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Homothetic Preferences, Homothetic
Transformations, and the Law of Demand in
Exchange Economies

John K.-H. Quah-"

December 21, 1992

There are four parss to this working paper. In the first part, we show that in
an exchange economy where all agents have homothetic preferences, and where
preferences and endowments are independently distributed. the economy’s de-
mand may be represented by a single agent. The proof invoives extending an
earlier theorem by Eis nberg. In the second part, we show that with additionaj
smoothness assumptions, the economy will satisfy the Restricted Monotonic-
1ty Property (RMP), and so have. amongst other virtues, only one equilibrium
price. Note that RMP could be thought of as a restricted form of the Law
of Demand, hence the title (see Hildenbrand and Kirman, 1988). RMP also
guarantees that the equilibrium price will be stable under some plausible taton-
nement processes, these will be discussed in the third part. Finally, we will be
considering a sequence of exchange economies, £,, without homothetic prefer-
ences. but with “increasing heterogeneity”, this heterogeneity captured through
the use of homothetic transformations, somewhat similar to the use of affipe
transformations in Grandmont (1992). We show that increasing heterogeneity
will guarantee that the sequence &, eventually satisfies RMP.,

1 Introduction

Modern General Equilibrium Theory began with the proofs by Arrow and De
breu (1954), and McKenzie (1954) on the existence of general equilibrium. Once
the issue of existence of such equilibria was settled, the programme of research
quite naturally moved on to a more thorough investigation of its properties. It
has since been shown that they satisfy the First and Second Welfare Properties
and are stable m the sense of being contained in, and almost equal to the core

*I wish to thank Professor Robert Andersen, my thesis advisor, as well as Professors
Jean-Michel Grandmont, \Werner Hildenbrand and Christina Shannon for their very helpiul
comuments on earlier versions of this paper.




when the economy is large (the language here is necessarily vague, for a survey
see Anderson {1986)). Work in these aress has by and large been fruitful. How-
ever, general results on the uniqueness of the price equilibrium, or its dynamic
stability (in the sense of being the limit of some plausible tatonnement} proved.
a lot more eiusive, There are resuits in these areas, but they could not be
obtained without making seemingly strong assumptions on the market demand
function. For example, it was shown that when the market demand function gat--
isfies gross substitubility, the equilibrium price is unique and dynamically stable.
Results of this sort left an uncomfortable gap: It is not clear what assumptions
(besides exceedingly restrictive ones) could lead to the market demand having
these desired properties.

It also became evident by the mid-70s, with the resuits of Sonnenschein
(1973, 1974), Debreu (1974), Mantel (1976) and others that the assumptions
made to prove existence are not sufficient to endow the market demand function
with sufficient structure to prove uniqueness and dynamic stability of the price
equilibrium. Loosely speaking, the resuit says that given a contiruous function f
defined on the price simplex that satisfies Walras’ Law, and a compact subset of
the simplex, an excess demand function can be constructed that will agree with
f on the given comipact set. In other words, these results show that properties
one might reasonably assume about individual demand functions, like the weak
axiom of revealed preference, get lost in the process of aggregation. Mantel’s
result was especially striking since the economy he constructed for the purpose
had oniy homothetic preferences.

So to arrive at stronger conclusions about the shape of the market demand
function. it is necessary to make assumptions beyond those required for ex-
istence. It could, for example, be assumptions made on the distribution of
endowments and preferences. A decisive step in this direction was made by
Hildenbrand: he showed that when income is independent of ptices, the Law of
Demand is satisfied when the density of the income distribution is downward
sloping. The market demand function F(p) satisfies the law of demand when

(p—q)-(F(p)—Flg)) <0

for prices p, g where p # q.

In the context of an exchange economy, income is, of course, price-dependent.
However, let us consider an economy in which all agents have collinear endow-
ments. i.e., some fraction of the total endowment . Then any price change
from p to ¢ that leaves total income unchanged, p-Z = ¢ - Z, will not change
the income of any of the agents. Hildenbrand’s result on the law of demand
then implies that market demand F(p) of the exchange economy satisfies the
following: _ /

(p—a) (Flp) — F(g) <0
for all prices p # ¢, with p- % = ¢ - Z, provided the density of the endow-




ment distribution is downward sloping. It turns out that this property, which
we shall call the restricted monotonicity property (RMP) is sufficient to guar-
antee uniqueness and dynamic stability. We say “restricted” because we have
restricted the property to prices that generate the same total income. Such a
restriction is necessary as the iaw of demand cannot be true for every pair of
prices in an exchange economy (see page 215 in Hildenbrand and Kirman, 1988)..

Hildenbrand’s result is saomewhat surprising because he had found a property
of the market demand function that need not be true of the individual demand
function. That the law of demand may be violated at the leve]l of the indi-
vidual agent is well known to any neophyte student of micro-economics, and
the graphical decomposition normally performed to explain this is essentially
correct: the problem lies with the income effect. We shall henceforth refer to
this as the intrinsic income effect since it arises from a change in prices even
when income is held fixed. When one studies an exchange economy, an extrinsic
income effect also arises since income actually changes with prices; unless one
assumes collinearity, this occurs even when the price change leaves total {or
mean} income unchanged.

This paper is devoted to finding sufficient conditions for AMP to hold in
an exchange economy. We begin in section 2 by looking at the specific case
of homothetic preferences. We show, in contrast to Mantel’s result, that when
one assumes preferences and endowments to be independently distributed in
the economy, a representative consumer with a homothetic preference exists. In
this case, we show (at the end of section 2, and again in Section 3) that RMP
holds. The existence of a representative consumer is a consequence of putting
together and generalising two existing results: Antonelli’s theorem which guar-
antees the existence of a representative consumer in the case when all agents
have the same homothetic preference. and Eisenberg’s theorem, which guaran-
tees the existence of a representative consumer in the case when all agents have
homothetic, but not necessarily identical preferences, provided the income dis-
tribution is proportionately fixed (see Shaler and Sonnenschein, 1982). Section
4 is devoted to tatonnement processes under the weak axiom {the weak axiom
is a sirnple consequence of RMP). We show that the equilibrium is stable under
two tatonnement processes, one of which, to the author’s knowledge, is new to
the literature.

In section 5, we introduce the notion of a homothetic transformation. Given
a utility function u(z), a homothetic t-transformation u,(z) of u(z} is another
atility function defined by

u(z) = u(e™*z).

In connection with the demand aggregation issues we are interested in, they
were first iniroduced by Grandmont (1987), but these transformations, along
with the more generai affine transformations, have been put to other uses be
fore (see Grandmont (1992) for a thorough listing). The nice thing about these
transformations, is that it gives us a convenient way to describe and manip-




ulate the distribution of preferences by specifying the distribution of t. We

will show, through the use of homothetic transformations, that sufficient het-

erogeneity, corresponding roughly to a sufficiently flat density for ¢ will lead

to RMP. There are actually two results in this section: one result places all

the assumptions or the preferences, while the other mixes assumptions on the

preferences with a fairly mild restriction on the endowment distribution. In.
the latter theorem, endowments need not be collinear, and its density can be

increasing at some points, provided the part where it is increasing is “smaller” '
than the part where it is decreasing. In contrast to Hildenbrand’s model, the

burden of the assumptions in both our results, rest on the preferences rather

than on the endowments.

Finaily, a word on the differences between this model and Grandmont’s
{(1992). Grandmont’s paper, like ours, makes crucial use of the idea of hetero-
geneity of preferences. He describes this heterogeneity through the use of affine
transformations. Given a utility function u(z), and a vector s € R!, an affine
s-transformation u,(x) of u{x) is another utility function where

u,(z) = u(e™* zy, e zq, .. €7 Tg).

Clearly, affine transformations inciude homothetic transformations: when s, =
§2 = ... = &, an affine transformation is just a homothetic transformation. We
observe that if u is a Cobb-Douglas utility function, all affine transformations
of u will leave the preference induced unchanged. Analogously, all homothetic
preferences will be invariant under homothetic transformations. These simple
observations furnish a clue to what happens when we aggregate across a set of
COnSUIMErS.

Let f(u,,p,w) be the demand of an agent with utility u,, income w, and
facing price p. Then

Flp,w) = ./J;‘ flu,, p, wig{s)ds

is the mean demand of the affine class of consumers with utility functions that
are affine transformations of u, distributed according to some density g. At
the heart of Grandmont's paper is the fact that when g is sufficiently flat,
F(p, w) will display characteristics approximating those of a Cobb-Dougias de-
mand function. Now, it is not difficult to see that in an economy where alil
agents have Cobb-Douglas preferences, market demand will satisfy gross sub-
stitubility. So it is fairly reasonable to believe that in an economy where agents
are divided into sufficientiy heterogenous affine classes, each of which displays
Cobb-Doughas characteristics, market demand will again satisfy gross substi-
tubility. This turns out to be true. With this property, the uniqueness and dy-
namic stability of the price equilibrium is guaranteed. It is also notewothy that
in Grandmont’s model, no assumption of individual rationality need be made.
In this case, he considers the affine transformations of an individual demand




function as the primitive description of heterogeneity, without assuming that
the demand function is generated by some underlying utility.

In this paper, we consider preferences induced by the homothetic transfor-
mations of some utility u. Let

Flp,w) = '[R F (s, p, w)h(2)dt

he the demand of the homothetic class of consumers with utility fupctions that,
are homothetic transformations of u, distributed according to some density A.
We show that when h is sufficiently flat, F(p, w) will behave like a homoth-
etic demand function. This is not quite as strong as saying that it displays
Cobb-Douglas characteristics, which is unsurprising since the class of homoth-
etic transformations of u is a subset of the affine transformations. Nonetheless,
it 1s sufficient for our purpose. As we shall see in Section 3, an economy in
which all agents have homothetic preferences, distributed independently of en-
dowments, will have a market demand that satisfies RMP. So it is reasonable
to guess that in an economy where agents could be divided into sufficiently
heterogenous. homothetic classes, each of which displays homothetic pronerties,
market demand will again satisfy RMP. Assuming individual rationa:vy, we
prove that this guess is good.

2 Homothetic Preferences and the
Representative Consumer

We begin this section with the description of a distribution economy. After
that, we prove an extension of Eisenberg’s Theorem and use it to show that an
exchange economy wlere preferences are homothetic and distributed indepen-
dently of endowments has a representative consumer with a homothetic prefer-
ence. Lastly, we prove using revealed preference arguments, that a consumer
with a demand function that is homogenous of degree one with respect to income
must obey the law of demand.

2.1 The Distribution Economy- D

Let (A,d) be a complete metric space, and F* the completion of its Borel o-
field F under some measure . {A, F*, u*) will serve as the probability space of
econornic agents. Let U be the set of continuous utility functions u : R, — R.
We endow U with the topology of uniform convergence on compacta (see page 70
of Mas-Colefl, 1985),and denote the topological (in fact, metric) space by (I, ).
This topology in turn induces a topology on the set of continuous preferences
on R! , that coincides with the topology of closed convergence(see remark on
page T4 in Mas-Colell. 1985).

1)




Let K C (U,Q) be & compact set of utility functions that are homogenous
of degree one, strongiy monotone, strongly convex and satisfy the boundary
condition, i.e., for every z € R% ., the set y € R, : u(y) > u(z) is closed in
R .. Let m: .4 — R., be a measurable function which is bounded above and
also uniformly bounded away from zero, with [, m(a)dp = 1. The expression
m(a)M represerts the agent a’s share of some total wealth M. The Distribution.
Economy D is a measurable function D : 4 — U x R4, mapping each agent
a to {u(a), m(a)), where u(a) is the agents utility function and u(s) is in K for
all a. The o-field on U x Ry, is the one generated by its product topology.

At each price p € R\, the agent a has a budget set By(m{a)M) = {y €
R, :py< m(a)M}. We define y, : A — RY . by yp(a) = Demand of the
agent a with the budget set By(rn{a)) ). Strong convexity guarantees that the
demand of each agent is a singleton, the Boundary condition guarantees that it
exists and is in the interior of the positive orthant. It is weil-known that yp is
measurable (see Debreu. 1982). Mean market demand function at A is

Yo REH- - Rr++»
Mip)= fA ypla)du » 0

2.2 Eisenberg’s Theorem

In this section, we shall preve that in the economy D, market demand can be
generated by a representative consumer. In the case when the set of agents is
finite, this theorem was proved by Eisenberg (1961) and Chipman and Moore
(1972, 1974). We generalize it to the case when the set of agents is not finite,
but a probability space instead. We will first consider the case when A = R
and F° = B, the compietion of the Borel o-field B under . An agent wiil be
denoted by r € R.

THEOREM 2.1 (Eisenberg, Chipman and Moore)

In the economy D : R — K x R, mean market demand Yas(p) can be
generated by a representative consumer with a price-income situation (p, M)
and a homogenous of degree one utility function,

V:R,, —R
log V(#)} = max/ log u(r y(r))m(r)du
5(§) Jr
where S(§) is the set of measurable functions y : & — RL, with [py(r)du=§

and y bounded above and uniformly bounded away from zero. Note that we
have denoted u(r) evaluated at y(r) by u(r, y(r)}.




Before we prove the theorem, we need the following lemma:

LEMMA 2.2

Let F : R — R.. be a measurable function, bounded above and also
bounded uniformly away from zero, satisfying {5 Fdu = M. Then

/ieg[F(r}]m(r}d,uﬁ/log[m(r)M]m(r)d,u.
R R

Proof
Let us assume to the contrary that for some function F,

/log{F(r)]m(r}d,u>fiag[m{r)hf]m{r)dy. {1)
R R

We will now find continuous functions F> and ms that also satisfy the inequality
(1). To do this, we employ Littlewood’s Second Principle. This principie is
usually mentioned in the context of the Lebesgue measure on compact intervals
(see, for example, Royden (1§08)), iLs extension here should be fairly obvious.
Suppose that b < F < Bp. Then the principle says that for anv ¢ > 0, there
exists a continuous function Fy, bp < F; < Bp, such that [F] — #| < ¢ exeept
on some set S, with g{5.) < €.

The function

r
IR Fl (I‘)d#
will satisfy [ Fa(r}dp = M. Furthermore,

Fo= Af

| fH loglF (r)]dp - /R log{Fa(r)lm(r)dul

] M
< fR tog[F(r)im(r) = log Fy(r)m(r)du| + flogl =rll

which can be made arbitrarily small provided ¢ is small enough. Therefore

[ voeiFa(rim(rdu > [ loglm(r)alm(r)d
R R

Now suppose that sy < m < Bjss. Using Littlewood’s Second Principle
again, we can find a continuous function my, bay £ m; £ By, such that
Imy — mi < ¢ except on some set S, with u(S,) < €. We define

Mo = m
- - IR my (ridp’

so fpma{r)dp = 1. Then

[ tosiFarim ()i = [ toglmar)lms (e
R R

-




= [ toglFx(r)ma(r)du= [ loglm(r)MIms (r)e+log [ matrdud [ matr)du
R R R R

If ¢ is sufficiently small,
[ ostEm i [ loghm(r)Mma(r)d > 0
and log| [ m:(r)dy] will be close to zero. so that
/R Log{Fa(r)]ms (r)dss - /ﬂ loglma(r)M]m; (r)dy > 0
which implies that
]H logiFa(r)]me(rdu — /R loglma(r)Mima(r)dp > 0 (2)

Remember also that [ Fa(r)dy = M, [pma(r)du = 1 and that both F2 and
mo are bounded above and away from zero.

We now construct vy, atomic measures with finitely many atoms satisfying
v, — u weakly: Let g1.¢2, ... be a countable dense set in R. Define Qp =
{q1,+:»gn}. We rearrange the elements of (Jn 50 that gn1 < gn2 < ...gnn and
define

Vﬂ{qnll ey an} = V(_m' Qntl

for k = 1.2....n— 1 and vn{gni, ..qnn} = 1. Then it is fairly easy to show

that ¥, — u. Furthermore, when 2 € & < n~ 1, vn{qne} = B(gn(k-1): Ink),
Vn{gnn] = =i@nin=1) <) 3nd ¥n{gn1} = p(—00.¢n1]. We define the function

F;;:R—"R.;..’.

Falr) = e

Blgn(x—1) Inkj f(?n(h-)).‘]nk] Fg(?‘)dﬂ Qn(k—l} <r S Ink,

2<k<n-1

1
-"‘(qﬂ(n—l)'mj f(?n(n—laum) Fg(r)dp qn(n_l) <r

= m f(_m'qﬂ} Fo(r)dy r < gni

It is easy to check that [, Fa(r)dvy = [g Fa(r)dy = M, and that bp <
F'{r) € Bp. Furthermore, on any compact set F, — Fy uniformly. Re-
peating the procedure exactly with ma we can define mj, with [ m/ (r}dv, =
fR ma(r)dp = 1, b < mi(r} € By and m] — my uniformly on any compact
set. For the atomic measure vy, one may verify that

/ log[ £, ()]my(r)dva —/ log{m!, (M) M}im} (r)dva < 0.
R R




Now if we can somehow justify taking limits as n tends to infinity, we will obtain
[ toslFatrlma(r)da— [ loglma(r)Mima(r)du < .
R R
This contradicts (2}, which in turn means that {1} is not possible. So we shall

now justify taking limits. Choose K = [a,}], a compact interval large enough
so that u{R\ A} < ¢; a and b we choose to be non-atoms. Then

| ]R log{F(#)] () dvm — /; log{Fa(r)ma(r)dpl

< | [ 1ol Fatr)lmi(r) = log{Fa(rlma(r)dval
+1 [ tog{Fatrlma(r)di ~ [ loglFa(rlma(ridu
< 1 [ oelFirm (r) = logiFa)lma(r)dva

+] [ JoBlF () () = log{Fa(rma ()
R\K
+| /Rlog[Fg(r)]m-_a(r)dV,, - ./};log[Fg(r)]mg(r)dyl
On K. log{F;(r}jmy (r} — log[Fa(r)}ma(r) uniformly, so for n sufficiently large,
| 1oBlFa ) = ogia(riima(r)dval < c.
On R,

[log{F(r)im,(r) — log[Fa{r)]ma(r)i

is bounded, say by T, so
[ SR () = oglFa(r)ma(r)den] < Tum(R\ K) < 2T
when n is sufficiently large. Lastly, standard theory tells us that
| /R log{£2(r)]ma(r)dvn — /R log{Fa(r)]ma(r)dui < ¢
if n i1s sufficiently large. Therefore, we conciude that
L reslElm ) — [ togtFatr)pma(rid
Similarly, we can prove that |

/iog[m,’,,(r}]vn;(r)dvn w/log[mg(r)]mg(r)dp.
R R

9




Therrefore taking limits is justified. QED.

Proof of TREOREM 2.1

The proof is a2 modification of the one given by Shafer and Sonnenschein
{1982) for the case where the set of agents is finite. Readers familiar with that
proof will see that the principaj difficulty here comes from the fact that the set
5{#) in this case is no longer compact. Hence, we cannot immediately conclude.
that ¥ is always finite or that the supremum is always achieved.

So we must first show that V makes sense. The map r — logu(r,y{r)) is’
measurable, because we may decomnpose it to

r— (r,y(r)} = (u(r), y(r})) — u(r, y(r)) — log u(r, y(r))

For the measurability (in fact, continuity) of the evalnation map {u,y) — u(y)
see Prop. K.1.2 in Mas-Colell {1983). The continuity of this evaluation map,
together with the compactness of ' ensure that, when y(r) is 2 bounded func-
tion, log u(r, y{r)) ° : bounded function, so the integral is certainly finite. We
will show next tha: ihese integrais are uniformiy bounded in the set S{§). To
accomplish that, we must first demonstrate the following: At any (p, M),

/logu{r,y'(r))m(r)du < jlcgu(r,yp(r))m(r)du (3)
A R

for any measurable function y* : R — Ry ., ¥" # ¥, ¥" bounded above and
uniformly bounded away from zero, with

p]ym@=M
R

Remember that y,(r) is the demand of the agent r at (p, M), and so it clearly
satisfies the condition we impose on ¥°.

Observe also that u{r, y,(r)) is bounded above and uniformly bounded away
from zero, and so the right hand side of (3) is always finite. The fact that m is
bounded above guarantees that y,{r) and so u(r, y,(r)) is bounded above. Note
also that m is uniformliy bounded away from zero. which implies that for a given
price p, there exists A small enough such that A(L,1,...,1) is in the budget set
of all the agents in R. This guarantees that

u(r yp(r)) 2 u(A(1,1,..,1)) 2 AT,

where » = inf{u(1,1,..,1) : u € K}. We cleim that 7 > 0, so u(r,y(r)) >
0. If this 1s not true. there exists v, € K, with v, — up € K such that
un(1,1,..,1) — 0. However this implies that us({l,1,..,1) = 0 which cannot
happen since up, being in K, is strongly monotone.

Suppose the inequality to be false for some y*. Define

_ m{r)M
o) = py(r)

10




then §(r)y*(r) € By(m{r)M), which impiies that u(r, yo(r)) > u(r, #(r)y*(r))
by strong convexity. Therefore

/!ogu(r,y‘(r))m(r)du > ‘/iogu(r,yp(r))m(r)d,u
R R

A%

fR log u(r, 6(r)y" (r))m(r)du

/ log{o(r)]m(r)du + f logu(r, y* ())m(r}du
R R

The last step is justified since § is bounded above and bounded away from
zero, and therefore the integral is finite. This in turn is a consequence of the
fact that y* and m are both bounded above and uniformly bounded away from
zero. So we obtain

flog[m(r}]l{]m(r)dp—flog[p.y’(r)}m(r)dy
R R

=/ log{8(r)Im{ridy < 0
R

or
flogfpy'(r)}m{r]dp>]Iog[m(r)M]m(r)d,u
R R

By Lemma 2.2 this is impossible, and so we have proven (3).
From (3) we conclude that at the point #,

sup ] logu(r, y(r))m(r)dp < / log(r, y(r))m(r)dp @)
S{gyJR R

where y, is the market demand function at (p, M = p-¥) (p may be arbitrarily
chosen).

We will now show that the supremum is actually achieved. The trick is to
appeal to the theorem on the existence of general equilibrium in an exchange
economy {see Debreu, 1982), which guarantees that for any ¥ > 0, there exists
a price pp satisfying [, yp.(r)dp = §, M = p.§. Inequality {4) then implies
that

I«"(ﬂ)=[qlogu(r,ypa(r))m(r)dp

In general, we~conclude that

V(Ly?(r)dp)_—_/;ilogu(r, ve(r)ym{r)du.

11




Let  # [, yp(r)dp satisfy p.7 = M. Then V() = [ logu(r, z°*(r})m(r)du for
some z™* satisfying [ :"*(r)du = Z. Inequality (3) says that

V(E)=./:qlogu(r,:"(r'))m(r)dp

</logu(r, yp(r))m(r)du
- Jr

=wmew)

Therefore, given (p, M), the mean market demand [ y,(r)du is equal to the
demand of the represertative agent at (p, 4f). QED. .

Next we shall extend the tesult bevond 4 = R to A a complete separable
metric spate. The probability space is (A, F", u7), the completion {in the mea-
sure theoretic sense) of (A, F, u), where F is the o-field of Borel sets. The space
(A, F,u) is called nice {or standard Borel) because there is a 1-1 map ¢ from
(R.B) onto (A, F) where both the function and its inverse are measurable (see
Chapter 1, Theorem 4.10 in Durrett (1991)). The map ¢ induces a mecasure v
on (R, B) in the usual way. One may easily verify that ¢ and #~! remain mea-
surable when considered as maps between (R,B*,v*) and (4,F", u4%). Given
the economy

D:(A,F 0 Y—UxRA

we may contruct the economy
Dog: (R B, vV)—=UxA.

For a given (p, Af), the demand of the agent a in D is the same as the demand
of the agent o~!{a) in Do g, since y,(a) = yp o#(¢7'(a)). Mean market demand
in the two econotnies are equal, i.e.,

Lyp(a)dﬁ'=Lyp°é(f)dV'

Hence, we have the following corollary to Theorem 2.1:

COROLLARY 2.3

Mean market demand for the economy D : (A, F",u") — U x R at (p, M)
could be generated by a representative consumer with the homogenous of degree

one utility function
. pl
log V(§) = mazs(p) [ logu(d(r), yrm o 9)(s)dv"
where the set S{j) consists of those measurable functions bounded above and

uniformly bounded away from zero, y : R — R, with f y(r)dv* = §.

12




2.3 The Representative Consumer in an Exchange
Economy with Homothetic Preferences

Given the probability spaces (R, B, u1) and (K, F, y2) where K is defined as
in Section 2.1 and B, F are the Borel o-fields generated by the topologies on
: R_‘,_ and X respectively, we define the exchange economy £ as the product space -

(K X RLIFX B!f-’-z x “1)'

The element (u,z) € £ represents an agent with preference u and endowment
r. We assume that projs(u,z) is integrabie with respect to po x uy, and that

| roia(u2)d(un x ) >0
K xRt ’

+
From these assumptions we may conclude that:

1. By Fubint’s Theorem, the economy’s mean demand

// proja(u, z;dpidpz
K /R

f/ zduidys

Jr,

/ zdu; » 0
Rl

+

/ proja(u, 2)d(uz x 1)
KxR

2. We denote the demand of agent (u,z) at price p € Al where AL =
{pe RL, Y pi =1} by §p(u, z) (the agent (u, z} has an income of p.z.
It is known that y,(u,z) is a continuous function in & x B! | (see remark
on page 74 in Mas-Coleli (1985)). Furthermore,

p.2
o —)

. p.z
Yeltu,z) < (—,.
p{u, T) (p1 o

so the mean market demand at price p,

Yip) = fA Gyl ) x )

(p. er* :L‘dul b. fR' xd;.ll
< :

Dt pod

-

and is therefore finite,
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3. Y(p) is also continuous with respect to p. This follows easily from the fact
that §p(u, 2} is continuous with respect to (p, u, z) (see Prop. 2.4.8 in Mas-
Colell (1985)) and the fact that K is compact; while R, is not compact,
we may effectively restrict our attention to some compact set £ such that -
i) RAE vp(u, )d(u2 x p1) is arbitrarily smail in some neighbourhood of p.

The details are left to the reader.

4. Y(p) satisfies the following Desirability Property: Let po be a price satis-
fying 3_ pi = 1 and p; = 0 for some i. Fatou's Lemma says that

[ tmintigp(u,2)id( x m) < limint Ll )
KXRL p=—Peo p=—ra KKR'_{‘

Because of monotonicity,

lim inflgs(u, 2)] = o
P—ro

50

Iiminff p(u. z)|d(p2 x 1) = lim [Y(p} =
P=po KXRL _ p=+po

(1), (2), (3) and (4) together with the obvious fact that the excess demand
Y(p) = [p zdu satisfles Walras’ Law guarantee that an equilibrium price for

the economy exists (see Debreu, 1982).

THEOREM 2.4

If in the exchange economy &, the utility functions in the set K are all
homogenous of degree one, then

{a) the market demand Y'(p) may be generated by a representative consumer
with a homogenous of degree one utility function and an endowment equal to
the economy’s mean endowment,

(b} Y satisfies the weak RMP, ie., (p — ¢).(Y(p) — Y(g)} < 0 for all prices
p. g satisfying p. fR,++ zdyy = q. fR'++ zdy,, and

(c) the set of price equilibria is convex.

Remark. All the measure theoretic technicalities should not obscure the fact
that the proof of {a) is really just a simple two step procedure. Firstly, we
add up the demand of agents having the same homothetic preference, and see
that this demand is representable by a single consumer (a theorem essentially
due to Antonelli (1886)); secondly, we represent the demand of these represen-
‘tative consumers with an overall representative consumer, through Eisenberg’s
theorem.

Proof of (a}
We denote by yp(u, w) the demand of an agent with preference u and wealth

w. Remember that for an agent with homothetic preferences, y,{u, w) = yp(u, Hw.
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And so, by Fubini's Theorem,

i

[ (1. 2)d(uz X 1)
KXRL

| [ istwzidmdun

K JRY

/] yp(1, 1)p.zdp1dps
K JRY

fyp(ﬂhl)P-(j xdy; ydp
K a!_‘_

Jowtup( [ =dunaus

+

f

This is the dermnand of the distribution economy
D: (I\-.f,fl) — I x R++,

where D{u) = {u, 1). Corollary 2.2 tells us that this demand can be represented
by a consumer facing price p and income M = p.(fR:_ zdu, ), with utiiity ¥ and
m: (K. F.u2) — Ry, m=1. We do not need F to be complete here cecause it
was needed in Theorem 2.1 only to guarantee the measurability of the demand
function in that mote general context, whereas over here yp is in fact continuous
in K. Note also that A'. being a compact subset of a metric space is complete
and separable. QED.

Theorem 2.4(b) is a straightforward consequence of the next proposition.
{<) in turn follows frony {b) {for a proof see Proposition 6.2 in Hildenbrand and
Kirman {1988)).

PROPOSITION 2.5

Let F(p, w) be the demand of an agent at price p 3» 0 and income w. Assume
that

(a) pF(pw)=w

(b) F satisfies the weak axiom of revealed preference, i.e.,

if F(5,9) # F(5,1) and p.F(p, ) < p.F (5, &) =

then @ = 5.F (5, @) < §.F(f, ®)

(¢} Fip, kw) = kF{p.uw) }

then F satisfies the weak law of demand, i.e., for all prices p, g

Proof
The consumption hundle
uw w2
——e—F(p,w) = F{p, ————
CF ) ® e
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by (). If

mF(P'w)=F(an)

then w
mp-F(p,W) = p.F(q,w)
F(q,w).q¢F(p,w).p— F(g,w).pF(p,w)g=0
On the other hand, if

2

w w=
—_— F 3 u’) = F 3 b ) # F P W)y
q.F{p,w) (p (p q.F(p,w) (9. w)

then the fact that
wq. F(p, w)

aFpw) Fla wlg

wili lead us 1o conclude through the weak axiom that

W

mF(P-w}] < p.Flg,w)

p{

Flg,w).qF(p,w)p— Flg, w).pF(p.w).g< 0.
Combining the two cases, we conclude that
Flq. w).qF(p.w).p— Flq,w).pF(p,w).g<0
$0
Flg,w).q(Fip,w).p~ Fq,w).p)+ F{q, w).p(F(q,w).9— F(p,w).q) <0

Ve shall henceforth refer to the above inequality as (). Notice that the expres-
stons in the two brackets add up to (p — q}.(F{p, w) — F(g,w)). We will try to
“cancel away” their coefficients.

Suppose F{p,w).p> F(q,w).p. This implies by the weak axiom of reveaied
preference that F{p,w).q > F{q,w).q or F{p,uw).q — F(g,w).g¢ > 0. Using (%),
we see that

Flg.w).q(F(p,w)p— Fq,w).p)+ F(p,w).p(F(g,w).g~ F(p,w).q)

< Flgw)g(F(pw)p— Flg,w)p)+ Flq, w).p(F{g,w).g— F(p,w)q) 0.

Dividing by"g.F(g, w) = p.F(p, w) = w gives us what we want, ie.,
F{p,w).p~ Flg, w)p+ Flg,w)g— Flp,w)q
=(p-0).(Flp,w)— Fq,w)) 0.
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Suppose now that F{q,w).g = F{p,w).p < F{q,w).p, then using (*) again,
we obtain

F{q, w).p(F(p,w).p~ F(q,w).p)+ F(q, w).p(F(q, w).g—~ F(p,w).q)

< Flq,w).q(F(p,w).p~ F(q,w).p) + Flg,w).p(F(g, w).g — F(p, w).q) £ 0.
Dividing by F(g,w).p will give us what we want:

F(p,w).p— Flq,wyp+ F(q,w)9—- Fp,w)g

={p—q)(Flp,w)— Fq,w)) £ 0.

QED

The reader may wonder if the assumptions in Proposition 2.5, ostensibly
weaker than assuming the existence of a homothetic preference, are nonetheless
sufficient to imply it. The answer is no (see Kihlstrom, Mas-Colell and Sonnen-
schein (1976) under the section *A related conjecture”). 1t is also easy to check
that if we had assumed that the support price of every consumption bundle
is unique, then we will get the law of demand, and not just the weak form of
the law. Finally, note that the prove of the proposition does not require the
continuity of the demand function.

3 Smooth, Homothetic Preferences and RMP

In this section. we shall show that by adding smoothness and regularity assump-
tions to the exchange economy in Section 2, we may prove that RMP holds. We
begin with a complete description of the economy.

3.1 The Economy &2

We define U? to be the set of C7 utility functions on R, with no critical
points. We endow U* with the topology of C? uniform convergence on compacta.
This makes U? into a metric space which we shall denote as (U2, 32) (see page
70 of Mas-Colell (1985)). Let K be a compact subset of I/? that consists of
differentiably strictly convex preferences that satisfy the Boundary condition
{Definition 2.6.1 in Mas-Colell (1985)).

We assume that the exchange economy’s endowments come from some com-
pact subset E of RY, ., with £ bounded away from the origin. The economy £?
is defined in our usual way, as

(K x E,F*x B,y x p1)

where F? and B are the Borel o-fields and ps and py are the measures on X
and E respectively. We assume that the economy’s mean endowment

f proja(u, z)d (2 x py)
KxE
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= f ﬂ:d,u1
E

is finite and in R} . Henceforth, we shall denote [ zdu; by £, with Z 3 0.
We define
f K XR++X R++'—'R++
by f(u,p,w) = Demand of an agent facing price p, with wagzs w, and utlhty
u. It is well known that with our assumptions f, 2 = o and 5"— all exist and are -

continuous (see Prop. 2.7.2 in Mas-Colell (1983)). This fa.ct. in turn guarantees
that the demand of the agent (u, z),

f:ExR. . xE—R.,

where f(u.p, z) = f(u.p.p.z}, and 3'3;;.- are continuous for all {. On any set

K x P x E where P is a compact set of prices in Rﬂ__+, these functions are also
bounded (we make use here of our assumption that £ is bounded away from
the origin). Using this fact, we may prove the following:

LEMMA 3.1

The economy £2’s mean demand at price p,

Fip)= jﬁ Sl p ) x 1)

is continuously differentiable for all p € R, _, with

df;
dpJ{ p) = -/K u, p, z)d{pg X p1).

x E dPJ
Proof

dF; . ilp) = Filp®
Aoy BV~ Fil0)
dp; pi—p}  Pj — P}

. filu,p,x) = fiu,p", 7)

= hm/ d x
pi—=r; JuxE P; — P (u2 x gn)

For each p = (pY, p3, ... Pj; ... P] }» the mean value theorem tells us that

JE:’("»P!I)— fi(u!p‘vr) = df:;(u,q,::)
p; — P} dp;

for some ¢ = (p1,..,¢;,--p]) with p; < g; < p}. Since g-;:-.;- is uniformly bounded
on the set A x N(p®) x E, where N(p*) is some closed neighbourhood around
p*, we may apply the dominated convergence theorem, which says that

dF filu,p.z) = filu,p, )
PJ—'pJ KxE Pj*-p;

d(p2 x py)
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KxEP)=P; Di —P;
= ~—{u,p,z)d(pz x p
L, ) x )

The continuity of %.:% follows, via the dominated convergence theorem again,

from the continuity of gﬁ_—(u,p, z). QED

3.2 The Restricted Monotonicity Property

Let C be a convex cone of prices in R\, with its apex at the origin. We say
that the economy’s mean demand F{p) satisfies the Restricted Monotonicity
Property (RMP) in C if whenever we have p,¢ € C,p# q, with p.Z = ¢.Z (Z is
the economy's mean endowment)

(p=~q)(F(p)—F(q)) <0

When we say that F satisfies RMP without saying where, we mean C = Rf'_ -
A sufficient condition for F to satisfy RMP in C is for the Jacobian dF({p) to be
negative definite on the plane V(Z) = {v € R' : v.2 = 0} for p € C. Note that
since F(p) = F(kp) for any positive multiple k, dF(p) = kdF(kp), so we need
only check that dF{p} is negative definite 1 the prices in C* = {T;ET :peClcC
4-\[4,.4.' It is also clear, that if we know, = . :iori, that the equilibrium prices of
an economy are confined to C (or equivalentiy, C*) and that RMP holds in C,
then there is only one equilibrium price, up to multiples of course. The Slutsky
decomposition of dF{p} will give us some indication of the work we need to do
to prove that it is negative definite.

af;
dF(p)i; = ./sz 3‘5}:(“’?,3)5’(#2 X p1)

= ij ofs : dfs
= '/!;-XE 5:;(!1,?,?.1’) dw(UaP:P.z)fJ(U,P:P.:) -+ T E(ﬂ,p,p.:)d(pg x ’_‘1)

Since we already know that the substitution matrix, S(p), is negative semi-
definite, our real work lies in showing that the two income eflect matrices,

df;
Alp)i; = /;{xE aiw(u,p,p-:r)f;'(u,p,p--z)d(#z X 1)

df; .
= BW= [ Fuppomdenxm)
KxE
are, respectively, positive and negative definite on V(£), or at least that they

will not be so misbehaving as -to overwhelm the negative definiteness of the
substitution matrix.
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3.3 RMP in the Exchange Economy &?

THEOREM 3.2

Assuming that ali the preferences in K are homothetic, the market demand
F of the exchange economy £? satisfies RMP.

Proof '

We will show that B(p)v = 0 for all v € V{(Z), and that A(p} is positive.
semi-definite {for all v, not just v in V(Z)), these together with the fact that
5(p) is negative semi-definite will guarantee that dF(p) is negative semi-definite.
Lastly, we will prove that dF(p} is negative definite on V(Z) and not just neg-
ative semi-definite. The crucial property of homothetic preferences we will be
using throughout the ptove is the fact that when u is homothetic, %-(u P, w)
may depend on p but is independent of w. The reader might want to bear in
mind that the method of proof which he will encounter in Section 5 is essentially
a more complicated version of what follows here.

We wiil first look at B(p).

B(p)i; '/KxE " —(u,p, p.z)zsd(ps % 1)

ij df'(u p, )z;dudps

df;
[ et 0 il

IJ,/ —(u p, 1)dus

so clearly B{p)v = 0 since v.Z = 0.
Now let us look at A(p).

/EfKZZj:vﬂ-‘j%(u,p,p-z)fj(u,p.p.z)d,ugdm
Jo f S Tt ) e
f pz / ,zzm:d vPsl)%(u,Pal)dﬂzdm
Lot (v.——-<u,p,1))2czmldm |

- = / p.zdu;) [f (u,p, 1))3dus]

2

v.A(pl

il

So we have shown that dF'(p) is negative semi-definite. Now to see why it is not
possible for v.dF(plv =0 if v # 0.
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Since K consisis oniy of differentiably strictly convex preferences, the Slut-
sky matrix satisfies v.5(u,p,p.x)v < 0 for every v not collinear with p (see
Prop. 2.7.8 in Mas-Colell (1985), and Kihlstrom, Mas-Colell, and Sonnenschein -
(1976)). Integrating, we obtain

ol Swppadimxmle = .Sy

JKXE
< 0
If v = Ap then
p-flupw) = w
u-%'u,p,l) = A

This implies that

v.A(pl = fp..xf Adysduy
E K
= ([ padi)¥ = (¥°
> 0

Therefore dF(p) is negative definite on V(&) for all p € R‘H_. QED.

As a consequence of Theorem 3.2, the economy £2 has a unique price equi-
librium. If there were two different prices, p°* and p** with p*.Z = p**.7 and
Fip*)= F(p*~) = &, then

(=) (Fp") = F(™)) =0

which contradicts RAP. Observe also that because of the core equivalénce the-
orem of Aumann {1964), if 4y and pe are atomless, the core too will be unigue.
RMP also guarantees that the price equilibrium is stable under various taton-
nement processes. e discuss this next: but before we end this section, we
verify that the result of Section 2 applies to the economy £2.
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PROPOSITION 3.3

In the economy £?%, market demand F{p) can be generated by a representa-
tive consumer with a homogenous of degree one utility function, and an endow-.
ment equal to the economy’s mean endowment Z.

Proof

Following the same steps in Theorem 2.4 we see that

Fpj= fK flu,p,p.2ydps.

This is the demand of the distribution economy
D:(K.F% up) = (U x R, F' x B, p2 x py1)

where D(u) = {u,1}, M =p.z, and m: (K, F%, p3) — R4y, m= 1.

To apply Corollary 2.3. D must be measurable: this is certainiy true as a set
in /2 that is closed in (U, Q) is also closed in (U?, %), s0 D is in fact continuous.
Furthermore, the set A, compact in (/2 3?) must also be compact in (U, Q).
So the conditions of Corollary 2.3 are fulfilled and we conclude that market
demand is representable by a single consumer with a homogenous of degree one
utility function. QED

4 Tatonnement under the Weak Axiom

The word “tatonnement” is French for “to proceed by trial and error”. It refers
to a process by which a price vector in the economy is adjusted according to
some rule dependent on the price and demand conditions. The aim is that
such a ruie will lead the price to converge to an equilibrium price. Since the
assumption of perfect competition has all agents taking prices as given, the
actual job of changing the price is traditionally assigned to an auctioneer. His
job is to announce the price, teceive feedback from the agents on demand at
those prices, adjust the price according to some rule, announce prices again,
etc. Notice that no trading takes piace until the equilibrium price is reached
(see Chapter 11 in Arrow and Hahn (1971)).

One need bardly point out that this is a rather unsatisfactory model of
market dynamics. Though there are models of trading off equilibrium (see,
for example, Keisler {1986,1990)) none, for now, have gained wide acceptance.
Mathematically, the tatonnement process is usually represented by a differential
equation system. Diflerential equations with solutions that converge almost
always to an equilibrium are known to exist (see Smale (1976) and Kamiya
(1990)). However, they suffer from the defect that the auctioneer requires too
much information to imiplement the tatonnement rule. Not only must he know
the excess demand, Z(p), he must also know the Jacobian dZ(p). Unfortunately,
unless Z{p) is assumed to satisfy strong properties like gross substitubility, there
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is little hope of finding a convergent tatonnement that requires significantly less
information {see Saari and Simon, 1978).

In this section, we consider tatonnement processes under the assumption
that Z(p) satisfies the weak axiom at equilibrium (WAE), i.e., if p* is the unique
equilibrium price in the economy, then for all p # p*, p*.Z(p) > 0 (we will show
later that this is a consequence of RMP). The two tatonnement processes we.
will be considering are

(0 J
[
P = aini(p)
where o; > 0,71=1,2,..,1, and
(IT)
dpi
— = Gipizi
T pizi(p)

where 3; > 0,and i = 1.2, .., 1.

These two tatonnement processes agree with the intuitive (or traditional)
notions of how markets operate: when a good is in excess demand, its price
rises, when it is in excess supply, its price fails, and, secondly, that price changes
for a particular good obey rules dependent primarily on demand for that good,
with little reference to demand in other markets. So when prices do converge to
an equilibrium, they deo so without the benefit of an over-arching intelligence.
Returning to the story of the auctioneer, in the case of tatonnement processes
like (I) and (II) we may imagine, if we like, not one, but [ auctioneers: each
auctioneer is in charge of changing the price of one good based on p and the
demand for that good, with a view to equalising demand and supply for that
one good. No co-ordination with the other auctioneers is necessary, except
agreement on when to begin each round of price announcernents. Furthermore,
each auctioneer, need not know anything about the demand in other markets.

We want to show that with the assumption of WAE, tatonnement processes
(1) and {II) converge to the equilibrium price, no matter what is the initial price
condition. Before we do that. we prove that WAE is a consequence of RMP.
This result is not new {see Prop. 5.7.3 in Mas-Coleil (1985}), but the proof is
short and so we repeat it here for completeness.

PROPOSITION 4.1

Suppose the excess demand function Z : R, | — R! satisfies RMP. Then 2
satisfies the weak axiom of revealed preference {WA), i.e.,

if p.Z(¢) < 0 then ¢.Z(p) > 0, provided Z(p) # Z(q).

In particular, for all prices p # Ap®, where ) is a positive scalar and p” the
equilibrium price, p*.Z(p) > 0 {(WAE).

Proof ~

Suppose p.Z{q) < ). Choose X such that p.F = Ag.Z. Then

(p=Ag).(Z(p) - Z2(Ag)) <O
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provided Z(p) # Z{Mq) = Z(q), so
~-p.Z(Ag) = Aq.Z(p) < 0

Since p.Z(Aq) = p.Z{g) < 0, this means that Ag.Z(p) > 0, which is what we
want. When Z satisfies RMP, the equilibrium price, if it exists is unique; so
then p.Z(p") = 0 will imply that p*.Z(p) > 0 for all p # Ap*. QED. :
Before we prove our principle claims, let us define stability a little more
carefully. Suppose p* is an equilibrium price. Let p(t} be a solution to '

dpi

- = Hip),
fori = 1,2, ..,I. We assume that for any given initial condition p{0}, the solution
to p(t) is unique and is defined on [0, oc). Then

DEFINITION

The price p” is asymptotically stable on the set § if limyeeen p(t) = Ap, for
any solution p(t) with p(0) € S. Here X is a positive scalar; obviously in an
exchange economy Ap” is also an equilibrium price. We say that p* 1s globally,
asymptotically stable if $ = RY .

We first prove a theorem on the tatonnement process (I). The fact that
solutions to {I) under the assumptions we will be making last forever is a rather
well- known fact. The proof we give here is a more elementary variation of
Proposition 3.1 in Dierker(1974). It is aiso known that if the eqilibrium price
is unique and that excess demand satisfies WAE then the equilibrium price is
globally asymptotically stable. On the other hand, stability under (II) appeats
to be iess well known, though stability under a more general class of tatonnement
processes has been proven before, with the assumption of gross substitubility
(see Section 19.2 in Nikaido (1968)). As it turns out, the proof of stability under
(I1) is particularly simple when WAE is assumed. For another resuit on stability
under WAE see Nikaido and Uzawa (1960).

THEOREM 4.2

Suppose that Z : R, | — R'is a C* function satisfying:

(a). Z(p) = Z(Ap) for all A > 0 (homogeneity),

(b). p.Z(p) = 0 (Walras’ Law),

(¢). Z(p) is bounded below,

(d). for any pn, — po, where po has some component equal to zero,

1Z(pn)| — o0,

{Desirabjlity Property)

then for ‘any initial condition p(0), there is a unique solution to (I) defined
for t € [0, c0). If, in addition,

(e). there exists a unique equilibrium price p* with p*.Z(p) > 0 for all
p % Ap” (WAE),
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then p* is globally, asymptotically stable under (I).

Proof

It is well known that given an initial condition p{0) € R}, the solution
to (I) exists and is unique (see any text on Ordinary Differential Equations).
What we need to prove is that the solution p(t) exists for t € [0,00). We first
note that '

d. _ 1 s _
prilh 'pf+aslpl + .o 'pf] = 2pazni(p) + .piz{p)) = 0

so that p(t) lives in the set
Q={peRi,:or'p +..af g = a7 'p{(0) + ..oy 'p{(0)}
The solution p(¢) will last forever if we can find a compact set Q” C Q such
that p(0) € Q" and p(#) never leaves ()" (see Chapter 8, Section 5 in Hirsch and

Smale (1974)). We now set out to construct ", The idea is to construct. a sort
of buffer around the boundary of & beyond which p(t) will not cross. Define

Wi (8) = {peQ:) pm<a}
ik
1 1.
Wioeal82) = {p€Q: D pi<62,pe 2 761,08, 2 761}
) l i
sZk ks
. 1 1
Wi, onoa{fo1) = (peQ: Y p<bip, 2 70—z Pl 2 Fhi-2}
iZky . k-

where &3, 82, ..., & will be chosen in the way we now outline.

For any price p € Wi(é4;), the price of 1, p; is bounded away from zero.
Walras' law, together with the fact that Z is bounded below means that z; is
bounded above, so we may conclude from (d), that for §; sufficiently small,

Z zi{plo; > a >0,
i)
for all p € W1 (81). Indeed, 6, can be chosen so small that if p € Wi{6;), then
Zzi(p)a; >a>0
SE
Next. we choose a suitable 2 for W1 o(82). For a price p € Wi 2(é2), ;1 and
py are bounded away from zero. Walras' law, together with the fact that Z is

bounded below means that z; and z; are bounded above, so we may conciude
from (d), that for §; sufficiently small,

> zlp)ai 22 >0,

i$1.2
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for all p € W) 2(62). Once again, 7 can be chosen so small that whenever
PE E'Vftt.kn(é'-’): )
3 zn(plaiza>0.
igky ks
In addition, we require that 83 + 161 < 8;. We proceed along these lines to
choose &3, ..., §_1 with

1
5: + 7‘53-1 < 6--—1

and such that
p < Wh,..,k.(és)

will guarantee that
> z(p)ai 2a>0.
igky, ky

Note also that 61, .., 8~ can be chosen with

p(0) g W ={ Wi, ks, 0. (6)

We define {' = {1\ W and make the following claims:
Claim 1

O ={peQ: > p>6Vk ,E0<s<I-1}=0\W
t2k Ry, .k,

That ¥ C O\ W is obvious: for the other direction, let us suppose that there
exists p € O\ W such that Ei#l,z.spi < &3 (we use 1,2,3, instead of ky, .., k, for
notational convenience, no loss of generality is involved). Since p € W7 2.3{é3),
we assume that py < 16y , in which case 3, .,3p < 83+ 182 < §2. Now
r € Wazs(82) either, so we assume that py < %51, in which case Z#Sp,- <
b2+ %-61 < &,. But this implies that p € W3(6;) C W: we have a contradiction.

Claim 2

intW = _}intWi, 4;.1,(6,)

where “Int” refers to the interior of a set.
That
U intWe, 5,2, (6,) C intW

is. obvious; we prove the other inclusion by contradiction. Suppose p € intW,
and p is on the boundary of Wy, i, for all k1, .., k,. Remember that from the
definition of W, (&), if p is such that Zs‘#h,..,k.P‘ = §, for all &4,..,k,,
then p is on the boundary of {2’ = 2\ W (see claim 1) so p is on the boundary
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of W: a contradiction. Therefore, without loss of generality, we assume that
2iz1323Pi <63 andp; = %62, in which case Zi#Z.SP‘ < 83 + -Iréz < &7. Since
p € intW; 3(62), p» = $61, and it follows that Ziﬂp; < 8 + -}61 < §;. This is
a contradiction since it implies that p € Wa{é;).

We define the compact set {2 to be the closure of 2. We will now proof
that the solution to (I) does not leave Q. Suppose that it does, then there
exists a time t’ such that p(t'} € intW = {JintWy, 1,,.4,(5,). Suppose that

a— inf{t: p(t) € inth{.--.k'_,(‘st’)}

< inf{t:p(t) € mtWe,, :,(6,)}
for all Wi, i, (6,), le., W,,;,__'y,(é,:}, is the first of the sets in W the path of
p(t) enters. For t < %, p(t) € 0¥, and p(t°) € Wkg'__,,u_:‘(&:). As Q" is the
closure of Q' = Q\ W, for t =%, 3,00, v pi(t) > 6,0. In addition,

dit Z pi(lizre = Z iz (p(t?))

iEE],E LET SN o

>a>0
This means that there exists € > 0 such that for £ <t <t +¢,

> mlt) >4

EELLE,

contradicting t® = inf{t : p(t) € intWi: 1 (&)} Therefore, p(t) never leaves
Q2", This completes the proof that any solution to (I) lasts forever.

We wiil now show that p* is globally, asvmptotically stable under (1). We
arrange to have o 'pi’+.. 407 'p;? = a7 'pF(0)+ ..+ a7 'pF(0). The Lyapounov
function is the {modified) Euclidean distance, defined by

L. R+
t
_ (pi = p7)?
L(p) = ; S

Clearly L{p™) = 0 and L(p) > 0 for p # p*. Furthermore,

!

dL 2(p; — p] ) dp;
- wc-i-t- = ; 20'.' -Et_
'
= > (o —p)=m)
i=1
= —-p . Z{p)<0
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This suffices as proof that (I) is globally, asymptotically stable. QED.

The next theorem deals with stability under (II}.

THEOREM 4.3

Suppose that Z : R, — R'is a C' function satisfying:

(a). Z(p) = Z(Ap) for all A > 0 (homogeneity),

(b). p.Z(p) = 0 {Walras’ Law), and _

(¢). there exists a unique equilibrium price p* with p*.Z(p) > 0 for all
p# Ap® (WAE),

then p* is globally, asymptoticaily stable under (II).

Proof

Once again, it is well-known that under our assumptions, existence and
uniqueness of the solution, given the initial condition p(0) is guaranteed. To
show that the solution lasts forever, we first observe that

d. I
Ei‘jl lpl -+ ---'\.’;‘3; 1}3[] - Zpi‘:i(p) = 0

i=1
$0
pltye¥ = {pe R, 3 p+. .+ p =3 pi(0) + .. + 5 ' m(0)})
Assuming p~ to be in ¥, the Lyapounov function we need is

C!@—"R.}..

i
L{p)="_ 87 (pi - p} log pi — p} + pi log p}).
i=1i .

It is easy to check that for p € ¥, p # p*, L(p) > 0 and, clearly L(p*) = 0.
Furthermore,

AL = - 2
5 = ZJ‘. Y- E—)ﬂipizi(}?(f))

i=1
i

= 5 (pi - p})ulp(t)
i=]

= —p".Z(p(t)) <0

if p(t) # p. Lastly, we observe that if p, — po € R} \ R, then L(p,) — oo;
as such, £71[0, £(p(0))] is a compact subset in ¥. With %-?(p(t)) < 0, we see
that p(t) € £71[0, £{p(0)}]. The solution is always contained in a compact set,
therefore, it lasts forever and converges to p”. QED.
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Lastiy, we re-visit the economy £2.

COROLLARY 4.4

Assuming that all the preferences in & are homothetic, the exchange econ-
omy £2 = (K x E,F x B, p» x #41) (as defined in Section 3.1) has the following
properties:

(a). its market (excess) demand satisfies RMP,

(b). an equilibrium price p* exists, and is unique,

{c). p is globally, asymptotically stable under (1) and (II).

Proof

Put together Theorems 3.2, 4.2 and 4.3. QED.

5 Heterogenous Consumers without
Homothetic Preferences

[n this section, we shall show how we may obtain RMPina sequence of exchange
economies £, without assuming hornothetic preferences. In its place, however,
we need to make heterogeneity assumptions on the preferences of agents. This
heterogeneity is described in terms of homothetic transformations of prefer.
ences. We will define homothetic transformations and give a description of the
economies £, in Section 5.1. Section 5.2 gives an overview of the preof we wish
to make. After this, we examine the intrinsic and extrinsic income effects, and
show how on any given closed cone of prices. RMP will hold in the cone for the
economy &,, n sufficiently large.

5.1 Homothetic Transformations and o

Let u: R — R be a utility function. We assume that u satisfies the following
properties:

(1). the preference it induces is differentiably strictly convex,

(ii). if f(u,p,w) is the demand function associated with u, then for any
compact set, K, of strictly positive prices, jg{—;(u,p, w)} is uniformly bounded
forall (p.w)e K x Ry..

A word on assumption (ii). Since

nh+.pfi=w

df, dfi
pro~ + Pl = 1

s0 the assumption will be true if we assume that the %&-(p, w) is bounded below
for all w > 0 on any compact set of prices. In particular, this will be true if
there are no inferior goods. i.e., f%(p,w) > 0 for all i, p, and w. The absence
of inferior goods is not unreasonable provided we think of goods in sufficiently
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broad categories. We emphasize though that our assumption is considerably

weaker.
The homothetic +-transformation of u is another utility function, defined by

ui(z) = u(e~*z). The following observations follow easily:

(st p,w)= e flu,p, e w).

Hence, 4 o
i — W -t
dw(uhprw)—dw(u!p:e w)
for w > 0, and o of
2y, p,w) = e = (u, p, e w
T (i) = &' E(w p e ™)

for any #, ;. When u is homothetic, a transformation leaves demand unchanged.
We denote by H(u) the class of homothetic transformations of u, i.e.,

H(u) = {u, :téR}.

Let U* = H(x®)U H{u") U ...H(u*) where u® is homothetic. A sequence of
probability measures (1.} on U™ is given by va(H(u")) = ¢" where L¢"™ = 1,
and

L
i gesuh =0 [ K
t

where the density functions A, r = 0.1.2,.., s, are assumed to bhave compact
support. We denote by pl the measure on H(u”) {(and R) generated by hy, so

val{uf it1 St <ta}) =0 pr({u] 1t £t < 1a})

With the sequence of probability spaces {U*, F,v,) we may construct a
sequence of exchange cconomies £, = {(U* x E, F x B,vp x u). We assume that
the endowment space £ is compact and bounded away from zero. The mean

market demand is
B ol i
Fa:Ry, — R,

F!'l: / furaP:P‘de X |
; e yd(vn x p)
=20'f flug, p,p-z)d(py, x p)

r=10 RxE

=Y "¢ Fip)

r=0
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where F7(p) is the mean demand of class H{u"). The following resuit should
be fairly obvious; the proof is essentiaily the same as Lemma 3.1.

LEMMA 5.1

The functions F,, {p}and FJ(p), r = 0,1, 2,...5 are continuously diflerentiable
with

dﬁqu);‘ : f df; . dfs ,- r
= o —‘:U:ypsp-z)‘f' Z‘;—-—-{u vP¢P-3)}d(i—‘ X p)
dp; ,;3 HxE{d.DJ' dw' "

and

dFnlp) = 3 o"dF](p).

r=0

5.2 The Strategy Reviewed

Our objective is the same as in Section 3: To try to make dF,(p) a negative
definite matrix onV(Z)({where Z is the mean endowment) for n sufficiently large
and so establish RMP. In particuiar. we wouid like to impose conditions on the
sequence A, of density functions that wiil allow us to reach such a conclusion.
Notice that u® is homothetic. and so we know that F%(p) is the same for ail n
and that its Jacobian is negative definite on V{Z). The existence of a segment
of each economy £, with agents having u” as its utility function also guarantees
that the equilibrium prices of all the economies are contained in the interior of
a compact, convex set of prices in AL, which we shall call P. We shall show

that dF,.(p) is eventually negative definite on V(Z) for all prices in P. This
guarantees that RMP holds for all prices in the cone Ry, x P, which in turn
guarantees the uniqueness of the equilibrium price of &, for n sufficiently large,
since the equilibria of all the economies in the sequence were, a priori, restricted
to P.

We want to conclude that v.dF,(p)v < 0 for v in V(Z) and p in P. We
may resirict our attention further by confining v to jv| = 1. This set has the
virtue of being compact. Because v.dF2(p)v is jointly continuous on the set
P x {v:v €& V(z),|v| = 1} (henceforth to be called Q) we may conciude that
there is some ¢ > 0 such that v.dF2(p)v < —e < 0 for {p, v) € Q. We shall show
that when n gets big, v.dF(p)v can be made arbitrarily small on @Q, i.e., given
¢ > 0, there exists N such that whenever n > N, v.Fl(p)v < efor r = 1,2, .., 5.
This will then guarantee that, eventually, v.dF.(p)v < 0 on Q which implies
that ‘

vdF,(plv < 0

on P x V(£), which is what we want. Without loss of generality, we may confine
our study to the Jacobian of a single homothetic class, dF. Warning: We shall
henceforth drop the superscript r, and when it is convenient, write f(p, w) when
we mean f(u,p,w).
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Once again we may split the Jacobian into three matrices: the Slutsky matnx
which we know to be negative semi-definite and the two Income Effect matrices,

df;
An(p)i; =]R . f,—(u:,p,p-:)é(us,p,p.z)d(pn X @)

df;
= [E [ /R f:'(ﬂ:.p,p.x)gi-(unp,P-r)hﬂ(t)dt}dp

and

df;
=_/;{[R fig;\u'm,p-z)hn(t)dt}dg

We will have to find conditions under which we could guarantee that v.A.(p)v
and v.Ba{p)v are weil behaved on the set Q for n sufficiently large. The idea,
in a nutshell, is to use bomothetic transformations to re-capture some of the
virtues of homothetic preferences, so that we may carry out an approximate
version of what we did in Section 3.

Before we begin studyving matrix Ba(p), we must give a precise meaning to
“increasing heterogeneity”. We have two definitions.

(1} Dispersion Property (1)

Suppose that the density functions h, satisfy the following: Let I be a
compact interval. Define ¢, : [ — R by

Bo(k) = fm lhn(t) = An(t + E)|dt.

Then &, — 0 uniformly on I. If this is true for all compact intervals I, we say
that the sequence {h,} has Dispersion Property (1).

(2) Dispersion Property (2)

The sequence {h,} satisfies Dispersion Property (2) if |4, ] is integrable, with
fgibn(t)ldt =0 asn—0.

Dispersion property (2) is similar to that employed by Grandmont (1992).
1t is stronger than dispersion property (1).

PROPOSITION 5.2!

If the sequence of density functions {hn} satisfies dispersion property (2},
then it satisfies dispersion property {1).

Proof

We observe that

) = [ " ha(t) = hat + K)ldt

-0

11 owe this proof to Professor Anderson.
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= / ;/ RL(t + s)ds|dt
- o
oo k ’
/ /ih;(tﬂ)gdsd:
/ f i-r-S)ldtdS

= /j“m]h;(t)idtds
Lf £ (1)t

50 @ — O uniformly on compact intervais if {h,} satisfies dispersion property

IA

]. QED.
An example of a sequence which satisfies dispersion property (1) is the fol-
lowing: h,(t) = -; if t &€ [~n.n] and h,.{f) = O otherwise. More generally, the

following intuitive prccedure to “flatten” a density function impiies the disper-

sion properties (see alsoc Grandmont. 1992},

PROPOSITION 3.3
Given a density function A. we may construct the sequence of density func-

tions

halt) = Zh(%)

(a). If h is Lipsciiitz on compact intervals, {A,} satisfies dispersion property

(1.
(b). If k is differentiable. and |h'(?)[ is integratle. {h,} satisfies dispersion

property (2).
Proof
(a)

Pn(k)

i

/;hn(t)-hn(zﬁ-k}idt
= [ imhdi- thE s S
/lh — (s +2)/ds

It

/ [A( s)»h(s+—)ids+/ ih(s)-h(s+§)[ds

L
+1L lh(s) - h(s + ;)[ds
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For L sufficiently large,
Lk
G, (k)< ¢ +/ —Bds
=L N

where B is the Lipschitz constant on [~2L,2L]. Therefore, for n sufficiently
large @n(k) < 2¢ forallk e I.
(b) Since A (t) = n~2R(n"11),

1 4 1
: = = HENdt = = Y
[ tenae = [ > [ Wil

which-tends to zero as n tends to infinity. QED.

5.3 The Extrinsic Income Effect

LEMMA 5.4
Suppose that the density functions h, have dispersion property (1). Then

given an interval {ur, wy],0 < wr < wy < oo,

i dafi , 1t
| ) = Pt ()

o
.' - d!' -
= [ (Grtp e = T2 ue Dha(t)dt —0
as n — oo, uniformly for all (p, w’, ") in P x {wr, wy] x [wr, wyl.

Remark. The lemma says that with increasing heterogeneity, the average
slope of the Engle curves

f —'-f-’-(u,,p. whhn(t)dt
oo W
do not differ significantly across different levels of w on the interval [wr, wy].

Proof
Using the substitution s = w'e™* we obtain

/ T e halt)dt = " (g, s)ha(log ' ~logs)(3)ds.
w 0

-—

We assume that

dfi

|—otpw)l < M

forallpin Pw > 0.7 = 1,2, ...I {refer to our definition of u in Section 5.1).
Then

m d* t -: 1 -
If (—f—(p, ) - f( e~ ) ha(t)dt]
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< [ 1E it cllhattogw’ ~ logs) — hu(ioguw” ~ log s)l(2)d
a dw 8
& 1
< M/ thn(logw’ — logs) — hp(logw"” - ]ogs)l(-s—)ds
1)

=f [ha(t) = An(log w” — loguw’ +1)|dt

which tends to zero uniformly for all (p, v/, w”)} in P x fwr, wo} x fwr, wy], as
n goes to infinity because of dispersion property (1). QED.
With Lemma 5.4, we are able to prove the following proposition:

PROPOSITION 5.5
Suppose the density functions h, satisfy dispersion property (1). Then for
any € > 0, there exists V* such that for all n > N*, [v.B.(p)v| < ¢ for (p, v)in

Q.
Proof

Remember that
[ dfi, —t
Buloly = [ 2 | Eip poe a0t
E R AW

Choose wyr = sup{w : w=p.z.p€ Pz & E}and wy = inf{iv: w=pz.pe
P,z € £}, Since £ is compact wy < 20 ; wr > 0 because E is bounded away
from zero. We choose wo, with wy < wy < wy. \We may split the matrix 58,(p)
into two matrices by

dfy L df; , -
Balp)i =[EIJ‘/R£2{;@,LP-I-‘}E t)*a‘;u?,wge ha(t)dtdp

dfi -
-~ - =7 by i
T / I; / ‘D, wpe )hn(t)dtdﬂ.

We name the matrices B} and B2 respectively. Now, we see that
df; , -
B30k = [ 21 [ Lip, woe=ha(oydta
E R GW

= fR 2 o Y (2)dt ) /E z;du).

Therefore B3(p}v = 0 as we have assumed that v.Z = 0.
So we are jeft with having to bound the matrix Bl. By Lemma 5.4, we know
that given any & > 0, there exists ¥* such that for all n greater than N*,

?ﬂ d:’ ‘-t e di, —t
!/_m(ﬁt’p.we )hn(i)dt-./m(ﬁ{p,woe Yho(t)dt| < &

for all pin P and w’ in [wy, uU] Therefore the entries of the matrix Bl (p) can
made arbitrarily small. and we have shown that [v.B,(p)v| = lv.BL(p)v} < € for
(p,v) in Q@ when n is sufficiently large. QED.
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5.4 The Intrinsic Income Effect

Our next task is to find conditions that will guarantee that v.A,{p)v is positive
{ot rather not too negative} on @ for n sufficiently large. We will adopt two
approaches. In the first approach, we will strengthen the assumptions on the
sequence {h,}. This method can be thought of as an approximate version of .
Grandmont (1987). In the second approach, we will not strengthen the disper-
sion property assumption on {kn}, instead we will impose a fairly mild distri-
butional assumption on the endowments that is reminiscent of Hildenbrand's
(1983).

PROPOSITION 5.6°

Suppose that the density functions h, satisfy dispersion property (2). Then
for any € > 0, there exists N* such that for all n > N®,

v-An(p)o > —¢

for all {p,v) € Q.
Proof
Since each A, has compact support, we may assume that A, and its derivative

R! are zero outside some compact interval [an,bn], With An(aa) = An{bn) = 0.
As P is a compact subset of Al , |{&211 is bounded for all w > 0 and
i = 1.2, .., [ This impiies that there exists L such that

flp.w},

e =——*< L
for (p,v) € Q.

dfi
Anlphij =/E{./Rfj{ut,p,p.:)a—i-(ut,p,p.z)hn(z,dt]dp

4,
v.An(p)e = /E [ /R S 3 i £y e, P p2) Sy, p, . 1) i1
LI

We focus on the inner integral,

dn .
[ vefi o p2) et 2 et t)e]
an ¢

_f" 1, #p,pze P (~pa) " eP ha(t)dt]
=/ sgit-flppze (=p.z) e ha(t)

bn
= [ e S paze P (.2 2 halt) + X ()

2] am grateful to Professor Grandment for suggesting this line of inquiry.
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o 1 f(PvP':e-‘) 2 '
?./q 5[”-‘5;-)3—_-,—-} (p-z)h, (1)]de

Therefore

1 “ flp,pre=t) , -
v.An(p)v > §J{: /a‘ IU-W}Z(P-r)hn(t)}df}dn

The right hand side of the last inequality has ap absolute value less than

ba
3 fE / IR (O1dt(p.2)du,

which will be less than ¢ for n sufficientiy large, because of dispersion property
{2). So we obtain
v.da{piv > ~¢

for all (p,v) € Q, when n sufficiently large. QED.

Re-capituiating our resujts on the matrices 4, (p) and B, (p), we obtain the
following theorem:

THEOREM 5.7

Let &, be a sequence of economies as defineqd in Section 5.1. Suppose that
the sequences {hil r=12 - I satisfy dispersion property (2). Then

{a). all equilibrium prices for the economies &n are contained in the interior
of a compact, convex set PcC .lfH,. .

Given such a P, for n sufficiently large,

(b). market demand Fa(p) satisfies RMP in the cone R . x P,

{c). the economy £, has a unique equilibrium price, and

{d). the equilibrium price is asymptotically stable, i.e., it is the limit point
of the tatonnement processes (I) and (II), provided the initial price p(0} is in
Rer x P.

Proof

(3} is a trivial observation we made in Section 3.2. (b) follows from Propo-
sitions 5.2, 5.5 and 5.6. (¢} is a trivial consequence of {b). So only (d) needs to
be proved.

apply the Lyapounov type argument we used in that theorem since there is no
guarantee that a solution to (1), p(#), will not drift out of Ry, x P. We begin
by constructing a eonvex cone containing Ry, x P which will also contain al}
solutions p(?) beginning in Rys x P for all the economies £, .

We define ||.]| as the modifieq porm. |iz|| = | a7 'z?, and Q = {r e
RL ol = 1} If p(2) is a solution to (I}, then U':;L{%))Tf is the projection of the
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solution onto }, and (Ell mg} 1) is the solution to (I) with initial condition

p(0) f P y
oo < 7= g 7€ Rerx PO
We now construct a compact set £ such that P/ C int(Q"} C Q" C Q and -

for which ail sclutions to (I) beginning in 7, for all the economies &,, will be
contained in Q. This also implies, by our reascning above, that all solutions
beginning in R4y x P will stay in Z.4 x 2 for all the economies £,. Q" will
have to be constructed in a way that does not depend or n. Remember that
we have assumed that each &, cortains contains a homothetic class (see Section
5.1); indeed, market demand

Fy = 6°Fop) + o' F(p) + ... + ¢' Falp).

Let Z9(p) = 6°F%(p) — 7, where £ is the mean endowment. Then the excess
demand of &n, Za(p) = Z°(p). Z°{p) satisfies the weak Walras Law, Z°(p).p <
0, is bounded below, and also satisfies the desirability property, i.e., |Z%(p)| — o0
whenever p, — po € R\ RL ..

Now referring to the proof of Theorem 3.2, we may construct W, ' and
0" with Z%p) in place of Z(p). If 61, .., 61— are chosen small enough P' C Q".
Then the fact that Z.(p) > Z°(p) now guarantees that for all £,, a solution to
(I) with p(0} € P’ will aiways remain in Q”, or more generally, a solution to (I)
with p(0) € Ry, x P will always be contained in Ruy x .

By taking the convex hull if necessary, we may assume that R4 x 2" is a
closed convex cone in R, _. By part (b) of this theorem, RMP holds in Ry, xQ"
for market demand F,, of the economies £,, n > N. Since we also know that no
solutions to (I) leaves R, x )", we conciude {using Lyapounov’s method, as in
the proof of Theorem 4.2) that the equilibrium price of the economies £&,, 7 > N,
is asymptotically stable, i.e., all solutions to (I} in &, with p(0) € Hyp x P
converges to the equilibrium price of £,.

We now consider tatonnement process {II). As in the case with (I}, we have
to allow for the possibility that a solution to (II) with p(0) € P may drift out
of P, and so if we are to use the Lyapounov function in the proof of Theorem
4.3, we must ensure that RMP holds on some bigger set of prices, which always
contains p{t).

We define the norm |.|5 by Ip|s = E:=1 Bt and ¥ ={pe R,y :lpls =
1}. We observe that p(t) is the solution to (II) with initial condition p(0) if and
only if P& is the solution to (IT) with initial condition &a; - So without loss
of generality; we may confine our study to solutions with p(0} € ¥ M (R44 x P).
We note that ¥ N(R44 x P)is a compact subset of ¥. Defining

4
Lo%p, )= D 87 (pi — gilog pi — ¢ + g log @s),

izl
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we see that £ is a continuous function so there is a number Af such that
L%p,q) < M for all p and ¢ in ¥ N (R44 x P). As n varies, 8o does the
equilibrium price of &,, nonetheless it wiil always stay within ¥{|(R44 x P).
The fact that £L%(p,q) € M guarantees that the vaiue of the Lyapounov function
L at p(0) as defined in Theorem 4.3, will always be bounded by M, for all the .
economies &,.

We define S(p') = {pe ¥: L{p,p’) < M} and

S= U 5(p').

P E¥N(Ros xP)

It is fairly trivial to show that S is compact. Then the convex hull of 5, con(5),
s a compact. convex subset of ¥. By part (b) of this theorem, ihere exisis
Na, such that for all n > Np, the demand funciicn of £, satisfies RMP in the
cone Ra4+ % con(S). By the proof of Theorem 4.3, a solution pft) to (II) in the
economy £n, 1 > No, with p(0) € Ao x P wiil never leave con(5), and wiil
always converge to the equilibrium price of £,. QED.

For our next resuit we need the following lemma:

LEMMA 5.8

Suppose that A,(¢f) has dispersion property (1). Then, given any interval
[wL, wrj], 0 <wr < wrr < oo,

/J;[ff(m pow) fy(ue pow) = filue, p,w') i (uep. w’)(%-z-)])‘zn(t)dt —9

as n — oo, uniformly for ali (p,w,w') in P x [wr, wy] x [wr, wy]
Remark: Clearly the result implies that

w w w! w

/[f.-(ug.p.w) SHluepow)  filue,pow') ff(“"p'w’}}hn(t)dz — 0
R

In other words. when h. is sufficiently dispersed.

./[f-'(ur-p.w) fi(""p’w)}hn(‘)dt
R v N

wiil not differ significantly across income w; again, this is an approximation of
what would, in the homothetic case, be identical.
Proof
i

By the substitution v = we™", we obtain

/ filur, pyw) fi(ue, p, wiha(t)dt =/ filp,we™ ) fi(p, we™ ") h,(t)dt
= /cx filp, v) fi (P, U)w"’u'shn(logw — logv)dv
9
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Similazly,
o o]
/ Fi(tte,py w0 (1 9w Y ()t = ]ﬁ £, 0)f; (2, vy v~ 2ha(log w'—log v)dv.

We choose L satisfying
|fi(i?v)] S L

forall i =1,2,..1. L exists because P is a compact subset of Al . Therefore,
o wz ,
1/ [filue, p, w) fi{un, pyw)— ;,-z-fnunp,w)ﬁ(ue,p, w)]ha{t)dt| =
-ca

|fala sz-&(—p’-v—){hn(log w = logv) = ha(logw’ — log v)]v“dz;i
o v v

o
< wrL? / h(log w — logv) — An(logw’ —logu)jv™ dv
0

= szgf (hn(t) — hn(log w’ = logw + t)|dt ~— 0

as n — oo, uniformly for all (p, w, w') in P x {wr, wy] x [wg, wy] by dispersion
property {1). QED.

Deseription of the endowment set £

Suppose we write £ as {rz” : T i =1,z" € R,,0<r £ T < o0} Let
§={z* € R, : T z;?=1)}. B, is the Borei o-field generated by the subspace
topology on S. Let v be a probability measure on (S, 5,). The conditional
probability of r given z* is given by the density function g(r,z"}, so,

ra
#({*‘r'i-’:'ESO-?‘lSTS"E})=,/-/ 9(r,=")drdv.
4 50 Jry

PROPOSITION 5.9
Suppose that g has the following properties:
(1} The derivative %&(r, z*) exists and is uniformly bounded for all (r,z*)
(from now on to save some space, we will denote %f(r, z°} by ¢'(r,2*)),

(2) forallz*in 5

T

/ rig'(r,27)}dr <0
0

(3) the sequence {hn} satisfies dispersion property (1).
Then for any € > 0, there exists N such that forall n > N,

v.dn(p)v > —¢
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for (p,v)in Q.
Proof
We know that

An(P ij —] //' fJ e, P, TP ) kut,PaT'Pz )g(r z )drdi’d#n

Making the substitution w = rp.z*, we obtain

Tp.2”
Aﬂ(p)lj _/ ff Ug P:w)““‘"{uhpx ng( )—-——*dwd#ndu

and so v.A,(p)v

! e i, w oo
/p—;]] ZZr.-v,-fj(u;.P,w)m{ug,p,w)g(p':_,: Ydwdp,dv

Tp.z2"
/Qp: // {flue,p,w)v)? 9(—“‘ zYdwdun,dv

fs?p.z f/ o(T 2 f(ue. p, Tp.2")-t) ditn

1 Tp.:' o w
—= / f (Flue, pyw)2)?g'{ ===, 2" dwdpn}dy
T JrJo p.r

Notice that the first term is always positive. so we shail focus only on the second.

! r i 2 w “Ydwd d
./;WL/R,/; (f(ue, p,w).v) 5’(;:_:_-,:: )dwdpa]dy

Now, in the absence of any assumptions on the preferences we will have to stop
and conciude (as lildenbrand (1983) did) that v.4.(p)v is positive when ¢ is
negative. With dispersion property (1) we may go further: Firstly, let us note
that since £ is bounded away from zero. there exists f such that forallr < F
ant forallz” € §, ¢'(»,2°) = g(r,z") = 0. In other words, there exists ¥ such
that

H

0<Y «<min{Tpz*:pe€ Pz" €5},
and

o W oy o ey
9(;_';,: )-—g{plz,,z}-o

foral w <Y, z* € S and p € P. As such,

T T
f g (r 2™)dr = / rig'(r, = )dr <0
0

¥
7

forallz= € 5, pe P.
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Therefore, we wiil be done if we can show that

f 1 TP e prw)0)g (=2, 2°)dwdpindy
52(P-='}2/R/}' ISR AFPIN o

is not too positive for n sufficiently large, for all (p, v} € Q. We choose a constant
w', with
Y <w < max{Tpz" :p€ P,z € 5},

8o the expression can be wriiten as,

1 . Tp.z* v ‘.' ‘ , ' .
_/52([).2')2{/; ./R((f(uhp,w).u)z_w‘(itll_ptﬂl)z)hn(t)dtg (p-lz_,z Ydw]dy

1 Tp.z* o, U f {8, po ') 5 oW .
+/3W/r wa (PLELL 2 ) )ty (S, 2w

p.z*’

By Lemma 5.8 and the uniform boundedness of ¢, the first term in the sum
can be made arbitrarily small, say, with an absolute value less than ¢, provided
n is sufficiently large. As for the second term.

! e 2 U‘f(uh 2, w!} 92 i W .
by A ———=) e
,/;Q(p.z‘):'_/; jﬂw ( - Yhn(t)dig (p.z"z Ydwdy

1 ' e powY o, Tp.z* , )
,/52(-p.2")2[/R(L flue,p wb‘%(f)dt]{f w"’g(;%,z Ydwldy

w’ Y

_ p.z* v.f(u, pow) 4 T 2y .
= [ B R Praiad] [, re'tr, = drldv

».E

< 0

Therefore we have shown that v.4,(pjv > —e¢ for all {p,v} € @. QED.

Weaving together Proposition 3.3 on Bn(p) and the last proposition, we
obtain the following theorem:

THEOREM 5.10

Let &, be a sequence of economies as defined in Section 5.1. Suppose that
the sequences {AL}, r = 1,2,..,! satisfv dispersion property (1). Writing E as
{rz* : 5., z;* =1,z € R,,0 < r £ T < oo}, we assume that the conditional
probability of r given z" is given by the density function g(r,z"), where g(r,z%)
has the following properties:

(1) $2(r,z") exists and is uniformly bounded for all (r.z"), and

(2) for all z” in 5,

T
/ rig'(r.z*)dr < 0.
o

Then
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(a). all equilibrium prices for the economies £, are contained in the interior
of a compact, convex set P C Al ..

Given such a P, for n sufficientiy large,

{b). market demand F,(p) satisfies RMP in the cone R, x P,

(¢). the economy £, has a unique equilibrium price, and

(d). the equilibrium price of &, is asympiotically stable, i.e., it is the limit
point of the tatonnement processes (I) and (II}, provided the initial price p(0) -
1510 Aeq x P.

Proof

(a) is a triviai observation we made in Section 5.2. (b) follows from Propo-
sitions 5.5 and 5.9. {(c) is 2 trivial consequence of (b). (d)’s proof is found in
Theorem 5.7. QED.

We end with a few remarks. Comparing Theorem 3.10 with that of Hilden-
brand (1983), we see that our assumptions on the endowment distribution are
relatively mild. They need neither he collinear nor have a downward sloping
density; in its place. we have assumption (2}, which will be satisfied if g is uni-
modal and the upward sloping part of g is not “too big”. As an illustration,
supppose that ¢(T,z7) = g{0,z7) = 0 for all z* and let R{z*) be the maximum
of g{-,z"). Then

T T
/ rig'(r 2%)dr < / Rz (r, z7)dr.
0 a

By the fundamental theorem of calculus, the latter is in fact R?*(z*)[g(T, z*) -
9(0,z*)] = 0 and so assumption (2) is satisfied. Of course, our relatively weak
assumptions on endowments are possible because we have added heterogeneity
assumptions: they are not present in Hildenbrand’s model.

The assumption that endowments and preferences are independently dis-
tributed may be weakeued in the following way: Let

Ea=(U" x E,F x B,v} xp*),

s = 1,2,..., M be M sequences of economies with the property that the mean
endowments of the sequences of economies are collinear, i.e., fpzdp’ = 8%,
where 6° > 0 for s = 1.2,..., M. Then we may construct the sequence of
econolies

En=(U"x E,FxB,A)

where the probability measure A, is defined by
AnfA)=w' (v < ') A) + 07 (17 x p7)(A) + .M x wM)(4),

where 4 is any measurable subset of U'" x E and ¢’ are positive and constant

for all n with Zf; ¢ ¥ = 1. The economies £ will have the mean endowment

(Zf_f_zl v’ A )Z. For this new sequence of economies, preferences and endowments

. 43




need not be independently distributed. Instead. we have assumed that each
economy in the new sequence can be divided into M “blocks”; within each
block preferences and endowments are independent. If each of the sequences £%,
s=1,2,....M, satisfies the assumptions of Theorem 5.7 (respectively Theorem
§.10) then the conclusion of the theorem will be valid for the sequence £;. With -
some reflection, this should be clear. Similarly, Theorems 2.4 and 3.2 remain
valid for economies where the independence assumption is relaxed in the manner
just described.

Finally, we add that for Theorems 5.7 and 5.10, the assumption that F
is bounded away from zero may be dropped, provided we assume that at the
neighbourhood of any price %}-(u, p, w) is bounded uniformly for all w € (0, W],
W a finite number. In that way, Lemma 5.1 wiil still be true; while the proois of
Propositions 5.5 and 5.9 will invoive an additional layer of approximations, the
propositions will also remain valid (see Appendix). Proposition 5.6 is unaffected
by the removal of the assumption.

Appendix

We wiil first indicate how we may modify the proof of Propostion 5.5 when E
is not assumed to be bounded away from zero:

As in the original proof we choose wy = sup{w:w=yp.z,p€ P,z € E}; wy
is finite since £ is compact. But we cannot choose wy = inf{w: w=p.z,p€
P,z € E} as the infimum may now be zero. Instead, we first choose wy, with
0 < wy < wyr. Then we may split the matrix B,(p) into three mairices by

— . if'_ -1 __ﬁ -t
B = [ [ 1) - et woe hate)aa

N
T '/;'\N(O) * ./;2 dw(p' woe™ ' Jha(t)dtdu.
. | ﬁ )
+ -/N(O) z; ./.R dw(p' (p.z}e~"Yha(t)dtdu

where N{(0) is a neighbourhood of zero in £!. We name the matrices B:, B2
and B2. When N(0) is small enough, we can guarantee that both jv.B3(p)v] and
|v.B3(p)v| will be less that ¢ for all (p, v} in @ and for all n: the former because
each entry in the matrix can be made arbitrarily smal, the latter because v.Z =
0, as in the original proof. So we only have to deal with |v.B.(p)v]. For n
sufficiently large, this too will be arbitrarily small. The arguments in the original
proof can be re-applied, with wy chosen to satisfy

0 < wy < min{inf p.(E \ N(D)), wo}.
peEP
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The proof of Proposition 5.9 may be modified in the following way: Keep to
the original proof until we focus on the term

———1 el 20, ¥ .
./5 2(;,_;-)2 {.[‘iv/ﬂ (f(uhpv W)v) g (p—z'l x )d!L'dp“]dy_

Since E need not be bounded away from zero, the F and Y we postulated in the -
original proof need not exist. Instead, we choose a positive number ¥’ s0 small

that .
Y' <« min{Tp.z*:p€ P,z*' € 5},

—------—1 ! ‘ 2.1, W .
|/; 2{?-3')2 l./‘;’fa (f(ut-p;w)-ﬂ) g (P‘::,I )dwdp,,}dy[ < €,

and. lastly, that
T

rig(r2)dr <
P-F
for all z* € S, p € P. Remember that we have assumed ¢’ to be uniformiy
bounded, so the last inequality is possible. After Y’ had been chosen, the
arguments in the original proof can be repeated with Y/ in place of Y.
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