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HANDLING STRATEGIES FOR IMPORT CONTAINERS

AT MARINE TERMINALS

BERNARDO DE CASTILHO and CARLOS F. DAGANZO
Institute of Transportation Studies, University of California, Berkeley, CA 94720, U.S.A.

(Received 17 December 1991)

Abstract-Many types of storage systems require goods to be stacked in a storage area. The
amount of handling effort required to retrieve individual items from the stacks depends on stack
heights and on the adopted storage strategy. The paper focuses on container import operations at
marine terminals. It presents methods for measuring the amount of handling effort required ’~hen
two basic strategies are adopted, one that tries to keep at1 stacks the same size and another
than segregates containers according to arrival time. The strategies are compared in an idealized
situation. The methods should be easy to modify for the analysis of simiIar systems.

1. LNTRODUCTION

Container import operations typically involve transferring batches of boxes from an
incoming vessel to a temporary storage area where the containers wait to be claimed by
trucks. To reduce the area required for temporary storage, containers are usually stacked,
and special handling equipment (such as rail-mounted or rubber-tired cranes) is used 
move them to and from the stacks.

It is apparent that higher stacks reduce the area required for the yard, but they
require additional handling to retrieve boxes near the ground. To define a good configu-
ration for the storage area, methods are needed for estimating the number of moves
required to retrieve a box as a function of stack height and operating strategy. The extra
handling effort required for higher stacks can then be traded off against space require-
ments and the best operating strategy can be selected for the chosen yard configuration.

This type of problem is not specific to container yards. It arises in any system in
which goods are stored in stacks for a random amount of time before retrieval. The
results about to be presented should also apply to such systems.

Figure 1 depicts how a typical storage yard is arranged. Stacks are aligned side by
side, forming "bays" that are straddled by cranes. When a specific container needs to be
retrieved, the crane must first transfer any boxes that might be on top of it to adjacent
stacks, then take the container to an access lane where a truck or straddle carrier receives
it. The moves required to expose the target box are called "shuffles."

In this paper, we start by developing a method for estimating the expected number
of moves required to remove a single container from a bay (Section 2). In Section 
simple formulas are derived to estimate the expected number of moves needed to retrieve
several containers from a group of stacks, given a realistic operating strategy. It is as-
sumed that no new containers are deposited in the group, so that its average stack height
declines. Arrivals to the storage area are considered in the following sections. Section 4
presents an ideal situation with uniform ship arrivals and suggests two basic operating
strategies. Section 5 examines the first strategy, which allows containers from different
ships to be mixed in the storage area. Section 6 examines a different strategy, in which
containers are segregated according to arrival time. Section 7 refines and generalizes some
of the results obtained previously. Section 8 compares both strategies, and Section 9
summarizes and discusses the results.

2. RETRIEVING A SINGLE CONTAINER

To determine the expected number of handling moves required to retrieve a single
container from a bay, let us start by considering a single stack with B boxes, each equally
likely to be selected. In this case, the expected number of moves is clearly

I51
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Fig. 1. Typical storage area layout.

ElM] = 1/2- (B + 1)

For a group of several stacks with different heights, the expected number of moves can
be expressed as

E[MI = 1/2 - ~ p,(B, + 1)

where s is the total number of stacks, Bi is the current heidat of stack i, and p, is the
probability that the container to be picked is in stack L

If all containers are equally Iikely to be selected, p~ is proportional to B,, and the
above expression becomes

or, more conveniently

E[MI = 1/2 ¯ (LIB + E[BI}

Vat[B] )E[M] = 1/2. E[BI + EIB-"-"-~ + 1 (I)

Equation (1) clearty shows that the expected number of moves per container, E[M],
is minimal when all stacks have the same number of containers, because in that case the
variance-to-mean ratio of the stack heights is zero. The result, a classical example of
length-biased sampling, should not be surprising. It is analogous to the expected delay
formula for passengers waiting for a bus (Cox, 1962). Because more passengers arrive
during long headways (with longer delays), the average passenger delay at the bus stop 
greater than half a headway. Similarly now, taller stacks, ~hieh require more moves, are
more likely to contain the next box to be picked.

3. RETRIEVING SEVERAL CONTAINERS

It follows from eqn (1) that if several containers are to be extracted from a bay,
requiring some shuffling moves, shuffles should aim to keep the stacks equalized. This
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would reduce future handling effort. In this spirit, we consider a strategy that_extracts
the maximum benefit from each shuffling move by always shifting containers to the
emptiest stack within a reasonable distance from the crane.

We will call a set of stacks among which shuffles can be performed a "group." A
very uneven group would be likely to require shuffles, which would tend to restore its
stacks to the average height rapidly. Unfortunately, perfectly even stacks cannot be
achieved because after each retrieval the group will typically have one short stack (from
which a container was recently removed), even if all the others should be fairly balanced.

A computer simulation was used to evaluate the variance-to*mean ratio of the stack
heights in a group as it was emptied with the described strategy. The simulation program
also tracked the number of shuffling moves.

Remarkably, the simulation showed that, as long as the number of stacks per group
is at least equal to the initial average stack height (s >__ E[B]), the variance of the stack
heights at any one time is approximately one-half of the mean stack height at the time,
Var[B(t)] - 0.5 E[B(t)]. Thus, the expected number of shuffling moves to retrieve a
container can be expressed as a function of the current average stack height, E[B(t)],
only

E[M(t)] = 1/2. (E[B(t)t 1. 5) (2)

This is slightly higher (0.25 moves) than it would be if the stacks were always perfec-dy
equalized.

Figure 2 shows the expected number of moves required to remove a single container,
from groups of stacks of different average heights. The s~rartbols represent values obtained
from the simulation for groups of different dimensions. The solid line was obtained by
using eqn (2). To illustrate the contribution of the stack height variance-to-mean ratio,
the figure also shows the results obtained if Var[B]/E[B] were ignored.

Equation (2) can be used to evaluate the number of moves required to retrieve several
containers from a group. Let s and p denote the number of stacks and the number of
boxes initially in the group. Then the expected number of movies to retrieve c containers
from the group is

c-!,,2 ,5)
i=0 S

$.0-

4.5-

......... i ......... ........... ........ i- ---i .......
i i~ ’ * i i i

......... ~ ...........i ...........~ ..........~-~..~ ......

0.5 .................................. - ..................... ~ ..... ¯ .........

0.0 ;
1.0 2~o 3’.o ,,:o slo 6~o 7’.o

E[B(t)] (stack height)

Fig. 2. Moves required to retrieve a single container.

r-1

Sim. 6 by 4

Sim. 8 by 6

Sim. 10 by 8

Eq.(2)
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where (p - i)/s is the average stack height after i containers have been removed. Divid-
ing the above expression by c, we obtain the average number of moves per box during the
whole operation, E[M]:

¢-] j

E[M] = I/2- ~
;p - (c - i)/2 + 1.5)

,=0 \ S /

Letting E[BI] and E[BI] denote the initial and final average stack heights, respectively, and
E[B] the average stack height during the whole operation, we can rewrite this expression
in a form similar to that of eqn (2):

E[M] = I/2" /EI_[B,] + E[Br] + 1.5} \ = 1/2- (E[B] + t.5) (3)
2\ /

4. AN IDEAL CASE: CONSTAN~ HEADWAYS AND SHIP SIZES

In the previous sections, we derived expressions for the number of moves required to
retrieve one or more containers from the storage stacks. The remainder of this paper
seeks to illustrate the effects of two handling strategies over long periods of time when
many ships and their cargoes pass through the port. In order to keep the number of
parameters down, the comparisons will be made for a situation with idealized ship traffic
that can be described by only two constants. Although general (non, deal) cases can also
be handled, they will not be the focus of this presentation.

We assume from now on that container dweI1 times can be represented as outcomes
of independent identically distributed (i.i.d.) random variables that are revealed when
they depart; port management has no information. If (somewhat unrealistically) we tem-
porarily assume that all the containers in the yard are equally likely to depart at any time
(as if dwell times were exponentially distributed) and we assume that an effort is made
to keep the stacks even, the number of container moves can be predicted as a func-
tion of their aceumuIafion: note that eqn (2) should hold for any container at any time
"Mth E[B(t)] E[P(t)]/S, where P(t) is :benumber of c ontainers in t he yardat ti me t
and S is the total number of stacks.

As explained in Taleb-Ibrahimi (19S9), for any given arrival pattern of containers, 
is easy to construct curves depi~ing the cumulative number of containers to have arrived,
A(t), and departed, D(t), from the yard, on average. For large traffic volumes the
actual curves should be close to the averages so that P(t) - A (t) -- D(I) and, for
large (h -- to),

E[MI =

It

1/2 ¯ ([AO) D(t)]/S + l/ 2)dD(t)

D(t,) - D(to)

This calculation can be done easily with a spreadsheet.
For our comparisons, we shall assume that ships arrive with constant headways and

always unload the same number of containers, A. we also assume that the containers of a
ship are removed from storage at an approximately constant rate during a period of time
equal to n headways; the retrieval rate for a given ship is A/n containers per headway.
The situation is depicted in Fig. 3.

Note that with this arrival/retrieval process, the storage yard always holds containers
from exactly n ships and the overall retrieval rate is A (containers per headway). There-
fore, the parameter n can also be viewed as the number of ships represented by at least
one container in the storage stacks at any point in time.

We can take advantage of the symmetry of the problem and restrict our analysis to a
period of one headway. Immediately after a ship call, all stacks are filled to a height B =
P/S. The total number of containers in storage at this point is P = A (n + 1 )/2. During
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Fig. 3. Ideal case.

155

the nex~ headway, A containers are removed, leaving A (n - 1 )/2 boxes in storage at the
end of the period. The average number of boxes in storage during the period is An/2,
and the average stack height is therefore

mr/EtB] =
2S

a quantity that is independent of the adopted strategy.
Little’s formula of queueing theory ensures that this expression also holds for other

dwell times, with mean equal to n/2 headways. The expression can be used with eqn (3)
to estimate the total number of moves required to retrieve each container as a function of
A, S and n:

An
ElM] = 1/2 - ~- + 0.75 (4)

For example, if n = 3 and A/S = 3, then E[~W] = 3.
Note that eqn (4) is valid only if at any point in time each container present 

storage has an equal probability of being the next one to be retrieved. In other words,
each container’s departure time from the stacks should be independent of its arrival time.
Such a situation could exist, but it does not seem very probable. In reality, a container
that has been in storage for a long time would tend to leave before one that just arrived.
The expression could also hold if containers with different probabilities of being picked
were perfectly mixed in the stacks, but this also seems unlikely.

If containers have an increasing chance of being picked as their time in storage
increases, as happens with uniform distributions, and nothing is done to segregate them
by arrival time, the most likely boxes to be picked (hot) will tend to be "buried" under
recently arrived ones (cold). This would naturally increase the expected number of moves
per retrieval, ELM]. Section 5 examines the hot/cold penalty. Section 6 considers a strat-
egy that avoids the penalty by storing the containers from each ship separately (segregat-
ing). The choice between the two strategies is not obvious: segregating containers intro-
duces a "consolidation" phase that requires extra moves and will be effective only if this
effort is smaller than the increase in ElM] due to burying hot boxes under cold ones.
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5. NONSEGREGATING STRATEGY

If new containers are placed on top of existing ones (equalizing stack heights), after
each ship call the stacks would consist mostly of cold containers on top of hot ones. Then,
as containers were removed, the s-tacks would become more mined and the proportion of
hot boxes would gradually decrease.

Because of the random nature of the shuffling moves, the evolution of stack compo-
sition is hard to model anal3xicaUy. An exception occurs whenever shuffled containers
are always returned to their original stacks, in the original order. In that case, containers
remain stacked in the most unfavorable way possible, as illustrated in Fig. 4. The resulting
formulas, derived below, are upper bounds because shuffles v,5t! tend to improve on this
order.

In a general case, with an arbitrary but known ship schedule and a known cumulative
distribution function (c.d.f.) for the container dwell times, T(t), it is easy to determine
at any time the number of containers left from each prior ship. If ship j arrived at time
/-/j(H~ < t), then it left behindPj(t) = A~[I T(t - /- /j)] (o rPj(t) = AjT¢(t - H~),
where T,(.) is the complementary c.d.f.) containers at time t and these depart at a rate
dj(t) = At(t)T(t - The expected number of movesfor a container of thi s t ype is

EIMj(t)] t/ S. {1/2.Pj(t) + 0.75 + P~_~(t) + .. . }

= A/S. {1/2. L(t - ~) 0.75 + TAt- Hs _,) + .. . }

This formula assumes that all the stacks contain the same mixture of boxes and that to
get to a container of type j, all the boxes from earlier ships must be shuffled (j - 1,j -
2 .... ); in addition, a number of moves given by eqn (2) is expected for the type 

container.
As a result, the expected number of moves during our period of interest is given by

f" Ej E[M(t)] " dj(t)dt
~to

For uniformly distributed dwell times, these calculations resuk in simple analytical for-
mulas.

Figure 4 illustrates how the composition of a t vpica3 stack changes over time: with

Fig. 4. Nonsegregating strategy.
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our pessimistic model, the top n segments would contain the coldest containers; the
middle segments of decreasing size would contain increasingly hot containers all the way
to the bottom, where a single segment would contain all the hottest boxes.

The resulting formula for the expected number of moves is

2 1 ,) An
EEMJ--- . +0.75

Except for the term in braces

(5)

2 l
f, = 7 - (6)

6n23

this formula is identical to eqn (4). The quantkyf, which corresponds to the term 1/2 
eqn (4), can be interpreted as the expected position of a randomly selected container as 
fraction of the stack height. It is apparent that if each box were equally likely to be
selected, fwould be equal to 1/2 [the coefficient we used in eqns (1) through (4)]. In 
worst-case scenario described above, however, fcould be substantially larger: fis 0.5 for
n = 1 and approaches 2/3 as n tends to infinity. Therefore, even when there are many
types of boxes, we can expect the additional handlhag effort due to burying hot boxes to
be less than about (2/3)/(1/2), or 33% more than that required if all containers 
equal.

To see how eqns (5) and (6) z.-Be, without algebraic manipulations, consider 
example depicted in Fig. 4. Because the next container to be picked has an equal probabil-
ity of being in each set of homogeneo,~ boxes (.4/n will be removed from each one
within the next headway) and the departure rates are constant through the headway, we
can evaluate ElM] from the stack heights in the middle of a headway. The result is

(0.5/2 + 1.5 + 2.5) + (I.5/2 + 2.5) + (2.3/2) 1 3A
E[34] =

3 4.5 2S + 0.75

The quantity in braces is the average of distances AB, ACand AD in Fig. 4, 2.92. This
quantity is divided by the height of point A to give the coefficient f, 0.65. The factor
3A/2S represents the average stack height, as described in the previous section. If A/S =
3, E[M-f = 3.67.

This represents a 22% increase from our previous result (E[M] = 3), the lower
bound calculated assuming all containers were equally likely to be retrieved at any time.
Although we have no evidence to support it, we would expect the actual number to be
closer to the upper than to the lower bound.

6o SEGREGATING STRATEGY

Section 5 illustrated that when arriving containers are piled on top of waiting con-
tainers, the number of extra moves per container is higher than it would be if the contain-
ers had been randomly mixed. This occurred because the containers most likely to be
retrieved at any given time (hot), that is, those having spent the longest time in the yard,
will tend to be buried under colder containers. In this section we investigate whether
handling could be reduced by segregating containers by age in the yard.

Although this type of segregation would require some extra moves before each ship
arrival, enough to clear the space it would need for its containers, it may save enough
moves during the actual retrieval process to be of benefit. Our objective is to identify
conditions under which such segregation would be advantageous.

As L~ Section 5, we will calculate the number of container moves per container
handled at the yard. Because ship cargoes are segregated, our unit of analysis will be one
ship. The expected number of clearing and retrieval moves will be calculated for the
whole ship, ending when the last of the ship’s containers is retrieved. The total number of
~(8)-F
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moves will be prorai~-~ to each one of the ship’s containers to obtain the expected moves
per container.

AIthough formulas are developed in Section 7 for a general case with an arbitrary
ship schedule, va~-ing cargo sizes and any container time distribution, the comparisons
with the nonsegregatLng strategy will be made for the ideal case examined in Section 4.
The qualitative conclusions from these comparisons should extend to more general cases,
which can then be ev~uated more precisely with our expressions or with simulations.

In order to k~p ship cargoes segregated, it is necessary to make room for each
arriving ship before its arrival. Because there is no need for all the containers of one ship
to be together in the yard, room is assumed to be made as follows. We assume that the
stacks allocated to each ship are divided into groups (defined earlier as sets of adjoining
stacks among which containers may be shuffled). The groups for a ship can be spread
over the whole yard in any pattern. The number of container stacks per group, s, is
assumed to be constant and equal for all ships, so that the total number of groups in the
yard can be written as S/s. When empty groups are needed to receive a new shipload,
they are released from partially filled groups of existing ships. Groups with the fewest
containers are then emptied and their contents transferred to the remaining groups for
the same ship.

With this strategy, the number of groups allocated to a ship decreases with time (in
discrete amounts ~ith each ship arrival), and the average number of containers per stack
varies with time in a sawtooth pattern with discrete increases when a ship arrives and
gradual decreases in between. For our ideal case with constant ship interarrival times
(headways), constant ship loads A and uniform container dwell times, we assume that
groups are released so as to maintain stacks of roughly equal height immediately after
each ship arrival, tk~cause the number of containers in the yard at those times is (on
average) A(n + 1)/2, the average stack height at those times should be B = A (n 
I )/(2S). To be consistent with this height, each new ship mus~ receive A/B empty stacks,
or A/(Bs) = 2S/[s(n 1)] gr oups when it arr ives. Theshipwill then release one-nth
of the groups with each subsequent headway: 2 (S/s)/[n (n + 1)].

Figure 5 depi~s the average number of containers per stack as a function of time
B(t), for n = 3 andA/S = 3. During the first headway, stack height decreases by one-
third (beca,~e one--&£-d of the containers gill have departed). It reaches the maximum
again after one-tb£~ of the biocks have been released for the next arriving ship (the other
two-thirds is contributed by the other two ship loads sfiU in the yard). During the second
headway, stack height decreases more rapidly because the same number of containers is
removed from fewer stacks. All remaining containers are cleared during the last headway.

The model introduced in Section 3 can be used to estimate the number of container
moves during the times when the average stack height decreases. The moves per container

Stack
height ~\

...................................... i .........

i .... i ........

t
o 1 2 8

Fig. 5. Segregating strategy.
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can be calculated for each headway with the aid of Fig. 5, because during each headway
all the containers from each ship are equally likely to be picked.

For the example depicted in Fig. 5, average stack height decreases from the initial B
= 6 to 6(2/3) = 4 in the first headway. Using eqn (3), we obtain ElM] = 1/2(5 
1.5) = 3.25 moves per container. The blocks are then consolidated, and the height of
each stack is restored to 6. During the second headway, stack heights decrease from B =
6 to 6(1/2) = 3, yielding E[M] = 1/2(4.5 + 1.5) = 3.00. The blocks are consolidated
for the last time, and during the last headway all containers are removed (ELM] 
I/2(3 + 1.5) = 2.25). Because the same number of containers is removed during each

headway, the overall ElM] is simply the average of all ElM]s: 1/3(3.25 + 3.00 + 2.25)
= 2.83.

Using the same logic for an arbitrary n, we find the general formula for the expected
number of retrieval moves per container, ELM,], in our ideal case (from now on we use
the subscripts r and c to distinguish retrieval and clearing moves):

B 1 . t + 0.75 =f~- 2-S + 0.75E[M,.I =-~- 1 - 2n .,=, (7a)

wheref~ is the following function of n:

2n 2n ~= t

The result has the same form as eqn (5), except now the factor f, representing the
expected position of a container in an average stack, is below 1/2, significantly lower
than the one found in Section 5 [eqn (6)]. It is even lower than the expected number 
moves that would result if boxes were randomly mixed at all times with the same average
stack height [eqn (4)]. This happens because the segregating strategy results in a few
stacks of hot containers, which are emptied relatively quickly, and many with cold ones.
During most of the time, therefore, the stacks most likely to be selected (the hot ones)
have fewer boxes and therefore require fewer moves. Table 1 compares the factors f, and
f(defined in Section 5) for n ranging from 1 to 10:

The benefits of segregation must be traded off against the need for clearing moves.
If all the blocks were cleared at the same rate, the number of clearing moves could be
calculated easily. (Refer again to Fig. 5.) At the end of the first headway, all the ship
stacks are 67~70 full, and one-third of them have to be cleared. This means that (I/3)(2/3)
of the containers carried by the ship must be moved. During the second headway, the
same number of blocks need to be cleared, but now they are only 50% full, so (1/3)(I/2)
of the containers need to be moved. During the last headway there are no moves, so the
number of clearing moves per container is (1/3)[(2/3) + (1/2)] = 7/18, or 0.39 clearing
moves per box. For an ideal case with arbitrary n, the number of clearing moves per
container is

E[Mc] = 1 (1+2 3+
+~--~) = 1 I ~]1 (8)_ . _ . , , ~ -- ¯ __

n _ 5+4 n .,,=t J

If desired, the summation in eqns (7) and (8) can be approximated to within better 
I °7o accuracy by

Table 1. Expected position of a container in aa average stack for the segregating and nonsegregating strategies

n 1 2 3 4 5 6 7 8 9 10

fs 0.500 0.468 0.463 0.462 0.463 0.464 0.466 0.467 0.468 0.470
f 0.500 0.625 0.648 0.656 0.660 0.662 0.663 0.664 0.665 0.665
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0.177

where m = 2n + I. Notice that this expression is only a function of n; it is independent
of stack height, block size, and so forth.

Clearing moves may take more time than retrieval moves, because cleared containers
have to be moved horizontally for longer distances. If blocks are randomly scattered
about the yard, an upper bound to the horizontal distance per clearing move is the mean
distance between two random points in the yard. In actuality the distance shouId be
considerably less, as each cleared container can be carried to a block of our choice,
subject to room availability. In fact, the selection of container destinations to minimize
distance can be formulated as the Hitchcock transportation problem of linear program-
ming, from which much lower average distances would result. The reduction is further
accentuated because if cranes can find efficient back-hauls, only one-way distances need
to be traveled for the most part.

Because the time spent overcoming horizontal distance is only a fraction of the total
time for any crane move, it is not necessary here to model horizontal distances accurately.
For comparison purposes, it should suffice to recownize that each clearing move m~/y be
equivalent to x retrieval moves, where x is a quantity somewhat > 1, which can be
determined by a combination of observation and analysis. In the comparisons presented
in Section 8, x Mll be taken to be 1.2. Equation (8) is based on the assumption that all
the groups are reduced at the same rate. In actuality, some groups will be reduced more
rapidly than others, and by choosing to clear the groups with the fewest containers, the
number of cleating moves can be lowered.

For our idea] case, this correction (in number of saved clearing moves) is of the form

where N is the number of containers per group at the beginning of a headway. (’Fhis
expres_sion is d~n-i,’v~ in the next section, which also develops expressions for
E[M,] and E[M~ for a general case vdth arbitrary ship schedules, cargo sizes and con-
tainer dwell tim~.)

Because N = Bs, the correction is maximDed if the number of stacks per group is
chosen as small as possible. We indicated earlier that s had to be at least equal to B in
order for the retrieval process to work smoothly. Thus, we would choose s = B. Then

and the correction becomes

A(n + 1)

2S

S n-- l

A n(n + 1)

7. THE EXPECTED NUMBER OF CLEARING MOVES

This section develops a simple expression for the expected number of clearing moves
per container handled (clearing moves are needed to make room for incoming ships under
the segregating strategy)) The expression is more realistic than eqn (8) because it takes
into account the fact that the operator may choose to clear the groups with the fewest
containers.

We assume that shiploads of different sizes are unloaded at the port at irregular
intervals, that each shipload is stored in a devoted set of groups (of stacks) and that

tAkhough the expression is simple, its derivation is not. This section is largely independent of the remainder
of the paper, however, and may therefore be skipped on a first reading.
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immediately before each ship arrival the containers in some groups are cleared to make
room for the incoming ship. We also assume that the number of stacks per group is a
constant, s.

Containers cleared from one group are taken to groups assigned to the same ship.
The number of groups and the number of containers cleared are chosen to ensure that
once the newly arrived ship is unloaded, all the groups are stacked to (roughly) the same
height°

We track the number of clearing moves for a ship arriving at time t = 0, assuming
that its A containers are stacked in M0 groups containing No containers per group. (Be-
cause the number of stacks per group is a constant, the stack height at time 0 is defined
by N0-a more convenient variable for our manipulations.)

The following information is known:

Ae: cumulative distribution function of the container dwell times, assumed to be i.i.d.
/-irk: time of the kth ship arrival after time t = 0 (H0 = 0)
Nk: target number of containers per group (Le. stack height) after the kth ship arrival

In practice, one would have to decide the Nk from the Hk and the incoming ship
loads (A~). In view of the results in Section 4, it seems that keeping the stack height (i.e.
Nk) as even as possible across the yard, the same for all ships, would minimize the num-
ber of retrieval moves. If this is done, N, is simply given by the ratio of the accumulation
of containers in the yard, ,~hich can be approximated from T(t) and the Ae’s as shown
in Taleb-Ibrahimi (I989). and the (fixed) total number of groups, S. The Ne used 
the ideal case reported in Section 4 satisfies this property as it results in a constant stack
height (B) after each s~p ~_,-:ival. The formu!as develot~ed, however, apply to any set 
N,’s.
From the above iNformaz~.on we define the following auxJlia~ variables:
qe = T(He+I) - T(Hk) = probability that a container is picked in the interarrival

time immediately after the kth ship, that is, in the (k + 1)th headway

= 1 - T(H,) = probability that a container is in the yard when the kth ship ar-
rives, that is, its dwell time exceeds H,

= qJPe = probability that a container is picked in the interarrival time immediately
after the/cth ship, that is, in the (k + 1)th headway, given that it is in the yard 
the beginning of the headway, when the kth ship arrives

Me = MoNoPk/Ne = number of groups used by our ship after the arrival of the /cth
ship, that is, the be~nning of headway k + 1 (defined as the ratio of the expected
number of containers remaining, MoNoPe, and the target group size, Ne)

Because Me is assumed to be fixed, but the container departures are random, the actual
group size at the beginning of headway k + 1 may not coincide with the target, Ne. For
the purposes of calculating the expected number of clearing moves in headway k + 1,
however, we assume that the actual group size at the beginning of the headway is Ne. The
impact of this approximation should be negligible because, as we shall see, the depen-
dence of the expected total number of moves on Nk is practically linear over the range of
values over which Ne is likely to vary-the variance of N~ is proportional to the reciprocal
of ship size, which is usually a large number.

Conditional on Ne, the number of containers departing from a group in the k + 1
headway is a binomial random variable with Ne trials and probability of success

Pc, B(Ne, Pc). Except for the scale on the ordinate axis, the cumulative number of groups
with less than or equal to z containers at the end of headway k + 1 would thus resemble
an empirical c.d.f, from the random variable Ne, B(Ne, Pc). If N, is large (comparable to
10, say), the cumulative curve of Fig. 6 will also resemble the c.d.f, of a normal random
variable with mean N,(1- Pc) and variance N~(l- POPe, labeled F(z) (see
Fig. 6).

Figure 6 depicts a case with Me~ < M, andNk+l < Ne. Because M,+t < M~ (as
should be usual), Iv/’e+t - M, groups need to be cleared for the next ship; the area labeled

Ye in the figure equals the resulting number of clearing moves. If M,+~ were > Iv/,, then
there would be no need for any clearing moves, as not groups would have to be released
for the next ship.

The area labeled Zk ir~ the figure represents the number of "trimming" moves that
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would be needed to reduce the height of any groups with too many containers. They will
be ignored here because, most likely, one would decide never to do a trimming move and
instead choose to live wkh temporary (slight) unevenness in stack heights as a result-the
increase in retrieval moves would be very small. Even if we insLsted on making trimming
moves, they wouldn’t have to be made immediately; they could be made early in the
following headway in conjunction with extra retrieval moves. As such, each trimming
move would contribute only to the count of equivalent retrieval moves of x -- I units.
(See Section 6 for the definition of x.) Furthermore, Zk is likely to be relatively small
because only in rare occasions will Nk+~ be substantially small than N~ to make a differ-
ence.

The area Yk is the integral of the inverse function of Fig. 6 from zero to Mk -- Mk+t.
On average, it ~ be close to the ar~ corresponding to the inverse of the normal
appro.~rn~tion, M~.F(z). Thus, we ~ ~Tffe

E[Yk] -= Mk " ]o t-’ (y)dy

and letting ~(.) denote the standard normal c.d.f., this becomes

E[y,] ~- mk " ~0 ¯ (I - p,) + ,/N, . (1 - PA " P, " ¢-’(Y) 

After a few simple manipulations we find

E[Yk] --- MoN0 " Pk+t ̄  (1 - Mk+~/Mk) 

" h(l - Mk+l/Mk)l
)

(1 - p~) 

(9)

where h(.) is a negative and convex function defined 
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lH(w) = ¢,-’ (y)dy (10)0

If cases in which M,+1 > Me are allowed, this function should be defined to be zero if
w<0.

Because MoN0 is the number of containers carried by the ship, requiring a total of
kYk clearing moves, it is easy to see that the expected number of moves per container is
the sum over k (starting with k = 0) of the quantity in braces in eqa (9). The sum of 
second term in eqn (9) vanishes if the Nk tends to infinity. In that case, the c.d.f, of Fig.
6 would be a step function, and all the groups would be cleared at the same rate. As
such, the (negative) second term represents the moves saved because we can choose the
groups having the fewest containers. The expected number of clearing moves is simplified
for the ideal case in which ship loads and headways are constant and the container dwell
times are uniformly distributed with a maximum dwell time equal to n ship headways. In
that case, assuming that the group size also stays constant, Nk = N, then

and

n-k

Therefore, the quantity ha braces in eqn (9) reduces 

1 f(1 -Pk) + 1

n°

-~" g(Pk) (11)

where g(.) is the follov, ing function:

g(w) = ~1 - w)/w. h(w)

Adding eqn (1 I) from k = 0 to k = n - 1, we obtain

1 1-. (n - 1 - 1/2 - 1in) ¯ G(n)tl " " "

where G(n), a positive quantity, is the negative of the average of the g(Pk) for the given
n. The first term of this expression coincides with the expression used in Section 6 leading
to eqn (8). (G(n) is given in Table 2.) The relative error in the approximation given for 
< 25, also presented in Section 6, is < 0.05.

8. COMPARISONS

We compare both strategies for different values of n, holding the average stack
height, An/2S, constant° Figure 7 plots the number of container moves for the ideal case

Table 2. Correction to the number of clearing moves when
using the segregating strategy

n 2 3 4 5 n<25

G(n) 0.20 0.30 0.36 0.40 -(n - l)/(2n)
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described in Section 4. The figure shows E[M] for both strategies as a function of n, for
three different average stack heights (B = 2, 3 and 4). Note that the curves for the
nonsegregadng strategy represent an upper bound for E[M]; actual values are likely to be
a little lower. The curves for the segregating strate~" assume x = 1.2 (i.e. clearing moves
require 20% more effort than retrieval moves).

The equivalent number of retrieval moves per container with the segregation strategy
is E[M] = El/v/,] + xE[M¢]. Recall that xE[Mc] is independent of stack height, unlike the
expressions for the number of retrieval moves (with both the segregation and the nose-
gregation strategies), which increased with B. Clearly then, the segregation strate~’ will
be relatively more appealing when land is scarce and containers have to be stacked high,
as then the impact of clearing moves should be relatively smaller. Figure 7 conf’u-ms this
observation. Increasing values of B have less of an effect on E[M] when the segregating
strategy is adopted.

Although the number of retrieval moves per container is not very sensitive to n for a
given B (for n > 2) ~qth either strategy, the number of clearing moves does increase with
n noticeably. This should be intuitive, because each ship has to be cleared n times before
all its containers have departed. Thus, one would expect situations with small n (few big
ships) to favor the segregation scheme. Figure 7 also confirms this observation. The slope
of the E[M] curves decreases more rapidly for the nonsegregating strategy.

In general, the segregating strategy seems to perform better when n is small (~ 3).
For large values of n (>_ 10), the nonsegregating strategy reduces handling effort. For
intermediate values of n (between 3 and 10 or 12), the best strategy depends on the
average stack height. Shorter stacks favor the nonsegregating strategy, and segregating is
better when stacks are high. For n = 6, for example, Fig. 7 shows that the segregating
strategy is better orgy if the average stack height is > 3.

9. DISCUSSION

In this paper, we have developed general expressions for the expected number of
moves required to retrieve a container from storage stacks under two different storage
strategies. An idealized case was examined in detail in an attempt to identify the condi-
t.ions favoring each strateD’.

The simp5city of the expressions for this ideN c~se makes them easy to understand
and useful as tools in the preliminary design stages of a terminal, when ship schedules
and container dwell times are not known in de~. They allow terminal planners to
achieve a good trade-off between stack heights (and associated land requirements) and
handling effort.

For cases when the ideal scenario does not apply, more parameters are needed to
analyze the problem. Although the more detailed analysis described in Sections 4 and 7
could be used, this would require much more information.

We did not attempt to optimize the frequency of consolidation moves. It is likely
that with large n (> 3 or 4), consolidation would not be done n times, but a submultiple
of n for each ship. Such an optimization would enhance the performance of the segregat-
ing strategy.

The comparisons were made for a uniform dwell time distribution ranging from zero
to n; then the C.V. of the dwell time is in all cases 3-~/2 - 0.58. We have seen that
segregation would offer no improvement for exponentially distributed dwell times (C.V.
- 1), which suggests that low variability in dwell times will favor segregation. This can
easily be quantified with the formulas presented for uniform dwell times with a range
from n’ to n (n’ = 1, 2 ..... n), but this is not done here for brevity. The case vdth 
= n is a particularly obvious situation in which segregation is a must; containers then
leave in the order of arrival.

The described operating strategies were designed to compare the consequences of
two fundamentally different approaches (segregating vs nonsegregating) and to keep the
problem tractable. We did not attempt to identify an optimal strategy. In practice, more
efficient (and complex) strategies could be developed and evaluated with simulations.
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Fig. 7. bIanclling effort for each strategy.
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These strz:egies could, for example, try to utilize shuffling moves more intelligently,
perhaps ~: storing hot boxes on top of cold ones. It may also be advantageous to develop
strategies for dynamically allocating stacks to import or export containers.
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APPENDIX

List of Symbols
A:
B:
B(O:
E[B]:
Y:

L:

G:

M:
M,:

Me:
n:

PgO:
$:
$:
7":
T,:

num’zer of import containers unloaded by a ship
aver’,:ge stack height in the yard immediately after a ship call
aver-~e stack height in the yard at time t
aver-~e stack height in the yard
expe.=ed fraction of a stack that must be shuffled to retaSeve a container when using the nonsegregating
stra:.~’
exp~ed fraction of a stack that must be shuffled to retrieve a container when using the segregating
strata’
fun=ion used to estimate a correction of the expected number of clearing moves required when using
the s,.egregating strategy
arri~ time of shipj
number of moves required to retrieve a single container from the storage stacks
num::er of moves required to retrieve a single contahaer from the storage stacks when using the segregat-
hag ~ategy (does not include clearing moves)
number of clearing moves required per retrieval when ttsing the segregating s’.rategy
nu~’,er of headways required to remove A containers from the storage area, or, equ~,Tdently, the
number of ships represented by at least one container in the storage stacks at any point in time
number of containers brought by sldpj in the yard at time t
tot~ number of s-tacks in the yard
n~’,er of s’,acks in a group
cu~fi~’e dis,an’bur.ion function (c.d.f.) for container dwell times
co~.. iemenw..~." c.d.f, for container dwell times




