Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Towards Catalytic Ammonia Oxidation to Dinitrogen: A Synthetic Cycle by Using a Simple Manganese Complex

Abstract

Oxidation of the nucleophilic nitride, (salen)Mn≡N (1) with stoichiometric [Ar3 N][X] initiated a nitride coupling reaction to N2 , a major step toward catalytic ammonia oxidation (salen=N,N'-bis(salicylidene)-ethylenediamine dianion; Ar=p-bromophenyl; X=[SbCl6 ]- or [B(C6 F5 )4 ]- ). N2 production was confirmed by mass spectral analysis of the isotopomer, 1-15 N, and the gas quantified. The metal products of oxidation were the reduced MnIII dimers, [(salen)MnCl]2 (2) or [(salen)Mn(OEt2 )]2 [B(C6 F5 )4 ]2 (3) for X=[SbCl6 ]- or [B(C6 F5 )4 ]- , respectively. The mechanism of nitride coupling was probed to distinguish a nitridyl from a nucleophilic/electrophilic coupling sequence. During these studies, a rare mixed-valent MnV /MnIII bridging nitride, [(salen)MnV (μ-N)MnIII (salen)][B(C6 F5 )4 ] (4), was isolated, and its oxidation-state assignment was confirmed by X-ray diffraction (XRD) studies, perpendicular and parallel-mode EPR and UV/Vis/NIR spectroscopies, as well as superconducting quantum interference device (SQUID) magnetometry. We found that 4 could subsequently be oxidized to 3. Furthermore, in view of generating a catalytic system, 2 can be re-oxidized to 1 in the presence of NH3 and NaOCl closing a pseudo-catalytic "synthetic" cycle. Together, the reduction of 1→2 followed by oxidation of 2→1 yield a genuine synthetic cycle for NH3 oxidation, paving the way to the development of a fully catalytic system by using abundant metal catalysis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View