieve comparable results using significantly less complex

analytical (Data Mining/Information Retrieval) components.

1.4 Organization of the Work

The thesis is organized as follows: Chapter 2 establishes the need for a multidisciplinary

Knowledge Engineering (KE) system development methodology and outlines the prob-

lems involved in developing such as methodology. Chapter 3 surveys the work we are

drawing upon in order to create our KE system development methodology. Chapter 4

explains the Integrated Meta-Representational Model (IMRM) for structuring the KE

system development process and describes selection of the necessary representational

tools for the Integrated Representation-Based Process Methodology (IRPM) for KE

system development. Chapter 5 walks through the five levels of the IRPM. Chapter 6

presents the results of applying the IRPM to a real Knowledge Engineering problem at

a large computer networking company. Chapter 7 discusses the impact of the different

domains on the KE system development process, compares the IRPM with an ”Analyt-

ics for Knowledge Engineering” approach. Our conclusions and several possible paths

for future work and then presented in Chapter 8.

10

2 Problem Description

In this chapter we describe Knowledge Engineering (KE) system development process

and establish the need for a multidisciplinary approach. To this end we start by ex-

plaining the organizational need that leads to the development of a modern KE system.

We then use a real example in the computer networking domain to concretely illustrate

a typical initial state, goal state, and the issues involved in going from this initial state

to the goal state. An analysis of these issues motivates the need for a multi-disciplinary

approach to KE system development. Lastly, we outline the tasks involved in devel-

oping a process methodology to support a multi-disciplinary approach to KE system

development.

2.1 Knowledge Engineering System Development: Motivation

Nearly all enterprises, technology and otherwise, are routinely collecting data and infor-

mation as part of the ongoing process of conducting business. In general the collected

data can be organized into two high-level categories: transactional data and interactional

data [Spangler and Kreulen, 2008]. Transactional data is produced by transactions with

customers, e.g. point-of-sale, and is generally structured. An example of transactional

data would be a list of products that were sold over the last month. Interactional data is

produced by interactions with customers, e.g. customer support cases, and is generally

unstructured (free-form text). An example of interactional data would be the support

cases received by a service center over the last month. The extraction of knowledge

from these both transactional and interactional data would be a key source of com-

petitive advantage, in particular enabling these enterprises to develop smarter, more

customer-centric, products and services.

The problem of mining knowledge from transactional data is well understood [Witten

and Frank, 2005]. Data Mining algorithms generally perform well on transactional data

11

and organizations have been developing been applying these algorithms in practice for

some time. One well-known example knowledge extraction from transactional data is

market basket analysis where co-occurrences in historical customer purchases are used

in order to recommend new products to customers.

The extraction of knowledge from interactional data, however, is a far more difficult

problem and usually requires human domain expertise. In most organizations this pro-

cess is still largely manual (Figure 2.1). Knowledge workers read through interactional

data in order to identify useful knowledge, structure it, and then add it to a database

where it can be used to support core business activities such as product development,

customer support, and marketing.

Unstructured
Data!

Knowledge!

Knowledge!
Worker!

Read!

Write!

Outside!
World!

Data!

Product!
Development!

Customer!
Support!

Marketing!

Read! Read! Read!

Figure 2.1: Manual knowledge extraction process

Manual knowledge extraction is tedious and inefficient. Knowledge workers spend a

significant amount of their time and effort reading through irrelevant and poorly for-

matted data. Furthermore, as the amount of information being collected by enterprises

grows, it becomes increasingly difficult for knowledge workers to process all of the data.

12

In order to enable efficient and effective extraction of knowledge from interactional

data it is necessary to support the extraction process with software-based Knowledge

Engineering (KE) systems.

2.2 Knowledge Engineering System Development: An Example

Network service centers receive thousands of customer support cases every day on a wide

variety of product problems. Each of these support case is tracked by a service request

document that contains the complete transcript—emails, phone conversations, etc.—

of all the customer’s interaction with the service center’s Technical Support Engineers

(TSEs). By the time a typical support case is closed, the associated service request

document contains 30-50 pages of free-form text. Buried within this massive collection

of free-form text is useful knowledge about product problems encountered by customers

and solutions to these problems created by TSEs.

Network Knowledge Engineers (NKEs) mine resolved service requests for problem-

solution pairs that can be applied to areas such as new product design and product

support. Figure 2.2a shows the high-level flow of the NKE work process for creating

problem-solution pairs. NKEs start with a particular product problem for which the

organization needs solutions. For example, a router crashes when a particular routing

protocol, e.g. OSPF, is enabled. The NKEs then use keyword queries, e.g. OSPF crash,

to search for service requests that are potentially relevant to the product problem of

interest. Each set of service requests returned by the search engine is first briefly read

to establish relevance. Once a service request is determined relevant, then the NKEs

will read through the service request in detail to extract the solution prescribed by the

TSE. When a sufficient number of solutions have been collected, the NKEs formulate

a generalized problem-solution pair that contains the steps for resolving the product

problem.

13

Database! Search Engine! Network
Engineers!

Product Design/!
Product Support!

Applications!

Service!
Request!

Query!

Search!
Results!

Search Keywords!

Read!
Service Requests!

Extract !
Problem-solution!

Pairs!

(a): Current NKE work process!

(b): Desired NKE work process!

Knowledge
Engineering

system!

Network
Engineer!

Database!

Retrieve!
Service Requests!

Read !
Service Requests!

Search!
Parameters!

Filtered!
 Service Requests!

Figure 2.2: Network knowledge engineer work process

The process of extracting problem-solution pairs from service requests is compli-

cated by the following two issues. First, the relevance of a service request depends on

a number of attributes (attachments, tags, etc.) that are not captured during keyword

search. This causes the keyword queries that the NKE use when searching for service

requests to return a large number of irrelevant results that must be manually evaluated

for relevance. Second, each service request contains 30-50 pages of unstructured techni-

cal documentation describing the customer problem and recommended solution. As a

result, the NKEs spend a significant amount of time and effort looking for information

that is hidden within irrelevant email threads, poorly formatted text, and duplicated

content. The combination of these two issues is a serious bottleneck in the NKEs work

process. NKEs spend the majority of their time searching for service requests and

extracting solutions, rather than formulating problem-solution pairs. At the organiza-

tional level these problems make the development of problem-solution pairs both costly

14

and inefficient.

In order to make the process of generating problem-solution pairs scalable and cost

effective, the organization would like to develop a KE system that improves the pro-

ductivity of the NKEs. Figure 2.2b shows a high level view of the desired goal state

where the work process would be supported by a KE system. NKEs provide the system

with a set of search parameters that precisely describe the types of service requests that

they were interested in locating. The system then retrieves a set of service requests

that meet then these criteria. When the NKEs select a service request for reading, the

system retrieves it from the database and automatically restructures the text so that it

is easier to find the relevant information.

In order to develop the desired KE system we first need to capture the users (NKEs)

work process and use it to determine what area(s) of the work-process the system

should support. Next, we need to work with the NKEs to define a detailed functional

specification of what the system will need to do, e.g. how should the system filter the

service request content. We then need to determine the best approach for implementing

the functional specifications based on the user needs and the organizations objective for

the system. This approach then must be translated into a software design. Additional

issues that need to be addressed when creating the software design include: designing a

user interface for the system, making the system robust and reliable, and modularizing

the system so that it maintainable. Next we need to develop the KE system based on

the software design and ensure that it is free of bugs and software defects. Finally once

the system is developed we need to test it with users and evaluate the impact of the

system.

15

2.3 Knowledge Engineering System Development: Issues

The desired overall goal of successful Knowledge Engineering system development is to

create a system that is valuable to both the users and the organization. In order to

achieve this goal the following issues must be addressed:

• Tight engagement with the end-users by modelling and representing user work

process and requirements.

• Making the system useful and attractive to users.

• Balancing user needs (e.g. high-quality) with organizational needs (e.g. low-cost).

• Involving the user in prototyping. Testing and refining the system with user

participation.

• Ensuring the system is robust and reliable.

2.4 The Need for an Integrated Multidisciplinary Approach

It quickly becomes apparent that addressing the described issues requires a multi-

disciplinary approach involving work in the following domains: Knowledge Engineering,

Product Design, and Software Engineering. First and foremost, tools and techniques

from the domain of Software Engineering are needed to efficiently develop robust and

reliable KE system software implementations. However, the domain of Software Engi-

neering does not contain tools for understanding the wider organizational context for

the system and ensuring that the system is sufficiently integrated into existing work

processes. Therefore, tools from the Knowledge Engineering domain are necessary for

modelling the organizational context of system and work process of the end-users. Fi-

nally, KE systems are interactive products that will be used by knowledge workers as

part of their daily work process. This requires tools and techniques from the domain of

16

Product Design to explicitly identify user needs for the system, exploring different func-

tion realizations, and manage the inevitable trade-offs between a high-quality system

that satisfies the end-user needs and minimizing development costs (time and money).

Without a structured process for handling the integration of Knowledge Engineering,

Product Design, and Software Engineering the selection and application of methods

from these three domains is often ad-hoc, and, being ad-hoc, suffers from a number of

problems including: insufficient capture the end-users’ existing work-process, focus on

the technical aspects of the system instead of users’ needs, and lack of user involvement

during system development. The combination of these factors, in particular the lack of

attention to the user and organizational needs for the system, frequently results in the

deployment of these system that fail to yield useful results.

This thesis addresses the problem of integrating the appropriate Knowledge Engi-

neering, Product Design, and Software Engineering tools into an end-to-end process

methodology based on for developing high-value Knowledge Engineering (KE) systems.

To this end, the following tasks will need to be addressed:

1. Develop a rational model for structuring the different activities involved in KE

system development. (See Chapter 4)

2. Use the developed model to select the most useful set of methods and techniques

from the KE, PD, and SE domains. Chapter 4)

3. Integrate the selected methods into a process methodology for KE system devel-

opment. (See Chapter 5)

4. Determine the benefits of an integrated process methodology and identify critical

paths for scenarios when it is either beneficial or necessary to simplify the process

methodology. (See Chapters 6, 7)

17

3 Related Work

In this chapter we review related work to our objective of developing high-value Knowl-

edge Engineering (KE) systems. We start with a taxonomy of related work in the areas

of Knowledge Engineering, Product Design, and Software Engineering. We then provide

a brief an overview of the related work that we are drawing upon in order to create our

process methodology. Lastly we describe other research which addresses similar issues

to those described in the Problem Description (Chapter 2).

3.1 Taxonomy of Related Work

We have organized related work according to two high-level categories: works related to

creating an end-to-end process methodology for Knowledge Engineering system develop-

ment, and works related to the problems and issues involved in Knowledge Engineering

system development. Figure 3.1 shows methods and techniques in each category.

3.2 Work Related to Developing the Thesis Methodology

In order to create an end-to-end process methodology for Knowledge Engineering sys-

tem development we draw upon work in the domains of Knowledge Engineering (KE),

Product Design (PD), Software Engineering (SE). The KE domain provides modelling

tools for understanding the organizational context of system and work process of the

end-users. The PD domain provides formal tools for explicitly identifying user needs

for the system, exploring different function realizations, and managing the inevitable

trade-offs between a high-quality system that satisfies the end-user needs and minimiz-

ing development costs (time and money). Lastly, the SE domain provides tools and

techniques necessary for rapidly developing robust and reliable software systems. The

following sections provide a high-level overview of the methods and techniques in each

18

K
n
o
w

le
d
ge

En

gi
n
ee

ri
n
g!

So
ft
w

ar
e

En
gi

n
ee

ri
n
g!

C
o
m

m
o
n
K

A
D

S!
A

gi
le

P
ro

ce
ss

es
!

 U
n
ifi

ed

P
ro

ce
ss
!

P
ro

d
u
ct

D

es
ig

n
!

Fu
n
ct

io
n

St

ru
ct

u
re
!

H
o
u

se
 o

f
Q

u
al

it
y!

P
ro

b
le

m

Fr
am

es
!

M
o
rp

h
o
lo

gi
ca

l
M

at
ri

x!
U

ti
li
ty

Fu

n
ct

io
n
s!

U
M

L!

Ja
ck

so
n

 S
ys

te
m

D

ev
el

o
p

m
en

t!

W
o

rk
s

R
el

at
ed

 t
o
 t

h
e

P
ro

b
le

m
s

an
d
 I

ss
u

es

A
d

d
re

ss
ed

 i
n
 t

h
is

 T
h

es
is
!

R
el

at
ed

 W
o
rk
!

V
B

SE
!

W
o

rk
 R

el
at

ed
 t
o

D
ev

el
o
p
in

g
th

e
M

et
h
o
d

o
lo

gy
 i
n

 t
h

is
 T

h
es

is
!

In
cr

em
en

ta
l

D
ev

el
o
p
m

en
t!

A
ge

n
t

M
o

d
el
!

O
rg

an
iz

at
io

n
al

m

o
d

el
!

Ta
sk

M

o
d

el
!

C
la

ss

d
ia

gr
am

!

U
se

 C
as

e
D

ia
gr

am
!

C
o
m

p
o
n

en
t

D
ia

gr
am

!

So
ft

w
ar

e
En

gi
n
ee

ri
n
g!

D
ec

is
io

n
 S

u
p

p
o

ry

Sy
st

em
s!

K
im

b
al

l!
In

m
o
n
!

F
ig
u
re

3.
1:

T
ax

on
om

y
of

re
la
te
d
w
or
k
in

K
n
ow

le
d
ge

E
n
gi
n
ee
ri
n
g,

P
ro
d
u
ct

D
es
ig
n
,
S
of
tw

ar
e
E
n
gi
n
ee
ri
n
g

19

domain that form the core of our process methodology.

3.2.1 Knowledge Engineering

Within the Knowledge Engineering domain we have drawn tools from the CommonKADS

methodology [Schreiber, 1994]. The CommonKADS methodology originated out of the

need to build classical Knowledge Engineering (KE) systems, e.g. expert systems, on

a large scale in a structured and repeatable way. In order to support this objective

CommonKADS provides three perspectives (sets of models): Context, Concept, and

Artifact. The Context perspective addresses the organizational environment in which

the system will operate and is used to understand the objectives for the KE system and

how it will fit into existing processes. The Concept perspective addresses the knowledge

component of the system and is used to identify and capture the knowledge necessary

to solve a particular task. The Artifact perspective addresses the design of the system

and is used to specify the system architecture and computational mechanisms. Figure

3.2 shows the models at each perspective and their relationships.

Although the CommonKADS methodology was originally developed for supporting

the development of classical (expert system) KE systems, it contains a number of use-

ful tools that can be re-purposed to support the development of modern KE systems.

Both classical and modern KE systems must function within the context of the overall

organization. To this end, we are drawing upon the three models in the CommonKADS

Context perspective in order to address the organizational factors involved in KE sys-

tem development. The Organizational model is used to understand the organizational

context for the KE system and ensure that the system is aligned with the organizational

needs (See Section 5.2.1). The Agent and Task models is used to zoom in and docu-

ment the work-processes in this context (See Section 5.2.2). (Since it is not necessary

to build a formal model of the expert knowledge when developing modern KE systems,

we are not be using any of the CommonKADS models from the Concept and Artifact

20

Organizational
Model!

Task!
Model!

Agent!
Model!

Knowledge!
Model!

Communication !
Model!

Design!
Model!

Context!

Concept!

Artifact!

Figure 3.2: Perspectives and models in the CommonKADS methodology [Schreiber,
1994]

perspectives.)

3.2.2 Product Design

In the domain of Product Design we have drawn upon four well-known techniques for

conceptual design. The House of Quality [Hauser and Clausing, 1988] is used to translate

the user (customer) needs into measurable engineering characteristics that can be used

by the development team to design the system. The Function Structure [Pahl and Beitz,

1996] is used to specify the functions and sub-functions that the system must perform

(See Section 5.4.1). The Morphological Matrix [Pahl and Beitz, 1996] technique is used

to explore the space of possible solution-principles (realizations) to a set of functional

specifications (See Section 5.4.2). Finally, the Utility Function [Cross, 1998] technique

provides an objective way of selecting the design that best satisfies the customer needs

21

and other objectives (costs, time, etc.) for the product (See Section 5.4.3).

3.2.3 Software Engineering

Within the Software Engineering domain we have drawn upon methods from the Unified

Process [Schach, 2008], a well-known and widely used Software Engineering methodology

for end-to-end development of large software systems. The Unified Process (UP) is an

iterative, architecture-centric, and use-case driven methodology. Iterative means that

system functionality is delivered in chunks, or increments, leading to a fully functional

system. Architecture-centric means that system architecture is defined early in the

development process and then used to guide the other development activities. Lastly,

Use Case driven means that the all system functionality is derived from Use Cases.

The UP is divided into four high-level phases: Inception, Elaboration, Construction,

and Transition. The Inception phase identifies the initial set of requirements, the busi-

ness case, and outlines the scope of the system. The Elaboration phase the expands

upon the results of the Inception phase in order to capture the a full set of requirements

for the system. The Construction phase addresses the development of the system as a

series of short, time-boxed iterations. Lastly, the Transition phase is where the system

is deployed to the end-users. Figure 3.3 shows the four phases in the UP and the work

flows involved in each phase.

The UP is comprehensive end-to-end software development methodology. We have

drawn on a subset of the tools from the Elaboration and Construction phases that are

most useful KE system development. In the order to document the system requirements

we have drawn upon the UML Use Case diagram 5.3.2 to capture how the end-users

will interact with the system. In the area of software design we have adopted the UML

Component, and Class diagrams to guide the software design process (See Sections 5.5.1

and 5.5.1). In the area of software development we have drawn upon the Incremental

22

Figure 3.3: Four phases of the Unified Process [Schach, 2008]

Development approach where the system is incrementally developed through a set of

build and test cycles (See Section 5.6.2).

3.3 Work Related to the Problems and Issues Addressed in this Thesis

A number of the issues brought up in the Problem Description (Section 2) are not

exclusive to Knowledge Engineering systems. In this section we briefly describe other

research in the areas of Software Engineering and Decision Support Systems that ad-

dresses similar research issues.

23

3.3.1 Software Engineering

In this section we briefly describe other related research in the domain of Software

Engineering and evaluate their applicability to modern KE system development.

Agile Process

Successful Knowledge Engineering (KE) system development requires a high-level of

end-user participation in order to achieve a tight integration with existing work pro-

cesses. Agile Processes [Schach, 2008] are a group of software development methods

based on iterative and incremental development, where requirements and solutions

evolve through collaboration with the customers (end-users). Notable methodologies

that fall under the umbrella of Agile Processes include: Extreme Programming (XP),

Crystal, and Scrum. In the Extreme Programming methodology customers are pre-

sented with a set of features and cost (time and money) estimates. The customer then

selects which features to include in each development iteration. Crystal focuses on devel-

oping team structures that minimize the need for formal processes during development.

Scrum breaks the development process into 30 day sprints and uses self-organizing teams

to keep track of progress.

Although Agile Processes work well for small software projects, they have three

major disadvantages when applied to large complex systems. First, Agile Processes

require that customers (end-users) have a clear vision of the end product and can easily

loose its direction if customers have only vague idea of the desired product. Second,

Agile Processes build the system incrementally and do not provide adequate support

for developing an overall architecture for the system. Finally, Agile Processes rely on

informal communication between team members and do not scale well to larger teams.

24

Jackson System Development/Problem Frames

Tight integration with existing work processes also requires that the development pro-

cess be driven by a model of the real-world. The Jackson System Development (JSD)

[Jackson, 1983] approach was one of the first Software Engineering methodologies to

recognize the importance of modelling real world (the problem space) before starting

software design and development (the solution space). To this end, JSD provides the

entity structure diagram tool for describing the aspects of the business or organization

that the system will be concerned with. Jackson later expanded on the ideas in JSD

with the Problem Frames [Jackson, 2001] approach that provides a more complete set

of tools for describing software development problems. Each Problem Frame describes

a problem as consisting of the software machine and its relationship to one or more ap-

plication domains. Each class of problems is called a problem frame (roughly analogous

to a design pattern).

Although JSD and Problem Frames both contain useful tools for modelling software

problems, neither of them are very practical for KE system development. JSD was

developed in the 1980s and does not provide support for modern Software Engineering

paradigms such as Object Oriented development. On the opposite end of the spectrum,

Problem Frames is still a relatively new approach and hasn’t been integrated into stan-

dard practices, e.g. UML, which makes it difficult to use with conventional Software

Engineering methodologies such as the Unified process.

Value Based Software Engineering (VBSE)

A key challenge when developing KE systems is creating a system that is valuable to

both the end-users and the organization. Conventional Software Engineering method-

ologies, such as the Unified Process, operate in a value-neutral setting where every use

25

case and requirement is equally important. Value Based Software Engineering (VBSE)

[Boehm, 2003a] brings value considerations to existing Software Engineering method-

ologies. VBSE is based around seven key practices such as Business Case Analysis,

Concurrent Engineering, and Agile development. Together these practices provide a

framework for managers and software designers/developers to make decisions that gen-

erate better value for the customers (end-users) and reduce wasted effort.

VBSE introduces many useful practices for how value consideration should be in-

tegrated into software development, however, it lacks the tools for implementing these

practices within the context of conventional Software Engineering methodologies, e.g.

the Unified Process. VBSE practices, such as Concurrent Engineering, are described as

high level objectives of what should be done but not necessarily how to do it. While

these high-level descriptions might be sufficient when developing small systems with

relatively simple value considerations, they are do not provide adequate support for KE

system development.

3.3.2 Decision Support Systems

Decision Support Systems (DSSs) support organizational decision-making and problem

solving by allowing users to rapidly analyze large quantities of data. DSSs are similar to

modern KE systems in that they involve the integration of a software system into existing

work processes. Therefore, DSS development must consider issues many of the same

issues as modern KE system development such as user involvement during development

and system usability. However, DSSs focus on structured (transactional) data while

KE systems focus on unstructured (interactional) data. As a result, DSSs are often

used by at the managerial level for evaluating different scenarios, whereas modern KE

systems have a broader range of applications. We will focus on recent work in the area

of Data-Driven Decision Support Systems (DDSSs). DDSSs address the integration

transactional data from multiple sources into data warehouse which can be used to

26

support applications such as project planning, supply chain management, marketing.

There are two dominant approaches for building DDSSs: the Inmon approach [Inmon,

2002], and the Kimball approach [Kimball and Ross, 2000].

Inmon Approach

The Inmon approach [Inmon, 2002] takes a top-down approach to developing DDSSs

involving three levels of data modelling. At the first level of modelling, Entity Relation-

ship Diagrams (ERDs) are used to define the data that the organization is collecting.

The ERDs are then consolidated into a centralized data warehouse. Next, a ”view” on

top of this warehouse is created for each department that needs to use the data. Fi-

nally, a spiral development methodology is used to develop each department view into

a DDSS.

Although the Inmon approach is useful for managing the integration of structured

data, it isn’t generally applicable to modern KE system development. Modern KE sys-

tems typically operate on unstructured data that does not fit well into the ERD models.

Furthermore, modern KE systems are usually undertaken as small specific projects, and

do not fit well in to the top-down approach prescribed by the Inmon approach. Lastly,

the Inmon approach does not provide sufficient support for two important aspects of

modern KE system development: understanding the user needs for the system and

implementing the software system for satisfying these needs.

Kimball Approach

The Kimball approach [Kimball and Ross, 2000] takes a bottom-up approach to devel-

oping DDSSs. In Kimball’s approach, the development process starts with selecting a

business processes that would benefit from a DDSS. Next, the data being collected is

27

examined from the perspective of each business process in order to determine how the

data should be applied. A central tool for accomplishing this is the dimensional model

which uses a matrix to correlate each aspect of the business process with specific type

of data. The dimensional models are then used to create DDSSs for supporting each

business process. Finally, the multiple DDSSs are combined using data bus in order to

build the data warehouse.

The Kimball approach provides a number of useful tools for aligning DDSSs with

existing work processes. In particular, the dimensional model helps developers better

understand the relationship between work processes and types of data being collected.

However, most of these tools do not work as well for modern KE system design where

unstructured data makes it difficult to define how each piece of data is being used.

28

4 Approach

In this chapter we describe our approach for creating a new process methodology for

Knowledge Engineering (KE) system development. We start by developing a gen-

eral model for solving complex problems: the Integrated Meta-Representational Model

(IMRM). We then describe how the IMRM can be used to create new methodologies

for the design and development of technical artifacts, e.g. software-based KE systems.

Finally, we show the application the IMRM to the problem of KE system development

and explain the resulting process methodology.

4.1 Integrated Meta-Representational Model

The process of solving a complex problem starts with the definition of an initial state

which represents the problem to be satisfied and ends with the realization of a goal state

which represents the desired solution to the problem (e.g. satisfaction of the need). For

many complex problems, such as KE system development, the realization of the goal

state requires the creation of a technical artifact, e.g. a software system, for satisfying

the need. In such cases, the problem solving process can be thought of in terms of

designing and developing the appropriate artifact for realizing the goal state.

Recent work in cognitive neuroscience has shown: the human brain is a representa-

tional system; the human-brain solves problems by developing representations appropri-

ate for solving the problem ([Revonsuo, 2009], [Metzinger, 2003]). Based on these two

observations we have developed an Integrated Meta-Representational Model (shown in

Figure 4.1) that specifies a natural sequence of representations for progressing from a

problem’s initial state through the design and development of the desired artifact for

solving the problem. Each level of representation is an abstraction that addresses a

particular aspect of the artifact and moves the development process towards the goal

state.

29

External! Outside!Outside-In! Internal! Inside-Out!
Need!

(Initial State)!

Satisfied !

Need!

(Goal State)!

Figure 4.1: Integrated Meta-Representational Model

Given an initial state, the five representational levels of the IMRM are as follows:

• External : represents the context for the initial state in terms of the way in which

things are done at the present time. (Model of reality)

• Outside-In : represents the transformation of the External into a set of require-

ments for the desired artifact. (Requirements for artifact)

• Internal : represents the abstract functional specification of the Outside-In in a

manner that enables the exploration and selection of form (design) for the desired

artifact. (Function/Form design of artifact)

• Inside-Out : represents the conversion of the Internal representation into a real-

izable design of the artifact. This level includes all the relevant domain knowledge

particular to the design of the artifact. (”Domain” design of artifact)

• Outside : represents the implementation process that realizes the Inside-Out rep-

resentation into the actual artifact. (Development of the artifact)

30

4.2 Applying the Integrated Meta-Representational Model

The five levels in the Integrated Meta-Representational Model (IMRM) specify the

minimal set of representations necessary for a comprehensive development process for

technical artifacts. Addressing and resolving each level in the IMRM ensures that the

resulting artifact will be complete and correct with respect to the needs specified by the

initial state.

The IMRM can be applied in two ways. First, it can be used to analyze existing

development methodologies for completeness, correctness, and consistency. Second, it

provides a framework for creating new development methodologies that are minimal,

complete, and correct. Since our goal is a development methodology for KE systems, we

will focus on the application of the IMRM as framework for creating new development

methodologies.

The process for applying the IMRM to create a new development methodology is as

follows:

1. Determine the subject matters being represented: For each level of repre-

sentation determine the appropriate subject matter that needs to be represented.

For example, if we are developing a software system, the subject matter at the

Inside-Out level of representation is the software design that specifies how the

artifact will be constructed.

2. Identify the necessary representational tools: For each subject matter iden-

tify the appropriate set of domains and tools necessary for representation. For ex-

ample, if our subject matter is the software design of a system then we will need

tools from the domain of Software Engineering in order to represent the software

architecture, data structures, control logic, etc.

3. Integrate the selected tools: The selected tools need to be integrated at two

31

levels. At the first level the individual tools for each level of representation must be

integrated so that they can be used together to realize the subject matter. At the

second level, the tools across the five levels of representation must be integrated so

that the artifact is consistently represented throughout the development process.

4.3 Applying the IMRM to Create a Process Methodology for Knowl-

edge Engineering system Development

In this section we describe application of the Integrated Meta-Representational Model

(IMRM) to Knowledge Engineering (KE) system development.

Determine the subject matters being represented

The first step in applying the IMRM is to determine the subject matter that needs

to be represented at each level of representation. The subject matters for KE system

development are as follows:

• External: the subject matter is the current state of the organizational environ-

ment that the KE system will be operating in. This is where we represent the

organizational context and current work process of the systems end-users in order

to understand the key issues that the system will need to address.

• Outside-In : the subject matter is the system from the perspective of the end-

users. This is where we represent the user needs for the system in order to ensure

that the developed system will be useful and attractive to the users. It is important

to emphasize that the Outside-In level of representation is only concerned with

the user perspective and does not consider the internal workings of the system.

• Internal : the subject matter is the functional form of the system. This is where

32

we represent the functional specifications and explore multiple solution principles

in order to select the best form based on the needs of the users and organization.

• Inside-Out : the subject matter is the software design that can be implemented

to realize the KE system. This is where we represent the overall architecture of the

system and the solution-principles are formalized as data structures, algorithms,

and control logic for the system.

• Outside : the subject matter is the software implementation of the KE system.

This is where represent the process for realizing the software design as executable

code.

Identify the necessary representational tools

The next step in applying the IMRM is to identify the necessary representational tools

for realizing the subject matters. In order to realize the subject matters for KE system

development we will need representational tools from three domains: Knowledge Engi-

neering (KE), Product Design (PD), and Software Engineering (SE). The KE domain

provides the modelling tools for understanding the organizational context of system and

work-process of the end-users. The PD domain provides formal tools for explicitly iden-

tifying user needs for the system, exploring different function realizations, and managing

the inevitable trade-offs between a high-quality system that satisfies the end-user needs

and minimizing development costs (time and money). Lastly, the SE domain provides

the tools and techniques necessary for rapidly developing robust and reliable software

systems. Table 4.1 shows subject matter and representational tools for each level of the

IMRM.

33

T
ab

le
4.
1:

M
et
h
od

s
an

d
te
ch
n
iq
u
es

fo
r
K
n
ow

le
d
ge

E
n
gi
n
ee
ri
n
g
sy
st
em

d
ev
el
op

m
en
t

L
ev
el

of
R
ep
re
se
nt
at
io
n

S
u
b
je
ct

M
at
te
r

M
et
h
od

s
an

d
T
ec
h
n
iq
u
es

K
E

P
D

S
E

E
xt
er
n
al

(L
ev
el

1)
O
rg
an

iz
at
io
n
al

co
nt
ex
t

an
d
ex
is
ti
n
g
w
or
k
p
ro
-

ce
ss

C
om

m
on

K
A
D
S

O
rg
a-

n
iz
at
io
n
,

A
ge
nt
,

an
d

T
as
k
M
od

el
s

O
u
ts
id
e-
In

(L
ev
el

2)
U
se
r
n
ee
d
s

H
ou

se
of

Q
u
al
it
y

U
se

C
as
e
D
ia
gr
am

s

In
te
rn
al

(L
ev
el

3)
F
u
n
ct
io
n
al

sp
ec
ifi
ca
-

ti
on

s
an

d
so
lu
ti
on

-
p
ri
n
ci
p
le
s

F
u
n
ct
io
n

S
tr
u
ct
u
re
,

M
or
p
h
ol
og
ic
al

M
at
ri
x,

U
ti
li
ty

F
u
n
ct
io
n

In
si
de
-O

u
t

(L
ev
el

4)
S
of
tw

ar
e

ar
ch
it
ec
tu
re

an
d

d
et
ai
le
d

d
es
ig
n

(d
at
a

st
ru
ct
u
re
s,

al
go
ri
th
m
s,

co
nt
ro
l

lo
gi
c)

U
M
L

C
om

p
on

en
t
an

d
C
la
ss

D
ia
gr
am

s

O
u
ts
id
e

(L
ev
el

5)
S
of
tw

ar
e
d
ev
el
op

m
en
t

In
cr
em

en
ta
l

D
ev
el
op

m
en
t

34

Integrate the selected tools

The final step in applying the IMRM is to integrate the identified representational tools

into a process methodology. The integration of the tools from Table 4.1 resulted in

the creation of the Integrated Representation-Based Process Methodology (IRPM) for

Knowledge Engineering system development. A comprehensive description of the IRPM

is provided in Chapter 5.

35

5 Integrated Representation-Based Process Methodology

In this chapter we describe the integration of the methods and techniques from Knowl-

edge Engineering, Product Design, and Software Engineering into an Integrated Representation-

Based Process Methodology (IRPM) for Knowledge Engineering (KE) system develop-

ment. We start with a high level overview of the different levels in the IRPM. We then

proceed to provide a process for realizing the system at the each level of the IRPM. In

order to concretely illustrate the methods and techniques at each level of representation,

the network engineering problem—described in Section 2—is used as a running example

throughout each step in the IRPM.

5.1 Overview of the IRPM

The five levels of the Integrated Representation-Based Process Methodology (IRPM)

and their associated methods and connections are shown in Figure 5.1. In order to

concretely illustrate how the methods and techniques at each level of representation

the network engineering problem, described in Section 2, is used as a running example

throughout each step in the IRPM.

At the External level of representation, we address the pre-processing necessary for

creating a Knowledge Engineering (KE) system by creating models of the users’ exist-

ing work process. These models are then used at the Outside-In level of representation

to guide the process of defining the user needs for the KE system. At the Internal

level of representation, these needs are used to create a design concept that defines

the sub-functions and solution principles of the KE system. At the Inside-Out level

of representation, the design concept is translated into the corresponding software de-

sign artifacts and then iteratively refined through multiple build and test cycles at the

Outside level of representation.

36

O
u

ts
id

e-
In
!

Le
ve

l
o

f
R

ep
re

se
n

ta
ti

o
n
!

In
te

rn
al
!

Le
ve

l
o

f
R

ep
re

se
n

ta
ti

o
n
!

U
se

 C
as

e!
 d

ia
gr

am
s!

H
o

u
se

 o
f!

 Q
u

al
it

y!

Fu
n

ct
io

n
 !

St
ru

ct
u

re
!

M
o

rp
h

o
lo

gi
ca

l!
M

at
ri

x!

U
ti

li
ty

 !
Fu

n
ct

io
n
!

Ex
te

rn
al
!

Le
ve

l
o

f
R

ep
re

se
n

ta
ti

o
n
!

In
si

d
e-

O
u

t!
Le

ve
l

o
f

R
ep

re
se

n
ta

ti
o

n
!

O
u

ts
id

e!
Le

ve
l

o
f

R
ep

re
se

n
ta

ti
o

n
!

A
ge

n
t/

Ta
sk
!

M
o

d
el
!

C
o

m
p

o
n

en
t!

D
ia

gr
am

!

C
la

ss
!

D
ia

gr
am

!

In
cr

em
en

ta
l!

D
ev

el
o

p
m

en
t!

O
rg

an
iz

at
io

n
al
!

M
o

d
el
!

D
ev

el
o

p
m

en
t!

P
la

n
!

In
it

ia
l!

St
at

e!
G

o
al
!

F
ig
u
re

5.
1:

T
h
e
fi
ve

le
ve
ls

an
d
as
so
ci
at
ed

m
et
h
od

s
of

th
e
In
te
gr
at
ed

R
ep

re
se
nt
at
io
n
-B

as
ed

P
ro
ce
ss

M
et
h
od

ol
og

y
fo
r
K
n
ow

le
d
ge

E
n
gi
n
ee
ri
n
g
sy
st
em

d
ev
el
op

m
en
t

37

5.2 Level 1: External Representation

Knowledge Engineering (KE) systems do not operate in an organizational vacuum and

must be integrated into the existing work processes and wider organization context

in order to be valuable to the organization. The objective of the External level of

representation is to capture these factors in a structured format that can be used to

guide the development process in order to maximize the value of the system from the

perspective of the organization. There are two important issues that will be addressed

at the External level of representation: determining the overall organizational context

for the system and capturing the work process in which the system will be operating.

The representation of the External is based on three models from the CommonKADS

methodology [Schreiber, 1994]. The Organization model is used to represent the key

organizational factors that come into play when developing KE systems. The Agent and

Task models are used to represent the work process in the focus area and the structure

of the individual tasks being performed.

External!
Level of Representation!

Need!

Agent/Task!
Model!

Organizational!
Model!

Figure 5.2: Methods and techniques at the External level of representation

38

The process for realizing the KE system at the External level of representation is as

follows:

1. Build an Organization model to describe the organizational context and deter-

mine the focus area for the system.

2. Create an Agent/Task Model model of the work processes being performed in

the focus area.

The External level of representation captures the current practices of the organiza-

tion, determines what kind of KE system the organization needs, and how that system

will fit into the existing work process. The External representation of the Service Re-

quest Portal (SRP) included one Organization model and one Agent/Task model. The

Organization model identified that increasing efficiency of the problem-solution pair de-

velopment process was an important and valuable organizational need. The Agent/Task

uncovered the process bottlenecks—e.g. assessing the relevance of service requests—and

helped define the user needs for the system. Together, the Organization and Agent/Task

models ensured that the SRP was aligned with the organization’s needs.

5.2.1 CommonKADS Organization Model

The development of a Knowledge Engineering (KE) system begins with an organiza-

tional need—e.g. improve the efficiency of a particular work process—that defines the

initial state of the development process. However, it is unlikely that this need will be

clearly articulated or that the organization will have a good idea of what needs to be

done in order to satisfy the need. The CommonKADS Organization model [Schreiber,

1994] is a representation of the key organizational elements that come into play when

developing a KE system and is used to refine the organizational need.

The Organization model for technical support organization where the Service Re-

39

quest Portal (SRP) was developed is shown in Figure 5.3. We have simplified the

Organization model to include the key features that are most important to modern KE

system development. These features include: organizational context, people, processes,

resources, problems, and focus area. The organizational context describes the type of

the organization where the KE will be operating. People are the users and supporting

systems that will be interacting with the KE system. Processes are the work process

that the KE system will be supporting. Resources are existing systems that are cur-

rently support the work process. Problems are issues that complicate or impact the

work process. The focus area is the area of the work process that would benefit the

most from a KE system.

Problems!
Locating relevant service requests!
Service requests are complicated

and difficult to read!
Writing rules!

!

Focus Area!
Working with Service requests

when developing problem-
solution pairs!

Processes!
 Opening service request!
Resolving service requests!

Developing problem-solution
pairs!

Resources!
Database!

Search engine!
Service Request viewer!

Organizational Context!
Technical support organization

for computer networking
products and services!

Effected by!

Belong to!

Exist in!

Experienced!
By!

Preform!

Used in!

People!
Network knowledge engineers!
Technical support engineers!

Customers!

Exist!
In!

 !

Figure 5.3: CommonKADS Organizational model for the technical support organization

In order to create the Organization model we start by describing the overall organiza-

tional context for the system. For example, the organizational context for the SRP was

the support organization of a large networking company that provided technical support

40

and services to the customers that used the companys networking products. Next, we

list the people involved in this context. In the support organization this included: cus-

tomers, technical support engineers (TSEs), and network knowledge engineers (NKEs).

Next, we capture the different work processes that these people perform. For example,

customers open service requests, TSEs resolve these service requests, and NKEs mine

the resolved service requests for problem-solution pairs. We then add the resources that

are used by the people in order to perform the processes. For example, the NKEs use a

search engine to query the database in order to find service requests. Next we identify

the problems in these process. For example, one problem in the NKE work process is

that it is difficult for the NKEs to locate relevant service requests. Finally we specify

the focus area for the KE system, e.g. working with service requests when developing

problem-solution pairs.

The process for constructing the Organization model is as follows:

1. Describe the organizational context for the KE system. Important features to

consider are the mission, vision, goals of the organization, and strategy of the

organization.

2. List the different processes being performed within organizational context.

3. Indicate the people who perform or are involved with the identified processes.

4. Describe the resources—search engines, databases, etc—that are being utilized to

perform the processes.

5. Identify problems in the process based on interviews with knowledge workers and

managers, brainstorming, shadowing, etc.

6. Work with the people to determine important problem as the focus area for the

KE system.

41

The Organization model provides a concise high-level view of how the organization

operates. Using this high-level view we can determine a focus area that constrains the

development process and provides a rough idea of the KE system that we will need to

build. For example, the Organization model for the SRP was used to determine that

the focus area for the SRP would be the NKE When creating used guide the creation

of the Agent/Task model that work process details and provides the starting point for

creating the House of Quality that captures the user needs for the KE system.

5.2.2 CommonKADS Agent/Task Model

The Organization model provides the focus area for the Knowledge Engineering (KE)

system. The next step is to drill-down into this focus area and capture the details

of the work process that the system will be supporting. There are two tools in the

CommonKADS methodology for doing this. The Agent model identifies the actors

(users and external systems) who are involved in the processes in the focus area. The

Task model is used to capture a task level decomposition of the different processes in

the focus area.

We have combined the Agent and Task models into single integrated Agent/Task

model. Figure 5.4 shows the Agent/Task model for the Network Knowledge Engineers’

work process. The integrated Agent/Task model contains three different elements:

tasks, agents, and relationships between agents and tasks. Agents represent people

and systems that are involved in performing the processes within the focus area. Tasks

are sub-parts or steps in a processes performed by agents. Relationships define which

agents perform which tasks.

42

D
ev

el
o

p
!

 P
ro

b
le

m
-S

o
lu

ti
o

n
!

Pa
ir
!

A
ge

n
ts
!

Ta
sk

s!

Q
u

er
y

d
at

ab
as

e!

Ex
tr

ac
t

so
lu

ti
o

n
 f

ro
m

 S
R
!

Lo
ca

te
 r

el
ev

an
t

SR
s!

K
ey

w
o

rd
 q

u
er

y!

C
h

ec
k

at
ta

ch
m

en
ts
!

C
h

ec
k

SR
 fi

el
d

s!

R
ea

d
 S

R
 p

ro
b

le
m

 !
d

es
cr

ip
ti

o
n
!

R
ea

d
 S

R
 r

es
o

lu
ti

o
n
!

 s
u

m
m

ar
y!

R
ea

d
 S

R
 a

tt
ac

h
m

en
ts
!

R
ea

d
 S

R
 c

as
e

n
o

te
s!

O
p

en
 s

er
vi

ce
 r

eq
u

es
t!

Ev
al

u
at

e
se

ar
ch

 r
es

u
lt

s!
fo

r
re

le
va

n
ce
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

in
cl

u
d
es

>
>
!

<
<

u
se

s>
>
!

V
ie

w
 s

er
vi

ce
 r

eq
u

es
t!

N
et

w
o
rk
!

K
n
o
w

le
d
ge
!

En
gi

n
ee

r!

Se
rv

ic
e

R
eq

u
es

t
!

Se
ar

ch
 E

n
gi

n
e!

Se
rv

ic
e

R
eq

u
es

t V
ie

w
er
!

<
<

u
se

s>
>
!

F
ig
u
re

5.
4:

C
om

m
on

K
A
D
S
A
ge
nt
/T

as
k
m
od

el
of

th
e
n
et
w
or
k
K
n
ow

le
d
ge

en
gi
n
ee
r
w
or
k
p
ro
ce
ss

43

In order to develop the Agent/Task model we first need to create a list of the different

steps in the end-user work process. For example, the NKEs’ work process for creating

problem solution pairs for a particular problem of interest was as follows:

1. Formulate a set of keywords that described the problem of interest. Use the service

request search engine to find a set of candidate (possibly relevant) service requests.

2. Evaluate each candidate service request for relevance.

(a) Examine service request title for relevance

(b) Open service requests with a relevant title using the service request viewer

(c) Check the service request fields, e.g. software version, resolution code, to

make sure they match the problem of interest

(d) Read through service request problem description

(e) Check to see if the service request has the right attachments to solve the

problem of interest

3. Extract the solution from each relevant service request

(a) Read the resolution summary to determine how the problem was resolved

(b) Read case notes (emails, phone logs, etc) to get the action steps necessary to

solve the problem

(c) Read attachments and extract the relevant information

This work process is then converted into the graphical Agent/Task model. Each per-

son or resource in the work process is represented as an agent. For example, the NKE

work process included three different agents: NKEs that develop problem-solution pairs,

the service request search engine that locates relevant service requests, and the service

request viewer that displays the service requests. We next decompose the processes

being performed by the agents into a set of tasks. For example, in order to develop

44

problem solution-pairs the NKEs used a search engine to locate candidate (possibly

relevant) service requests. We then define the relationships between tasks. For exam-

ple, developing problem-solution pairs includes requires searching for relevant service

requests and reading service requests. The last step in creating the Agent/Task model

is to connect agents to tasks that they perform. For example the NKE agent is con-

nected to the task develop problem-solution pairs, the search engine agent is connected

the task query database, and the viewer is connected with the task view service request.

The process for developing the Agent/Task model is as follows:

1. List the agents, people and resources, involved with the processes in the focus area

defined in the Organization model.

2. Determine the specific tasks involved in the focus area processes. Use interviews

and questionnaire to gather information about agent’s current work process. Start

by capturing high-level information, such as what they are trying to accomplish

(the overall output of the work process). Next, determine the inputs and out-

puts to each task. Finally determine characteristics of each task such as relative

difficulty, duration, frequency, etc.

3. Connect agents to the task that they perform.

4. Add the relationships among tasks. Tasks performed by a single actor are con-

nected using the << includes >> relationships. Tasks across multiple actors are

connected using the << uses >> relationship.

The Agent/Task model documents existing work process of the KE system’s end-

users in a graphical format that can be used to determine relationships between tasks and

identify key bottlenecks in the current work process. For example, when developing the

SRP the Agent/Task model exposed that the NKEs spent a considerable amount of time

doing routine tasks, such as checking the fields of a service request when establishing

45

relevance. These insights were crucial in focusing on a simple and effective system that

improved efficiency when extracting problem-solution pairs.

5.3 Level 2: Outside-In Representation

Once we have captured the organizational needs for the Knowledge Engineering system,

the next step is to determine the user needs for the system. This takes us to the

Outside-In level of representation, where the system is realized from the perspective of

the end-users. The resulting set of user needs define the goal state for the development

process and guide transition to the Internal level of representation. Issues that need to

be addressed at this level include: capturing the user needs for the system, determining

the technical metrics that can be used to evaluate how well the system satisfies the user

needs, and defining the how the user will interact with system.

In order to realize the system at the Outside-In level of representation we have

integrated two complimentary techniques for requirements elicitation: the House of

Quality and UML Use Case diagrams. The House of Quality [Hauser and Clausing,

1988] is used to represent the user needs for the system. UML Use Case diagrams

[Schach, 2008] are used to represent the interactions that the users will have in order to

satisfy these needs.

In order to ensure that the system is tightly integrated into existing work processes,

the realization of the system at the Outside-In level of representation must be driven

by the Agent/Task model from the External level of representation. Figure 5.5 shows

the connections between the Agent/Task model and the House of Quality, and Use

Case diagrams. When creating the House of Quality, the Agent/Task model provides

context necessary to identify user needs based on real problems in the existing work

process. When creating the Use Case diagrams, the Agent/Task model provides the

model necessary to ensure that the system will be compatible with current practices.

46

Outside-In!
Level of Representation!

Use Case!
 diagrams!

House of!
 Quality!

External!
Level of Representation!

Agent/Task!
Model!

Figure 5.5: Methods and techniques at the Outside-In level of representation

The process for applying the House of Quality and Use Case diagrams to realize the

system at the Outside-In level of representation is as follows:

1. Work with end-users to determine a prioritized set of user needs for the KE system

based on the issues in the current work process. Define a corresponding set of

technical metrics that can be used to measure the satisfaction of these needs.

Correlate user needs to technical metrics in a House of Quality diagram.

2. Translate each functional user need into a goal that the user is trying to accom-

plish. Create a UML Use Case diagram to model how the users will interact

with the system to accomplish that goal.

3. Iteratively refine the House of Quality and Use Case diagrams using feedback from

the end-users.

The combination of the House of Quality and Use Case diagrams allows us to quickly

obtain a high-quality set of user requirements for the KE system. The House of Quality

47

focuses the requirements process on the areas that are most important to the users.

The Use Case diagrams then provide a more concrete realization of the user needs so

that they can be evaluated for feasibility, utility, and difficulty. The iteration loop

between the House of Quality and the Use Case diagrams minimizes errors in system

requirements early in the development process where the cost of change is relatively

inexpensive.

The House of Quality coupled with the Use Cases provide a user-centric framework

for prioritization and decision making throughout the design and development process.

For example, the realization of the Service Request Portal at the Outside-In level of

representation consisted of one House of Quality and nine Use Case diagrams. The

House of Quality was critical in defining the functions for the Function Structure, eval-

uating the different design concepts, and guiding the evaluation of the system during

software development. The Use Case diagrams were critical in the defining the infor-

mation flows for the Function Structure and implementing the UI components in the

system’s software architecture.

5.3.1 House of Quality

The House of Quality [Hauser and Clausing, 1988] captures the user needs for the system

and translates them to a set of engineering targets (technical metrics) to be met by the

new design. Although there are many variations of the House of Quality, the basic form

[Hauser and Clausing, 1988] (shown in Figure 5.6) consists of five components: user

needs, technical metrics, relationship matrix, and correlation matrix. User needs [Otto

and Wood, 2000] are short descriptions of what the users (customers) desire from the

system. Technical metrics [Ulrich and Eppinger, 1995] are precise, quantitative metrics

that quantify how well the system satisfies the user needs. The relationship matrix

establishes the connection between the user needs and the technical metrics. Finally,

the correlation matrix captures the interdependencies between the technical metrics.

48

Be
 a
bl
e
to
 q
ui
ck
ly
 a
ss
es
s r
el
ev
an
ce
 o
f S
Rs

Be
 a
bl
e
to
 re

ad
 S
Rs
 e
as
ie
r

Be
 a
bl
e
to
 d
o
br
oa
d
se
ar
ch
es

Be
 a
bl
e
to
 d
o
ve
ry
 ta

rg
et
ed

 se
ar
ch
es

Be
 a
bl
e
to
 q
ui
ck
ly
 e
xt
ra
ct
 p
ro
bl
em

-­‐s
ol
ut
io
n
pa
irs

Se
am

le
ss
 a
cc
es
s t
o
se
rv
ic
e
re
qu

es
t a

tt
ac
hm

en
ts

Average time to run
targeted search

Average time to run
broad search

Number of Icons in User
Interface

Average steps to
complete typical task

Average time to extract
problem solution pair

Average time to assess
relevance

Number of pages read to
assess relevance

Importance 5 3 8 7 5 8 7 5

U
se
r

N
ee
ds

Te
ch
ni
ca
l

M
et
ric
s

Co
rr
el
at
io
n

M
at
rix

Re
la
tio

ns
hi
p

M
at
rix

Le
ge
nd

St
ro
ng
 C
or
re
la
tio

n

M
ed

iu
m
 C
or
re
la
tio

n

W
ea
k
Co

rr
el
at
io
n

Po
sit
iv
e
Co

rr
el
at
io
n

N
eg
at
iv
e
Co

rr
el
at
io
n

Ea
sy
 to

 u
se

Lo
ca
te
 re

le
va
nt

Se
rv
ic
e
Re

qu
es
ts

Ex
tr
ac
t p

ro
bl
em

so
lu
tio

n-­‐
pa
irs

Pr
im

ar
y

Se
co
nd

ar
y

Ta
rg
et

5
3

20
3

10
1

2

U
sa
bi
lit
y

Re
qu

ire
m
en

ts

Fu
nc
tio

na
l

Re
qu

ire
m
en

ts

Hi
gh
 p
er
fo
rm

an
ce

F
ig
u
re

5.
6:

H
ou

se
of

Q
u
al
it
y
of

th
e
u
se
r
n
ee
d
s
fo
r
th
e
S
er
vi
ce

R
eq
u
es
t
P
or
ta
l

49

The first step in creating the House of Quality is to identify the user needs for the

KE system. In general there are two different kinds of users needs to be considered:

functional needs and usability needs. Functional needs define the functions that users

need the system to perform and are identified by working with these users to identify the

gaps and problems in their existing work process that could benefit from automation.

For example, in order to locate relevant service requests the NKEs manually examined

the fields (technology, sub-technology) of each service request. The NKEs wanted to be

able to specify these field values as part of the search criteria, so that they did not have

to manually filter search results. This user need was captured in the functional require-

ments be able to do very targeted searches. Usability needs are general characteristics,

e.g. easy to use, that the users want the system to embody. Usability needs can be

determined through interviews and questionnaires with the users.

Once we have determined the user needs for the system the next step is to define

the technical metrics that can be used to measure these needs. For example, measuring

how well the system satisfied the functional need be able to read service requests easier

translated to the technical metrics: number of pages read to assess relevance and average

time to assess relevance.

The last step in creating the House of Quality is to identify the relationships between

user needs and technical metrics. For example, the user need be able to read service

requests easier is strongly related to the technical metric number of pages read to assess

relevance and number of pages read to assess relevance is positively correlated to the

technical metric average time to assess relevance.

The process for building the House of Quality is as follows:

1. Identify the user needs for the system. The functional needs for the system are

identified by working with end-users to determine problems in the work process

captured by the Agent/Task model. Usability needs are identified by interviewing

50

users about what characteristics are important in order to make the system easy

to use.

2. Work with the users (customers) to establish the relative importance of each need

using a convenient scale (e.g. 1-10). Organize the user needs into a hierarchy of

primary needs, secondary needs, and tertiary needs.

3. Make a list of technical metrics for measuring the factors that influence the sat-

isfaction of the user needs. Use the Agent/Task model to understand the factors

that influence the work process. Determine a target value for each technical metric

that represents a significant improvement over the existing process.

4. Organize the user needs and technical metrics into a relationship matrix. Within

the matrix identify the relationship between each user needs and technical metric

as strong, moderate, weak, or no relationship. A strong relationship indicates

that increasing or decreasing the technical metric will affect the user need; no

relationship means that the user need and technical metric are independent of

each other and changing the technical metric will have no effect on the user need.

5. Correlate the technical metrics to each other using a convenient scale (e.g. positive

or negative correlation). A positive correlation means that the technical metrics

increase/decrease together, while a negative correlation means that the technical

metrics increase/decrease opposite to each other. The result is the correlation

matrix.

6. Combine the user needs, technical metrics, relationship matrix, correlation matrix

into a House of Quality. The relationship matrix occupies the center of the House

of Quality, with the user needs are to the left and the technical metrics are above.

The correlation matrix is positioned on top of the technical metrics. The target

values for the technical metrics are positioned below the relationship matrix.

The House of Quality summarizes the user needs for the KE system in a concise

51

and well organized form that allows them be easily referenced throughout development

process. At the Outside-In level of representation, the House of Quality ensures that the

goals in the Use Cases are connected to real user needs for the system. At the Internal

level of representation, the House of Quality is used to drive the creation of the Function

Structure and the Utility Function. At the Outside level of representation, the House

of Quality provides the technical metrics that can be used to evaluate the software with

respect how well it satisfies the user needs. By properly emphasizing the user needs

throughout the development process, the House of Quality improves the quality and

cost effectiveness of the system because finite resources are focused on the features and

functionality that are important to the users.

5.3.2 UML Use Case Diagram

The UML Use Case diagram [Schach, 2008] is a black-box representation of a particular

aspect of the systems functionality from the perspective of the user. Figure 5.7, below,

shows the Use Case diagram for how the Network Knowledge Engineers (NKEs) would

interact with the Service Request Portal (SRP) in order to locate relevant service re-

quests. The Use Case contains of four elements: actors that interact with the system,

the software system, interactions between the actors and the software system, and the

relationships between interactions. Actors represent any entity that interacts with the

system and are drawn as stick figures. Interactions describe how these actors can in-

teract with the software application and are drawn as ovals. Relationships describe the

connections between interactions and are drawn using lines.

Each functional user need in the House of Quality will require a Use Case to capture

how the user will interact with the system in order to satisfy that need. In order to create

a Use Case diagram for a functional need we first transform the user need into a goal

that the user trying to accomplish using the system. Next we will need to identify the

different actors involved in that goal. There are two different kinds of actors: primary

52

Network Knowledge!

 Engineer!

Locate relevant

service request!

Enter search

keywords!

Enter desired

service request

fields!

Enter desired

service request

attachments!

<<includes>>!

<<includes>>!

<<includes>>!

Goal!

Interactions!

Use Case!

Enter search

parameters!

Evaluate search

results!

Read service

request

summary!

Execute search!

Read service

request title!

<<includes>>!

<<includes>>!

<<includes>>!

<<includes>>!

<<includes>>!

Figure 5.7: Use Case diagram for locating relevant service requests

and secondary. Primary actors represent the users that require the assistance of the

system, while secondary actors represent external systems (search engines, databases,

etc.) that the system uses. Finally, there is well-defined structure user interactions

with the system. For example, the user will need to enter the search keywords before

entering the service request fields. Use Case diagrams use relationships to capture

this structure. Each relationship describes the nature of a connection between two

interactions. There are two kinds of relationships that are of interest when designing

KE systems: dependencies, and variations. Dependencies are where one interaction

includes the other interaction, and are labeled with the << includes >> relationship.

Variations, are where one interaction is a special case of another interaction, and are

labelled with the << extends >> relationship.

The process for creating the Use Case for a functional user need is as follows:

1. Translate the user need into a goal that the user is trying to accomplish. Draw a

box around the goal in order to represent the system boundary.

53

2. Add a primary actor to represent each distinct group of users (e.g. NKEs) and

add a secondary actor to represent each external system (e.g. the search engine)

that interacts with the KE system. Place primary actors to the left of the system

boundary and secondary actors to the right.

3. Add a relationship between the primary actor and this goal.

4. Work with the users to add interactions for achieving the goal. Use the Agent/Task

model to ensure that these interaction are compatible with the current work pro-

cess.

5. Add the relationships between the interactions to the Use Case diagram. Specify

each relationship in the Use Case diagram as either a functional dependency (<<

includes >>) or variations (<< extends >>).

The application of this process to the House Quality will yield a set of Use Case

diagrams, each describing a goal oriented set of interactions that the user can have with

the KE system. For example, the translation of the SRP House of Quality resulted in the

creation of nine Use Case diagrams. Together, these Use Cases provide a interaction

based representation of the system that can be used refine the user needs and their

respective priorities in the House of Quality. The interactions captured in the Use Case

diagrams are also useful when defining the functional specification of the system at the

Internal level of representation. Use cases ensure that the development team and the

users are clear on how the user needs—captured in the House of Quality—will translate

into system functionality.

5.3.3 Iterative Refinement

In the process of creating the Use Case diagrams it is likely that the user needs and

their respective priorities will change. Users will discover new needs that were not cap-

54

tured in the House of Quality, or find that their previous prioritizations were incorrect.

Therefore, it is typically necessary to iteratively refine the user needs in the House of

Quality after creating the Use Cases.

The first step in refining the House of Quality and Use Case diagrams is to have the

users review the Use Case diagrams. Based on their feedback there are three different

types of corrections that will need to be made to the House of Quality. First, the Use

Cases could have brought out an important user need that was not captured in the

House of Quality. Second, the Use Cases could have exposed a user need in the House

of Quality that is not necessary. Third, the Use Cases could have identified a change

that will need to be made to the priorities of the user needs. Each of these corrections

will need to be reflected in the House of Quality.

The process for refining the House of Quality and Use Case diagrams is as follows:

1. Have the users review the Use Cases and give feedback on what corrections need

to be made.

2. Adjust the House of Quality. Add any new user needs that were discovered, remove

unnecessary user needs, and adjust priorities.

3. Update the Use Case diagrams to reflect the changes to the House of Quality.

4. Repeat steps 1-3 until the House of Quality and Use Case diagrams are relatively

stable and do not change between iterations.

Errors in the requirements phase are generally the most costly errors to fix and have

prolonged effects on the overall user satisfaction with the system. The iteration loop

between the House of Quality and the Use Case diagrams minimizes the number of the

errors in system requirements early in the development process where the cost of change

is relatively inexpensive.

55

5.4 Level 3: Internal Representation

Once we have captured the user needs for the system, the next step is to translate these

user needs into functions and solution-principles for the Knowledge Engineering (KE)

system. We refer to this process as the realization of the system at the Internal level of

representation. Issues that will be addressed at this level include: defining the functional

specification of the system, exploring different function realizations (solution-principles),

and managing the inevitable trade-offs between system quality and cost.

In order to realize the system at the Internal level of representation we have drawn

upon three Product Design techniques. The Function Structure [Pahl and Beitz, 1996]

is used to represent the functions and sub-functions that the KE system will need to

perform. The Morphological Matrix [Pahl and Beitz, 1996] is used to represent the

space of feasible realizations for the system’s Function Structure. The Utility Function

[Cross, 1998] is used to represent the selection process for choosing the design concept

that best satisfies both the user and organizational needs.

The realization of the system at the Internal level of representation must be driven

and shaped by the user and organizational needs for the system. Figure 5.8 shows

the interconnections between the Outside-In and Internal levels of representation. The

Function Structure transforms the House of Quality and Use Case diagrams into the

functional specifications for the system. The Utility Function transforms the House of

Quality into a set of weighted selection criteria for evaluating how well the generated

design concepts satisfy the user needs.

The process for applying these methods to realize the system at the level of the

Internal representation is as follows:

1. Construct a Function Structure of the functions and sub-functions that the

system must perform in order to satisfy the user needs specified in the House of

56

Outside-In!
Level of Representation!

Internal!
Level of Representation!

Use Case!
 diagrams!

House of!
 Quality!

Function !
Structure!

Morphological!
Matrix!

Utility !
Function!

Figure 5.8: Methods and tools at the Internal level of representation

Quality.

2. Build a Morphological Matrix (MM) to capture the space of feasible realiza-

tions (solution-principles) for the Function Structure. Use the MM to generate

several alternative design concepts for the KE system.

3. Develop a set of weighted objectives for the system, based the user and organi-

zational needs for the system. Use a Utility Function, constructed from these

objectives, to assess the alternative design concepts. Select the best design concept

for further development.

The realization of the Internal level of representation provides a complete concep-

tual design for the KE system. This conceptual design is then translated into a software

design at the Inside-Out level of representation. For example, the realization of the Ser-

vice Request Portal (SRP) at the Internal level of representation included: one Function

Structure, one Morphological Matrix, three alternative design concepts, and one Utility

Function. The Function Structure was used to define the software architecture for the

57

SRP and selected design concept was used to guide the detailed software design. The

Morphological Matrix used to explore the possible solution space and generate three

alternative design concepts for the system. The Utility Function was used to select the

”best” design concept based on the user and organizational needs.

5.4.1 Function Structure

The Function Structure [Pahl and Beitz, 1996] is a representation of the functions a

system performs on a set of inputs in order to obtain a set of outputs. Figure 5.9 shows

the Function Structure for functions and sub-functions of the Service Request Portal.

A Function Structure is organized as a hierarchy, of a primary decomposed into a series

of increasingly detailed sub-functions. The basic construct at each level is a function

represented as a black box that takes a set of inputs and transforms them into a set of

outputs.

The first step in creating the Function Structure is to define the primary function

of the system. This main function must be determined from the House of Quality

in order to ensure that the system satisfies the user needs. For example, the two

primary functional needs captured in the House of Quality were: locating relevant

service requests and extracting problem-solution pairs. These needs were combined in

order to get the to the main function: Facilitate searching for relevant service requests

and extracting problem-solution pairs. The information flow (inputs and outputs) for

this main function comes from the overall interactions with the system that are specified

in the Use Case diagrams.

The main function is then decomposed into a set of primary sub-functions. These

primary sub-functions should roughly correspond to the primary functional user needs

specified in the House of Quality. For example, the two primary user needs in the House

of Quality each translated to a primary sub-function. This process continues until each

58

Fa
ci

li
ta

te
 t

h
e

lo
ca

ti
n

g
re

le
va

n
t

se
rv

ic
e

re
q

u
es

ts
 a

n
d

 e
xt

ra
ct

in
g

so
lu

ti
o

n
-p

ai
rs
!

!

Lo
ca

te

re
le

va
n

t
SR

s!

Ex
tr

ac
t

so
lu

ti
o

n
s

fr
o

m
 r

el
ev

an
t

SR
s!

Lo
ca

te

ca
n

d
id

at
e

SR
s!

Fi
lt

er
 s

er
vi

ce

re
q

u
es

t

co
n

te
n

t!

R
em

o
ve

re

p
et

it
io

n
s

an
d

d
u

p
li

ca
te

 c
o

n
te

n
t!

Su
m

m
ar

iz
e

se
rv

ic
e

re
q

u
es

t
!

Se
ar

ch
 b

y

ke
yw

o
rd

s!

Se
ar

ch
 b

y
se

rv
ic

e
re

q
u

es
t

at
ta

ch
m

en
ts
!

Se
ar

ch
 b

y
se

rv
ic

e

re
q

u
es

t
fi

el
d

s!

V
ie

w
 s

er
vi

ce

re
q

u
es

t

co
n

te
n

t!

V
ie

w
 s

er
vi

ce

re
q

u
es

t
at

ta
ch

m
en

ts
!

V
ie

w
 s

er
vi

ce

re
q

u
es

t
n

o
te

s!

Ev
al

u
at

e
ca

n
d

id
at

e
SR

s
fo

r

re
le

va
n

ce
!

V
ie

w
 s

er
vi

ce

re
q

u
es

t
n

o
te

s!

Le
ve

l
1
!

Le
ve

l
2
!

Le
ve

l
3
!

Le
ve

l
4
!

R
et

ri
ev

e
Se

rv
ic

e

re
q

u
es

t!

R
et

ri
ev

e
se

rv
ic

e

re
q

u
es

t
n

o
te

s!

R
et

ri
ev

e
se

rv
ic

e
re

q
u

es
t

at
ta

ch
m

en
ts
!

K
ey

w
o
rd

s!
Se

ar
ch

 C
ri

te
ri

a!
 P

ro
b
le

m
-S

o
lu

ti
o
n
!

Pa
ir

s!

F
ig
u
re

5.
9:

F
u
n
ct
io
n
S
tr
u
ct
u
re

fo
r
th
e
S
er
vi
ce

R
eq
u
es
t
P
or
ta
l

59

sub-function is atomic and easy to realize. For example the Function Structure for the

Service Request Portal had four levels. As a general rule each sub-function should be

decomposed until it operates on a single input and output.

The process for creating the Function Structure is as follows:

1. Define the primary function for the KE system based on the functional user needs

in the House of Quality. Use the Use Case diagrams to determine the information

flow—inputs and outputs—for the primary function. This is the first level of the

Function Structure.

2. Decompose the primary function into a set of sub-functions. Each sub-function

should correspond to one primary functional need in the House of Quality. This

is the second level of the Function Structure.

3. Continue this decomposition process until each sub-function is simple enough to

realize. Each level of the Function Structure should correspond to a level in the

user needs hierarchy, i.e. the third level secondary sub-functions correspond to

the secondary functional need in the House of Quality.

The Function Structure translates the high-level user needs into a precise functional

specifications for the KE system. These functional specifications provide the basis for

the system design and are used throughout the Internal and Inside-Out levels of repre-

sentation. At the Internal level of representation, the Function Structure provides the

scaffolding of the Morphological Matrix and enables the generation of several alternative

design concepts for the system. At the Inside-Out level of representation the Function

Structure provides the functional software components that are used by the Component

diagram to define overall software architecture of the system.

Function Structures have two key advantages over a written functional specification

document. First and foremost, the hierarchical structure of the Function Structure

60

allows for clear visualization of the relationships and information flows between sub-

functions and make it easier to the ensure that the design is functionally complete.

Second, the Function Structure is abstract and clearly separates form from function.

This separation enables (facilitates) the generation of a several feasible alternative design

concept realizations and reduces the chance of preconceived solutions that do not satisfy

real user (customer) needs.

5.4.2 Morphological Matrix

Once we have a functional specification for the desired system, the next step is to de-

termine how these functions will be implemented. The Morphological Matrix [Pahl and

Beitz, 1996] technique captures the potential solution space for the functional speci-

fication and provides a structured approach to generating alternative design concepts

for the system. The Morphological Matrix that was used to develop the three design

concepts for the Service Request Portal (SRP) is shown in Figure 5.10. The left-hand

column of the matrix contains the systems functional specifications. The potential

solution-principles or realizations for each sub-function are then listed in the right-hand

columns. Design concepts can then be generated by selecting a solution-principles for

each sub-function.

In order to create the Morphological Matrix we need to explore the space of feasible

solution-principles for each sub-function defined in the Function Structure. For example,

the Morphological Matrix in Figure 5.10 included different three solution-principles for

the sub-function remove duplicate content: a strict hash function to detect duplicate

paragraphs, a fuzzy hash function based off the similarity of the paragraphs, and a

classifier to detect characteristics—e.g. > — of duplicate paragraphs.

The process for creating the Morphological Matrix and using it to generate several

design concepts for the KE system is as follows:

61

View SR content! Plain text!Organized by note type!
Keyword highlighting with
collapsible panes for each

note!

User downloads attachment !
Attachments displayed in

users browser!
Attachments displayed in

user browser !
View SR attachments!

Extract problem description
and resolution summary!

Natural language processing!

Extract problem description
and resolution summary.
Remove stop words and

duplicate paragraphs!

Summarize SR content!

Use a machine learning
classifier to detect duplicate !

Hash function with exact
match duplicates!

Remove repeated SR content!
Hash function with fuzzy

match duplicates !

Service Request Viewer XML
interface!

Retrieve SR content! Database access!

Add additional fields to the
existing search engine fields !

Keyword search SR content! Cosine similarity !

Solution-principle 2!

Search by attachment type!

Leverage existing search
engine!

Search SR attachments!

Search SR fields!

Solution-principle 3!Sub-function!

Keyword search!

Use existing search engine
fields!

Solution-principle 1!

Regular expressions!

Keyword search on without
using search engine fields!

Keyword search and search
by attachment type!

View SR content! Plain text!Organized by note type!
Keyword highlighting with
collapsible panes for each

note!

User downloads attachment !
Attachments displayed in

users browser!
Attachments displayed in user

browser !
View SR attachments!

Extract problem description
and resolution summary!

Natural language processing!

Extract problem description
and resolution summary.
Remove stop words and

duplicate paragraphs!

Summarize SR content!

Use a machine learning
classifier to detect duplicate !

Hash function with exact
match duplicates!

Remove repeated SR content!
Hash function with fuzzy

match duplicates !

Service Request Viewer XML
interface!

Retrieve SR content! Database access!

Add additional fields to the
existing search engine fields !

Keyword search SR content! Cosine similarity !

Solution-principle 2!

Search by attachment type!

Leverage existing search
engine!

Search SR attachments!

Search SR fields!

Solution-principle 3!Sub-function!

Keyword search!

Use existing search engine
fields!

Solution-principle 1!

Regular expressions!

Keyword search on without
using search engine fields!

Keyword search and search by
attachment type!

View SR content! Plain text!Organized by note type!
Keyword highlighting with
collapsible panes for each

note!

User downloads attachment !
Attachments displayed in

users browser!
Attachments displayed in user

browser !
View SR attachments!

Extract problem description
and resolution summary!

Natural language processing!

Extract problem description
and resolution summary.
Remove stop words and

duplicate paragraphs!

Summarize SR content!

Use a machine learning
classifier to detect duplicate !

Hash function with exact
match duplicates!

Remove repeated SR content!
Hash function with fuzzy

match duplicates !

Service Request Viewer XML
interface!

Retrieve SR content! Database access!

Add additional fields to the
existing search engine fields !

Keyword search SR content! Cosine similarity !

Solution-principle 2!

Search by attachment type!

Leverage existing search
engine!

Search SR attachments!

Search SR fields!

Solution-principle 3!Sub-function!

Keyword search!

Use existing search engine
fields!

Solution-principle 1!

Regular expressions!

Keyword search on without
using search engine fields!

Keyword search and search by
attachment type!

View SR content! Plain text!Organized by note type!
Keyword highlighting with
collapsible panes for each

note!

User downloads attachment !
Attachments displayed in

users browser!
Attachments displayed in user

browser !
View SR attachments!

Extract problem description
and resolution summary!

Natural language processing!

Extract problem description
and resolution summary.
Remove stop words and

duplicate paragraphs!

Summarize SR content!

Use a machine learning
classifier to detect duplicate !

Hash function with exact
match duplicates!

Remove repeated SR content!
Hash function with fuzzy

match duplicates !

Service Request Viewer XML
interface!

Retrieve SR content! Database access!

Add additional fields to the
existing search engine fields !

Keyword search SR content! Cosine similarity !

Solution-principle 2!

Search by attachment type!

Leverage existing search
engine!

Search SR attachments!

Search SR fields!

Solution-principle 3!Sub-function!

Keyword search!

Use existing search engine
fields!

Solution-principle 1!

Regular expressions!

Keyword search on without
using search engine fields!

Keyword search and search by
attachment type!

Design concept 1!

Design concept 2!

Design concept 3!

Morphological Matrix!

Figure 5.10: Morphological Matrix and three alternative design concepts for the Service
Request Portal

1. Generate several (2-5) solution-principles for realizing each terminal (bottom-

level) sub-function in the Function Structure.

2. Organize the terminal sub-functions and their corresponding solution-principles

into the Morphological Matrix–where the sub-functions are the matrix rows and

the solution-principles are the matrix columns.

3. Create several (2-3) copies of the Morphological Matrix. Combine compatible

solution-principles in each Morphological Matrix to generate a unique alternative

design concept for the KE system.

The Morphological Matrix technique yields a wide range of possible approaches for

building the KE system. For example, the Morphological Matrix shown in Figure 5.10

was used to generate three very different design concepts. The first design concept

used information retrieval techniques such as natural language processing for realizing

the functional specification. The second design concept used a simple solution based

62

on regular expression matching. The third design concept was a hybrid approach that

combined existing tools, e.g. search engine, with relatively simple enhancements. These

alternative design concepts are then evaluated using a Utility Function in order to select

one for further development.

The degree to which the developed system satisfies the needs of the users (customers)

and organization largely depends on the quality of the underlying design concept. The

Morphological Matrix allows the systematic generational a wide range of design concepts

and therefore maximizes the probability of generating the best design with respect to

these needs. For example, simpler designs, such as the second and third design concepts

described above, might not have been considered if we had generated only a single design

concept. However these designs ended up having a higher utility then the first design

concept because they were less expensive to develop.

5.4.3 Utility Function

The Morphological Matrix allows for multiple feasible design concepts to be generated

for the Knowledge Engineering (KE) system. However, it is not generally possible (due

to cost and time constraints) to develop more than one design concept. Therefore, the

last step in the Internal level of representation is to select the best design concept to

develop.

The Utility Function [Cross, 1998] is a mathematical tool for assessing of the use-

fulness of the design concepts with respect to a set of weighted objectives. Figure 5.11

shows the Utility Function that was used to select the design concept for the Service

Request Portal (SRP). The Utility Function assigns numerical weights to objectives and

numerical scores to the design concepts measured against the objectives. The weighted

scores (numericalweightXnumericalscore) are then summed in order to compute a

cumulative or overall utility for each design concept. This cumulative utility can then

63

be used to compare the design concepts in order to select the best design for the KE

system.

5.984!4.626!4.946!

0.36! 4! 7!0.48! 0.84!3!

6!2.24!8!3! 1.68!O.84!

5!0.216!3! 0.36!0.504!7!

0.504!7! 0.216!3! 0.36!5!

4! 7! 0.308!0.088!0.176! 2!

7! 0.84!1.47! 1.26!4! 6!

7!0.756! 0.882!3!6! 0.378!

0.336!8! 0.294!7!0.168!4!

Utility!Score!Utility!Score!Score! Utility!

Concept 3!Concept 2!Concept 1!

Weight!Objective!

Cumulative Utility!

Low cost! 0.12!

0.28!Fast development time!

Easy to find resolution in
service request!

0.072!

Easy to find problem in
service request!

0.072!

0.044!Easy access to attachments!

0.21!
Be able to quickly assess
the relevance of an SR!

Provide targeted search
capabilities!

0.126!

Provide broad search
capabilities!

0.042!

Figure 5.11: Utility Function for assessing the three Service Request Portal design
concepts

In order to create the Utility Function we need to define a set of objectives that

can be used to score the design concepts. There are typically two primary objectives

when developing a KE system: high-quality, and low-cost (time and money). The

quality objectives should be based on the user needs in the House of Quality. The

cost objectives should capture the organizational needs for the system. Next we assign

each objective a weight according its importance relative to the other objectives. The

weights of the quality objectives are determined by the relative importance of each user

64

need. The weights for the other objectives, e.g. cost, should be assigned while working

in collaboration with users, project stakeholders, and the software developers who will

be implementing the system. Each design concept is assigned a score for each objective

based on how well the concept satisfies that objective. For example, the design concept

3 used simpler (easier to implement) solution-principles than design concept 1 and,

therefore, received a higher score (0.84 vs 0.12) for the objective low cost. Finally we

calculate a cumulative utility for each design concept by summing the weighted scores.

The process for constructing and applying the Utility Function is as follows:

1. Generate a hierarchy of objectives for the KE system.

2. Assign each objective in the hierarchy a relative weight according to how important

it is relative to the other objectives. The relative weights should be assigned so

that relative weights of every objectives immediate descendants sum to 1.

3. Determine the absolute weight of each objective by multiplying the objectives

relative weight by the absolute weight of its parent. The absolute weights of all

the objectives at the same level must sum to 1. Therefore the relative and absolute

weights of the root of the tree are both 1.

4. Select the bottom level (terminal) objectives and their absolute weights from the

objective and arrange them into a table with the design concepts. The objectives

go in the table rows, and the design concepts go in the table columns.

5. Assign each design concept a score for each objective , using a convenient scale

(e.g. 1-10), based on how well the objective is satisfied.

6. Calculate the utility scores for each design concept by multiplying the objectives

scores by their corresponding weights. Compute a cumulative utility for each

design concept by summing the utility scores.

65

All design processes involve some form of concept selection where decisions are made

about how the system will be implemented. Typically, these decisions are made infor-

mally and are therefore subject the individual biases of the design team. The Utility

Function provides a structured approach to concept selection that allows inevitable

trade-offs between quality and cost (time and money) to be objectively balanced while

the concepts are still relatively abstract. As a result, the Utility Function increases the

probability of selecting a design concept that best satisfies the user and organizational

needs for the KE system. In addition, the Utility Function also provides a transparent

documentation of the concept selection process that clearly shows the selection criteria

that were used and how the design concepts were scored.

5.5 Level 4: Inside-Out Representation

The Inside-Out level of representation is where the selected design concept is translated

into the software design for the Knowledge Engineering (KE) system. The two key

issues that need to be addressed at this level of representation are defining the software

architecture of the system and transforming the design concept’s solution-principles into

a detailed software design.

In order to realize the system at the Inside-Out level of representation we have

drawn two models from the Unified Modelling Language (UML) [Schach, 2008]. The

UML Component diagram [Schach, 2008] is used to represent high-level architecture of

the system in terms of components and their interactions. The UML Class diagram

[Schach, 2008] is used to represent the implementation details of each component in

terms of objects, methods, and attributes.

The purpose of Inside-Out level of representation is to accurately translate the design

concept from the Internal level of representation into a software design that can be

used to implement the KE system at the Outside level of representation. The two

66

connections between the Internal and Inside-Out levels are shown in Figure 5.12. The

Component diagram transforms the hierarchical Function Structure into a component

based architecture for the system. The Class diagram transforms the high-level solution

principles specified in the Morphological Matrix into the data structures, algorithms,

and control logic necessary for a detailed software design.

Internal!
Level of Representation!

Function !
Structure!

Morphological!
Matrix!

Utility !
Function!

In-Outside!
Level of Representation!

Component!
Model!

Class!
Model!

Figure 5.12: Methods and tools at the Inside-Out level of representation

The process for realizing the system at the level of the Inside-Out representation is

as follows:

1. Map the sub-functions in the Function Structure to set of User Interface (UI)

components, and the functional (backend) components required to implement the

system based. Organize these components into a Component diagram that

defines software architecture for the system.

2. Use Class diagrams to capture the implementation details of each component in

the Component diagram based on solution-principles in the Morphological Matrix.

67

The realization of the system at the Inside-Out level of representation provides the

software architecture and detailed design necessary to support software development at

the Outside level of representation. For example, the realization of the Service Request

Portal at the Inside-Out level of representation included: one Component diagram and

over 50 different Class diagrams. The Component diagram was used create the software

development plan for implementing the system and the Class diagrams were used to

guide the actual software development (writing code).

5.5.1 UML Component Diagram

The UML Component diagram [Schach, 2008] represents the software architecture of a

system in terms of components, actors that interact with components, and interactions

between components. Figure 5.13 shows the Component diagram of the five components

in the Service Request Portal (SRP) software architecture and their interactions. Each

component is drawn as a rectangle with the component name listed at the top. Actors,

representing users and external systems, are drawn using stick figures. Interactions

between actors and components are drawn as arrows.

Network Knowlege!
Engineer!

Knowledge Engineering System!

Search Engine!

Search UI!

«Component»!

Content UI!

«Component»!

Search Filter !

«Component»!

Content Filter!

«Component»!

Search Engine
Interface!

«Component»!
Search keywords!

Search result!

!

Search results!
Service requests!

!

Keywords!

Search Result!

Se
arc

h

res
ults
!

Se
rvi

ce

req
uest

!

Search
results!

Service
requests!

Search
results!

Filtered
Service
Request!

Keywords!

Search

Parameters!

Filte
red Service!

Requests
!

Search result!

Filtered Service
Request!

Figure 5.13: Component diagram of the Service Request Portal software architecture

68

The first step in constructing the Component diagram is to organize the systems

functional representation (functions and sub-functions) into a set of software compo-

nents. To do this we need to determine the appropriate level of the Function Structure

at which to map sub-functions to components. The level should be chosen so that the

mapping results in each component being as self-contained as possible with minimal

coupling with other sub-functions outside of the component. For a small systems, e.g.

the SRP, the appropriate mapping is generally the secondary sub-functions or the third

level of Function Structure hierarchy. For large systems—with deeper Function Struc-

ture hierarchies—the fourth or even fifth level of the Function Structure is probably

more appropriate.

Each sub-function at the selected level will map to either a user interface (UI) com-

ponents that facilitates user interactions with the system or a functional components

that implements the systems funtions. Sub-function that have an information flow with

user inputs will map to a UI component while sub-functions that do not will map to a

functional component.

Once we have defined the components, the next step is to specify the interactions be-

tween the UI components and the external environment. UI components are connected

to the external environment through actors that interact with the system. These actors

and their interactions with the system come from the Use Case diagrams. For example,

the NKEs interact with the SearchUI component in order to search for relevant service

requests.

The Functional components are then connected the UI components according to the

information flows specified in the Function Structure. For example, the ContentFilter

component takes a set a search result as input and returns a filtered service request as

output.

The process for creating the Component diagram is as follows:

69

1. Determine the appropriate level of the Function Structure at which to map sub-

functions to components. For each sub-function at this level determine if the

sub-function should be mapped to a User Interface (UI) component that involves

a user interaction or a functional component that does not involve user interaction.

Place the functional components to the right of the UI components.

2. Add the system boundary by drawing a box around the functional and UI com-

ponents.

3. Add an actor for each unique actor in the Use Case diagrams. Position primary

actors (users) to left of the system boundary and secondary actors (databases,

search engines, etc.) to the right.

4. Add the interactions between the actors and UI components. Label the informa-

tion flows (inputs and outputs) involved in each interaction.

5. Add the interactions between the UI and the functional components based on the

information flows in the Function Structure. Label the information flows (inputs

and outputs) involved in each interaction.

The component diagram defines the software architecture for the KE system. At

the Inside-Out level of representation this architecture is used to guide the construc-

tion of the Class diagrams that provide detailed design of the system. At the Outside

level of representation this architecture is used create the development plan for imple-

menting the KE system. Like any other complex structure, a software system must be

built on a solid foundation or architecture. The Component diagram allows the sys-

tem architecture to be defined in top-down manner so that important properties of good

software architecture, such as modularity, simple interfaces, and information hiding, can

be properly emphasized. A good software architecture will have less functional depen-

dencies among components. This simplifies software development and allows multiple

70

components to be completed in parallel and will make the system easier to maintain

and expand upon in the future.

5.5.2 UML Class Diagrams

Each software component, defined in the Component diagram, will require a Class

diagram [Schach, 2008] to capture the implementation details necessary for software

development. In general there are three different types of classes that are necessary

when implementing software component: data structures, functional classes, and con-

trol classes. For example, the ContentFilter component required six classes—two data

structure classes, two functional classes, and two control classes–to implement the trans-

formation of a set of search results into filtered service requests. Figure 5.14 shows the

ContentFilter component and its corresponding Class diagram. Each individual class is

drawn as a rectangle, with the top portion of the rectangle containing the name of the

class, the middle portion listing the class attributes, and the bottom portion listing the

class functions.

Each software component in the Component diagram operates on an information

flow. For example, the ContentFilter component takes a set of search results as input

and returns a set of filtered service requests as output. The first step in transforming

a component into a set of classes is to define the data structure for representing this

information flow. Typically, we will need one data structure class for each distinct

type of information flowing through the component. For example, the ContentFilter

component required two data structures: the SearchResult class to represent the search

results and ServiceRequest class to represent service requests.

The transformation of an input information flow into an output information flow

requires a number of functional classes that contain the business logic of the component.

Each Component will need functional classes that realize the solution-principles defined

71

Public runFilters(sr)!

Public addFilters(filters)!

Public removeFilters(filters)!

!

Private filters!
ContentFilter!

Public rank!

Public srId!

Public rank!

Public srId!

SearchResult!
Public notes!

Public attachments!

ServiceRequest!

Public execute(sr)!

Private summarize(sr)!

SummarizationFilter!

Public execute(sr)!

Private removeDuplicates(note)!

Private duplicateHash!
DeduplicationFilter!

Public execute(sr)!
Filter!

Figure 5.14: Class diagram for the Service Request Portal ContentFilter component

in the Morphological Matrix. For example, going from search results to filtered service

requests required two functional classes: the DeduplicationFilter class for removing

duplicated content and SummarizationFilter for summarizing service requests.

Each component will require coordination between several functional classes. In

order to capture this logic we add control classes to receive inputs, trigger functions,

and send outputs. For example, the ContentFilter and Filter classes specify the control

logic for managing the retrieval and filtering of the service requests.

The last step in constructing the Class diagram is to define the relationships between

the classes. There are three different types of relationships between classes: inheritance,

aggregation, and association. Inheritance is when one class inherits (uses) the attributes

and functions of the other class. For example, the DeDuplicationFilter and Summariza-

tionFilter both inherit the execute() function from the Filter class. Aggregation is when

one class is composed of multiple other classes. Association is any other type of rela-

tionship between two classes. For example the ContentFilter class is associated with

72

the SearchResult, ServiceRequest, and Filter classes.

The process for creating the Class diagram for a single software component is as

follows:

1. Define a data structure class for each distinct input and output information flow

to represent the components information inputs and outputs.

2. Add the functional classes to implement solution-principles from the Morphologi-

cal Matrix for the transforming the input information into the output information.

3. Add the necessary control classes to receive inputs, trigger functions, and send

outputs.

4. Specify the class relationships (inheritance, aggregation, association).

The application of this process to the Component diagram will yield one Class dia-

gram for each functional and UI component. These class diagrams provide the blueprints

for the realizing the system at the Outside level of representation. The advantage of

Class diagrams is the specification of the systems implementation details before the

software development. Class diagrams abstract the accidental complexity, such as syn-

tax, bugs, etc., associated with writing code and allows us to focus on the essential

complexity of the system.

5.6 Level 5: Outside Representation

The Outside level of representation is the actual implementation of the Knowledge

Engineering (KE) system and is where the software design is realized as executable

code. In addition to the ensuring that the code is functionally correct and free of bugs

and defects, we also consider issues such as minimizing development costs, and testing

the system with users.

73

In order to realize the system at the level of the outside representation we have

adopted an Incremental Development approach [McConnell, 1996] where the system is

incrementally developed through a set of build and test cycles. Each build and test

cycle results in a prototype that delivers measurable benefits to the users.

In-Outside!
Level of Representation!

Outside!
Level of Representation!

Component!
Model!

Class!
Model!

Software!
Prototype!

Development!
Plan!

Figure 5.15: Methods and techniques at the Outside level of representation

The process for applying iterative software development is as follows:

1. Create a development plan [Schach, 2008] to guide the software development

process. The development plan needs to include what prototypes will be devel-

oped, what development environment should be used for developing the proto-

types, and how these prototypes should be tested with the end-users (customers).

2. Use rapid build and test cycles [McConnell, 1996] to iteratively implement the

development plan, and elicit feedback from users.

The key benefit of using Incremental Development is the user interaction and feed-

back while developing the system. Frequent feedback ensures that the system will

74

sufficiently meet the users needs and increases adoption because the users are already

familiar with the system. In parallel, Incremental Development also reduces the cost

of developing the KE system because the user feedback prevents spending development

resources (time and money) on unnecessary functionality or functionality that is already

good enough to satisfy the user needs.

5.6.1 Software Development Plan

In order to efficiently manage the software development processes we require a software

development plan to guide the build and test cycles. The software development plan

addresses issues such as: how the software design should be segmented into prototypes,

what development environment should be used for developing the prototypes, and how

these prototypes should be tested with the end-users (customers). Figure 5.16 shows

the three prototypes in the software development plan for the Service Request Portal.

Integration!

Development Tasks!

Content UI Component!
Content Filter Component!

Search UI Component!
Search Filter Component!

Search Engine Interface Component!

Beta!

Release Candidate!

Search UI Component!
Search Filter Component!
Content UI Component!

Content Filter Component!
Search Engine Interface Component!

Content UI Component!
Content Filter Component!

Search Engine Interface Component!

Components!

Alpha!
Search UI Component!

Search Filter Component!
Search Engine Interface Component!

Prototype!

Figure 5.16: Software development plan for the Service Request Portal

The first step in creating the development plan is to separate the software design

75

into a set of suitable prototypes. For example, the software development plan for the

SRP included: alpha prototype with the search filtering functionality (Search UI, Search

Filter, and Search Engine Interface), beta prototype with the content filtering function-

ality (Content UI, Content Filter, and Search Engine Interface), and release candidate

(RC) prototype with the integration of these two sets of features (search filtering and

content filtering) into complete Knowledge Engineering system.

The process for developing the software development plan is as follows:

1. Organize the components, defined in the Component diagram, into a set of de-

velopment tasks. Small components should correspond to a single task, whereas

large components can be broken up into several tasks according to their associated

Class diagram.

2. Separate the development tasks into a series prototypes (short iterations), with

each prototype being a user-testable partial implementation of the system. Use

the House of Quality to determine the order in which the prototypes should be

developed.

3. Define a suitable software environment (programming language, framework, etc.)

in which to build and test the software prototypes. The software environment

should take into consideration the experience of the development team, and should

support rapid prototyping.

5.6.2 Build and Test Cycles

In order to develop the system with a high-level of user participation we have adopted

an Incremental Development [Schach, 2008] approach where we implement a prototype

and then test the software prototype with users to determine if it sufficiently satisfies

the test criteria specified in the Software Development plan. If these criteria are satis-

76

fied, development proceeds to the next prototype (iteration) or deployment (if it is the

last prototype). If the criteria are not sufficiently satisfied then the build-test cycle is

repeated.

Each prototype specified in the software development plan will require one or more

build and test cycles to implement. The process for performing a build and test cycle

is as follows:

1. Implement the development tasks specified in the development plan. Use the

Component diagram to understand the interfaces and interactions between tasks.

Use the Class diagrams determine what classes need to be developed for each

component.

2. Have the users actively use the prototype in their work process. Record feedback

on user needs using a convenient scale (e.g. exceeds need, meets need, does not

meet need). Record values for each technical metric in the House of Quality.

3. Use the user (customer) feedback and technical metrics to perform a gap analysis

on the current prototype. If the user feedback and technical metrics are satisfac-

tory then the prototype is finished, and the next step is to begin work on the next

prototype. If the prototype is significantly below user expectations or technical

metric targets, then return to Step 1 and perform another iteration.

The build and test process may result in a number of prototypes before we have

a complete software system. For example, the SRP was developed in three iterations

prototypes. An alpha prototype implemented the search filter functionality (Search UI,

Search Filter, and Search Engine Interface). The beta prototype implemented content

filter functionality (Content UI, Content Filter, and Search Engine Interface). The

release candidate (RC) prototype integrated the search filter and content filter into a

single software system. Each of these prototypes was actively used by the users in their

77

daily work process.

The key benefit of using Incremental Development is the user interaction and feed-

back while developing the system. Frequent feedback ensures that the system will

sufficiently meet the users needs and increases adoption because the users are already

familiar with the system. In parallel, Incremental Development also reduces the cost

of developing the KE system because the user feedback prevents spending development

resources (time and money) on unnecessary functionality or functionality that is already

good enough to satisfy the user needs.

78

6 Results

In this chapter we describe the results of applying the Integrated Representation-Based

Process Methodology to a real-world Knowledge Engineering problem in a large com-

puter networking company. We start with a brief overview of the developed system, the

Service Request Portal (SRP), and how it was used by the end-users. We then evalu-

ate the SRP with respect to our overall objective: developing Knowledge Engineering

systems that satisfy user needs and are high-value to the organization with respect to

impact and cost.

6.1 Service Request Portal

The Service Request Portal (SRP) was used by Network Knowledge Engineers (NKEs)

to locate relevant service requests and extract solutions developed by Technical Support

Engineers. The NKEs interacted with the SRP through the web-based graphical user

interface (GUI) shown in Figure 6.1. NKEs provided a set of search keywords and filter

criteria in the left pane. The SRP then returned a set of service requests that match the

keywords and satisfy the filter criteria in the middle pane. When the NKEs wanted to

read a service request, the SRP retrieves the corresponding service request and presents

an easy to read summary of the service request in the right pane. The summary contains

important information such as the problem experienced by the customer, and steps taken

by the technical support engineer to solve the problem. A detailed description of the

SRP implementation is provided in Appendix A.

6.2 User Value of the Service Request Portal

In order to measure the value that the Service Request Portal (SRP) provided to the

Network Knowledge Engineers (NKEs) who used the system, we evaluated the system

79

Figure 6.1: Service Request Portal Graphical User Interface

with respect to the user needs captured in the House of Quality. During each build and

test cycle, the NKEs were asked to provide feedback for each of the user needs based

on of their experience using the system. A summary of the user needs evaluation and

feedback for the final build and test cycle is shown in Table 6.1.

In general, the NKEs found that the SRP significantly improved their productivity

when workings with service requests. Two important user needs for the SRP were: be

able to read service requests easier and be able to quickly assess the relevance of service

requests”. The SRP addressed these needs by automatically generating a high-level

summary of the service request. In addition the NKEs found that the deduplication

functionality was effective in removing the bulk of the irrelevant content and made the

service requests much easier to read. The NKEs were also pleased that the SRP closely

80

Table 6.1: User feedback for the Service Request Portal
User Need Evaluation Feedback
Be able to do broad searches Exceeds

need
”The SRP helps us find infor-
mation easily compared to the
current search engine”

Be able to do very targeted
searches

Meets need

Be able to read service re-
quests easier

Exceeds
need

Be able to quickly extract
problem-solution pairs

Meets need ”The SRP is useful to extract
the information quickly”

Seamless access to service re-
quest attachments

Meets need

Easy to use Exceeds
need

”The Portal looks just amaz-
ing. Our team is excited to
use it for rule writing.”

High performance Exceeds
need

integrated into their existing workflow, and did not have a significant learning curve.

6.3 Organizational Value of the Service Request Portal

In order to quantitatively evaluate the impact of the Service Request Portal (SRP) the

Network Knowledge Engineers (NKEs) were benchmarked—using the technical metrics

from the House of Quality—during the creation of nine problem-solution pairs ranging

from relatively simple voltage alarms (R3) to complex hardware interface problems (R1).

In this section we describe the results for the three technical metrics that best capture

the impact of the SRP on the NKE work process. These technical metrics are as follows:

• average number of page read to assess relevance of a service request

• average time spent assessing relevance of a service request

• average time to extract the problem-solution pairs from the relevant service re-

quests

81

The technical metric average number of page read to assess relevance of a service

request, was used to measure how well the SRP satisfied the user need ”be able to

read service requests easier”. Figure 6.2 shows the average number of page read to

assess relevance of a service request for the nine problem-solution pairs R1-R9. We

observed that the engineers went from reading 22 pages to reading 3 pages in order to

assess relevance when using the SRP, suggesting that the summary was sufficient for

establishing the relevance of a service request in most cases.

Figure 6.2: Average number of pages read to assess relevance of a service request

Reducing the number of pages the NKEs had to read translated to a 60% time savings

when evaluating the relevance of service requests. Figure 6.3 shows the values recorded

for the technical metric average time spent assessing relevance of a service request.

Once a service request was determined to be relevant, the NKEs performed a detailed

read-through in order to extract the solution pair. Figure 6.4 shows the results for the

technical metric average time to extract the problem-solution pairs from the relevant

service requests. We believe that the time-savings can be attributed to the deduplication

functionality that removed repeated information across threads. Other useful features

such as keyword highlighting and allowing the users to view the attachment inside their

82

Figure 6.3: Average time to assess the relevance of a service request

web browser increased efficiency when working on longer service requests.

Figure 6.4: Average time to extract problem-solution pair from a service request

In order to measure the value of the SRP to the organization we compared the

increase in NKEs productivity to the overall cost of developing the system. The SRP

reduced the average time spent assessing the relevance of each service request by 60%

(15 minutes) and time to extract the problem-solution pair by 30% (30 minutes). Since

83

NKEs read on average approximately ten service requests daily and extract problem-

solution pairs from two of these service requests, we estimate, based on the technical

metrics, that the SRP improved the daily productivity of the team of ten NKEs by 35

hours. The SRP was designed and developed by two student interns working over a six-

month period (approximately 1000 man hours). Assuming that the interns’ and NKEs

time is equally valuable to the organization, the system represents a positive return on

investment after one and a half months (43 days) of use.

84

7 Discussion

In this chapter we assess of the overall utility of the Integrated Representation-Based

Process Methodology (IRPM). We first describe the impact of each domain to the

development process. This then leads to a comparison with a . Finally, we describe

possible simplifications for situations where it is either necessary or beneficial to simplify

the IRPM.

7.1 Impact of Each Domain

The Integrated Representation-Based Process Methodology (IRPM) integrates methods

and techniques from three distinct domains: Knowledge Engineering, Product Design,

and Software Engineering. In this section we briefly discuss the impact that each domain

had on the development process and describe what would have been lost without the

methods from that domain.

7.1.1 Knowledge Engineering

The domain of Knowledge Engineering (KE) contributed the modelling tools necessary

to realize the system at the External level of representation. The Organizational model

documented the organizational context and the high-level processes occurring within

this context. The Agent/Task model allowed for a creation of a detailed task-level

decomposition of the end-users work process.

Without these KE tools the IRPM would lack a explicit model of the user work-

process to guide the realization of the system at the Outside-Inlevel of representation.

As a consequence there is greater possibility of misunderstandings of the user needs when

building the House of Quality and/or creating Use Cases for a system isn’t practical

given the end-users’ work process. When developing the Service Request Portal the KE

85

tools allowed us to identify several ”low hanging fruit” in the existing work process,

such as allowing the NKEs to filter service requests by the meta-data fields, that could

be easily automated. Without an explicit model of the user work process, we might

have easily missed these high-value low-effort problems and focused our attention on

problems that had lower value payoffs.

7.1.2 Product Design

The domain of Product Design (PD) contributed the conceptual design tools necessary

to realize the system at the Outside-In and Internal levels of representation. At the

Outside-Inlevel of representation, the House of Quality helped guide the process creating

Use Cases and ensured that every Use Case was related a real user need. At the

Internal level of representation, the Function Structure, Morphological Matrix, and

Utility Function methods enabled creation of a high-value design concept KE system.

The primary impact of the PD tools is at the Internal level of representation. With-

out the PD tools for Internal representation, the creative process of translating user

needs into functional specifications, exploring the space of possible solution-principles,

and selecting the best mix of solution-principles is largely dependent on the individual

effort, skill, and experience of the designer. The use of Function Structures, Morpho-

logical Matrices, and Utility Functions, formalizes this process and moves it away from

intuitive (”ad-hoc”) methods to robust, repeatable methods that allow for a wide range

of designs to be generated and evaluated. When developing the Service Request Portal

we found that the systematic generation of the multiple designs enabled the discovery

of a relatively simple design that satisfied user needs and was inexpensive (time and

money) to implement.

86

7.1.3 Software Engineering

The domain of Software Engineering (SE) contributed the tools necessary to realize

the system at the Outside-In Inside-Out, and Outside levels of representation. The

UML Use Case diagram was critical in concretely describing the high-level user needs in

the House of Quality at the Outside-In level of representation. The UML Component

and Class diagrams allowed us to translate the abstract design concept into realizable

software design at the Inside-Out level of representation. Finally, the Incremental de-

velopment approach allowed for the KE system to be developed iteratively with user

feedback at the Outside level of representation.

The primary impact of the SE tools is at the Inside-Out level of representation.

Without a intermediate ”domain” (software) design, the process of realizing the design

concept is both inefficient and error-prone. Software design issues, such as modularity

and information hiding, are addressed during software development, generally leading to

an inefficient code and fix model where developers 1) write some code, 2) fix the problems

in the code. When developing the Service Request Portal, the SE tools allowed us to

efficiently translate the solution-principles specified in the design concept into a high-

quality software architecture and detailed design. Addressing this translation during

software development would have been significantly more difficult and likely would of

resulted in a system that would difficult to maintain in the future.

7.2 Comparison to Analytics for Knowledge Engineering Approach

In the Introduction (Chapter 1 we described two aspects of Knowledge Engineering (KE)

system development: Software Infrastructure for Knowledge Engineering, and Analytics

for Knowledge Engineering. In this thesis we have focused on the Software Infrastructure

for Knowledge Engineering aspects of the system. We now briefly compare it to an

alternative approach that focuses on the Analytics for Knowledge Engineering aspects

87

of the system.

A typical ”Analytics for Knowledge Engineering” approach is based on using Data

Mining (DM) and Information Retrieval (IR) software toolkits to build the KE system.

Two well-known DM/IR toolkits that support this approach are Lemur and Weka.

The Lemur toolkit [Croft et al., 2009] provides search engine infrastructure–such as

indexers, stemmers, natural language processers, etc.–that can be used to implement

the information retrieval aspects of the KE system. The Weka toolkit [Witten and

Frank, 2005] provides a library of machine learning algorithms, e.g. Support Vector

Machines, and tools for data pre-processing that are useful for addressing the data

mining aspects.

Although these toolkits and frameworks are useful in addressing the technical aspects

of the system, they do not provide a structured approach that addresses the organiza-

tional context, user needs, business objectives for the system. Consequently, KE systems

developed using this approach can provide low value to users and the organization be-

cause they don’t address their needs and are poorly integrated into the existing work

process. Furthermore, these systems often suffer from reliability issues and are difficult

to maintain because they are pieced together from many components.

Comparison of the developed system with an Analytics for Knowledge Engineer-

ing based approach [Wang et al., 2010] to a similar Knowledge Engineering problem

in the computer networking domain, shows that a Software Infrastructure for Analyt-

ics approach allowed us to achieve comparable results using significantly less complex

analytical (Data Mining/Information Retrieval) components.

7.3 Simplifications to the IRPM

We recommend the formal methods described in Chapter 5 be used whenever possible.

However there are situations when it is either beneficial or necessary to simplify the

88

application of these methods. For example, a time constraint might prohibit the use of

the full IRPM. Similarly, if the Knowledge Engineering problem is not overly complex,

simplifications can be used to reduce development time and costs. The recommended

simplifications at each level of representation for these scenarios are shown in Table 7.3:

89

T
ab

le
7.
1:

S
im

p
li
fi
ca
ti
on

s
to

th
e
In
te
gr
at
ed

R
ep

re
se
nt
at
io
n
-B

as
ed

P
ro
ce
ss

M
et
h
od

ol
og

y
L
ev
el

of
R
ep

re
se
nt
at
io
n

M
et
h
od

S
im

p
li
fi
ca
ti
on

s
Im

p
ac
t
(C

on
se
qu

en
ce
s)

E
xt
er
n
al

O
rg
an

iz
at
io
n
al

M
od

el
Ju

st
li
st

th
e
p
eo
p
le

an
d
p
ro
-

ce
ss
es

M
ig
ht

n
ot

b
e
fo
cu

se
d

on
th
e

ri
gh

t
p
ro
b
le
m
.

A
ge
nt
/T

as
k
M
od

el
L
is
t
ta
sk
s
w
it
h
ou

t
cr
ea
ti
n
g
a

gr
ap

h
ic
al

m
od

el
M
ig
ht

m
is
s

im
p
or
ta
nt

re
la
-

ti
on

sh
ip
s
b
et
w
ee
n
ta
sk
s

In
si
de
-O

u
t

H
ou

se
of

Q
u
al
it
y

L
is
t
th
e
u
se
r
n
ee
d
s
an

d
te
ch
-

n
ic
al

m
et
ri
cs

w
it
h
ou

t
cr
ea
ti
n
g

th
e
co
rr
el
at
io
n
m
at
ri
ce
s

M
or
e
d
iffi

cu
lt

to
m
ak
e
tr
ad

e-
off

s
d
u
ri
n
g

th
e

d
ev
el
op

m
en
t

p
ro
ce
ss

U
se

C
as
e
D
ia
gr
am

s
S
im

p
li
fi
ca
ti
on

is
n
ot

re
co
m
-

m
en
d
ed

In
te
rn
al

F
u
n
ct
io
n
S
tr
u
ct
u
re

R
ed

u
ce

d
ep

th
of

th
e
F
u
n
ct
io
n

S
tr
u
ct
u
re
.

O
m
it

in
fo
rm

at
io
n

fl
ow

s.

M
or
e
d
iffi

cu
lt
to

co
m
e
u
p
w
it
h

so
lu
ti
on

-p
ri
n
ci
p
le
s
w
h
en

cr
e-

at
in
g
th
e
M
or
p
h
ol
og

ic
al

M
a-

tr
ix
.

M
or
p
h
ol
og

ic
al

M
at
ri
x

R
ed

u
ce

th
e

nu
m
b
er

of
so
lu
ti
on

-p
ri
n
ci
p
le
s

ex
p
lo
re
d

fo
r
ea
ch

su
b
-f
u
n
ct
io
n
.

R
ed

u
ce
d
ch
an

ce
of

ge
n
er
at
in
g

th
e
b
es
t
d
es
ig
n
b
as
ed

on
th
e

u
se
r
an

d
or
ga

n
iz
at
io
n
al

n
ee
d
s

U
ti
li
ty

F
u
n
ct
io
n

U
se

u
n
-w

ei
gh

te
d
ob

je
ct
iv
es

L
os
s
of

ob
je
ct
iv
it
y
d
u
ri
n
g
d
e-

si
gn

se
le
ct
io
n
.

O
u
ts
id
e-
In

C
om

p
on

en
t
D
ia
gr
am

S
im

p
li
fi
ca
ti
on

is
n
ot

re
co
m
-

m
en
d
ed

C
la
ss

D
ia
gr
am

s
S
im

p
li
fi
ca
ti
on

is
n
ot

re
co
m
-

m
en
d
ed

O
u
ts
id
e

S
of
tw

ar
e
D
ev
el
op

m
en
t
P
la
n

S
im

p
li
fi
ca
ti
on

is
n
ot

re
co
m
-

m
en
d
ed

In
cr
em

en
ta
l
D
ev
el
op

m
en
t

R
ed

u
ce

th
e
nu

m
b
er

of
it
er
a-

ti
on

s
L
es
s
u
se
r
fe
ed

b
ac
k

90

8 Conclusions and Future Work

There are an increasing number of organizations attempting to develop software-based

Knowledge Engineering (KE) systems to support the transformation massive amounts

of data and information into useful knowledge that can be used to influence core business

activities, e.g. product development, customer support, and marketing. However, the

deployment of these systems often does not yield useful results, in particular because

insufficient attention is spent addressing the needs of users that will be using the system.

In this thesis we have presented an Integrated Meta-Representation Model (IMRM)

for structuring complex problem solving processes. The application of the IMRM

to the Knowledge Engineering system development process resulted in an Integrated

Representation-Based Process Methodology (IRPM) that combines methods and tech-

niques from the domains of Knowledge Engineering, Product Design, and Software

Engineering into a unified framework for developing Knowledge Engineering systems.

Our novel contribution is the use of methods and techniques from Product Design in

order to ensure that the developed system sufficiently addresses the users needs and

represents the best value (quality and cost). We have demonstrated the effectiveness

of the framework within the context of a simple but non-trivial Knowledge Engineering

problem within the domain of computer networks.

The IRPM should prove to be valuable to the increasing number of organizations at-

tempting to develop software-based KE Systems to support the transformation massive

amounts of unstructured data and information into useful knowledge that can be used

to influence core business activities, e.g. product development, customer support, and

marketing. The IRPM provides a structured set of tools for resolving typical trade-off

conflicts that arise in the design, development, and deployment of a Knowledge En-

gineering system. Based on our experiences, we have found that the framework can

simplify the work in Knowledge and Software Engineering domains while substantially

91

increasing the quality and cost effectiveness of the system.

There are two general directions for future work: applying the IMRM to other com-

plex problems, and refining the IRPM. Possible IRPM refinements include: expanding

on the Internal level of representation to include a structured method selecting between

more sophisticated Data Mining and Information Retrieval techniques and including

other useful Software Engineering methods such as the UML Sequence diagram. The

IRPM also needs to be further tested on wider range of Knowledge Engineering prob-

lems.

92

References

J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer. Model-based and incre-

mental knowledge engineering: The mike approach. AIFIPP, 1992.

A. Boehm, B. Jain. An initial theory of value-based software engineering. Springer

Verlag, 2005.

B. Boehm. Value-based software engineering. ACM Software Engineering Notes, 2003a.

L. Boehm, B. Huang. Value-based software engineering: A case study. ieee computer.

IEEE Computer, 2003b.

B. Croft, D. Metzler, and T. Stroham. Search Engines: Information Retrieval in Prac-

tice. Addison Wesley, 2009.

N. Cross. Engineering Design: Strategies for Product Design. Wiley, 1998.

J. Fox. Quality Through Design: The Key to Successful Product Delivery. Mcgraw-Hill,

1993.

J. Hauser and D. Clausing. The house of quality. Harvard Business Review, 1988.

W. Inmon. Building the Data Warehouse. Wiley, 2002.

M. Jackson. System Development. Prentice Hall, 1983.

Michael Jackson. Problem Frames: Analyzing and structuring software development

problems. Addison Wesley, 2001.

S. Kendall and M. Creen. An Introduction to Knowledge Engineering. Springer, 2007.

R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to Di-

mensional Modelling. Wiley, 2000.

93

S. McConnell. Rapid Development: Taming Wild Software Schedules. Microsoft Press,

1996.

T. Metzinger. Being No-One. Bradford, 2003.

K. Otto and K Wood. Product Design: Techniques in Reverse Engineering and Product

Design. Prentice Hall, 2000.

G. Pahl and W. Beitz. Engineering Design: A Systematic Approach. Springer-Verlag,

1996.

A. Revonsuo. Inner Presence: Consciousness as a Biological Phenomenon. MIT Press,

2009.

S. Schach. Object Oriented Software Engineering. Prentice Hall, 2008.

B. Schreiber, G. Wielinga. Commonkads: a comprehensive methodology for kbs devel-

opment. IEEE Expert Systems, 1994.

S. Spangler and J. Kreulen. Mining the Talk: Unlocking the Business Value in Unstruc-

tured Information. IBM Press, 2008.

K. Ulrich and S. Eppinger. Product Design and Development. Prentice Hall, 1995.

C. Wang, R. Akella, and S. Ramachandran. Hierarchical service analytics for improving

productivity in an enterprise service center. Conference on Information and Knowl-

edge Management, 2010.

I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann, 2005.

94

Appendices

A The Service Request Portal

In this section we describe the implementation of the Service Request Portal (SRP)

Knowledge Engineering (KE) system. We start with a brief overview of the key func-

tionality of the SRP and how it was used by the Network Knowledge Engineers. We

then outline the high architecture of the SRP and describe its mechanisms for retrieving,

processing, and displaying service requests. Lastly, we describe the set of technologies

that were used to implement the SRP.

A.1 Service Request Portal Features

Service Request Portal (SRP), was used by Network Knowledge Engineers (NKEs) to

locate relevant service requests and extract solutions developed by Technical Support

Engineers. The graphical user interface (GUI) of the SRP is shown in Figure A.1.

NKEs provide a set of search keywords and filter criteria in the left pane. The SRP

then returns a set of service requests that match the keywords and satisfy the filter

criteria in the middle pane. When the NKEs want to read a service request, the SRP

retrieves the corresponding service request and presents an easy to read summary of the

service request in the right pane. The summary contains important information such as

problem experienced by the customer and steps taken by the technical support engineer

to solve the problem.

A.2 System Architecture

The SRP can be divided into four core functionalities: user input, data retrieval, data

processing and output results. In this section we will go through the high level organi-

95

Figure A.1: Service Request Portal User Interface

zation and structure of these core functions.

A.2.1 User Input

The SRP takes a set of user parameters that are used to generate the result set. There

are two different kinds of parameters: parameters that are passed directly to search

engine and parameters that are used additional constraints for the search result set.

A.2.2 Data Retrieval

The SRP uses service request data is contained within a Relational database. Within

this database each service request is structured into two parts: metadata (SR ID, date,

96

contract ID, etc.) and a set of notes (emails, phone logs, etc.). There are two major

systems that serve as the access points to service request data: a service request search

engine, and a service request viewer.

• The service request search engine (SRSE) allows for keyword search across a text

index of the service request data. The SRSE also supports several other search

parameters such as searching by contract ID, technology, sub-technology, etc.

• The service request viewer (SRV) takes service request ID as input and outputs

an HTML page containing the service request content. The SRSE links its results

(using the service request ID) into the SRV. The SRV can be used also be used

in an XML mode (the SRP uses this to build service requests data structures).

The Service Request Portal uses a set of ”Retrieval Engines” to retrieve data from

External sources. The Retrieval Engines share a set of base classes that provide the

abstract interfaces for retrieving data. The actual logic specific to each External data

source, is handled in the implementation classes that inherit from these base classes.

Retrieval Engines operate upon a simple Request data structure object. The Request

object contains two fields, parameters and data. The Parameters field with the infor-

mation necessary to process the request. The data field is used by the Retrieval Engine

to store the data resulting from the request.

The SRP retrieves data using two Retrieval Engines to pull data from the SRSE

and the SRV. Both Retrieval Engines utilize a generic Retrieval Engine base classes and

implement logic specific to each system. The SRSE Retrieval Engine is responsible for

executing queries and scraping the service request IDs from the SRSE results page. The

SRV Retrieval Engine is responsible for retrieving the XML data from service request

viewer and parsing in order to build a ServiceRequest data structure.

97

A.2.3 Data Processing

The SRP processes data using a set of Filter Rules that are applied to ServiceRequest

data structures. There are two different kinds of Filter Rules: Results Filter Rules for

pruning search results and Content Filter Rules for pruning the content of individual

ServiceRequests.

Results Filter Rules are applied against the search results set in order determine

which results will be used in the SRP result set. Each Results Filter Rule operates on

a ServiceRequest data structure and returns a Boolean value depending whether the

ServiceRequest satisfies the Results Filter Rule criteria.

Content Filter Rules are applied against the SRP result set in order to modify the

content of each result. Each Content Filter Rule operates on a ServiceRequest data

structure and returns a modified copy. The SRP uses Content Filters for removing

repetitions, cleaning up poor formatting, and generating summary content (first and

last correspondence.).

A.2.4 Display Results

The SRP provides two different ”views” on a ServiceRequest data structure: ”Sum-

mary” and ”Tidy”. Each view provides a different level of detail for understanding the

service request. The ”Summary” view extracts out essential service request information

and displays it in a concise easy to read format that can be used to quickly evaluate the

relevance. The ”Tidy” view provides a complete but cleaned up (deduplicated, fixed

formatting) version of the service request. The purpose of the Tidy view is to cut down

on the large amount of repetition and eyesore without losing any important information.

98

A.3 Technology Stack

In this section we briefly describe the technologies that are used to implement the Service

Request Portal (SRP).

Ruby

The SRP is primarily implemented in the Ruby programming language. Ruby is a high

level scripting language similar in syntax and functionality to other scripting language

such as Python.

Ruby on Rails

Ruby on Rails is a framework for building web application using the Ruby programming

language. Ruby on Rails employs the model view controller (MVC) architecture. The

MVC structure enforces distinct separation between the business logic, interface, and

system control. The models contain the business logic classes that are responsible for

the core functionality. The views are the Graphical User Interface (GUI) where inputs

are taken, and the results are shown. The controller is responsible for handling the flow

of data between the models and views.

MySQL

MySQL is a relational database management system based on the Structure Query

Language (SQL). The SRP uses MySQL to store persistent data. MySQL was selected

because of its open source licensing, excellent documentation, and tight integration with

Ruby on Rails.

99

BackgroundRB

BackgroundRB is an asynchronous job scheduler for Ruby on Rails. The BackgroundRB

plugin consists of a number of workers and a BackgroundRB server to coordinate these

workers. A worker consists of a class that contains methods that can be run asyn-

chronously. These workers are instantiated in the main controller and then used to get

a result set. The workers use the database to retrieve the request parameters and to

write back results. Status information is written back using Memcached.

The SRP uses BackgroundRB to separate the long running jobs (retrieving and

processing data) from the user interface. This prevents the user interface from blocking

and becoming unresponsive while these long running jobs are waiting to complete.

Memcached

Memcached is a high performance RAM caching system that is used with Rails. The

SRP uses Memcached to facilitate communications with running BackgroundRB work-

ers. The BackgroundRB workers write status and results information to Memcached

which can then be queried from Rails in order to provide the end user with status

information.

100

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgements
	Introduction
	Background
	Research Issues
	Research Contributions
	Integrated Meta-Representational Model
	Integrated Representation-Based Process Methodology

	Organization of the Work

	Problem Description
	Knowledge Engineering System Development: Motivation
	Knowledge Engineering System Development: An Example
	Knowledge Engineering System Development: Issues
	The Need for an Integrated Multidisciplinary Approach

	Related Work
	Taxonomy of Related Work
	Work Related to Developing the Thesis Methodology
	Knowledge Engineering
	Product Design
	Software Engineering

	Work Related to the Problems and Issues Addressed in this Thesis
	Software Engineering
	Decision Support Systems

	Approach
	Integrated Meta-Representational Model
	Applying the Integrated Meta-Representational Model
	Applying the IMRM to Create a Process Methodology for Knowledge Engineering system Development

	Integrated Representation-Based Process Methodology
	Overview of the IRPM
	Level 1: External Representation
	CommonKADS Organization Model
	CommonKADS Agent/Task Model

	Level 2: Outside-In Representation
	House of Quality
	UML Use Case Diagram
	Iterative Refinement

	Level 3: Internal Representation
	Function Structure
	Morphological Matrix
	Utility Function

	Level 4: Inside-Out Representation
	UML Component Diagram
	UML Class Diagrams

	Level 5: Outside Representation
	Software Development Plan
	Build and Test Cycles

	Results
	Service Request Portal
	User Value of the Service Request Portal
	Organizational Value of the Service Request Portal

	Discussion
	Impact of Each Domain
	Knowledge Engineering
	Product Design
	Software Engineering

	Comparison to Analytics for Knowledge Engineering Approach
	Simplifications to the IRPM

	Conclusions and Future Work
	References
	Appendices
	The Service Request Portal
	Service Request Portal Features
	System Architecture
	User Input
	Data Retrieval
	Data Processing
	Display Results

	Technology Stack

