Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The Three Members of the Arabidopsis Glycosyltransferase Family 92 are Functional β-1,4-Galactan Synthases

Abstract

Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin biosynthesis by mutant analysis, but biochemical activity has been shown for very few. We used reverse genetics and biochemical analysis to study members of Glycosyltransferase Family 92 (GT92) in Arabidopsis thaliana. Biochemical analysis gave detailed insight into the properties of GALS1 (Galactan synthase 1) and showed galactan synthase activity of GALS2 and GALS3. All proteins are responsible for adding galactose onto existing galactose residues attached to the rhamnogalacturonan-I (RG-I) backbone. Significant GALS activity was observed with galactopentaose as acceptor but longer acceptors are favored. Overexpression of the GALS proteins in Arabidopsis resulted in accumulation of unbranched β-1, 4-galactan. Plants in which all three genes were inactivated had no detectable β-1, 4-galactan, and surprisingly these plants exhibited no obvious developmental phenotypes under standard growth conditions. RG-I in the triple mutants retained branching indicating that the initial Gal substitutions on the RG-I backbone are added by enzymes different from GALS.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View