Coupled thermal-hydrological-mechanical analyses of the Yucca Mountain Drift Scale Test - Comparison of field measurements to predictions of four different numerical models
Skip to main content
eScholarship
Open Access Publications from the University of California

Coupled thermal-hydrological-mechanical analyses of the Yucca Mountain Drift Scale Test - Comparison of field measurements to predictions of four different numerical models

Abstract

The Yucca Mountain Drift Scale Test (DST) is a multiyear, large-scale underground heater test designed to study coupled thermal-hydrological-mechanical-chemical behavior in unsaturated fractured and welded tuff. As part of the international cooperative code-comparison project DECOVALEX, four research teams used four different numerical models to simulate and predict coupled thermal-hydrological-mechanical (THM) processes at the DST. The simulated processes included above-boiling temperature changes, liquid and vapor water movements, rock-mass stress and displacement, and THM-induced changes in fracture permeability. Model predictions were evaluated by comparison to measurements of temperature, water saturation, displacement, and air permeability. The generally good agreement between simulated and measured THM data shows that adopted continuum model approaches are adequate for simulating relevant coupled THM processes at the DST. Moreover, TM-induced rock-mass deformations were reasonably well predicted using elastic models, although some individual displacements appeared to be better captured using an elasto-plastic model. It is concluded that fracture closure/opening caused by change in normal stress across fractures is the dominant mechanism for TM-induced changes in intrinsic fracture permeability at the DST, whereas fracture shear dilation appears to be less significant. This indicates that TM-induced changes in intrinsic permeability at the DST, which are within one order of magnitude, tend to be reversible.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View