Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Accelerated epigenetic aging in adolescents living with HIV is associated with altered development of brain structures

Abstract

We recently demonstrated that adolescents perinatally infected with HIV-1 (PHIV+) have accelerated aging as measured by a highly accurate epigenetic biomarker of aging known as the epigenetic clock. However, whether epigenetic age acceleration in PHIV+ impacts brain development at the macro- and microstructural levels of brain anatomy has not been studied. We report on a cross-sectional study of PHIV+ enrolled in the Cape Town Adolescent Antiretroviral Cohort (CTAAC). The Illumina Infinium Methylation EPIC array was used to generate DNA methylation data from the blood samples of 180 PHIV+ aged 9 to 12 years. The epigenetic clock software and method was used to estimate two measures, epigenetic age acceleration (AgeAccelerationResidual) and extrinsic epigenetic age acceleration (EEAA). Each participant underwent T1 structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). In order to investigate the associations of chronological age, sex, epigenetic age acceleration and treatment variables (CNS penetration effectiveness score (CPE)) of antiretroviral regimen on brain structure in PHIV+, we developed stepwise multiple regression models in R (version 3.4.3, 2017) including grey and white matter volumes, cortical thickness, cortical surface area and DTI measures of white matter microstructural integrity. The mean DNAm age (16.01 years) of the participants was higher than their mean chronological age (10.77 years). Epigenetic age acceleration contributed more to regional alterations of brain volumes, cortical thickness, cortical surface areas and neuronal microstructure than chronological age, in a range of regions. CPE positively contributed to volume of the brain stem. Understanding the drivers of epigenetic age acceleration could lead to valuable insights into structural brain alterations, and the persistence of neurocognitive disorders in seen in PHIV+ .

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View